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In the United States the preferred method of obtaining dietary intake data
is the 24-hour dietary recall, yet the measure of most interest is usual or long-
term average daily intake, which is impossible to measure. Thus, usual dietary
intake is assessed with considerable measurement error. Also, diet represents
numerous foods, nutrients and other components, each of which have distinc-
tive attributes. Sometimes, it is useful to examine intake of these components
separately, but increasingly nutritionists are interested in exploring them col-
lectively to capture overall dietary patterns. Consumption of these compo-
nents varies widely: some are consumed daily by almost everyone on every
day, while others are episodically consumed so that 24-hour recall data are
zero-inflated. In addition, they are often correlated with each other. Finally,
it is often preferable to analyze the amount of a dietary component relative
to the amount of energy (calories) in a diet because dietary recommendations
often vary with energy level. The quest to understand overall dietary patterns
of usual intake has to this point reached a standstill. There are no statistical
methods or models available to model such complex multivariate data with
its measurement error and zero inflation. This paper proposes the first such
model, and it proposes the first workable solution to fit such a model. After
describing the model, we use survey-weighted MCMC computations to fit
the model, with uncertainty estimation coming from balanced repeated repli-
cation. The methodology is illustrated through an application to estimating
the population distribution of the Healthy Eating Index-2005 (HEI-2005), a
multi-component dietary quality index involving ratios of interrelated dietary
components to energy, among children aged 2-8 in the United States. We
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pose a number of interesting questions about the HEI-2005 and provide an-
swers that were not previously within the realm of possibility, and we indicate
ways that our approach can be used to answer other questions of importance
to nutritional science and public health.

1. Introduction. This paper presents statistical models and methodology to
overcome a major stumbling block in the field of dietary assessment. More nu-
tritional background is provided in Section 2: a summary of the key conceptual
issues follows:

e Nutritional surveys conducted in the United States typically use 24-hour (24 h)
dietary recalls to obtain intake data, that is, an assessment of what was consumed
in the past 24 hours.

e Because dietary recommendations are intended to be met over time, nutritionists
are interested in “usual” or long-term average daily intake.

e Dietary intake is thus assessed with considerable measurement error.

e Consumption patterns of dietary components vary widely; some are consumed
daily by almost everyone, while others are episodically consumed so that 24-
hour recall data are zero-inflated. Further, these components are correlated with
one another.

o Nutritionists are interested in dietary components collectively to capture patterns
of usual dietary intake, and thus need multivariate models for usual intake.

e These multivariate models for usual intakes, taking into account episodically
consumed foods, do not exist, nor do methods exist for fitting them.

One way to capture dietary patterns is by scores, although our work is not lim-
ited to scores. The Healthy Eating Index-2005 (HEI-2005), described in detail in
Section 2, is a scoring system based on a priori knowledge of dietary recommen-
dations, and is on a scale of 0-100. Ideally, it consists of the usual intake of 6
episodically consumed and thus 24 h-zero inflated foods, 6 daily-consumed di-
etary components, adjusts these for energy (caloric) intake, and gives a score to
each component. The total score is the sum of the individual component scores.
Higher scores indicate greater compliance with dietary guidelines and, therefore,
a healthier diet. Here are a few questions that nutritionists have not been able to
answer, and that our approach can address:

e What is the distribution of the HEI-2005 total score, and what % of Americans
are eating a healthier diet defined, for example, by a total score exceeding 80?

e What is the correlation between the individual score on each dietary component
and the scores of all other dietary components?

o Among those whose total HEI-2005 score is >50 or <50, what is the distribu-
tion of usual intake of whole grains, whole fruits, dark green and orange vegeta-
bles and legumes (DOL) and calories from solid fats, alcoholic beverages and
added sugars (SoFAAS)?
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e What % of Americans exceed the median score on all 12 HEI-2005 compo-
nents?

