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POPULATION SIZE ESTIMATION BASED UPON RATIOS OF
RECAPTURE PROBABILITIES
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Estimating the size of an elusive target population is of prominent in-
terest in many areas in the life and social sciences. Our aim is to provide an
efficient and workable method to estimate the unknown population size, given
the frequency distribution of counts of repeated identifications of units of the
population of interest. This counting variable is necessarily zero-truncated,
since units that have never been identified are not in the sample. We consider
several applications: clinical medicine, where interest is in estimating patients
with adenomatous polyps which have been overlooked by the diagnostic pro-
cedure; drug user studies, where interest is in estimating the number of hidden
drug users which are not identified; veterinary surveillance of scrapie in the
UK, where interest is in estimating the hidden amount of scrapie; and ento-
mology and microbial ecology, where interest is in estimating the number of
unobserved species of organisms. In all these examples, simple models such
as the homogenous Poisson are not appropriate since they do not account for
present and latent heterogeneity. The Poisson–Gamma (negative binomial)
model provides a flexible alternative and often leads to well-fitting models.
It has a long history and was recently used in the development of the Chao–
Bunge estimator. Here we use a different property of the Poisson–Gamma
model: if we consider ratios of neighboring Poisson–Gamma probabilities,
then these are linearly related to the counts of repeated identifications. Also,
ratios have the useful property that they are identical for truncated and un-
truncated distributions. In this paper we propose a weighted logarithmic re-
gression model to estimate the zero frequency counts, assuming a Gamma–
Poisson distribution for the counts. A detailed explanation about the chosen
weights and a goodness of fit index are presented, along with extensions to
other distributions. To evaluate the proposed estimator, we applied it to the
benchmark examples mentioned above, and we compared the results with
those obtained through the Chao–Bunge and other estimators. The major ben-
efits of the proposed estimator are that it is defined under mild conditions,
whereas the Chao–Bunge estimator fails to be well defined in several of the
examples presented; in cases where the Chao–Bunge estimator is defined, its
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behavior is comparable to the proposed estimator in terms of Bias and MSE
as a simulation study shows. Furthermore, the proposed estimator is relatively
insensitive to inclusion or exclusion of large outlying frequencies, while sen-
sitivity to outliers is characteristic of most other methods. The implications
and limitations of such methods are discussed.

1. Introduction. The size N of an elusive population must often be deter-
mined. Elusive populations occur, for example, in public health and medicine,
agriculture and veterinary science, software engineering, illegal behavior research,
in the ecological sciences and in many other fields [Bishop, Fienberg and Holland
(1995), Bunge and Fitzpatrick (1993), Chao et al. (2001), Hay and Smit (2003),
Pledger (2000, 2005), Roberts and Brewer (2006), Wilson and Collins (1992)].
A prominent problem in public health is the completeness of a disease registry
[Van Hest et al. (2008)], while an interesting application of capture–recapture tech-
niques in the veterinary sciences is the estimation of hidden scrapie in Great Britain
[Böhning and Del Rio Vilas (2008)]. In software engineering [Wohlin, Runeson,
and Brantestam (1995)] we are interested in finding the number of errors hidden
in software components. In criminology the number of people with illegal behav-
ior is of high interest [Van der Heijden, Cruyff, and Houwelingen (2003)], and in
ecology we wish to estimate the number of rare species of organisms [Chao et al.
(2001)]. All of these situations fall under the following setting. We assume that
there are N units in the population, which is closed (no birth, death or migration),
and that there is an endogenous mechanism such as a register, a diagnostic device,
a set of reviewers, or a trapping system, which identifies n distinct units from the
population. A given unit may be identified exactly once, or it may be observed
twice, three times, or more. We denote the number of units observed i times by fi ,
so that n = f1 + f2 + f3 + · · ·; the number of unobserved or missing units is f0,
so N = f0 + n. The objective is to find an estimate (or rather a prediction) f̂0 for
f0, and hence an estimate N̂ of N .

To illustrate, we first introduce several examples from different domains; these
are analyzed in the following sections:

1. Methamphetamine use in Thailand. Surveillance data on drug abuse are avail-
able for 61 health treatment centers in the Bangkok metropolitan region from
the Office of the Narcotics Control Board (ONCB). Using this data, it was pos-
sible to reconstruct the counts of treatment episodes for each patient in the last
quarter of 2001. Table 1 presents the number of methamphetamine users for
each count of treatment episodes [Böhning et al. (2004)]; the maximum ob-
served frequency was 10. Here we are interested in estimating the number of
hidden methamphetamine users.

2. Screening for colorectal polyps. In 1990, the Arizona Cancer Center initiated
a multicenter trial to determine whether wheat bran fiber can prevent the re-
currence of colorectal adenomatous polyps [Alberts et al. (2000), Hsu (2007)].
Subjects with previous history of colorectal adenomatous polyps were recruited
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TABLE 1
Methamphetamine data—frequency distribution of treatment episodes per drug user

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 n

3114 163 23 20 9 3 3 3 4 3 3345

and randomly assigned to one of two treatment groups, low fiber and high fiber.
The researchers noted that adenomatous polyp data are often subject to unob-
servable measurement error due to misclassification at colonoscopy. It can be
assumed that patients with a positive polyp count were diagnosed correctly,
whereas it is unclear how many persons with zero-count of polyps were false-
negatively diagnosed. Thus, we approach the data as if zero-counts were not
observed, and we try to estimate the undercount from the nonzero frequencies.
Table 2 shows the polyp frequency data for the two different treatment groups;
the (overall) maximum frequency is 77. The number of subjects with an ob-
served number of adenomas equal to 0 is 285 for the Low Fiber treatment and
381 for High Fiber treatment respectively; we regard this as an undercount and
seek to estimate the true unobserved frequencies f0.

