
The Annals of Applied Statistics
2011, Vol. 5, No. 3, 1839–1875
DOI: 10.1214/11-AOAS475
© Institute of Mathematical Statistics, 2011

MODELING ITEM–ITEM SIMILARITIES FOR PERSONALIZED
RECOMMENDATIONS ON YAHOO! FRONT PAGE

BY DEEPAK AGARWAL, LIANG ZHANG AND RAHUL MAZUMDER

Yahoo! Labs, Yahoo! Labs and Stanford University

We consider the problem of algorithmically recommending items to
users on a Yahoo! front page module. Our approach is based on a novel
multilevel hierarchical model that we refer to as a User Profile Model with
Graphical Lasso (UPG). The UPG provides a personalized recommendation
to users by simultaneously incorporating both user covariates and historical
user interactions with items in a model based way. In fact, we build a per-
item regression model based on a rich set of user covariates and estimate in-
dividual user affinity to items by introducing a latent random vector for each
user. The vector random effects are assumed to be drawn from a prior with
a precision matrix that measures residual partial associations among items.
To ensure better estimates of a precision matrix in high-dimensions, the ma-
trix elements are constrained through a Lasso penalty. Our model is fitted
through a penalized-quasi likelihood procedure coupled with a scalable EM
algorithm. We employ several computational strategies like multi-threading,
conjugate gradients and heavily exploit problem structure to scale our com-
putations in the E-step. For the M-step we take recourse to a scalable variant
of the Graphical Lasso algorithm for covariance selection.

Through extensive experiments on a new data set obtained from Yahoo!
front page and a benchmark data set from a movie recommender application,
we show that our UPG model significantly improves performance compared
to several state-of-the-art methods in the literature, especially those based on
a bilinear random effects model (BIRE). In particular, we show that the gains
of UPG are significant compared to BIRE when the number of users is large
and the number of items to select from is small. For large item sets and rela-
tively small user sets the results of UPG and BIRE are comparable. The UPG
leads to faster model building and produces outputs which are interpretable.

1. Introduction. Selecting items for display on a web page to engage users is
a fundamental problem in content recommendation [Agarwal et al. (2009)]. Item
selection is made to maximize some utility of interest to the publisher. For instance,
a news site may display articles to maximize the total number of clicks over a
long time horizon. For each display, feedback obtained from user-item interaction
is used to improve item selection for subsequent visits. At an abstract level, the
problem of recommending items on some module of a web page can be described
as follows:

Received May 2010; revised April 2011.
Key words and phrases. Recommender systems, collaborative filtering, matrix factorization,

item–item similarities, graphical lasso.

1839

http://www.imstat.org/aoas/
http://dx.doi.org/10.1214/11-AOAS475
http://www.imstat.org

1840 D. AGARWAL, L. ZHANG AND R. MAZUMDER

• A user visits a web page. Typically, covariates like demographic information,
geographic location, browse behavior and feedback from previous user visits
are available for users.

• A serving scheme selects item(s) to display on a small number of slots in the
module. The number of available slots are generally smaller than the number of
items to choose from. Typically, item(s) selection is based on scores computed
through a statistical model.

• The user interacts with items displayed on the module and provides feedback
(e.g., click or no-click).

• Based on feedback, parameter estimates of statistical models are updated. The
latency of update (e.g., 5 minutes, 30 minutes, 1 day) depends on the statistical
model, the delay in receiving feedback from a user visit and the engineering
infrastructure available.

• The process of serving items is repeated for every user visit. On portals like
Yahoo!, there are hundreds of millions of daily visits.

1.1. Background and literature. The item recommendation problem described
above is closely related to a rich literature on recommender systems and collab-
orative filtering [Adomavicius and Tuzhilin (2005)], a proper survey of which is
beyond the scope of this paper. We describe some popular approaches that are
closely related to methods proposed in this paper.

Recommender systems are algorithms that model user-item interactions to pro-
vide personalized item recommendations that will suit the user’s taste. Broadly
speaking, two types of methods are used in such systems—content based and col-
laborative filtering.1 Content based approaches model interactions through user
and item covariates. Collaborative filtering (CF), on the other hand, refers to a
set of techniques that model user-item interactions based on user’s past response
alone, no covariates are used. Modern day recommender systems on the web tend
to use a hybrid approach that combines content based and collaborative filtering.

A popular class of methods in CF are based on item–item and/or user-user sim-
ilarities [Sarwar et al. (2001); Wang, de Vries and Reinders (2006)]. These are
nearest-neighbor methods where the response for a user-item pair is predicted
based on a local neighborhood average. In general, neighborhoods are based on
similarities between items/users that are estimated through correlation measures
like Pearson, cosine similarity and others. A better approach to estimate similari-
ties has also been recently proposed in Koren (2010).

Nearest neighbor methods have been used extensively in large-scale commer-
cial systems [Linden, Smith and York (2003); Nag (2008)]. However, item–item
similarities are measured in terms of marginal correlations and do not adjust for

1The term “collaborative filtering” was coined by developers of the first recommender system,
Tapestry [Goldberg et al. (1992)].

MODELING ITEM–ITEM SIMILARITIES 1841

the effect of other items. It is not trivial to incorporate both covariates and past
responses in a principled way. Also, the algorithms do not have a probabilistic
interpretation, which makes it difficult to get estimates of uncertainty. We address
these issues in this paper by working in a model based framework. A crucial aspect
of our approach is in explicitly incorporating item–item interactions after adjust-
ing for covariates. In fact, we model partial associations among items; it provides
more flexibility compared to the classical item–item similarity approach that only
exploits marginal associations. This leads to significant improvement in perfor-
mance as illustrated in Section 6.

Research in CF received a boost after Netflix ran a challenge on a movie rec-
ommendation problem. The task was to use 100M ratings provided by half a mil-
lion users on roughly 18K movies to minimize out-of-sample RMSE on a test
set [Bell, Koren and Volinsky (2007a)]. The publicly available data set released
by Netflix does not contain any user or item covariates, hence, prediction using
CF is a natural approach. Several methods were tried; the winning entry was an
ensemble of about 800 models. Significant improvements in accuracy were at-
tributable to a few methods. A new class of methods that were based on SVD
style matrix factorization provided excellent performance and were significantly
better than classical neighborhood based approaches in CF. These are bilinear ran-
dom effects models that capture user-item interactions through a multiplicative
random-effects model. [See Bell, Koren and Volinsky (2007b); Bennett and Lan-
ning (2007); Salakhutdinov and Mnih (2008a, 2008b) for more details.] Recently,
these bilinear random effects models were generalized to simultaneously account
for both covariates and past ratings [Agarwal and Chen (2009)]. We shall refer
to this class of models as BIRE (bilinear-random effects model) in the rest of the
paper. Methods proposed in this paper are compared to BIRE in the experimental
section (Section 6) along with a theoretical analysis of how the approach proposed
in this paper is related to BIRE (Section 5). Through empirical analysis, we find
that our approach has significantly better predictive accuracy than BIRE when the
number of users is large and item set to recommend from is small; for a large sized
item set and a relatively small user set the performance is comparable to BIRE.
Indeed, for a large item set we find the predictions from both BIRE and our model
to be similar.

In terms of deployed large scale recommender systems, there is published work
describing some aspects of the Amazon system based on item–item similarity
[Linden, Smith and York (2003)]. In Das et al. (2007), techniques that power rec-
ommendations on Google News are described. They are primarily based on item–
item similarity and Probabilistic Latent Semantic Indexing (PLSI). We compare
both these methods with ours in Section 6. A large body of work in computa-
tional advertising [Broder (2008)] that recommends ads to users is also an example
of recommender problems. Most existing papers in this area focus on estimating
click-rates on ads by users in a given context. Early work focused mostly on co-
variate based regression [Chakrabarti, Agarwal and Josifovski (2008); Richardson,

1842 D. AGARWAL, L. ZHANG AND R. MAZUMDER

Dominowska and Ragno (2007)]. Recently, Agarwal et al. (2010) describe an
approach that combines covariate based regression with publisher-ad interaction
through a multilevel hierarchical model. Item–item similarities in this model are
estimated by exploiting a known hierarchical clustering on the item space that is
obtained from domain knowledge. No such knowledge is available in our scenario,
hence, the methods described in that paper do not apply. A new and emerging sci-
entific discipline called content optimization [Agarwal et al. (2009)] that aims at
recommending appropriate content for a user visit to a web page is another ex-
ample of a popular recommender problem. In fact, the motivating application on
Yahoo! front page we describe in this paper is an instance of content optimization.

We also note that recommender systems in general are complex and involve
simultaneous optimization of several aspects, some of these are not necessarily
statistical. For instance, in constructing an item pool to recommend from, human
editors on a web portal like Yahoo! may discard a Lady Gaga story if it is not
compatible with the Yahoo! brand, even if it is likely to click well. In computa-
tional advertising on search engines, ads that are not topically relevant to a query
are removed from the item set to begin with. Nevertheless, statistical models that
estimate the propensity to respond positively when an item is displayed to a user in
a given context are integral to the success of most modern day recommender sys-
tems. Data obtained from such systems consist of many categorical variables like
user, item, URL, IP address, search query and many more. It is typical for such
categorical variables to have a large number of levels; new levels appear routinely
over time and the distribution of data is heavy-tailed (a few levels are popular and
a large number have small sample size). Furthermore, the modeling involves esti-
mating interactions among several such categorical attributes; data sparseness due
to high dimensionaity and imbalance in sample size is a major issue when fitting
such statistical models. The modeling approach described in this paper provides a
possible solution.

1.2. Motivating application. Our motivating application requires recommend-
ing items on a Yahoo! front page (http://www.yahoo.com) module. Figure 1 shows
the location of our front page module that we shall refer to as the Personal As-
sistant (PA) module. The items to recommend on the PA module could consist of
web apps, RSS feeds and even websites. Some examples of the PA items include
Gmail,2 Facebook,3 Yahoo! Travel,4 Yahoo! Games,5 CNN6 and so on. For in-
stance, the Gmail web app enables login to Gmail from the Yahoo! front page. The
PA module is composed of two regions—the upper part of the module (region 1)

2http://mail.google.com/.
3http://www.facebook.com/.
4http://travel.yahoo.com/.
5http://games.yahoo.com/.
6http://www.cnn.com/.

http://www.yahoo.com
http://mail.google.com/
http://www.facebook.com/
http://travel.yahoo.com/
http://games.yahoo.com/
http://www.cnn.com/

MODELING ITEM–ITEM SIMILARITIES 1843

FIG. 1. The Personal Assistant (PA) Module on Yahoo! front page. Region 1 displays items selected
through editorial oversight and user add and remove, Region 2 has a couple of slots where items
recommended through statistical methods are placed.

consists of items that have been added by the user and the lower part (region 2)
consists of items that are recommended. There are four ways a user can interact
with PA items—hover, click, add and remove. “Hover” only works in “quickview”
mode; Figure 2 shows an interaction with a PA item when it is hovered upon. For
some PA items, a click redirects to the corresponding website. If a user likes some
recommended item displayed in region 2, it can be added to region 1 by clicking
on the “Add” button. A user can also remove items from region 1. To simplify
the problem, we treat both “hover” and “click” as positive feedbacks of similar
strength in our models (henceforth, both are referred to as “click”).