In this paper, to answer public health questions such as these that can have pol-
icy implications, we build a novel multivariate measurement error model for esti-
mating the distributions of usual intakes, one that accounts for measurement error
and zero-inflation, and has a special structure associated with the zero-inflation.
Previous attempts to fit even simple versions of this model, using nonlinear mixed
effects software, failed because of the complexity and dimensionality of the model.
We use survey-weighted Monte Carlo computations to fit the model with uncer-
tainty estimation coming from balanced repeated replication. The methodology is
illustrated using the HEI-2005 to assess the diets of children aged 2—8 in the United
States. This work represents the first analysis of joint distributions of usual intakes
for multiple food groups and nutrients.

The paper is outlined as follows. In Section 2 we give the background for the
data we observe. In particular, we provide more information about the HEI-2005.
Section 3 describes our model which is a highly nonlinear, zero-inflated, repeated
measures model with multiple latent variables. The model also has a patterned
covariance matrix with structural zeros and ones. We derive a parameterization
that allows estimated covariance matrices to be actual covariance matrices. We
also define technically what we mean by usual intake, and illustrate the use of
simulation methods used to answer the questions posed above, as well as many
others.

Section 4 describes our estimation procedure. Previous attempts using nonlinear
mixed effects models to estimate the distribution of episodically consumed food
groups [Tooze et al. (2006); Kipnis et al. (2009)] do not work here because of the
high dimensionality of the problem. We instead develop a Monte Carlo strategy
based on the idea of Gibbs sampling; although because of sampling weights, we
treat the method as a frequentist (non-Bayesian) one. This section describes some
of the basics of the methodology; the full technical details of implementation are
given in the Appendix.

Section 5 describes the analysis of the HEI-2005 components using the 2001—
2004 National Health and Nutrition Examination Survey (NHANES) for children
ages 2—8. Important contextual points arise because of the nature of the data. For
example, if whole grains are consumed, then necessarily total grains are consumed
with probability one, a restriction that a naive use of our model cannot handle. We
develop a simple novel device to uncouple consumption variables that are tightly
linked in this way. Finally, in this section we provide the first answers to the four
questions we have posed. In Section 6 we discuss various additional aspects of the
problem and the data analysis. Concluding remarks and a policy application are
given in Section 7.

There are a number of general reviews of the measurement error field [Fuller
(1987); Gustafson (2004); Carroll et al. (2006); Buonaccorsi (2010)]. Recent pa-
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pers that focus on estimating the density function of a univariate continuous ran-
dom variable subject to measurement error include Delaigle (2008), Delaigle and
Hall (2008, 2011), Delaigle and Meister (2008), Delaigle, Hall and Meister (2008),
Staudenmayer, Ruppert and Buonaccorsi (2008) and Wand (1998). The field of
measurement error in regression continues to expand rapidly, with some recent
contributions including Kiichenhoff, Mwalili and Lesaffre (2006), Guolo (2008),
Liang et al. (2008), Messer and Natarajan (2008) and Natarajan (2009). There is
also a large statistical literature on measurement error as it relates to public health
nutrition: some recent papers relevant to our work include Carriquiry (1999, 2003),
Ferrari et al. (2009), Fraser and Shavlik (2004), Kott et al. (2009), Nusser et al.
(1996), Nusser, Fuller and Guenther (1997), Prentice (1996, 2003), Tooze, Grun-
wald and Jones (2002) and Tooze et al. (2006).

2. Data and the HEI-2005 scores. Here we give more detail about the nutri-
tion context that motivates this work.

In surveys conducted in the United States, the preferred method of obtaining
intake data is the 24-hour dietary recall because it limits respondent burden and
facilitates accurate reporting; yet the measure of greatest interest is “usual” or
long-term average daily intake. Thus, dietary intake is assessed with considerable
measurement error. Also, diets are comprised of numerous foods, nutrients and
other components, each of which may have distinctive attributes and effects on
nutritional health. Sometimes, it is useful to examine intake of these components
separately, but increasingly nutritionists are interested in exploring them collec-
tively to capture patterns of dietary intake. Consumption patterns of these compo-
nents vary widely; some are consumed daily by almost everyone, while others are
episodically consumed so that 24-hour recall data are zero-inflated. In addition,
these various components are often correlated with one another. Finally, it is often
preferable to analyze the amount of a dietary component relative to the amount of
energy (calories) in a diet because dietary recommendations often vary with energy
level, and this approach provides a way of standardizing dietary assessments.