3. Scrapie in Great Britain. Sheep are kept in holdings in Great Britain and the
occurrence of scrapie in the population of holdings is monitored by the Com-
pulsory Scrapie Flocks Scheme [Böhning and Del Rio Vilas (2008)]. This was
established in 2004 and summarizes three surveillance sources. Table 3 presents
the frequency distribution of the scrapie count within each holding for the year
2005. Here interest is estimating f0, the frequency of holdings with unobserved
or unreported scrapie. The maximum frequency in the data is 8.

4. Malayan butterfly data. This data set derives from a large collection of Malayan
butterflies collected by A. S. Corbet in 1942 [Fisher, Corbet and Williams
(1943)]. There were 9031 individual butterflies classified to n = 620 species.
Out of these 620 different species, 118 were observed exactly once, 74 twice,

TABLE 2
Polyps data—frequency distribution of recurrent adenomatous polyps per patient, by treatment

group

(f0) f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 ···
Low (285) 145 66 39 17 8 8 7 3 1 0 3 · · ·
High (381) 144 61 55 37 17 5 4 6 5 1 1 · · ·

f22 ··· f28 ··· f31 ··· f44 ··· f57 ··· f70 ··· f77 n

Low 1 · · · 1 · · · 0 · · · 0 · · · 0 · · · 0 · · · 0 299
High 0 · · · 0 · · · 1 · · · 1 · · · 1 · · · 1 · · · 1 341
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TABLE 3
Scrapie data—frequency distribution of the scrapie count within each

holding for Great Britain in 2005

f1 f2 f3 f4 f5 f6 f7 f8 n

84 15 7 5 2 1 2 2 118

44 three times and so forth. This “abundance” data is shown in Table 4. Fisher,
Corbet and Williams (1943) reported exact counts only up to f24, stating that
there were a total of 119 species with sample abundances (counts) greater than
24. Here the interest is in estimating the total number of species N .

5. Microbial diversity in the Gotland Deep. The data on microbial diversity shown
in Table 5 stem from a recent work by Stock et al. (2009). Microbial ecolo-
gists are interested in estimating the number of species N in particular envi-
ronments. Unlike butterflies, microbial species membership is not clear from
visual inspection, so individuals are defined to be members of the same species
(or more general taxonomic group) if their DNA sequences (derived from a cer-
tain gene) are identical up to some given percentage, 95% in this case. Here the
study concerned protistan diversity in the Gotland Deep, a basin in the central
Baltic Sea. The sample was collected in May 2005. The maximum observed
frequency was 53.

The classical approach to estimation of N is to assume that each population unit
enters the sample independently with probability p (dealing with heterogeneous
capture probabilities by modeling and averaging). Given p, the unbiased Horvitz–
Thompson estimator of N is n/p, and the maximum likelihood estimator is its
integer part �n/p�. One then estimates p using any of several methods, and the
final estimate of N is n/p̂ or �n/p̂� [Lindsay and Roeder (1987), Böhning et al.
(2005), Böhning and van der Heijden (2009), Wilson and Collins (1992), Bunge
and Barger (2008), Chao (1987, 1989), Zelterman (1988)].

Here we take a new approach: we consider ratios of successive frequency
counts, namely,

r̂(x) := (x + 1)fx+1

fx

.

TABLE 4
Butterfly data—frequency distribution of butterfly species collected in Malaya

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12

118 74 44 24 29 22 20 19 20 15 12 14

f13 f14 f15 f16 f17 f18 f19 f20 f21 f22 f23 f24 f>24 n

6 12 6 9 9 6 10 10 11 5 3 3 119 620
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TABLE 5
Protistan diversity in the Gotland Deep—frequency counts of observed species

f1 f2 f3 f4 f6 f8 f9 f10 f11

48 9 6 2 2 2 1 2 1

f12 f13 f16 f17 f18 f20 f29 f42 f53 n

1 1 2 1 1 1 1 1 1 84

Often r̂(x) appears as a roughly linear function of x, which leads us to apply linear
regression to the scatterplot of (x, r̂(x)); we then project the regression function
downward to the left, to zero, which yields f̂0 and hence N̂ . Figure 1 shows the
ratio plot of (x, r̂(x)) for the methamphetamine data; there is clear evidence for
a linear trend. Projecting the line to the left, we obtain f̂0 = 57,788 and, hence,
N̂ = 61,133.

Figure 2 shows the ratio plot for the butterfly data; again there is a clear linear
trend and here we also observe increasing variance in the points as x increases,
which we will deal with via weighted least squares. In this case we find f̂0 = 126
and N̂ = 746.