Our main focus is to recommend items for slots in region 2 to maximize the
overall click-rate on the PA module. At the time of writing this paper, items in
region 1 were preselected through editorial oversight. A user may, however, decide
to remove some of these and add new ones. Out of five slots in region 2, three

1844 D. AGARWAL, L. ZHANG AND R. MAZUMDER

FIG. 2. In the “quickview” mode, the pop-up window when a user hovered on one PA item “Shine”
(http:// shine.yahoo.com/).

showed editorially selected items while the other two (the second and the third
positions) display items recommended through statistical methods. Although we
anticipate items being algorithmically recommended on the entire PA module in
the future, for the sake of illustration we only focus on recommending items for
the second and the third positions in region 2.

1.3. Statistical challenges. Successful deployment of large scale recom-
mender systems like PA involves several statistical challenges. Providing per-
sonalized recommendations is important since item affinity is often user specific.
However, the frequency distribution of user visits to Yahoo! front page is skewed;
a small fraction of users are frequent visitors, while the remaining are tourists with
infrequent visits. Hence, the sample size available to estimate item affinity per user
is small for a large number of users. Informative covariates are often available for
users based on demographic information (through registration data), geo-location

http://shine.yahoo.com/

MODELING ITEM–ITEM SIMILARITIES 1845

(based on IP-address) and inferred browse behavior (based on historical user activ-
ities throughout the Yahoo! network). For users with small sample sizes, estimating
item affinity through covariates is an attractive strategy. The statistical challenge is
to build a model that provides user-specific item affinity for heavy users but falls
back on covariate based estimates in small sample size scenarios. We propose a
novel multilevel hierarchical random effects model to perform such estimation.

Multilevel hierarchical random effects models are well studied in the statistics
literature [see Gelman and Hill (2007) for a review]. Simple versions provide an
attractive framework to perform small sample size corrections when the number
of replications have large variation across groups. However, in our scenario the
number of random effects far exceeds the number of data points. We have a vec-
tor of user random effects that represents latent user affinity to the entire item
set, but a typical user interacts with a small number of items. This gives rise to
a large missing data problem—the full latent affinity vector for each user needs
to be estimated by using partial user response data. Model fitting in such sce-
narios presents additional challenges that we address in this paper. In particular,
we constrain the random effects through a prior that models latent item dependen-
cies using a well studied notion in the recommender systems literature—item–item
similarities. But unlike existing methods in recommender problems that estimate
similarities through marginal correlations, we incorporate such item–item similar-
ities in a model based way through partial correlations.

We also discuss how to perform fast online updates of model parameters. Online
parameter update makes the model adaptive and provides better recommendations
in practice [Agarwal, Chen and Elango (2010)]. Also, a website like Yahoo! front
page receives hundreds of millions of visits on a daily basis, hence, scalability of
the model fitting procedure is an important consideration. We scale our compu-
tations by taking recourse to the penalized quasi-likelihood procedure (PQL) for
model fitting [Breslow and Clayton (1993)]. Our prior involves estimating a high-
dimensional covariance matrix; we discuss methods to perform such estimation in
a scalable way for large problems with thousands of items.

1.4. Overview of our proposed modeling approach. The item pool to recom-
mend from in PA is small (approximately 50), and it is also hard to obtain infor-
mative covariates for the items themselves. Hence, we build a per-item regression
model (IReg) to estimate the odds of a click on an item for a given user visit. Thus,
if x(t)

u denotes the covariate vector for user u at time t , the log-odds θ
(t)
uj of a click

when item j is displayed to user u at time t is modeled as θ
(t)
uj = x(t)′

u βj . The co-
efficient vector βj for each item j is estimated through a logistic regression with
a ridge penalty on the coefficients.

Although the per-item user covariate logistic regression model IReg is satisfac-
tory for users with a moderate to small number of visits, it may not be the best
for frequent visitors where it is attractive to have a model that exploits response

1846 D. AGARWAL, L. ZHANG AND R. MAZUMDER

from previous user visits. Thus, it is desirable to have a model that smoothly tran-
sitions from IReg to a per user model depending on the sample size. We accom-
plish this by augmenting our regression model with user-specific random effects.
In other words, we assume θ

(t)
uj = x(t)′

u βj + φ
(t)
uj , where user u has a random vec-

tor φ(t)
u = (φ

(t)
u1 , . . . , φ

(t)
uJ) (J is the number of items). The estimated log-odds is

now based on both regression and user-specific random-effects. As in all random-
effects models, one has to perform smoothing by imposing an appropriate prior.
We assume φ(t)

u i.i.d. ∼ MVN(0,�), where the prior precision matrix � = �−1

is estimated from the data. The prior precision matrix measures partial associa-
tions between item pairs after adjusting for the covariate effects. This ensures we
are more likely to recommend items that are positively correlated to items that
the user liked in the past. For instance, if users who like PEOPLE.com7 also like
EW.com,8 a new user who visits PEOPLE.com will be recommended EW.com.

Most of the problems that we are interested in are under-determined—number
of observations being relatively small compared to the complexity of our covari-
ance model. This naturally calls for a regularization, for good predictive accuracy.
Though there are several possibilities for the regularization of the (inverse) item
covariance, for the context of this paper we resort to a structure encoding condi-
tional independencies among items. We achieve this via a sparse inverse covari-
ance regularization for the item–item covariance matrix [Banerjee, El Ghaoui and
d’Aspremont (2008); Friedman, Hastie and Tibshirani (2008)]—popularly known
as the Graphical lasso. This ensures an interpretable sparse graph encoding of the
partial correlations, and leads to favorable computational gains (as opposed to a
dense inverse covariance) and also favors predictive performances. For the inverse
covariance regularization, we used our C++ implementation of a primal block
coordinate method applied to the �1 penalized (negative) log-likelihood. Our al-
gorithm [Mazumder, Agarwal and Zhang (2011)] builds on Friedman, Hastie and
Tibshirani (2008) but has some important differences, and scales better (for our
experiments). The main idea of the algorithm is outlined in Section 4.1.2, but we
will not elaborate on it since it is beyond the scope of this paper.

The rest of the paper is organized as follows. We describe our data (with ex-
ploratory data analysis) in Section 2. Modeling details are provided in Section 3.
This is followed by model fitting details in Section 4. In Section 5 we discuss the
connection between the widely-used bilinear random effects model (BIRE) and our
proposed model. Section 6 describes results of models fitted to Yahoo! front page
data and benchmark MovieLens data. We end with a discussion in Section 7.

2. The PA module data. Yahoo! front page (www.yahoo.com) is one of the
most visited content pages on the web and receives hundreds of millions of user

7http://www.people.com.
8http://www.ew.com/ew.

http://www.yahoo.com
http://www.people.com
http://www.ew.com/ew

MODELING ITEM–ITEM SIMILARITIES 1847

visits on a daily basis. For a significant fraction of such visits, users interact with
some items on the PA module. We measure user interaction with items through
activities in a “user session.” A user session is a collection of visits by the user to
the front page where the inter-arrival time is less than 30 minutes [Cooley et al.
(1999)]. In each such user session, if a recommended item is clicked, we interpret
the response to be positive (i.e., labeled as 1). In the case of no click during the
session, the response is negative (i.e., labeled as 0).

The illustrative front page data set used in this paper contains around 5M binary
observations generated by about 140K Yahoo! users who interact with the PA mod-
ule at least once over some period spanning July to August 2009. A small random
sample of sessions for users who did not interact with the PA module at all during
that time period was also added. Although not using every user who visits the front
page may introduce bias in our parameter estimates, the alternative approach of in-
cluding all negatives introduced significant noise and led to poor results. In fact,
many users visiting the front page do not interact with the PA module at all, hence,
negatives in our data set lack perfect interpretation and are noisy. Such preprocess-
ing of negatives to reduce noise is common in recommender problem studies re-
ported in the literature. For instance, two widely used benchmark data sets, Netflix
[Bennett and Lanning (2007)] and MovieLens [available at www.grouplens.org],
only include users with more than 20 ratings in the training set. In most web ap-
plication studies reported in the literature, it is routine to subsample negatives. We
use the PA data described above to fit our model and call it the training data. To test
the accuracy of our models through out-of-sample predictions, we created another
test data set that contains observations from subsequent visits during some time
period in August 2009. To avoid bias in testing our methods, the observations in
the test set are obtained through a randomized serving scheme—a small fraction of
randomly selected visits are served with items that are randomly selected from the
available item set. Our randomized test set contains approximately 528K visits. Of
these, about 300K visits were by users seen in the training set, the remaining are
by users who either did not visit during the training period or were not included in
the training set.

We have a total of 51 items in our data set, and on average each user viewed
around 16 items during the training period. The sample size and the click through
rate (CTR) of each item for the data sets used in this paper are shown in Figures 3
and 4, respectively. For our data, the CTR of an item is defined as the fraction
of clicks per user session. Clearly, CTR is in the range [0,1]. As evident from
Figure 4, there is heterogeneity in the CTRs of items; some items like Personals,9

9http://personals.yahoo.com/.

http://www.grouplens.org
http://personals.yahoo.com/

1848 D. AGARWAL, L. ZHANG AND R. MAZUMDER

FIG. 3. The overall sample size of each item in the training data.

Gmail and Music10 have relatively high CTRs, while others like Mobile Web,11

Addresses12 and Local13 have low CTRs.

10http://music.yahoo.com/.
11http://mobile.yahoo.com/.
12http://address.yahoo.com/.
13http://local.yahoo.com/.

http://music.yahoo.com/
http://mobile.yahoo.com/
http://address.yahoo.com/
http://local.yahoo.com/

MODELING ITEM–ITEM SIMILARITIES 1849

FIG. 4. The boxplot of the click through rate (CTR) per day for each item.

A little more than half of the users in our data set were registered when they
visited Yahoo!; when these users visit the front page after “logging in,” we have
access to their demographic information like age, gender, occupation and so on.
It is also possible to obtain a user’s approximate geographic location from the IP
address. When a user is not logged in, we do not have access to their demographic
information. However, user activities in both logged-in and logged-out states are
tracked via the browser cookie throughout the Yahoo! network; this helps us create

1850 D. AGARWAL, L. ZHANG AND R. MAZUMDER

a browse signature for each cookie based on activity in a set of categories like
Sports, Autos, Finance and so on [Chen, Pavlov and Canny (2009)]. The signature
score in a given category is based on user’s visits to different Yahoo! websites, what
ads they clicked, what ads they viewed, search queries issued by them and other
activities. Thus, for each user (logged-in or logged-out), we have a few hundred
covariates describing their browse behavior on the Yahoo! network. Each covariate
is a binary indicator that is turned on if a user is inferred to have activity in the
corresponding category. For instance, if a user frequently visits Yahoo! Music, the
corresponding browse signature covariate for Yahoo! Music will be 1; else it is 0.