One of the US Department of Agriculture’s (USDA’s) strategic objectives
is “to promote healthy diets” and it has developed an associated performance
measure, the Healthy Eating Index-2005 (HEI-2005, http://www.cnpp.usda.gov/
HealthyEatingIndex.htm). The HEI-2005 is based on the key recommenda-
tions of the 2005 Dietary Guidelines for Americans (http://www.health.gov/
dietaryguidelines/dga2005/document/default.htm). The index includes ratios of
interrelated dietary components to energy. The HEI-2005 comprises 12 distinct
component scores and a total summary score. See Table 1 for a list of these com-
ponents and the standards for scoring, and see Guenther, Reedy and Krebs-Smith
(2008) for details. Intakes of each food or nutrient, represented by one of the 12
components, are expressed as a ratio to energy intake, assessed, and ascribed a
score.


http://www.cnpp.usda.gov/HealthyEatingIndex.htm
http://www.health.gov/dietaryguidelines/dga2005/document/default.htm
http://www.cnpp.usda.gov/HealthyEatingIndex.htm
http://www.health.gov/dietaryguidelines/dga2005/document/default.htm

1460 S.ZHANGET AL.

TABLE 1
Description of the HEI-2005 scoring system. Except for saturated fat and SoFAAS, density is
obtained by multiplying usual intake by 1000 and dividing by usual intake of kilocalories

Component Units HEI-2005 score calculation
Total fruit cups min (5,5 x (density/0.8))
Whole fruit cups min (5,5 x (density/0.4))
Total vegetables cups min (5,5 x (density/1.1))
DOL cups min (5,5 x (density/0.4))
Total grains ounces min (5,5 x (density/3))
Whole grains ounces min (5,5 x (density/1.5))
Milk cups min (10, 10 x (density/1.3))
Meat and beans ounces min (10, 10 x (density/2.5))
Oil grams min (10, 10 x (density/12))
Saturated fat % of if density > 15 score =0
energy else if density < 7 score = 10

else if density > 10 score = 8 — (8 x (density — 10)/5)

else, score = 10 — (2 x (density — 7)/3)
Sodium milligrams if density > 2000 score = 0

else if density < 700 score = 10

else if density > 1100

score = 8 — {8 x (density — 1100)/(2000 — 1100)}

else score = 10 — {2 x (density — 700)/(1100 — 700)}
SoFAAS % of if density > 50 score =0

energy else if density < 20 score = 20
else score =20 — {20 x (density — 20)/(50 — 20)}

For saturated fat, density is 9 x 100 usual saturated fat (grams) divided by usual calories, that is,
the percentage of usual calories coming from usual saturated fat intake. For SOFAAS, the density is
the percentage of usual intake that comes from usual intake of calories, that is, the division of usual
intake of SOFAAS by usual intake of calories. Here, “DOL” is dark green and orange vegetables and
legumes. Also, “SoFAAS” is calories from solid fats, alcoholic beverages and added sugars. The total
HEI-2005 score is the sum of the individual component scores.

The HEI-2005 is used to evaluate the diets of Americans to assess compliance
with the 2005 Dietary Guidelines, yet use of the HEI-2005 is limited by the chal-
lenges described above. Until recently, there have been no solutions to these chal-
lenges, so published evaluations have been limited to analyses of mean scores for
the population and various subgroups. Freedman et al. (2010) have described a
method of estimating the population distribution of a single component of HEI-
2003, and the prevalence of high or low scores on that component; but there has
been to date no satisfactory way to determine the prevalence of high or low total
HEI-2005 scores, considering all of its interrelated components simultaneously.
In addition, answers to the complex questions posed in the Introduction remain
unavailable. This paper aims to provide a means to do these crucial evaluations.