This simple and powerful method applies exactly when the frequency counts
emanate from the Katz family of distributions, namely, the binomial, Poisson and

FIG. 1. Scatterplot with regression line of (x + 1)f(x+1)/fx vs. x for the Bangkok metham-
phetamine drug user data.
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FIG. 2. Scatterplot with regression line of (x + 1)f(x+1)/fx vs. x for the butterfly data.

gamma-mixed Poisson or negative binomial, and it applies approximately to ex-
tensions of the Katz family and to general Poisson mixtures. It can be implemented
using any statistical software package that performs weighted least squares regres-
sion, and it is superior to existing methods for the negative binomial model (includ-
ing maximum likelihood) in several ways. In addition, it substantially mitigates the
effect of truncating large counts (recaptures or replicates), which is an issue with
almost every existing method, parametric or nonparametric. In Section 2 we dis-
cuss the method and its scope of applicability; in Section 3 we describe weighting
schemes; in Section 4 we look at goodness of fit of the linear model; and in Sec-
tion 5 we compare our method with existing techniques, analyze the five data sets,
and discuss the implications of our findings. The Appendix covers aspects of the
approximation used for reaching the linear model as well as a comparative simu-
lation study, a discussion of standard error approximations, and an assessment of
the effect of deleting large “outlying” frequencies.

2. Linear regression and the Katz distributions. Let p0,p1,p2, . . . denote
a probability distribution on the nonnegative integers. The condition

(x + 1)px+1

px

= γ + δx, x = 0,1,2, . . . ,(2.1)

where γ and δ are real constants, characterizes the Katz family of distributions
[Johnson, Kemp and Kotz (2005)]. To yield a valid probability distribution, it is
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necessary that γ > 0 and δ < 1. If δ < 0, px is the binomial distribution; if δ = 0,
px is the Poisson; and if δ ∈ (0,1), px is the negative binomial. These distributions
arise naturally as models for population size estimation.

• Suppose that a given population unit may be observed on each of k “trapping
occasions.” Assume further that the trapping or capture probability, say, r , is the
same on each occasion and that captures are independent across occasions, and
also that the capture probability is the same (homogeneous) for all units, and
that units are captured independently of each other. If mi denotes the number
of captures of the ith unit, then m1, . . . ,mN are i.i.d. binomial (k, r) random
variables. This simple model is rarely realistic, but it can provide a lower bound
for the population size, since the homogeneity assumption leads to downwardly
biased estimation in the presence of heterogeneity. This is formally proved in
Böhning and Schön (2005) for maximum likelihood estimation. In this case the
frequency count data f1, f2, . . . summarizes the nonzero values of m1, . . . ,mN .

• Now suppose that population unit i appears a random number of times mi in the
sample, but now m1, . . . ,mN are i.i.d. Poisson random variables with (homo-
geneous) mean λ. This model arises naturally in species abundance sampling
where each species contributes some number of representatives to the sample; it
also appears as an approximation to the binomial model with λ ≈ kr , for large k

and small r . Again the homogeneity makes this model mainly useful for lower-
bound benchmarking.

• Assume now that the foregoing Poisson model holds, but with the modifica-
tion that the mean number of appearances of unit i is λi , and that λ1, . . . , λN

are i.i.d. gamma-distributed random variables. Then the distribution of mi is
(unconditionally) gamma-mixed Poisson, that is, negative binomial. This is not
the simplest possible model with heterogeneous capture rates, but it may be
the oldest, appearing in Fisher, Corbet and Williams (1943), the source of our
butterfly data. (Note that it includes the geometric, since the exponential is a
special case of the gamma.) The negative binomial distribution is widely ap-
plicable as a model for the frequency counts, when the data is not too highly
skewed (left or right); however, it is surprisingly difficult to fit by, for example,
maximum likelihood, or by other existing procedures such as the Chao–Bunge
estimator (see discussion below). We show below that, when implemented by
our weighted least squares regression procedure, the negative binomial model
becomes practical and useful for estimating N in a variety of situations.

We make two further comments on distribution theory. First, it may be read-
ily shown using the Cauchy–Schwarz inequality that the ratio on the left-hand
side of (2.1) is nondecreasing for any mixed-Poisson distribution. This means
that the linear relation, and hence our weighted linear regression procedure be-
low, can be regarded as a first-order linear approximation for any Poisson mixture
(not just gamma), thus justifying a degree of robustness of our method across a
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wide range of heterogeneity models. Second, there are extended versions of rela-
tion (2.1) which give rise to distributional extensions of the Katz family that need
not be mixed-Poisson [Johnson, Kemp and Kotz (2005)]. Such extensions may be
parameterized and we conjecture that our method below will be robust to small
perturbations along these parameters.

Condition (2.1) suggests linear regression of the left-hand side upon the right,
in some form. Observe that the natural estimate of px would be p̂x(N) := fx/N ,
if N were known. But

(x + 1)p̂x+1(N)

p̂x(N)
= (x + 1)fx+1/N

fx/N
= (x + 1)fx+1

fx

= r̂(x),

so we can fit a linear regression of r̂(x) on x without knowing N . We can then
obtain an estimate of f0 by setting x = 0 so that r̂(0) = 1f1/f̂0 = γ̂ , and, hence,
f̂0 = f1/γ̂ . In practice, however, we prefer to fit the response on a logarithmic
scale, which is approximately linear near the origin and avoids negative fitted val-
ues. Thus, our basic equation becomes

log
(

(x + 1)px+1

px

)
= γ + δx,

and we fit the model

log
(

(x + 1)fx+1

fx

)
= γ + δx + εx.(2.2)

We consider this in terms of linear regression in the next section. The estimate
of f0 is then f̂0 = f1e

−γ̂ .
In particular, consider the gamma-mixed Poisson or negative binomial model

for the count data. Let the negative binomial be parameterized as

p(x) = �(x + k)