Figures 5 and 6 show the degree distribution of items and users in the train-
ing data. The distribution of the number of items clicked by users has a peak at
around 8, but the distribution is heavy tailed; a small fraction of items are clicked
by a large fraction of users. The degree distribution clearly reveals the imbalance
in our data; modeling such data is challenging.

3. Detailed description of our models. We begin this section by describing
the per-item logistic regression model IReg introduced earlier. This is followed by
our per-user model that assumes click rates on different items for a given user are
dependent. This dependence is modeled by associating a random vector per user
and assuming the user random effects are drawn from a multivariate normal prior
with an unknown precision matrix. We impose sparsity on the precision matrix
through a Lasso penalty on the elements of the matrix. We shall call this the “User
Profile model with Graphical lasso” (UPG).

3.1. Per-item regression model: IReg. Whenever applicable, we drop the time
suffix from our notation. For a user u interacting with an item j , we denote by yuj

the binary response (click/no-click) in a session. Then, yuj |puj ∼ Bernoulli(puj)

and puj is modeled through a logistic regression with log-odds denoted by θuj :

puj = 1

1 + exp(−θuj)
where θuj = x′

uβj(1)

with xu denoting the known per-user covariate vector which includes age, gender
and the user browse behavior information, and βj is the corresponding unknown
item-specific regression coefficient vector associated with item j .

The user gender covariates include three categories: missing, male and female.
Similarly, age is binned into 11 categories: missing, 0–12, 13–17, 18–20, 21–24,
25–29, 30–34, 35–44, 45–54, 55–64, and older than 64. We also use 112 binary
covariates describing user’s browse behavior. Finally, since we consider recom-
mending items on two slots in region 2, an extra categorical covariate was initially
added to adjust for the slot effect. In general, such adjustment for presentation
bias is important since everything else being equal, slots with less exposure tend
to have lower click-rates. We estimated the global slot effect by looking at data

MODELING ITEM–ITEM SIMILARITIES 1851

FIG. 5. Degree distribution for the items in the training set.

obtained from a randomized serving scheme. In our data set both slots provide
similar exposure.

Since some items have a smaller number of observations in our data set, the
maximum likelihood estimates of βj may not be stable for all j . Hence, we fit
our per-item regression models through a logistic ridge regression fitted using the
library LIBLINEAR [Fan et al. (2008)] that uses the trust region Newton method
[Lin, Weng and Keerthi (2008)]. Specifically, for each application j , the (regual-

1852 D. AGARWAL, L. ZHANG AND R. MAZUMDER

FIG. 6. Degree distribution for the users in the training set.

rized) coefficients are obtained by minimizing

1

2
β ′

jβj + C
∑
u,j

(
yuj log(puj) + (1 − yuj) log(1 − puj)

)
,(2)

where puj is given by equation 1. The tuning parameter C determines the amount
of shrinkage for the regression coefficients toward zero; we select it by cross-
validation.

3.2. User profile model with gaphical lasso: UPG. The IReg model based on
user covariates alone fails to capture variability in item interactions per-user, es-
pecially for heavy users with a large number of previous visits. For instance, there
may be large variation in how users in a particular age group interact with a Face-
book item on PA. For heavy users in the data, not accounting for such variation
could lead to an under-specified model. To ameliorate this, we capture residual
user-item interactions by augmenting the per-item regression model with addi-
tional user-specific random effects in the log-odds θuj . More specifically, we in-

MODELING ITEM–ITEM SIMILARITIES 1853

troduce random effects φuj :

θuj = x′
uβj + φuj .(3)

For user u, we denote the vector {φu1, . . . , φuJ } as φu, where J is the total number
of items. This J dimensional random vector captures user u’s residual latent in-
teraction with all J items in the item set. Obviously, this is an over-parameterized
model, hence, the random effects are constrained through a prior distribution. We
assume the following multivariate normal prior distribution,

φu ∼ MVN(0,�),(4)

where � is an unknown J × J covariance matrix and � = �−1 is the precision
matrix.

In the training phase (model fitting) we obtain estimates β̂j for each item j and
the user preference vector φ̂u for each user u. In the test period, if a user u has
historical observations in training data so that φ̂u is nonzero, then

θ̂uj = x′
uβ̂j + φ̂uj .(5)

For a new user with no observations in the training period, we fall back to the IReg
model and

θ̂uj = x′
uβ̂j .(6)

Note that for φ̂u to be nonzero, it is enough to have partial response information
on a subset of J items for user u. The random effects corresponding to the missing
response items for user u are estimated by combining the likelihood of observed
user response with the global prior on user random vector. The global prior that is
completely specified by the precision matrix is estimated by pooling data across
all users.

Although the J × J precision matrix � provides an estimate of pairwise sim-
ilarities between items after adjusting for the effects of user covariates and other
items, the total number of parameters to estimate for J items is large (O(J 2)).
Such estimation may get difficult for large J . It is thus desirable to impose further
regularization on �, to avoid overfitting and improve the predictive performance.
High-dimensional (inverse) covariance estimation is a challenging problem; see
Banerjee, El Ghaoui and d’Aspremont (2008), Dempster (1972), Hastie, Tibshirani
and Friedman (2009), Lauritzen (1996) and references therein. The form of reg-
ularization depends upon the nature of the problem, dimension of the parameter-
space and computational considerations among others. A diagonal covariance, for
example, is practically unrealistic since items are far from marginally indepen-
dent. Regularization schemes resulting in dense and possibly unstructured preci-
sion graphs lack interpretability and will lead to increased computational burden.
We propose using a regularization scheme that encourages sparsity in the precision
matrix, popularly referred to as the sparse-inverse covariance selection or Graph-

1854 D. AGARWAL, L. ZHANG AND R. MAZUMDER

ical Lasso [Banerjee, El Ghaoui and d’Aspremont (2008); Friedman, Hastie and
Tibshirani (2008)].

Introducing sparsity into the precision matrix is a well-studied problem, espe-
cially in the context of graphical models with Gaussian data [Lauritzen (1996)].
In fact, for Gaussian models �r,s = 0 implies φur and φus are conditionally in-
dependent given the rest of the coordinates. Thus, sparsity in the precision matrix
learns the structure of the graphical model. Due to the hierarchical model structure
proposed, the estimated covariance/precision matrices have to be positive definite,
rendering multiple regression or pseudo-likelihood based approaches like Besag
(1975), Meinshausen and Bühlmann (2006) unsuitable for our task. The Graphical
Lasso (Glasso) method estimates the precision matrix by minimizing the following
regularized negative log-likelihood criterion:

− log det� + tr(S�) + ρ‖�‖1 with � � 0.(7)

Here, the quantity ‖�‖1 denotes the sum of absolute values of the matrix �. The
parameter ρ controls the amount of L1 regularization and the sparsity induced on
the estimated precision matrix. The optimization problem in equation (7) above
is convex [Boyd and Vandenberghe (2004)]. In our model fitting procedure, the
sample covariance matrix S is obtained in the E-step by taking expectation of the
log-prior with respect to the posterior distribution of φu’s assuming the hyper-
parameter � is fixed at the latest estimate in the EM procedure (see Section 4 for
complete details).

To reiterate, the UPG model offers the following advantages over IReg:

• UPG accounts for residual variation in user preference for items after adjusting
for covariates through IReg. Since user covariates include only coarse behavioral
attributes inferred based on user activity across the Yahoo! network, it may not
completely reflect user preferences for PA items.

• UPG exploits item–item similarity to infer user preference on items that he/she
may have not been exposed to before, for instance, if users who click on item
X also tend to click on Y in the historic data; a click by a new user on X would
imply a click on Y with a high probability.

4. Model fitting procedure. The model fitting procedure for the IReg model
is implemented through a trust region Newton method as described in Section 3. In
this section we describe the fitting procedures for our UPG model. We fit our UPG
model through a penalized quasi-likelihood (PQL) method [Breslow and Clayton
(1993)]. Although other fitting methods based on MCMC and better approxima-
tion of the marginal likelihood through Gauss–Hermite quadrature [Pinheiro and
Bates (2000)] are possible, we use PQL for scalability. In fact, preliminary exper-
iments conducted using MCMC methods clearly revealed the difficulty of scaling
to data sets analyzed in this paper. In particular, we tested the MCMC method
in the statistical software R based on Langevin Metropolis–Hastings algorithms

MODELING ITEM–ITEM SIMILARITIES 1855

[Roberts and Rosenthal (2001)] using a diagonal precision matrix as prior (ran-
dom walk Metropolis proposal was slow to converge). Even for this simplified
model, we need approximately 7K posterior draws of φ̂u per user to obtain 1K
posterior samples (based on MCMC diagnostics, a burn-in of 2K and thinning of
5 was adequate). Obtaining samples for all users in our training data took approx-
imately 7 days for the PA data due to high dimensionality of random effects and
a large number of users. More crucially, a sampling scheme with L1 penalty on
the elements of the precision matrix is nontrivial to construct since it is not clear
what prior on the precision matrix would be equivalent to L1 regularization. For
regression problems, L1 penalty is equivalent to a double exponential prior on the
regression coefficients, but this does not hold in our case due to the additional con-
straint of positive definiteness. Hence, we take advantage of the Glasso mechanism
for estimating � and to do so, we found the PQL procedure more amenable. Thus,
in this paper we only focus on PQL and leave the exploration of other fitting pro-
cedures to future work. For instance, a parametric bootstrap procedure discussed
in Kuk (1995) can perhaps be modified to remove any bias incurred in estimating
the precision matrix. Bootstrap is a better strategy for large scale application like
ours since multiple runs can be performed in parallel.

Before describing the PQL fitting procedure, we begin with some notation. Let
β = {β1, . . . ,βJ } be the set of regression coefficients, and � = (β,�) denote
the fixed effects to be estimated in the UPG model. The PQL method works as
follows—at the current value � = �0, we form “working residuals” Zuj corre-
sponding to the response yuj (the response for user u and item j) through a Tay-
lor series expansion. The residuals are used to obtain the posterior distribution of
random-effects at �0 (E-step). This is followed by an updated estimate of � in
the M-step. The formation of working residuals and the EM steps on the work-
ing residuals are iterated until convergence. We note that for Gaussian responses,
working residuals coincide with true responses and no approximation is incurred.
The complete mathematical details on the PQL procedure for fitting UPG are pro-
vided below.