The 12 HEI-2005 components represent 6 episodically consumed food groups
(total fruit, whole fruit, total vegetables, dark green and orange vegetables and
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legumes or DOL, whole grains and milk), 3 daily-consumed food groups (to-
tal grains, meat and beans and oils) and 3 other daily-consumed dietary compo-
nents (saturated fat; sodium; and calories from solid fats, alcoholic beverages and
added sugars, or SOFAAS). The classification of food groups as “episodically’” and
“daily” consumed is based on the number of individuals who report them on 24 h
recalls. If there are only a few zeros for a component, we treat that as a daily-
consumed food, and replace all zeros with 1/2 the minimum value of the nonzeros
for that food. However, the crucial statistical aspect of the data is that six of the
food groups are zero-inflated. The percentages of reported nonconsumption of to-
tal fruit, whole fruit, whole grains, total vegetables, DOL and milk on any single
day are 17%, 40%, 42%, 3%, 50% and 12%, respectively.

We are interested in the usual intake of foods for children aged 2-8. The data
available to us, described in more detail in Section 5, came from the National
Health and Nutrition Examination Survey, 2001-2004 (NHANES). The data used
here consisted of n = 2,638 children, each of whom had a survey weight w; for
i =1,...,n.In addition, one or two 24 h dietary recalls were available for each
individual. Along with the dietary variables, there are covariates such as age, gen-
der, ethnicity, family income and dummy variables that indicate a weekday or a
weekend day, and whether the recall was the first or second reported for that indi-
vidual.

Using the 24 h recall data reported, for each of the episodically consumed food
groups, two variables are defined: (a) whether a food from that group was con-
sumed; and (b) the amount of the food that was reported on the 24 h recall. For the
6 daily-consumed food groups and nutrients, only one variable indicating the con-
sumption amount is defined. In addition, the amount of energy that is calculated
from the 24 h recall is of interest. The number of dietary variables for each 24 h
recall is thus 12+ 6+ 1 = 19. The observed data are Y; j; for the ith person, the jth

variable and the kth replicate, j =1,...,19and k =1, ..., m;. In the data set, at
most two 24 h recalls were observed, so that m; < 2. Set Y;r = Y1k, ..., Y,-,lggk)T,
where

e Y; 21k = Indicator of whether dietary component #¢ is consumed, with ¢ =
1,2,3,4,5,6.

e Y; 2k = Amount of food #¢ consumed. This equals zero, of course, if none of
food #¢£ is consumed, with £ =1, 2, 3,4, 5, 6.

e Yi 116k = Amount of nonepisodically consumed food or nutrient #£, with £ =
7,8,9,10,11, 12.

e Y; 19 x = Amount of energy consumed as reported by the 24 h recall.

3. Model and methods.

3.1. Basic model description. Our model is a generalization of work by Tooze
et al. (2006) and Kipnis et al. (2009) for a single food and Kipnis et al. (2011) and
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Zhang et al. (2011) for a single food and nutrient. Observed data will be denoted
as Y, and covariates in the model will be denoted as X. As is usual in measurement
error problems, there will also be latent variables, which will be denoted by W.

We use a probit threshold model. Each of the 6 episodically consumed foods
will have 2 sets of latent variables, one for consumption and one for amount, while
the 6 daily-consumed foods and nutrients as well as energy will have 1 set of
latent variables, for a total of 19. The latent random variables are ¢;;; and U;;,
where (Ujy, ..., U; 19) = Normal(0, ¥,) and (&1x, ..., &, 19.k) = Normal(0, ;)
are mutually independent. In this model, food £ =1, ..., 6 being consumed on
day k is equivalent to observing the binary Y; 2¢_1 x, where

Yioe—1h=1
3.1 T
— Wik =X 01 1P2e—1 +Uine—1+ €201k > 0.

If the food is consumed, we model the amount reported Y; 2/ x as

[ew(Yi2ex, Ao)Yine—16 =11= Wik
3.2)

T
= X; 0 1B2e + Uioe +€i2ek

where g (v, A) = «/E{g(y, A) — A}/ o), g(yv, L) is the usual Box-Cox trans-
formation with transformation parameter A, and {{t (A1), o (1)} are the sample mean
and standard deviation of g(y, A), computed from the nonzero food data. This stan-
dardization is simply a convenient device to improve the numerical performance
of our algorithm without affecting the conclusions of our analysis.