�(x + 1)�(k)
pk(1 − p)x,

where k > 0 and p ∈ (0,1). Similar to other areas such as Poisson regression, we
need to apply a suitable transformation to avoid negative values for the ratios which
would lead to negative estimates for f0. The log-transformation is appropriate,
although others are also possible. Transforming both sides, we obtain

log{(x + 1)p(x + 1)/p(x)} = log(x + k) + log(1 − p),

but now the right-hand side is nonlinear in k. However, taking the first-order Taylor
expansion of log(k + x) around k, we achieve

log(k + x) ≈ log(k) + 1

k
x,

so that we have log(x +k)+ log(1−p) ≈ log(1−p)+ log(k)+x/k. Note that this
approximation is exact for x = 0 (the point where we predict) and good for x = 1
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(corresponding to the informative “singleton” frequency count). In the Appendix
we discuss this approximation further, as well as alternatives. With reference to
model (2.2), we have γ = log(1 − p) + log(k) and δ = 1/k. We focus on this
model in the discussion below.

Note also that due to the simple structure of the estimator f̂0 = f1 exp(−γ̂ ), we
can use conditioning [Böhning (2008)] in combination with the δ-method to give
an approximate expression for the variance of f̂0 as

Var(f̂0) ≈ exp(−γ̂ )2f1[Var(γ̂ )f1 + 1],
where Var(γ̂ ) is the variance of the intercept estimator in the regression model. An
approximation to the variance of N̂ = f̂0 +n is then [using the same technique and
estimating Var(n) = N(1 − p0)p0 by nf̂0/N̂ ]

Var(N̂) ≈ n
f̂0

N̂
+ exp(−γ̂ )2f1[Var(γ̂ )f1 + 1].(2.3)

Standard errors are obtained by plugging in estimates for Var(γ̂ ) and taking the
(overall) square root. These expressions may be imprecise for small sample sizes
(<100) and in such cases the bootstrap might be preferable. We provide a simula-
tion study on this aspect in the Appendix.

3. Heteroscedasticity and weighted least squares. Model (2.2) does not sat-
isfy the classical linear regression assumptions. In the first place, the response
is discrete (although log-transformed), so we might consider a generalized linear
model such as Poisson or even negative binomial regression. However, this is inad-
visable since an appropriate formulation as a generalized linear model leads to an
autoregressive equation involving logfx as an additional offset term in the linear
predictor. These kinds of models experience difficulties in terms of the definition
of the likelihood as well as in carrying out inference. Actually, residuals derived
from model (2.2) typically show reasonable conformity with normal probability
plots when the linear model fits well (see Section 4 regarding goodness of fit). The
issues of dependence and heteroscedasticity are more important, and we address
these by using weighted least squares. We take(

γ̂

δ̂

)
= (XT WX)−1XT WY,

where

Y =

⎛
⎜⎜⎜⎜⎜⎝

log
(2f2

f1

)
log

(3f3
f2

)
...

log
( mfm

fm−1

)

⎞
⎟⎟⎟⎟⎟⎠ , X =

⎛
⎜⎜⎝

1 1
1 2
...

...

1 m − 1

⎞
⎟⎟⎠ ,
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and m is the maximum frequency used in the estimator (see Section 4 below
regarding truncation of large frequencies). To reduce MSE, we wish to take
W ≈ (cov(Y))−1. To find cov(Y), assume that the distribution of the cell counts
f1, . . . , fm is multinomial with cell probabilities π = (π1, . . . , πm)T . Then it is
well known that f = (f1, . . . , fm)T has covariance matrix � = n[	(π) − ππT ],
where 	(π) is a diagonal matrix with elements π on the diagonal, and n =
f1 + · · · + fm. Writing

� = n[	(π) − ππT ] = 	(nπ) − 1

n
nπnπT ,

we see that � can be estimated as

�̂ = 	(f) − 1

n
f fT .

An application of the multivariate delta-method then shows that an estimate of
cov(Y) is

∇f(Y(f))�̂(∇T
f (Y(f)))

(3.1)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
f1

+ 1
f2

−1
f2

0 . . . 0 . . . 0
−1
f2

1
f2

+ 1
f3

−1
f3

0 . . . 0

0
. . .

...
. . .

0 . . . 0 −1
fi

1
fi

+ 1
fi+1

−1
fi+1

0 . . . 0
...

. . .

0 0 −1
fm−1

1
fm−1

+ 1
fm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Note that this requires that only nonzero frequencies be used in the estimate.
The tridiagonal matrix (3.1) has a special structure, and Meurant (1992) gives

an analytical formula for its inverse. In addition, a calculation based on the rep-
resentation in Meurant’s Theorem 2.3 indicates that it may be possible to drop
the off-diagonal terms in cov(Y) with little loss of numerical precision for our
purposes. This corresponds to our intuition that covariances between adjacent log-
ratios may not play a large role in reducing MSE. Let

	(f) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
f1

+ 1
f2

0 0 . . . 0 0

0 1
f2

+ 1
f3

0 . . . 0 0
...

. . .
...

. . .

0 0 0 1
fi

+ 1
fi+1

0 0
...

. . .