4.1. Algorithm for learning the UPG model. If φ̂uj and �̂ = (β̂, �̂) denote the
current estimates of the random-effects and parameters, respectively, the working
residual Zuj for binary response yuj is given by

Zuj = η̂uj + yuj − p̂uj

p̂uj (1 − p̂uj)
,(8)

where

η̂uj = x′
uβ̂j + φ̂uj and p̂uj = 1

1 + exp(−η̂uj)
.

With these we have approximately,

Zuj ∼ N(φuj + x′
uβj ,Vuj) where Vuj = (

p̂uj (1 − p̂uj)
)−1

.(9)

1856 D. AGARWAL, L. ZHANG AND R. MAZUMDER

The updated estimates of random effects and parameters are now obtained by solv-
ing the model in equation (9) through an EM algorithm [see Breslow and Clayton
(1993) for more details on PQL in general]. The EM algorithm treats the random
effects as missing data [Dempster, Laird and Rubin (1977)]. Thus, the E-step in-
volves computing the expected log-likelihood of the complete data with respect to
the conditional distribution of random effects given �̂,Z.

Let euj = Zuj − x′
uβ̂j . Denote by nuj the number of replicates where user u

interacts with item j , and let Nu be the total number of users. Also, let

Ku = diag
(

nu1

Vu1
, . . . ,

nuJ

VuJ

)
, Uu =

(
nu1∑
r=1

eu1,r

Vu1
, . . . ,

nuJ∑
r=1

euJ,r

VuJ

)
,

where euj,r represents the r th replicate for euj .
The conditional distribution of φu given �̂,Z is

φu|Z, �̂ ∼ MVN(μu,�u),(10)

where,

μu = (Ku + �̂)−1Uu,�u = (Ku + �̂)−1,(11)

where μu = (Ku + �̂)−1Uu, and �u = (Ku + �̂)−1. Thus, φ̂u = μu and the up-
dated values of � and β are obtained as follows. We use φ̂u as offset and update
the estimates of β through the LIBLINEAR routine. To update �, we make use of
the following observation:

E
φ|�̂,Z

[∑
u

logp(φu|�)

]
= −pNu

2
log(2π) + Nu

2
log|�|

(12)

− 1

2

∑
u

tr(��u) + μ′
u�μu.

The updated value of the precision matrix, that is, �, is obtained from the reg-
ularized likelihood criterion (7). In particular, for the special case with ρ = 0,
corresponding to the unregularized maximum likelihood, the covariance estimate
(assuming it exists) is given by

�̂
−1 =

∑
u(�u + μuμ

′
u)

Nu

.(13)

When ρ �= 0, we treat the result of equation (13) as the sample covariance ma-
trix S, and use the Glasso regularization to obtain a sparse �̂ and corresponding
covariance matrix �̂.

MODELING ITEM–ITEM SIMILARITIES 1857

4.1.1. Large scale implementation of the E-step. With Nu users and J items,
a less sophisticated implementation of the E-step (to obtain �u and μu for all
the users) is at least O(NuJ

3), due to the expensive computation for computing
�u = (Ku + �̂)−1 (11). This can make the training process prohibitively slow
when J is large (e.g., a few thousands). However, we note that the matrix inversion

need not be done from scratch. If �̂
−1

is available from the previous iteration of
the EM algorithm,14 (Ku + �̂)−1 can be obtained via a low-rank update, where
the low-rank is given by the number of nonzero entries of the diagonal matrix Ku.
Since in most recommender problems, a large fraction of users only interact with a
small fraction of items, ‖Ku‖0—the number of nonzero diagonal values in Ku, is
usually small. An application of the Sherman–Morrison–Woodbury formula gives

(�̂
−1 + Ku)

−1 = �̂ − �̂
√

Ku

(
I + √

Ku�̂
√

Ku

)−1√
Ku�̂,(14)

where computing (I + √
Ku�̂

√
Ku)

−1 takes only O(‖Ku‖3
0). However, we show

below that this can be even more efficient by exploiting the structure of the suffi-
cient statistics.

Note that in the M-step the object of interest is actually
∑

u �u instead of the
individual �u’s. Using equation (14), we have the following simplification:

∑
u

�u = ∑
u

(�̂
−1 + Ku)

−1(15)

= Nu�̂ − �̂

(∑
u

√
Ku

(
I + √

Ku�̂
√

Ku

)−1√
Ku

)
�̂.

The computational cost in obtaining
∑

u �u using (15) is now O(
∑

u ‖Ku‖3
0) +

O(J 2). Alternatively, using decomposition (14) and then summing over all users
to obtain

∑
u �u has a complexity of O(

∑
u ‖Ku‖3

0) + O(NuJ
2), which is defi-

nitely much higher than O(
∑

u ‖Ku‖3
0)+O(J 2) for large values of Nu. We would

like to point out that a sparse precision matrix �̂ does not lead to much computa-
tional benefit in the strategies just described via (14) and (15). This is because we
operate on covariance matrices which may still be dense even if the correspond-
ing precision matrices are sparse. The sparsity of the precision matrices, however,
plays a crucial role in updating the posterior mean μu for each user u.

For obtaining μu, we need to solve the sparse symmetric linear systems
(Ku + �̂)μu = Uu for all the users. Direct factorization based methods can be
quite expensive for solving these linear systems for arbitrary sparsity patterns in
�̂. For this purpose we employ iterative methods based on conjugate gradients

14While using the Glasso regularization in the M-step, we see that this is indeed the case, since the

algorithm returns both �̂
−1

and �̂, without the cost of an explicit inversion.

1858 D. AGARWAL, L. ZHANG AND R. MAZUMDER

[Demmel (1997); Hestenes and Stiefel (1952)]. For a specific user, this method re-
turns approximate solutions to the linear system at the cost of a few multiplications
of the matrix (Ku + �̂) with a vector, hence the complexity being linear (or better)
in J for sufficiently sparse �̂. For dense �, however, the computational cost in-
creases to O(J 2) (see Section 6.3 for computational results). Though well-chosen
pre-conditioners can decrease the number of conjugate gradient iterations, all the
experimental results reported in this paper are without any pre-conditioning.

Finally, since the computation of
∑

u �u and
∑

u μuμ
′
u can easily be paral-

lelized across users, we have used multiple-threading (e.g., 7 threads) to further
expedite the computations.

4.1.2. Computational considerations in the M-step: The l1 regularized log-
likelihood. For the l1 regularized log-likelihood, that is, Glasso regularization in
the M-step, the input covariance matrix is S = ∑

u(�u + μuμ
′
u)/Nu. The Glasso

implementation [Friedman, Hastie and Tibshirani (2008)] involves computation of
J Lasso regressions, and a J × J Lasso regression has a worst case complexity
O(J 3), hence, the computational complexity of Glasso could be as high as O(J 4)

in the worst case. However, significant computational advances in Lasso type com-
putations can make this computation faster, especially for large sparsity parame-
ter ρ. Many such computational nuances have already been incorporated into the
Glasso code by Friedman, Hastie and Tibshirani (2008). In particular, each Lasso
is performed through a fast coordinate descent procedure that yields computational
savings through residual and active set updates. In fact, in Friedman, Hastie and
Tibshirani (2008) the authors empirically demonstrate that computational com-
plexity of Glasso is O(J 3) for dense problems and much faster for sparse prob-
lems with large ρ. Our algorithm [see Mazumder, Agarwal and Zhang (2011) for
details] enjoys the the major computational advantages of the Glasso algorithm
of Friedman, Hastie and Tibshirani (2008). As mentioned earlier, we choose to
avoid the details of our algorithm, since it is beyond the scope of this current pa-
per. We outline some of its salient features, leaving the details to a future paper.
It is essentially a primal block-coordinate method, which also requires solving for
every row/column a Lasso problem. In fact, a partial optimization in the Lasso
problems suffices, for convergence to hold. Our algorithm maintains both the pre-
cision and its inverse, that is, the covariance matrix along the course of the algo-
rithm, and is amenable to early stopping. This is actually a crucial advantage of our
method, which, as our experiments suggest, it struggles with the implementation of
Friedman, Hastie and Tibshirani (2008). Our algorithm has very competitive com-
putational complexity as the Glasso for sparse problems, as our experiments sug-
gest. It goes without saying that the algorithm of Friedman, Hastie and Tibshirani
(2008), when compared with ours, gives the same models, upon convergence—
since they both solve the same convex optimization criterion. However, we chose
our algorithm for our experiments since it scaled favorably for our experiments,
especially for the MovieLens data with approximately 4000 items.

MODELING ITEM–ITEM SIMILARITIES 1859

Based on the above discussion, we conclude that large values of ρ that induce
more sparsity in � have two computational advantages: it speeds up the conju-
gate gradient computations in the E-step and it also accelerates the M-step of our
algorithm.

4.2. The UPG-online model. We have observed that updating the posterior
distribution of φu’s in an online fashion, as new observations are obtained, leads
to better predictive performances. This is because for a large fraction of users, the
posterior of φu is based on a small number of visits in the training period. Keeping
per-user posteriors updated using all prior user visits leads to posterior estimates
that provide a better model fit. We observed that it is not necessary to update the
precision matrix � too quickly if the item set does not change. This is because �
is a global parameter estimated by using large amounts of training data. We now
describe how the posterior of φu gets updated online with the arrival of a new
observation yuj,new for a fixed �.

Let the current posterior of φu ∼ MVN(μu,�u) as given in equation (10). As-
suming a new response yuj,new updates the counters Ku and Uu to Ku,new and
Uu,new, the new posterior mean μu,new is given by solving (Ku,new + �̂)μu,new =
Uu,new through conjugate gradient as described in Section 4.1.1. We note that for a
sparse �, this computation is fast even for a large J. Also note that posterior vari-
ance need not be updated explicitly, as it is automatically updated implicitly once
we obtain an updated Ku. This is an important implementation detail for large rec-
ommender problems; we only need to store the counters in Ku and Uu for items
that have been shown to users in the past. This reduces the memory requirements
per user and helps with scalability in large scale systems with hundreds of mil-
lions of users. The actual implementation that scales to large number of users that
visit Yahoo! front page requires state-of-the-art databases like BigTable and Hbase
that can store petabytes of data across multiple commodity servers and among
other things, they can support realtime serving. While it is difficult to produce
the result of such an experiment for an academic paper, such implementations are
becoming more common for large web applications. They may, however, involve
significant hardware and other engineering costs that are typically affordable for
recommender applications with a massive number of visits.