The reported consumption of daily consumed foods or nutrients £ =7, ..., 12
is modeled as

(33)  guVits6k:re) = Wierok = Xi py61Bers + Uitss + it46.k-

Finally, energy is modeled as

(3.4) (Y196, A13) = Wito.k = X[ 19 119 + Ui 19 + £i.19.4-
As seen in (3.2)-(3.4), different transformations (A1, ..., A13) are allowed to be
used for the different types of dietary components; see Section A.12.

In summary, there are latent variables W;, = (Wi, ..., Wi,]g,k)T, latent ran-
dom effects U; = (U;y, ..., U,-ﬁlg)T, fixed effects (B, ..., B19), and design matri-
ces (Xitk, .-, Xi19.x). Define €ix = (€i1k, .- -, 8i,197k)T. The latent variable model
is
(3.5) Wijk = X118 + Uij + €iji

where l7i = Normal(0, X,) and €;; = Normal(0, ;) are mutually independent.
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3.2. Restriction on the covariance matrix. 'Two necessary restrictions are set
on X.. First, following Kipnis et al. (2009, 2011), &;2¢—1.x and & 20k, (£ =
1,...,6) are set to be independent. Second, in order to technically identify Br¢_1
and the distribution of U; 2¢—1 (£ =1,...,6), we require that var(e; 2¢—1 %) = 1,
because otherwise the marginal probability of consumption of dietary component
#¢ would be ®{(X1T’2Z717k/324_1 + U,"zg_l)/Varl/z(ei,zg_l,k)}, and thus compo-
nents of B and ¥, would be identified only up to the scale var'/ 2(8,"2471, x)-

So that we can handle any number of episodically consumed dietary compo-
nents and any number of daily consumed components, suppose that there are J
episodically consumed dietary components, and K daily consumed dietary com-
ponents, and in addition there is energy. Then the restrictions defined above lead
to the covariance matrix

1 0 513 514
0 522 523 524
513 8§23 1 0
514 8§24 0 S44
Y, = ) ; ) )
$1,2J4+1 $22741 $32741 542741

S1,2J+K+1 $22J+K+1  S32J+K+1  S42J+K+1

(3.6)
S$1,2J+1 oo S1,2J+K+1
$22J+1 oo $2,2J+K+1
§3,27+1 ce $32J+K+1
84.2J+1 e S42J+K+1
X . .
$2J+1,2J+1 ce §2J4+1,2J+K+1
S2J+12J+K+1 -+ S2J4+K+1,2J+K+1

The difficulty with parameterizations of (3.6) is that the cells that are not con-
strained to be 0 or 1 cannot be left unconstrained, otherwise (3.6) need not be a
covariance matrix, that is, positive semidefinite.

We have developed an unconstrained parameterization that results in the struc-
ture (3.6). Consider an unconstrained lower triangular matrix V and define X, =
V VT, This is positive semidefinite and therefore qualifies X, as a proper covari-
ance matrix. The form of V is

V11 0 0
V21 V22 0

V2J+K+1,1 V2J4+K+1,2 -+ UV2J4+K+12J+K+1
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To achieve the desired pattern (3.6), we derive the following four restrictions:

vir=1;

q
sz =1; qg=3,5...,2J —1;

qupvq_l,-l’p:(); q:3,5,...,2]_1.
p=1

The third restriction can be ensured by the further parameterization
v31 =rysin(0);

v3p =711 ¢0s(01);

vz =4/1—rf;

V2g+1.1 = rg sin(0)4(g1)2);

V2g+1.p =g €08(01 1 (y—1)2) X -+ X €08(0),_ 14 (4—1)2) SIN(0 1 (4—1)2)

p=2,...,2qg —1;
V2g+1,2g = g €08(0 4 (y—1)2) X -+ X c0s(6,2);

_ 1_ 2
V2g+1,2g+1 =4/ 1 —1g,

whereg =2,3,....J—1, || <1, t=1,...,J—1,and |Os| <m,s=1,...,(J —
1)2.
Similarly, the fourth restriction can be further expressed by setting

g—1 g—1
_ _ 2
Vgt1,g == D VgpUq+1,p/Vgq == D VgpVq+1,p//1 = Tg—1)/2>
p=1 p=1

where ¢ =3,5,...,2J — 1.