. . . 0 1
fm−1

+ 1
fm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.2)
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TABLE 6
The effect of different weight matrices according to (3.1), (3.2) and

W = Im−1 for frequency data from the Negative Binomial
distribution with parameters k = 7, p = 0.8

N (3.1) (3.2) Unweighted

Bias of N̂

100 3.05 3.40 8.81
1000 2.70 0.36 45.86

Standard error of N̂

100 10.48 11.73 13.79
1000 29.12 32.04 56.87

be the diagonal part of (3.1); we then suggest using (3.2) in our weighted regres-
sion model. This is computationally simpler, especially when dealing with a high
number of recaptures. A small simulation study confirms the precision of this sim-
plification, at least within the domain of the simulation. We computed the bias of N̂

using the weighted regression model under three scenarios: with weights according
to (3.1), according to (3.2) and according to W = Im−1 [the (m − 1)-dimensional
identity matrix, i.e., unweighted]. Frequency data were drawn from a negative bi-
nomial distribution with parameters p = 0.8 and k = 7, and replicated 1000 times.
Table 6 shows results for N = 100 and N = 1000. It is clear that weighting is im-
portant in fitting the model: the unweighted regression model leads to potentially
heavily biased estimators of the population size, whereas the effect of ignoring the
covariance between log(xfx/fx−1) and log((x + 1)fx+1/fx) is negligible. Finally,
we note that weighted least squares can introduce numerical problems, especially
in sparse-data situations [Björck (1996), Chapters 4 and 6]; however, our design
matrix has only rank 2 and our maximum frequency m is typically not too large, so
we have not yet encountered such problems here. This is a topic for future research
in this context.

4. Model assessment and goodness of fit. The ratio plot shown in Figure 1
is our main graphical tool for looking at goodness of fit of the linear regression
model, and having fit the model, the standard diagnostic plots of residuals are
also available. We also require a quantitative assessment of overall fit: R2 could
be used based on the response log(x + 1)fx+1/fx , but in this setting it seems
more appropriate to work on the original frequency of counts scale. In addition,
we are looking for a measure which allows analysis of residuals. We therefore
compare the observed frequencies with the estimated frequencies from the model,
using the χ2-statistic as a goodness-of-fit measure [Agresti (2002)]. The estimated
frequencies based on the regression model are

ŷx = log
̂(x + 1)fx+1

fx

= γ̂ + δ̂x,
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x = 1,2, . . . ,m, or, equivalently,

̂(x + 1)fx+1

fx

= exp(ŷx),

where m is the “truncation point” or maximum frequency used in the analysis (we
return to this issue below). In general, the estimated ratios of frequencies ̂fx+1/fx

need not uniquely determine f̂x+1 and f̂x , but in this case they do since f̂0 =
f1/ exp(γ̂ ) = f1/(

̂

f1/f̂0). This also shows that f̂1 = f1, since f̂0 = f1/ exp(γ̂ ) =
f1/ exp(ŷ0), and, hence, f̂1 = f̂0 exp(ŷ0) = f1. Now, with f̂1 given the equation
2f̂2/f̂1 = ̂2f2/f1 determines f̂2 uniquely, leading to the recursive relation f̂x+1 =
f̂x exp(ŷx)/(x + 1), x = 1,2, . . . ,m − 1. We then define our χ2 statistic as

χ2 =
m∑

x=1

(fx − f̂x)
2

f̂x

and simulations support that this has a χ2 distribution with m − 2 degrees of free-
dom if the regression model yx = γ + δx is correct. Note that we have m un-
constrained frequencies, since n = ∑m

x=1 fx is random, and we lose 2 degrees of
freedom due to estimating the intercept and slope parameters. Note also that the
estimate of the intercept parameter fixes f̂1 = f1, so that the degrees of freedom
are indeed only reduced by 2. This approach has the benefit of gaining one de-
gree of freedom when compared to a goodness-of-fit measure based solely on the
regression model which works with the m − 1 values ŷx , x = 1, . . . ,m − 1.

This argument is conditional upon fixing the value of m, and, indeed, all known
procedures for population size estimation truncate large “outlier” frequencies in
some way. To illustrate, we return to the classical maximum likelihood (ML) ap-
proach. Bunge and Barger (2008) describe a procedure which fits the desired dis-
tribution (here, the negative binomial) to the (nonzero) frequency count data by
ML; the estimate of N is then based upon the estimated parameter values of the
distribution. Typically, parametric distributions can only be made to fit the data
up to some truncation point m, beyond which the fit, as assessed by the classical
Pearson χ2 test, falls off considerably; consequently, only frequencies up to m are
used to obtain the estimate of N , and the number of units with frequencies greater
than m is added to the estimate ex post facto. Bunge and Barger (2008) propose a
goodness-of-fit criterion for selecting m, while the coverage-based nonparametric
methods of Chao and co-authors fix m heuristically at 10 [see Chao and Bunge
(2002)]. Our weighted linear regression approach also has the potential for loss
of fit as m increases, depending on the realized structure of the data, and again
we can fix m prior to the analysis, and collapse all frequencies greater than this
threshold to one value. Sensitivity of the various methods to the choice of m is
a complex topic [Bunge and Barger (2008) compute all estimates at all possible
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values of m]; however, our data analyses below show that the weighted linear re-
gression model is considerably less sensitive to m than its chief competitors in the
negative binomial case, namely, ML and the Chao–Bunge estimator.