5. Comparing BIRE and UPG. In this section we discuss the connection
between BIRE and UPG since the former is considered state-of-the-art in the ex-
isting recommender literature. To simplify the discussion, we will assume that our
response yuj is Gaussian. We also assume our response has been adjusted to re-
move the effects of covariates and main effects. Hence, the UPG model in this case
is given as

yuj |φuj ∼ N(φuj , σ
2) where φu

i.i.d.∼ MVN(0,�−1).(16)

1860 D. AGARWAL, L. ZHANG AND R. MAZUMDER

Conditional on the φu’s, the responses are independent but marginally they are not.
In fact, responses by the same user u on different items are dependent. Denoting
by Yu the response of user u on J items, we see

Yu ∼ MVN(0, σ 2I + �−1)

and the L1 regularization on the precision, as we have described before helps both
in computation and predictive performance.

For the BIRE model, we have

yuj |qu,vj ∼ N(q′
uvj , σ

2)
(17)

where qu
i.i.d.∼ MVN(0, I) and vj

i.i.d.∼ MVN(0, aI).

Here qu and vj are K-dimensional user and item random effects (also called fac-
tors). Marginalizing over user factors qu, we see

Yu ∼ MVN(0, σ 2I + VV′),

where V is a J ×K matrix of item factors stacked together. Thus, the BIRE model
estimates item–item similarities through a low-rank decomposition in contrast to
the UPG model that assumes a more general structure, with the sparsity regular-
ization controlling the degrees of freedom of the estimator.

5.1. Computational complexity of fitting BIRE. Several model fitting strate-
gies have been used to fit the BIRE model in the literature. Of these, stochastic
gradient descent (SGD) and Monte Carlo EM (MCEM) have emerged as methods
of choice. We note that since the posterior is multi-modal, model fitting methods
influence the local optima obtained that in turn affects prediction accuracy. In par-
ticular, MCEM seems to provide the best performance in terms of out-of-sample
predictive accuracy [Agarwal and Chen (2009); Salakhutdinov and Mnih (2008a)].
The E-step of the MCEM procedure computes the expected log-posterior by draw-
ing samples from the posterior of {qu,vj :u = 1, . . . ,Nu; j = 1, . . . , J }, condi-
tional on the current hyper-parameter estimate a (and σ 2 for Guassian responses).
We note that conditional on V, the J × K matrix of item factors stacked together,
the qu’s are independent. Similarly, conditioning on Q, the Nu × K matrix of user
factors, vj ’s are independent. This provides a simple Gibbs sampling strategy to
obtain samples from the posterior. The posterior samples are used to obtain an es-
timate of the expected log-prior with respect to the latest posterior which is then
used to obtain an updated estimate of a (and σ 2 when applicable) in the M-step. In
fact, it is trivial to see that the updated estimate of a (and σ 2 when applicable) in
the M-step is obtained in closed form; thus, the computational complexity of the
fitting procedure is mainly due to the E-step. For Guassian responses, the condi-

MODELING ITEM–ITEM SIMILARITIES 1861

tional distribution of (qu|V, a, σ 2) is Guassian with mean and variance given by

Var(qu|Rest) =
(
I + ∑

j∈Nu

vj v′
j

σ 2

)−1

,

E(qu|Rest) = Var(qu|Rest)
∑

j∈Nu

yuj vj

σ 2 ,

where Nu denotes the set of items user u interacted with, and ‖Ku‖0 denotes the
size of this set. The computational complexity of computing the outer-product in
Var(qu|Rest) is O(‖Ku‖0K

2) and the inversion takes O(K3). Similarly, for updat-
ing the conditional distribution of vj ’s, the computational complexity is dominated
by O(K3). Recall for UPG the computational complexity for the E-step for each
user u is O(‖Ku‖3

0 +LJ 2). While ‖Ku‖3
0 is generally smaller than K3 in practical

applications since a large fraction of users interact with a small number of items,
the additional O(LJ 2) term due to the conjugate gradient step adds considerable
complexity to UPG for large item sets. Hence, introducing sparsity through Glasso
that reduces O(LJ 2) to almost linear in J helps with speeding up computation
for the E-step in UPG. However, introducing such sparsity comes at the cost of
performing a Glasso in the M-step. For small J like in our PA application, UPG
computations are more scalable.

6. Experiments and model comparions. In this section we provide empiri-
cal analysis of our models with comparisons to others. We report performance on
two different data sets—(a) The benchmark MovieLens 1M data set (described in
Section 6.1) from a movie recommender system that has been studied in the liter-
ature before, and (b) The Yahoo! PA data set described earlier. For both data sets,
we compare our UPG models with several existing methods.

6.1. Benchmark MovieLens 1M data. We conducted experiments on a bench-
mark MovieLens 1M data set (available at www.grouplens.org) that consists of 1M
ratings provided by 6,040 users on a set of 3,706 movies. The ratings (response)
ruj are on a 5-point ordinal scale and the root mean squared error (RMSE) on
out-of-sample predictions has been used to evaluate different modeling methods
on this data before. Since reducing RMSE is the goal, statistical models assume
the response (ratings) to be Gaussian for this data. We sort the training data by
time stamp associated with each record and create a 75% : 25% training-test split
to evaluate performance. Note that in this experiment we do not use any user or
item covariates for any of the models.

6.1.1. Methods compared on MovieLens data. We describe several collabora-
tive filtering methods that are compared to our approach. Some of these methods
provide simple baselines, others are state-of-the-art methods used in recommender
problems.

http://www.grouplens.org

1862 D. AGARWAL, L. ZHANG AND R. MAZUMDER

Constant—We assume ruj ∼ N(μ,σ 2) and predict every rating to be a constant
μ estimated as the global mean of training data.

Item–item similarity: IIS—This is a classic model used in recommender prob-
lems. In fact, according to published sources [Linden, Smith and York (2003);
Sarwar et al. (2001)], this could be one of the key technologies behind Amazon’s
recommendation engine. For the movie recommender problem, the rating of user
u on item j is predicted as

r̄j +
∑

k �=j wjk(ruk − r̄k)∑
k �=j wjk

,(18)

where wjk measures similarity between items j and k, and r̄k denotes the aver-
age rating on item k. For movie ratings data, measuring wjk through Pearson’s
correlation is popular [Breese et al. (1998)].

Most popular: MP—We include both user and item main effects into the model.
The main-effects are treated as random-effects and shrinkage is done using a nor-
mal prior. In other words, we assume the following model for ratings ruj :

ruj |(αu,βj ,μ,σ 2) ∼ N(μ + αu + βj , σ
2),

where αu and βj are user and item random effects, respectively, and μ is the global
intercept. The priors are given by

αi
i.i.d.∼ N(0, σ 2

α);βj
i.i.d.∼ N(0, σ 2

β).

Bilinear random effects: BIRE—We augment MP to include a multiplicative
random effects term. In other words,

ruj |(αu,βj ,μ,qu,vj , σ
2) ∼ N(μ + αu + βj + q′

uvj , σ
2),

αu
i.i.d.∼ N(0, σ 2

α); βj
i.i.d.∼ N(0, σ 2

β);
qu

i.i.d.∼ MVN(0, I); vj
i.i.d.∼ MVN(0, aI).

The inner product of the K dimensional user (qu’s) and item (vj ’s) random effects,
respectively, captures residual interaction. The variance components for both MP
and BIRE are estimated by fitting the model through an EM algorithm. For BIRE,
we use an MCEM algorithm [Agarwal and Chen (2009); Salakhutdinov and Mnih
(2008b)]. This model has been extensively studied in the literature and has been
shown to provide state-of-the-art performance compared to several other methods
[Koren, Bell and Volinsky (2009)].

UPG and UPG-online—We fit the Gaussian version of our UPG and UPG-
online models for comparison to the methods described above. Naturally, for this
case, the PQL approximation is redundant.

MODELING ITEM–ITEM SIMILARITIES 1863

TABLE 1
Test-set RMSE on MovieLens Data. The number of factors for BIRE and the sparsity parameter ρ

for UPG reported obtained the best performance

Method Constant MP IIS BIRE UPG UPG-online
(15 factors) (ρ = 0.002) (ρ = 0.002)

RMSE 1.119 0.9643 0.9584 0.9435 0.9426 0.8733

6.1.2. Discussion of results. In Table 1 we report the RMSE of various meth-
ods on the 25% held out test set. The Constant model has poor performance, and
adding main effects to obtain MP significantly improves performance. The IIS
model is better than MP but significantly worse than BIRE. Our UPG model is
almost equivalent to BIRE in performance. For both BIRE and UPG, the hyper-
parameters (number of factors for BIRE, sparsity parameter ρ for UPG) have an
impact on the RMSE performance. Figure 7 shows the predictive accuracy for
different hyper-parameter values. In practice, these parameters are estimated by
cross-validation on a tuning set. Note that for UPG when ρ = 0, the RMSE is
worse than the performance with ρ = 0.002 (corresponds to 1.8% nonzero diag-
onal entries for the UPG model); this shows adding Glasso for precision matrix
regularization is important for large-item-set problems (we have approximately
3.7K items in this case). To compare BIRE and UPG, we analyzed the residuals
from both these models on the test data. Interestingly, the scatter plot revealed the
residuals to be strikingly similar with a Pearson’s correlation of 0.97. For this data,

FIG. 7. For MovieLens 1M data, the RMSE performance of UPG model with rho equal to 0, 8e–04,
0.002, 0.003, 0.005 compared to the BIRE model with 5, 10, 15, 20 and 25 factors.

1864 D. AGARWAL, L. ZHANG AND R. MAZUMDER

the more generic assumption for the precision matrix in UPG yields results that are
similar to a low-rank approximation provided by BIRE.

Following a suggestion by a referee, we also compared our method with Fast
Maximum Margin Matrix Factorization (FMMMF) [Rennie and Srebro (2005)]
that predates the BIRE model. This approach also predicts ratings through the mul-
tiplicative random effects model as in BIRE but replaces the Gaussian assumption
(squared error loss) on the movie ratings by a hinge loss function that incorporates
the ordinal nature of the ratings. Due to nondifferentiability of the hinge loss, it is
approximated with a smooth hinge loss with Gaussian priors on the user and item
factors as in BIRE. The optimization is performed through conjugate-gradient in-
stead of the MCEM algorithm as in BIRE. As suggested in that work, we compare
performance in terms of mean absolute error (MAE).15 The MAE of FMMF ob-
tained after optimizing all parameters through Matlab code available publicly from
the authors was 0.7997, compared to 0.7077 achieved by UPG (ρ = 0.002).

The UPG-online model leads to a significant improvement in accuracy since
there are a large number of new users in the test set. For these users, online up-
dates to the posterior based on their prior ratings on items help in obtaining better
posterior estimates of φu’s and lead to more accurate predictions of ratings. We
computed the difference between mean absolute residuals obtained from UPG-
online versus UPG normalized by the sample variance as done in the standard
two-sample t-test. The test statistic values for users with zero observation and at
least one observation in the training set were 42.03 and 11.04, respectively. Both
groups had large sample sizes and the p-values from the t-test are close to zero;
this is suggestive of larger improvements through UPG-online for users with no
observations in the training set.