U2 2 HK+ 2 I L2 204+K+1.2 J—1
2N0tethat|28|—|V| —qul qu—]_[q=1 V3424 Hq:21+l Vgq Hq:l(l_
ro).

q

3.3. The use of sampling weights. As described in the Appendix, we used the
survey sample weights from NHANES both in the model fitting procedure and,
after having fit the model, in estimating the distributions of usual intake.

While not displayed here, we redid the model fitting calculations without
weighting, because the covariates we use are major players in determining the
sampling weights, hence, it is reasonable to believe that the model in Section 3
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holds both in the sample and in the population. When we did this, the parameter
estimates were essentially unchanged.

Thus, we use the sampling weights only for estimation of the population distrib-
utions. We actually did this for the purpose of handling the clustering in the sample
design. For such a complex statistical procedure as ours, we knew we could not do
theoretical standard errors, so we thought about the bootstrap, and realized that
putting together a bootstrap for the complex survey would be nearly impossible.
However, we already had developed a set of Balanced Repeated Replication (BRR)
weights [Wolter (1995)]; see Section 5.7 for details. These BRR weights have the
property that, in the frequentist survey sampling sense, they appropriately reflect
the clustering in the standard error calculations.

Of course, the use of sampling weights in the modeling provide unbiased es-
timates of the (super) population parameters of interest. In addition, the use of
sampling weights in the distribution estimation provides an estimated distribution
that is representative of the US population, not just the sample.

3.4. Distribution of usual intake and the HEI-2005 scores. We assume here
that estimates of X, ¥, and B; for j =1, ..., 19 have been constructed; see Sec-
tion 4. Here we discuss what we mean by usual intake for an individual, how to
estimate the distribution of usual intakes, how to convert usual intakes into HEI-
2005 scores, and how to assess uncertainty.

Consider the first episodically consumed dietary component, a food group, with
reporting being done on a weekend. Set X1 wkend and X;2 wkend t0 be the versions
of X;1x and X;o; where the dummy variable has the indicator of the weekend
and that the recall is the first one. Following Kipnis et al. (2009), we define the
usual intake for an individual on the weekend to be the expectation of the reported
intake conditional on the person’s random effects U;. Let the (g, p) element of %,
be denoted as X 4 ,. As in Kipnis et al. (2009) define

2 1
GT) o Tagp) =g 00 4 3B,
Detailed formulas for this are given in Appendix A.11. Then, following the con-
vention of Kipnis et al. (2009), the person’s usual intake of the first episodically
consumed dietary component on the weekend is defined as

Tit.wkend = P (X wikendB1 + Ui 85X wkenaP2 + Uiz, A1, e 2.2).

Similarly, let X;j wkday and X;2 wkday be as above but the dummy variable is ap-
propriate for a weekday. Then the person’s usual intake of the first episodically
consumed food group on weekdays is defined as

Ti1 wkday = P wikaayB1 + Ui (X wkaay B2 + Uiz, 11, Te 2.2).

Finally, the usual intake of the first episodically consumed food for the individual
is

Ti1 = (4T;1,wkday + 371, wkend) /7,
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since Fridays, Saturdays and Sundays are considered to be weekend days. Usual
intake for the other episodically consumed food groups is defined similarly.

A person’s usual intake of a daily-consumed food group/nutrient and energy on
the original scale is defined similarly. Consider, for example, energy, which is the
13th dietary component and the 19th set of terms in the model. Let X; 19 wkend and
Xi,19,wkday be the versions of X; 19 x where the dummy variable has the indicator
of the weekend or weekday, respectively, and that the recall is the first one. Then

T .
T;.13,wkend = (X} 19, wkendB19 + Ui, 19, 113, Ze.19,19);

T :
Ti13,wkday = &ur(X; 19, wkdayP19 + Ui, 19, 113, Ze.19,19);
Ti13 = (4T}, 13,wkday + 373,13, wkend) /7.