Finally, we note that in the ML approach, if the negative binomial fit is less
than ideal (although perhaps still acceptable), numerical maximum likelihood al-
gorithms often do not converge, or converge to the edges of the parameter space,
which in turn distorts the apparent fit. The regression-based method described here
offers a more robust approach to parameter estimation, and appears not to be prone
to the numerical problems which arise for maximum likelihood estimation under
the negative binomial model. In fact, the negative binomial parameter estimates
(p̂, k̂) derived from the regression model and could be used as starting values for
a numerical search for the ML estimates. This is a topic for further research.

5. Alternative estimators, data analyses and discussion.

5.1. Alternative estimators. We first consider certain other options for the neg-
ative binomial model.

• Maximum likelihood. This approach is well studied and has a long history [see
Bunge and Barger (2008)], but as noted above, good numerical solutions for
the model parameters (p, k) seem to be remarkably difficult to obtain, even us-
ing reasonably sophisticated search algorithms with high-precision settings. In
our experience we get good numerical convergence only when the frequency
data is smooth and fits the negative binomial well, or the right-hand tail is fairly
severely truncated. The latter issue causes the additional computational burden
of investigating a diversity of truncation points, each involving numerical opti-
mization. Nonetheless, we can obtain ML results for the negative binomial in
some cases. The ML estimator N̂ML is consistent for N given that the model is
correct.

• Chao–Bunge. Let τ denote the probability of observing a unit at least twice,
that is, τ = 1 − p0 − p1. Chao and Bunge (2002) developed a nonparametric
estimator τ̂ for τ , and on this basis proposed the estimator

N̂CB :=
m∑

j=2

fj

τ̂

for N . They showed that N̂CB is consistent for N under the negative binomial
model. However, in applied data analysis τ̂ may be very small or even negative,
leading to very large or negative values of N̂CB. This is one reason that Chao
and Bunge set m = 10 (as noted above). In fact, N̂CB fails roughly as often as
N̂ML, although not necessarily in the same situations.

• Chao. Chao (1987, 1989) proposed the nonparametric statistic

N̂Ch = n + f 2
1

2f2
,
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which is valid as a (nonparametric) lower bound for N ; we compute it here as a
benchmark. Note that m ≡ 2.

We are currently investigating the asymptotic behavior of our estimator N̂ in
detail. Here we can make the following observations. First, assume that the up-
per frequency cutoff m is selected as m = max{j :fi > 0, i = 1, . . . , j}, so that m

is a random variable. For the unweighted case, that is, W = Im−1 in Section 3
above, it may be readily shown that N̂/N → 1 in probability as N → ∞, when
either Y = [(i + 1)fi+1/fi] and (i + 1)pi+1/pi = γ + δi (the Katz condition), or
Y = [log((i + 1)fi+1/fi)] and log((i + 1)pi+1/pi) = γ + δi. If W = (cov(Y))−1

or a diagonal matrix with positive variances as entries (similar to those discussed
in Section 3), then we conjecture that analogous results can be obtained (here W
must be a function of m). The convergence question is more complex for a weight
matrix Ŵ that is estimated and perhaps approximated further (as in Section 3),
although we believe that a Slutsky-type argument will again yield the desired con-
sistency result. In any case, we note again that from our practical experience a
weighted estimator [even with estimated weights using (3.2)] increases the effi-
ciency and reduces the bias of the estimator considerably compared to the un-
weighted one (cf. Table 6).

5.2. Data analyses. We applied the proposed regression method and the alter-
native procedures to the five data sets discussed above. The results are shown in
Table 7. Here the cutoff m was selected for the weighted linear regression model
by taking the first m at which fm > 0 and fm+1 = 0; for the ML procedure m was
selected by a goodness-of-fit criterion described in Bunge and Barger (2008), and
m ≡ 10 for N̂CB and N̂Ch.

We observe first that N̂ gives an answer in every case, unlike N̂ML and N̂CB.
For the methamphetamine data, although the χ2 p-value is low, the result appears
reasonable, especially with reference to the Chao lower bound. For the polyps—
low data, N̂ gives the most precise result, with good fit; for the polyps—high

TABLE 7
Data analyses. N̂ = weighted linear regression model; N̂ML = negative binomial maximum

likelihood estimate; N̂CB = Chao–Bunge estimator; N̂Ch = Chao lower bound; SE = standard
error; p = p-value from χ2 goodness-of-fit test; * = estimation failed

Study N̂ SE p N̂ML SE p N̂CB SE N̂Ch

Meth. 61,133 17,088.8 0.000 * * * * * 33,090
Polyps—low 495 37.15 0.340 892 342.3 0.619 668 141.4 458
Polyps—high 513 52.0 0.001 587 77.2 0.010 584 72.0 511
Scrapie 459 112.0 0.298 * * * * * 353
Butterflies 746 24.6 0.200 715 19.9 0.000 757 32.4 714
Microbial 183 35.9 0.000 * * * * * 212
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FIG. 3. Residual plot (fx − f̂x)/

√
f̂x versus x for both treatment groups in the adenomatous polyps

data set.

data, the same is true but with less good fit. Despite the goodness-of-fit test in
the latter case, though, residuals plots for both polyps data sets indicate reasonable
conformity with the linear model, as shown in Figure 3. For the scrapie data it is
interesting to note that N̂ gives a reasonable result with good fit while both N̂ML

and N̂CB fail. For the butterfly data, N̂ is comparable to N̂CB, with good fit of the
linear model, while the ML result is only slightly above the lower bound, with poor
fit, indicating difficulty with the ML numerical search. Finally, for the microbial
data, both N̂ML and N̂CB fail, while N̂ < N̂Ch with poor fit, signaling that the
data set is anomalous in some way (in fact, it is highly skewed left). Overall, the
weighted linear regression approach shows up well in contrast to its competitors
for the negative binomial model.