The practical significance of RMSE improvements on the actual movie recom-
mender system is hard to gauge. Large scale recommender systems deployed in
practice are complex and predictive models are only one aspect (albeit an impor-
tant one) that determine quality. But to provide some idea, the RMSE differences
of top-50 entries in the recently concluded Netflix competition were within 1% of
the winning entry.

For the best ρ value which is 0.002, the UPG model gives a precision ma-
trix with around 1.8% nonzero off-diagonal entries. The sparsity of the precision
matrix not only improves the RMSE performance but also provides interpretable
results in terms of item–item conditional similarities. We analyze the estimated
partial correlations from the UPG model. For each pair of items i and j , we con-
sider the partial correlation ρij [Kendall and Stuart (1961)] between the random
effects φui and φuj defined as

ρij = −�ij√
�ii�jj

.(19)

15Performance of FMMMF was much worse than BIRE and UPG in terms of RMSE, hence not
reported.

MODELING ITEM–ITEM SIMILARITIES 1865

TABLE 2
Pairs of movies with top 10 absolute values of partial correlations in the precision

matrix from UPG ρ = 0.002

The pair of movies Partial correlation

The Godfather (1972)
The Godfather: Part II (1974) 0.622

Grumpy Old Men (1993)
Grumpier Old Men (1995) 0.474

Patriot Games (1992)
Clear and Present Danger (1994) 0.448

The Wrong Trousers (1993)
A Close Shave (1995) 0.443

Toy Story (1995)
Toy Story 2 (1999) 0.428

Austin Powers: International Man of Mystery (1997)
Austin Powers: The Spy Who Shagged Me (1999) 0.422

Star Wars: Episode IV—A New Hope (1977)
Star Wars: Episode V—The Empire Strikes Back (1980) 0.417

Young Guns (1988)
Young Guns II (1990) 0.395

A Hard Day’s Night (1964)
Help! (1965) 0.378

Lethal Weapon (1987)
Lethal Weapon 2 (1989) 0.364

Intuitively, user preferences on two items i and j are associated if |ρij | is large. If
ρij = 0, then user random effects for items i and j are conditionally independent.
For MovieLens 1M data, the top-10 movie pairs with the highest absolute values
of partial correlations are shown in Table 2. Note that all pairs are sequels and have
positive partial correlation values. Also, if we look for the highly related movies to
a specific movie in the precision matrix, for example, Toy Story (1995), we obtain
movies such as Toy Story 2 (1999), Mulan (1998), A Bug’s Life (1998) and The
Lion King (1994), etc., which are all cartoons.

6.2. The Yahoo! PA data.

6.2.1. Methods compared. We provide a detailed analysis of PA data with
comparison to several existing methods in the recommender literature. The meth-
ods compared would differ slightly from those used for MovieLens 1M data due
to the binary nature of the response. Since maximizing total clicks in a given time
period is our goal, we consider a metric that provides an unbiased estimate of to-
tal clicks obtained for a set of visits. To ensure unbiasedness, we compute this

1866 D. AGARWAL, L. ZHANG AND R. MAZUMDER

metric on a small fraction of data that is obtained by randomly selecting visits on
Yahoo! front page and serving items at random for each of them. Obtaining such
randomized data with no serving bias is unique and not typically available. We
shall prove how the metric computed on this data provides an unbiased estimate of
lift in click-rates. We begin by describing the comparative methods for this data.

Per-item regression: IReg—This is our per item logistic regression model as
described in Section 3. User affinity to items is measured only through user co-
variates, we do not consider a per-user model.

Item–Item Similarity: IIS—The similarity measure wjk in equation (18) is given
by the Jaccard coefficient [Jaccard (1901)] which is the fraction of users who click
on both items j and k out of all users who click on either items j or k. The rating
ruj in this case is the click-rate.

Probabilistic Latent Semantic Indexing: PLSI—PLSI was developed by Hof-
mann (1999) to model the joint distribution of user and item responses in col-
laborative filtering applications. It was recently used for a news recommendation
application by Google [Das et al. (2007)]. The main idea is to use a mixture model
where, conditional on the mixture memberships, user and items are independent.
More formally,

p(j |u) =
K∑

l=1

p(j |l)p(l|u),

where l denotes the latent membership variable and symbol p denotes appropriate
distributions. Model fitting is conducted through an EM algorithm.

BIRE, UPG, UPG-online—Other than the methods described above, we also
compare BIRE with UPG and UPG-online.

6.2.2. Metrics to evaluate performance. We begin by defining an estima-
tor that provides an unbiased estimate of expected total clicks in T visits [see
Langford, Strehl and Wortman (2008)]. To ensure unbiasedness, we collect data
through a completely randomized recommendation scheme. For a small fraction
of randomly selected visits, we display two randomly selected items in the recom-
mended slots in region 2. Due to the randomization, the set of visits that obtained
a click is a random subsample. Confining ourselves only to the clicked subsample
on position 1, we measure the number of times the model would have selected the
clicked item. In other words, we measure the concordance between the top-ranked
items selected by our statistical method and the ones that got clicked. More specif-
ically, we measure the performance of a model M through the measure defined
as

S(M) = J
∑

visits with click

1(item clicked = item selected by M).(20)

We show S(M) is an unbiased estimator of total clicks obtained by serving
items on position 1 through model M. Let ct,M(ut) denote the binary click

MODELING ITEM–ITEM SIMILARITIES 1867

random variable when item jt = M(ut) is served on visit t to user ut by
model M(t = 1, . . . , T). Then, total expected clicks V (M) = E(

∑T
t=1 ct,M(ut)) =∑T

t=1
∑J

j=1 E(ct,j 1(M(ut) = j)) = T
∑J

j=1 E(cj 1(M(u) = j)), assuming (ut ,

ct,1, . . . , ct,J) are i.i.d. from some distribution. Now, note that S(M) = ∑T
t=1 ct,jt ×

1(M(ut) = jt), where jt is the item selected by the randomized serving scheme
for visit t :

E(S(M)) = J

J∑
j=1

E

(∑
t : jt=j

ct,j 1
(
M(ut) = j

))

= J
T

J

J∑
j=1

E
(
cj 1

(
M(u) = j

))
(21)

= V (M).

Note that the second inequality follows because ct,j is independent of ut since
we are evaluating on randomized data, and since ut ’s are random samples,
ct,j 1(M(ut) = j) has the same distribution. Also, |t : jt = j | = T/J under a ran-
domized serving scheme. To compare the click-lift of model M1 relative to M2,
we use 100(S(M1)

S(M2)
− 1). We report click-lift of various models under consideration

relative to the random serving scheme. Proof of unbiasedness under more general
scenarios is provided in Langford, Strehl and Wortman (2008); we included it for
the randomized data here for easy reference.

6.2.3. Discussion of results on PA data. We discuss results obtained for the
click-lift measure over the random model as shown in Figure 8. The boxplot for
each model represents the performance of 20 bootstraps on the test data. We note
that all models achieve a significant click lift compared to the random model. The
models IIS and PLSI do not incorporate user covariates and are worse than all oth-
ers. As expected, IReg is better than IIS and PLSI but BIRE (15 factors) does better.
However, for this data set UPG is significantly better than BIRE. Furthermore, the
best UPG model is based on a nonzero Lasso penalty. As expected, UPG-online
provides better results than UPG offline.

Collaborative filtering approaches that do not incorporate covariates (IIS and
PLSI in this case) perform poorly. The per-item regression IReg and state-of-the-art
BIRE perform much better, but our new model that combines covariates with item–
item similarity in a model based way is significantly better and achieves almost an
80% improvement in click-lift over random.

6.2.4. Interpretability of UPG for PA. As in MovieLens, partial correlations
for the UPG model are interpretable. We report item pairs with top 10 absolute par-
tial correlations in Table 3. Interestingly, all of the partial correlations shown in the

1868 D. AGARWAL, L. ZHANG AND R. MAZUMDER

FIG. 8. For the PA data, the click-lift measure over random model for the following models:
Item–item similarity model (IIS), PLSI, Per-application logistic regression model (IReg), BIRE with
15 factors, UPG with ρ = 0, UPG with ρ = 1e–04, UPG with ρ = 5e–04, UPG with ρ = 0.002, UPG
with ρ = 0.003, UPG-online with ρ = 0, UPG-online with ρ = 1e–04, UPG-online with ρ = 5e–04,
UPG-online with ρ = 0.002, and UPG-online with ρ = 0.003.

table are positive. The top two pairs are {“Fantasy Sports,”16 “Fantasy MLB”17},
{“Fantasy Sports,” “Fantasy Football”18}. Note that “Fantasy MLB” and “Fantasy
Football” are two different kinds of fantasy games in “Fantasy Sports.” The 3rd
ranked pair {“AOL Mail,”19 “Gmail”} are very well-known email services pro-
vided by AOL and Google, respectively. The 4th ranked pair {“PEOPLE.com,”
“EW.com Featured”20} are both news site on celebrities and entertainment.

16http://sports.yahoo.com/fantasy.
17http://baseball.fantasysports.yahoo.com/.
18http://football.fantasysports.yahoo.com/.
19http://webmail.aol.com.
20Top stories in http://www.ew.com/ew.

http://sports.yahoo.com/fantasy
http://baseball.fantasysports.yahoo.com/
http://football.fantasysports.yahoo.com/
http://webmail.aol.com
http://www.ew.com/ew

MODELING ITEM–ITEM SIMILARITIES 1869

TABLE 3
Pairs of items with top 10 absolute values of partial correlations in

the dense precision matrix from UPG (ρ = 0)

Item 1 Item 2 Partial correlation

Fantasy Sports Fantasy MLB 0.556
Fantasy Sports Fantasy Football 0.434
AOL Mail Gmail 0.367
PEOPLE.com EW.com Featured 0.265
Shopping Personals 0.237
PEOPLE.com PopSugar 0.224
Travel Shopping 0.222
News Shopping 0.208
EW.com Featured PopSugar 0.182
News Personals 0.181

6.3. Timing comparison between UPG and BIRE. For MovieLens 1M data
and Yahoo! PA data, we compare the time required for training the UPG models
and BIRE. Section 4.1.1 describes the computational complexity of the UPG.

The timing comparison between BIRE and UPG with different sparsity parame-
ter ρ is shown in Table 4. The M-step for UPG includes only the timing for Glasso,
the computation of the sample covariance being included in the E-step. Based on
the table, we see that UPG takes more time than BIRE. Following our discussions
in Section 5.1, this is because of the (major) time spent in updating

∑
u �u and

μu, which is large due to the size of J . The timings of both E-steps and M-steps
decreased with increasing sparsity level, as expected from our prior discussions.
The E-step and M-step timings are not directly comparable, since the E-step uses
multiple threading, where the M-step does not.