5.3. Discussion. The main challenge in population-size estimation is arguably
heterogeneity, that is, the fact that in real applications the capture probabilities or
sampling intensities of the population units are not all equal. The statistician must
account for this in some way or risk the severe downward bias of procedures based
on the assumption of homogeneity, that is, on “pure” binomial or Poisson mod-
els. Since the time of Fisher, Corbet and Williams (1943), considerable success
has been achieved using mixed-Poisson models with various mixture distributions
intended to model heterogeneity, including the gamma, lognormal, inverse Gaus-
sian, Pareto, generalized inverse Gaussian and, more recently, finite mixtures of
point masses or of exponentials [Bunge and Barger (2008), Quince, Curtis and
Sloan (2008), Böhning and Schön (2005)]. But the substantive applications, such
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as those described in our examples here, typically do not offer a theoretical basis
for selection of a mixing distribution, so researchers have had to search ever fur-
ther afield for flexible and adaptable heterogeneity models. This is partly due to a
perception that the “classical” gamma-mixture or negative binomial model is too
restrictive and difficult to fit, both statistically and numerically.

However, existing mixed-Poisson-based procedures, whether frequentist or
Bayesian, are almost all based on the likelihood of the frequency count data.
Here we take a completely different perspective based on the Katz relation-
ship (2.1), finding that in many cases the ratio of successive frequency counts
r̂(x) = (x + 1)fx+1/fx appears as an approximately linear function of x. This
relationship holds exactly for the gamma-mixture or negative binomial, and pro-
vides an improved method both for fitting that model and for assessing its fit.
Furthermore, from the data-analysis perspective, the linear relationship seems to
hold across a wide variety of data sets; and from the theoretical perspective, we
know that every mixed-Poisson has (at least) monotone increasing Katz ratios, and
that the Katz distribution family itself admits extensions in several directions. We
therefore believe that this perspective—looking at the data via r̂(x)—opens up a
new method of applying the negative binomial model to data, and that it gives us
a view of a new and little-known territory for exploring the robustness and exten-
sions of that model.

APPENDIX: SIMULATION STUDY, STANDARD ERRORS AND
DEPENDENCE ON THE TRUNCATION POINT

A.1. Comparative simulation study. We begin with one further extension.
The suggested weighted linear regression estimator N̂ depends on a first-order
Taylor approximation which might not be good for larger values of x. One might
consider a second-order approximation, but this leads to an estimator with large
variance due to the functional relationship of x and x2. An alternative linear ap-
proximation is possible by developing log(k +x) = log((k −1)+ (x +1)) linearly
around x + 1, leading to the approximation

log(x + 1) + (k − 1)/(x + 1)

and the regression model

log
(

(x + 1)fx+1

fx

)
− log(x + 1) = γ ′ + δ′/(x + 1) + εx.(A.1)

We call this the hyperbolic model (HM). The hyperbolic model is also of very
simple structure and prediction is possible since the model is defined for x = 0
leading to f̂0 = f1/ exp(γ̂ ′ + δ̂′). We denote the estimator based on this model
by N̂HM.

In the following simulation comparison, then, we compare N̂ , N̂HM, N̂CB
and N̂Ch. We generated counts from a negative binomial distribution with disper-
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sion parameters equal to 1, 2, 4, 6 and 10 and event probability parameter such that
the associated mean matches 1. The population sizes to be estimated were N = 100
and N = 1000. For N = 1000 a case with a combination of μ = 0.5, k = 0.5 was
included which we have observed as typical values in our data sets (Butterfly and
Polyps data). A sample X1, . . . ,XN of size N was generated from a negative bino-
mial distribution with parameters as described above and the associated frequency
distribution f0, f1, . . . , fm was determined; then f0 was ignored and f1, . . . , fm

were used to compute the various estimators. This process was repeated 1000 times
and bias, variance and MSE were calculated from the resulting values. The results
are shown in Table 8. Clearly, N̂ performs better than N̂HM since the former al-

TABLE 8
RMSE and Bias for estimators based upon the WLRM, the HM, the Chao–Bunge estimator and the

lower bound estimator of Chao, N = 100 and N = 1000, k = 1,2,4,6,10, where k is the
dispersion parameter of the negative-binomial with mean μ = 1. Chao–Bunge estimates have been

computed only for positive values

k WLRM HM Chao–Bunge Chao

RMSE N = 100
1 25.36 366.89 1475.91 27.60
2 31.93 816.54 1145.43 21.14
4 37.93 557.87 585.20 18.59
6 43.56 800.57 642.57 18.21

10 54.72 3453.55 256.71 18.47

BIAS N = 100
1 −10.03 115.98 81.08 −21.33
2 4.39 124.90 52.11 −11.49
4 12.22 113.29 31.37 −4.89
6 15.23 116.89 30.60 −2.07

10 16.93 162.21 17.01 −0.30

RMSE N = 1000
1 185.62 247.96 191.25 251.28
2 87.11 206.02 117.80 152.88
4 72.79 176.69 96.55 93.04
6 75.81 165.98 86.61 73.10

10 79.26 161.73 81.08 59.70
μ = 0.5, k = 0.5 375.72 576.80 5247.90 471.19

BIAS N = 1000
1 −177.89 92.68 23.70 −247.25
2 −59.9 49.46 12.88 −145.51
4 −1.88 −12.05 9.96 −78.53
6 13.26 −42.45 7.96 −52.99

10 21.88 −72.31 7.28 −31.75
μ = 0.5, k = 0.5 −368.16 192.00 −145.47 −468.33



POPULATION SIZE ESTIMATION BASED UPON RATIOS 1529

ways has smaller MSE than the latter. In fact, there are only three cases in which
N̂HM had smaller bias than N̂ , namely, N = 1000 and k = 1,2 as well as the com-
bination μ = 0.5, k = 0.5, and the smaller bias here was balanced by the smaller
variance of N̂ . Hence, we do not consider N̂HM any further. We see in addition that
N̂ and N̂CB overestimate the true size N = 100, whereas N̂Ch tends to underesti-
mate. We need to point out that N̂CB produced many negative values, so its bias
and RMSE were evaluated on the basis of the positive values. The bias of N̂ is
smaller than that of N̂CB for N = 100, although this reverses for N = 1000, and
the bias is of the same size as that of N̂Ch for N = 100 and becoming smaller for
N = 1000. Also, the RMSE of N̂CB is a lot larger than that of N̂ . The situation
changes for N = 1000. In this case both the bias and MSE for N̂ are lower than
those from N̂Ch for every value k of the dispersion parameter. We notice, however,
that N̂CB shows a reduced bias, but the RMSE of N̂ is still smaller. Overall, we
find that N̂ and N̂CB are behaving somewhat similarly for larger population sizes;
however, a major benefit of N̂ is that it is well defined in the many situations where
N̂CB fails.

A.2. Standard errors. In Table 9 we compare the standard error calculated
from (2.3) with the true standard error. This was done by taking 10,000 replica-
tions of N̂ , say, N̂i, i = 1, . . . ,10,000. Then the mean of (1/10,000)

∑
i V̂ar(N̂i)

was computed and the root of it forms column 2 in Table 9. The third column was
constructed by simply computing the empirical variance of N̂i, i = 1, . . . ,10,000.
We see that the approximation is good (and always conservative) for larger values

TABLE 9
Estimated [using (2.3)] and true standard error for WLRM

estimator N̂ ; N = 100 and N = 1000, k = 1,2,4,6,10, μ = 1;
results are based on 10,000 replications

k ̂S.E.(N̂) True S.E.(N̂)

N = 100
1 26.94 23.06
2 36.36 30.00
4 44.23 38.02
6 44.13 38.57

10 41.88 42.21

N = 1000
1 52.31 52.67
2 64.73 64.36
4 72.61 71.64
6 75.68 73.51

10 77.90 76.12
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of N and reasonable for smaller values of N . Finally, we would like to mention
the bootstrap as an alternative to the approximate standard errors given above.
The bootstrap is straightforward to implement here: first obtain N̂ from the origi-
nal data; then resample (simulate) f ∗

0 , f ∗
1 , . . . based on the fitted p̂0, p̂1, . . .; then

delete f ∗
0 and calculate a new N̂∗ from the new sample. Replicate this proce-

dure B times (say) and from the resulting N̂∗’s calculate a standard error for N̂ ,
percentile-based confidence intervals, and so forth.

A.3. Dependence of estimators on the truncation point. Table 10 shows
the dependence of N̂ vs. that of N̂CB on the truncation point for the first four

TABLE 10
Dependence of the weighted least-squares N̂ and the Chao–Bunge estimator on the truncation

point, compared for all data sets

Polyps–low Polyps–hi Butterflies Microbial

m WLRM C–B WLRM C–B WLRM C–B WLRM C–B

3 609 411 881 446 754 682 767 266
4 525 440 620 459 744 696 364 492
5 509 471 542 472 776 715 364 492
6 523 524 513 482 759 727 364 −240
7 519 596 512 497 752 737 364 −240
8 503 643 519 532 746 746 364 −75
9 495 668 510 570 741 752 216 −59

10 495 668 510 570 732 757 212 −49
11 495 844 510 586 726 761 214 −42
12 495 844 506 607 724 765 205 −43
13 495 844 506 607 717 768 197 −45
14 495 844 506 607 718 774 195 −46
15 495 844 506 607 712 777 195 −46
16 495 844 506 607 711 783 195 −46
17 495 844 506 607 708 788 195 −46
18 495 844 506 607 704 792 182 −48
19 495 844 506 607 704 797 182 −48
20 495 844 506 607 701 802 182 −48
21 495 844 506 607 698 805 182 −48
22 495 1821 506 607 695 807 182 −48
23 495 1821 506 607 693 808 182 −48
24 495 1821 506 607 692 810 182 −48
28 495 −2250 506 607 182 −48
29 506 607 182 −43
31 506 1063 182 −43
42 506 1063 182 −33
53 506 1063 182 −27
77 506 −301
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data sets considered here. The behavior of N̂ is notably more stable than N̂CB in
this regard, except perhaps for the butterfly data. The negative binomial MLE and
the coverage-based nonparametric estimators also display considerable instability
with respect to m, except in the case of the butterfly data (results not shown). The
only other procedure we know of that is relatively robust with respect to m is the
parametric estimator based on finite mixtures of geometrics (i.e., Poisson where
the Poisson mean is distributed as a finite mixture of exponentials); for details on
this model see Bunge and Barger (2008).
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