For relatively low dimensional problems (small J) but a large number of users,
UPG could be much faster than BIRE, which is shown in the case of the Yahoo!

TABLE 4
For MovieLens 1M data, the timing comparison (s) between BIRE and UPG (7 threads) with

different sparsity parameter (ρ) values. BIRE uses 15 factors and 100 MCMC samples per E-step,
single thread. Note that “0” means time is negligible because both BIRE and UPG

(ρ = 0) do not use Glasso in the M-step

BIRE UPG UPG UPG UPG UPG
15 factors ρ = 0 ρ = 8e–04 ρ = 0.002 ρ = 0.003 ρ = 0.005

E-Step 208.9 (s) 6555.0 (s) 5254.7 (s) 4049.7 (s) 3466.9 (s) 2857.0 (s)
M-Step 0 0 3502.3 (s) 2405.5 (s) 1964.3 (s) 1622.9 (s)
% Nonzero off- NA 100% 7.3% 1.8% 0.9% 0.3%

diagonals of �

1870 D. AGARWAL, L. ZHANG AND R. MAZUMDER

PA data set. For 140K users and 51 items, UPG takes only 7 seconds per iteration
using 7 threads, while BIRE with 15 factors and 100 samples per E-step takes
3378.1 seconds per iteration. With larger ρ and increased sparsity, the timings do
improve slightly, but the improvement is not as prominent as in the MovieLens
example (with larger number of items).

Therefore, for many real-life problems such as Yahoo! PA, the UPG models can
have significant edge over BIRE both in terms of accuracy and computation time.

7. Discussion. Although not widely studied in the statistics literature, the
problem of algorithmically recommending items to users has received a lot of at-
tention in computer science and machine learning in the last decade. Large scale
recommendation systems are mostly operated by big organizations like Amazon,
Netflix, Yahoo! and Google; sharing data for academic research is difficult due
to privacy concerns. A significant breakthrough was achieved when Netflix de-
cided to run a competition and released a large amount of movie ratings data to
the public in October, 2006. Since then, several methods have been published in
the academic literature. Of these, the BIRE model described earlier has emerged to
be the best, other classical methods like item–item similarity are not as accurate.
Methods based on classical and successful data mining techniques like restricted
Boltzmann machines (RBM) were also tried, but they were comparable and in
some cases worse than BIRE [Salakhutdinov, Mnih and Hinton (2007)]. However,
the errors in predictions made by BIRE and RBM were found to be uncorrelated
on Netflix, hence, an ensemble approach that combined BIRE, RBM and several
other methods eventually won the competition.

In this paper we proposed a new hierarchical model called UPG that general-
izes BIRE by moving away from modeling item–item similarity in terms of a low
rank matrix. Through extensive analysis (one benchmark data and a new data set
from Yahoo! front page) we show that our approach is significantly better in one
application (Yahoo! PA data) and comparable to BIRE on the benchmark data set.
In fact, comparing residuals obtained from UPG and BIRE on the MovieLens data,
we found them to be highly correlated (Pearson’s correaltion coefficient was about
0.97!). Thus, even in applications where a low-rank approximation does provide
a good model, the performance of our UPG model is comparable. In applications
like PA where a low-rank approximation is not suitable, the flexibility of UPG
leads to better accuracy. Other than accuracy, UPG also provides interpretable re-
sults in terms of item–item similarity. In many practical applications, item–item
methods are still used since they provide interpretable results. Our UPG model has
both features—accuracy and interpretability. We believe this makes it a promising
method that could potentially lead to interesting future research in this area.

The objective of the PA recommender problem described in this paper is to
maximize the total clicks on the module in some long time horizon. This is a ban-
dit problem since there is positive utility associated with taking risk and showing
items with low mean but high variance [Berry and Fristedt (1985)]. There exists

MODELING ITEM–ITEM SIMILARITIES 1871

a rich literature on bandits that is related to this problem [Auer, Cesa-Bianchi and
Fischer (2002); Lai and Robbins (1985); Sarkar (1991); Wang, Kulkarni and Poor
(2005); Yang and Zhu (2002)]. However, bandit algorithms without dimension re-
duction may converge slowly in high-dimensional problems. Our UPG models
provide a possible way to achieve such dimension reduction by exploiting corre-
lations among response for different items; this reduces the amount of exploration
required to perform personalization at the user level. Since we work with a well
defined statistical model, it is possible to obtain both mean and uncertainty esti-
mates. These can be coupled with bandit schemes like UCB [Auer, Cesa-Bianchi
and Fischer (2002)] to obtain faster convergence to the best item per user. We can
also use the mean estimates alone with bandit schemes that do not require explicit
variance estimates from statistical models [Auer et al. (1995)]. In our PA applica-
tion, we found simple ε-greedy to work well since the number of items in the pool
was small and sample size available on Yahoo! front page is large. In other scenar-
ios where sample size available per item is small due to large item pool and/or item
churn, other bandit schemes like UCB may perform significantly better and can be
easily coupled with the output of our UPG models. Constructing a bandit scheme
that is optimal for our UPG model is more involved and is an example of correlated
bandits. Some works on correlated bandits exist in the literature, but they do not
directly apply to our UPG model [Kleinberg, Slivkins and Upfal (2008); Pandey,
Chakrabarti and Agarwal (2007); Srinivas et al. (2009)]. We leave the investiga-
tion of optimal bandit schemes for UPG as future work. Similar comments apply
to BIRE for which constructing optimal bandit schemes has not been investigated
and is still an open problem.

Several other open issues remain to be addressed carefully. Although we were
able to scale our method to approximately 4K items, scaling to larger item sets re-
quires more research. As we pointed out in Sections 4.1.1 and 5.1, the main com-
putational bottlenecks for UPG are the O(J 2) conjugate gradient computations
in the E-step and O(J 3) computation for Glasso. Sparsity helps significantly but
more research is required. For scaling up the E-step, more large scale distributed
computation can help (we only used 7 threads in this paper). However, the Glasso
algorithm needs more work with large J . For instance, in our current implemen-
tation we optimize each intermediate graphical-Lasso till moderate/high accuracy.
Since partial optimization of the convex objective in the M-step is good enough in
the early iterations of our EM procedure, this strategy deserves further investiga-
tion. We tried to modify the Glasso algorithm of Friedman, Hastie and Tibshirani
(2008) along these lines, but we observed that the positive-definiteness of the re-
turned precision matrix was not always preserved, thus our algorithm [Mazumder,
Agarwal and Zhang (2011)] for this purpose was more favorable. Other than im-
proving optimization, it is also worthwhile to scale the computations by using
model approximations. One possibility is to cluster the item set into a smaller num-
ber of categories and capture item–item dependencies through category-category
associations. Such a compression, though scalable, may lead to a poor fit and hurt

1872 D. AGARWAL, L. ZHANG AND R. MAZUMDER

prediction accuracy. How to perform such clustering to achieve a good compro-
mise between scalability and accuracy is an interesting question. Also, in several
web recommender problems, there is significant item churn over time. We are cur-
rently investigating methods that generalize our methodology to update the sim-
ilarity matrix for such applications. Overall, we believe our UPG model opens
up new research avenues to study problems arising in the area of recommender
problems.

Acknowledgments. The authors would like to thank the anonymous review-
ers and the Editor for their helpful comments and suggestions that improved the
presentation of the paper. We would also like to thank Trevor Hastie from Stanford
University for helpful discussions. Rahul Mazumder would like to thank the hos-
pitality of Yahoo! Research for the summer of 2010, during which he got involved
in the work.

REFERENCES

ADOMAVICIUS, G. and TUZHILIN, A. (2005). Toward the next generation of recommender systems:
A survey of the state-of-the-art and possible extensions. IEEE Trans. on Knowl. and Data Eng.
17 734–749.

AGARWAL, D. and CHEN, B. (2009). Regression-based latent factor models. In Proceedings of the
15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 19–28.
ACM, New York.

AGARWAL, D., CHEN, B. C. and ELANGO, P. (2010). Fast online learning through offline initializa-
tion for time-sensitive recommendation. In Knowledge Discovery and Data Mining Conference
703–712. ACM, New York.

AGARWAL, D., CHEN, B., ELANGO, P., RAMAKRISHNAN, R., MOTGI, N., ROY, S. and
ZACHARIAH, J. (2009). Online models for content optimization. Adv. Neural Inf. Process. Syst.
21 17–24.

AGARWAL, D., AGRAWAL, R., KHANNA, R. and KOTA, N. (2010). Estimating rates of rare events
with multiple hierarchies through scalable log-linear models. In Proceedings of the 16th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining 213–222. ACM,
New York.

AUER, P., CESA-BIANCHI, N. and FISCHER, P. (2002). Finite-time analysis of the multiarmed
bandit problem. Mach. Learn. 47 235–256.

AUER, P., CESA-BIANCHI, N., FREUND, Y. and SHAPIRE, R. (1995). Gambling in a rigged casino:
The adversarial multi-armed bandit problem. In FOCS 322–331. IEEE Computer Society, Wash-
ington, DC.

BANERJEE, O., EL GHAOUI, L. and D’ASPREMONT, A. (2008). Model selection through sparse
maximum likelihood estimation for multivariate Gaussian or binary data. J. Mach. Learn. Res. 9
485–516. MR2417243

BELL, R., KOREN, Y. and VOLINSKY, C. (2007a). Chasing 1,000,000: How we won the Netflix
progress prize. ASA Statistical and Computing Graphics Newsletter 18 4–12.

BELL, R., KOREN, Y. and VOLINSKY, C. (2007b). Modeling relationships at multiple scales to
improve accuracy of large recommender systems. In KDD 95–104. ACM, New York.

BENNETT, J. and LANNING, S. (2007). The netflix prize. In Proceedings of KDD Cup and Workshop
2007, San Jose, California 3–6. ACM, New York.

http://www.ams.org/mathscinet-getitem?mr=2417243

MODELING ITEM–ITEM SIMILARITIES 1873

BERRY, D. A. and FRISTEDT, B. (1985). Bandit Problems: Sequential Allocation of Experiments.
Chapman & Hall, London. MR0813698

BESAG, J. (1975). Statistical analysis of non-lattice data. The Statistician 24 179–195.
BOYD, S. and VANDENBERGHE, L. (2004). Convex Optimization. Cambridge Univ. Press, Cam-

bridge. MR2061575
BREESE, J., HECKERMAN, D., KADIE, C. et al. (1998). Empirical analysis of predictive algorithms

for collaborative filtering. In Proceedings of the 14th Conference on Uncertainty in Artificial
Intelligence 43–52. AUAI Press, Corvallis, OR.

BRESLOW, N. and CLAYTON, D. (1993). Approximate inference in generalized linear mixed mod-
els. J. Amer. Statist. Assoc. 88 9–25.

BRODER, A. (2008). Computational advertising and recommender systems. In Proceedings of the
2008 ACM Conference on Recommender Systems 1–2. ACM, New York.

CHAKRABARTI, D., AGARWAL, D. and JOSIFOVSKI, V. (2008). Contextual advertising by combin-
ing relevance with click feedback. In WWW’08: Proceedings of the 17th International Conference
on World Wide Web 417–426. ACM.

CHEN, Y., PAVLOV, D. and CANNY, J. (2009). Large-scale behavioral targeting. In Proceedings
of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
209–218. ACM, New York.

COOLEY, R., MOBASHER, B., SRIVASTAVA, J. et al. (1999). Data preparation for mining world
wide web browsing patterns. Knowl. Inf. Syst. 1 5–32.

DAS, A., DATAR, M., GARG, A. and RAJARAM, S. (2007). Google news personalization: Scalable
online collaborative filtering. In Proceedings of the 16th International Conference on World Wide
Web 271–280. ACM, New York.

DEMMEL, J. W. (1997). Applied Numerical Linear Algebra. SIAM, Philadelphia, PA. MR1463942
DEMPSTER, A. (1972). Covariance selection. Biometrics 28 157–175.
DEMPSTER, A. P., LAIRD, N. M. and RUBIN, D. B. (1977). Maximum likelihood from incomplete

data via the EM algorithm (with discussion). J. Roy. Statist. Soc. Ser. B 39 1–38. MR0501537
FAN, R., CHANG, K., HSIEH, C., WANG, X. and LIN, C. (2008). LIBLINEAR: A library for large

linear classification. J. Mach. Learn. Res. 9 1871–1874.
FRIEDMAN, J., HASTIE, T. and TIBSHIRANI, R. (2008). Sparse inverse covariance estimation with

the graphical lasso. Biostatistics 9 432–441.
GELMAN, A. and HILL, J. (2007). Data Analysis Using Regression and Multilevel/hierarchical

Models. Cambridge Univ. Press, Cambridge.
GOLDBERG, D, NICHOLS, D., OKI, B. M. and TERRY, D. (1992). Using collaborative filtering to

weave an information tapestry. Commun. ACM 35 61–70.
HASTIE, T., TIBSHIRANI, R. and FRIEDMAN, J. (2009). The Elements of Statistical Learning: Data

Mining, Inference, and Prediction, 2nd ed. Springer, New York. MR2722294
HESTENES, M. R. and STIEFEL, E. (1952). Methods of conjugate gradients for solving linear sys-

tems. J. Research Nat. Bur. Standards 49 409–436. MR0060307
HOFMANN, T. (1999). Probabilistic latent semantic indexing. In Proceedings of the 22nd Annual

International ACM SIGIR Conference on Research and Development in Information Retrieval
50–57. ACM, New York.

JACCARD, P. (1901). Étude comparative de la distribution florale dans une portion des Alpes et des
Jura. Bull. Soc. Vaudoise Sci. Nat. 37 547–579.

KENDALL, M. and STUART, A. (1961). The Advanced Theory of Statistics, Vol. I, II, III. Griffin,
London.

KLEINBERG, R., SLIVKINS, A. and UPFAL, E. (2008). Multi-armed bandits in metric spaces. In
STOC’08 681–690. ACM, New York. MR2582691

KOREN, Y. (2010). Factor in the neighbors: Scalable and accurate collaborative filtering. ACM Trans-
actions on Knowledge Discovery from Data (TKDD) 4 1–24.

http://www.ams.org/mathscinet-getitem?mr=0813698
http://www.ams.org/mathscinet-getitem?mr=2061575
http://www.ams.org/mathscinet-getitem?mr=1463942
http://www.ams.org/mathscinet-getitem?mr=0501537
http://www.ams.org/mathscinet-getitem?mr=2722294
http://www.ams.org/mathscinet-getitem?mr=0060307
http://www.ams.org/mathscinet-getitem?mr=2582691

1874 D. AGARWAL, L. ZHANG AND R. MAZUMDER

KOREN, Y., BELL, R. and VOLINSKY, C. (2009). Matrix factorization techniques for recommender
systems. Computer 42 30–37.

KUK, A. Y. C. (1995). Asymptotically unbiased estimation in generalized linear models with ran-
dom effects. J. Roy. Statist. Soc. Ser. B 57 395–407. MR1323346

LAI, T. L. and ROBBINS, H. (1985). Asymptotically efficient adaptive allocation rules. Adv. in Appl.
Math. 6 4–22. MR0776826

LANGFORD, J., STREHL, A. and WORTMAN, J. (2008). Exploration scavenging. In Proceedings of
the 25th International Conference on Machine Learning, ICML ’08 528–535. ACM, New York.

LAURITZEN, S. L. (1996). Graphical Models. Oxford Statistical Science Series 17. Oxford Univ.
Press, New York. MR1419991

LIN, C.-J., WENG, R. C. and KEERTHI, S. S. (2008). Trust region Newton method for large-scale
logistic regression. J. Mach. Learn. Res. 9 627–650. MR2417250

LINDEN, G., SMITH, B. and YORK, J. (2003). Amazon.com recommendations: Item-to-item col-
laborative filtering. IEEE Internet Computing 7 76–80.

MAZUMDER, R., AGARWAL, D. and ZHANG, L. (2011). Block proximal point methods for large
scale covariance selection. Technical report, Stanford Univ.

MEINSHAUSEN, N. and BÜHLMANN, P. (2006). High-dimensional graphs and variable selection
with the lasso. Ann. Statist. 34 1436–1462. MR2278363

NAG, B. (2008). Vibes: A platform-centric approach to building recommender systems. IEEE Data
Eng. Bulletin 31 23–31.

PANDEY, S., CHAKRABARTI, D. and AGARWAL, D. (2007). Multi-armed bandit problems with
dependent arms. In ICML 721–728. ACM, New York.

PINHEIRO, J. C. and BATES, D. M. (2000). Mixed-Effects Models in S and S-PLUS. Springer, New
York.

RENNIE, J. D. M. and SREBRO, N. (2005). Fast maximum margin matrix factorization for collab-
orative prediction. In Proceedings of the 22nd International Conference on Machine Learning,
ICML ’05 713–719. ACM, New York.

RICHARDSON, M., DOMINOWSKA, E. and RAGNO, R. (2007). Predicting clicks: Estimating the
click-through rate for new ads. In WWW’07: Proceedings of the 16th International Conference
on World Wide Web 521–530. ACM, New York.

ROBERTS, G. O. and ROSENTHAL, J. S. (2001). Optimal scaling for various Metropolis–Hastings
algorithms. Statist. Sci. 16 351–367. MR1888450

SALAKHUTDINOV, R., MNIH, A. and HINTON, G. (2007). Restricted Boltzmann machines for col-
laborative filtering. In Proceedings of the 24th International Conference on Machine Learning,
ICML ’07 791–798. ACM, New York.

SALAKHUTDINOV, R. and MNIH, A. (2008a). Bayesian probabilistic matrix factorization using
Markov chain Monte Carlo. In Proceedings of the 25th International Conference on Machine
Learning 880–887. ACM, New York.

SALAKHUTDINOV, R. and MNIH, A. (2008b). Probabilistic matrix factorization. Adv. Neural Inf.
Process. Syst. 20 1257–1264.

SARKAR, J. (1991). One-armed bandit problems with covariates. Ann. Statist. 19 1978–2002.
MR1135160

SARWAR, B., KARYPIS, G., KONSTAN, J. and REIDL, J. (2001). Item-based collaborative filtering
recommendation algorithms. In WWW ’01: Proceedings of the 10th International Conference on
World Wide Web 285–295. ACM, New York.

SRINIVAS, N., KRAUSE, A., KAKADE, S. M. and SEEGER, M. (2009). Gaussian process ban-
dits without regret: An experimental design approach. Computing Research Repository—CoRR.
Available at arXiv:0912.3995v1.

WANG, J., DE VRIES, A. P. and REINDERS, M. J. T. (2006). Unifying user-based and item-based
collaborative filtering approaches by similarity fusion. In SIGIR ’06: Proceedings of the 29th

http://www.ams.org/mathscinet-getitem?mr=1323346
http://www.ams.org/mathscinet-getitem?mr=0776826
http://www.ams.org/mathscinet-getitem?mr=1419991
http://www.ams.org/mathscinet-getitem?mr=2417250
http://www.ams.org/mathscinet-getitem?mr=2278363
http://www.ams.org/mathscinet-getitem?mr=1888450
http://www.ams.org/mathscinet-getitem?mr=1135160
http://arxiv.org/abs/0912.3995v1

MODELING ITEM–ITEM SIMILARITIES 1875

Annual International ACM SIGIR Conference on Research and Development in Information Re-
trieval 501–508. ACM, New York.

WANG, C.-C., KULKARNI, S. R. and POOR, H. V. (2005). Bandit problems with side observations.
IEEE Trans. Automat. Control 50 338–355. MR2123095

YANG, Y. and ZHU, D. (2002). Randomized allocation with nonparametric estimation for a multi-
armed bandit problem with covariates. Ann. Statist. 30 100–121. MR1892657

D. AGARWAL

L. ZHANG

4401 GREAT AMERICA PKWY

SANTA CLARA, CALIFORNIA 95054
USA
E-MAIL: dagarwal@yahoo-inc.com

liangzha@yahoo-inc.com

R. MAZUMDER

DEPARTMENT OF STATISTICS

STANFORD UNIVERSITY

STANFORD, CALIFORNIA 94305
USA
E-MAIL: rahulm@stanford.edu

http://www.ams.org/mathscinet-getitem?mr=2123095
http://www.ams.org/mathscinet-getitem?mr=1892657
mailto:dagarwal@yahoo-inc.com
mailto:liangzha@yahoo-inc.com
mailto:rahulm@stanford.edu

	Introduction
	Background and literature
	Motivating application
	Statistical challenges
	Overview of our proposed modeling approach

	The PA module data
	Detailed description of our models
	Per-item regression model: IReg
	User profile model with gaphical lasso: UPG

	Model fitting procedure
	Algorithm for learning the UPG model
	Large scale implementation of the E-step
	Computational considerations in the M-step: The l1 regularized log-likelihood

	The UPG-online model

	Comparing BIRE and UPG
	Computational complexity of fitting BIRE

	Experiments and model comparions
	Benchmark MovieLens 1M data
	Methods compared on MovieLens data
	Discussion of results

	The Yahoo! PA data
	Methods compared
	Metrics to evaluate performance
	Discussion of results on PA data
	Interpretability of UPG for PA

	Timing comparison between UPG and BIRE

	Discussion
	Acknowledgments
	References
	Author's Addresses