Similar formulae are used for the other daily-consumed foods and nutrients.

Finally, the energy-adjusted usual intakes and the HEI-2005 scores are then
obtained as in Table 1, using the estimated usual intakes of the dietary components.

To find the joint distribution of usual intakes of the HEI-2005 scores, it is con-
venient to use Monte Carlo methods. Recall that w; is the sampling weight for
individual i. Let B be a large number: we set B = 5000. Generate b=1,..., B
observations ﬁbi = Normal(0, X,) and then obtain Tb,- = (Tbig)f:l by ~replacing
Ui; in their formulae by Uy, ;. With appropriate sample weighting, the 7j; can be
used to estimate joint and marginal distributions. Thus, for example, consider the
total HEI-2005 score, which is a deterministic function of the usual intakes, say,
G(T",-). Its cumulative distribution function is estimated as

B ~
izt 2b—1 LG (Thi) < x}w;
5 .
DIl X Wi
Frequentist standard errors of derived quantities such as mean, median and quan-

tiles can be estimated using the Balanced Repeated Replication (BRR) method
[Wolter (1995)]; see Section 5.7 for details.

(3.8) F(x) =

4. Comments on the approach to estimation. Our model (3.2)—(3.4) is a
highly nonlinear, mixed effects model with many latent variables and nonlinear
restrictions on the covariance matrix X.. As seen in Section 3.4, we can estimate
relevant distributions of usual intake in the population if we can estimate X, 3,
and B; for j =1,...,19. We have found that working within a pseudo-likelihood
Bayesian paradigm is a convenient way to do this computation. We emphasize,
however, that we are doing this only to get frequentist parameter estimates based
on the well-known asymptotic equivalence of frequentist likelihood estimators and
Bayesian posterior means, and especially the consistency of both [Lehmann and
Casella (1998)]. We are specifically not doing Bayesian posterior inference, since
valid Bayesian inference in a complex survey such as NHANES is an immensely
challenging task, and because frequentist estimation and inference are the standard
in the nutrition community.
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Kipnis et al. (2009) were able to get estimates of parameters separately for each
food group using the nonlinear mixed effects program NLMIXED in SAS with
sampling weights. While this gives estimates of 8; for j =1, ..., 19, it only gives
us parts of the covariance matrices ¥, and 3., and not all the entries. Using the
2001-2004 NHANES data, we have verified that our estimates and the subset of
the parameters that can be estimated by one food group at a time using NLMIXED
are in close agreement, and that estimates of the distributions of usual intake and
HEI-2005 component scores are also in close agreement. We expect this because
of the rather large sample size in our data set. Zhang et al. (2011) have shown that
even considering a single food group plus energy is a challenge for the NLMIXED
procedure, both in time and in convergence, and using this method for the entire
HEI-2005 constellation of dietary components is impossible.

Full technical details of the model fitting procedure are given in Appendices
A.1-A.10.

Of course, our model has assumptions, for example, additivity and homoscedas-
ticity on a transformed scale for observed and latent variables, normality of person-
specific random effects and normality of day-to-day variability on the transformed
scale. These assumptions are clearly not exactly correct, although our marginal
model-checking suggests to us that they are mostly not disastrously wrong. Some
reasons for this conclusion include the facts that we reproduce the marginal dis-
tributions of the components, that comparison with 24 h recalls shows differences
that decrease when moving from one 24 h recall to two 24 h recalls, that g-q plots
of the data are fairly satisfactory, etc. Thinking, as we do, of our work as a first
step, and not a last step, it would be extremely interesting to make the model more
general, for example, skew-normal, skew-¢ or Dirichlet process distributions after
transformation, and possibly directly modeling heteroscedasticity. Such general-
izations will require effort to implement, but will speak to the robustness of the
results and would be a useful future step.

5. Empirical work.

5.1. Basic analysis. We analyzed data from the 2001-2004 National Health
and Nutrition Examination Survey (NHANES) for children ages 2—8. The study
sample consisted of 2638 children, among whom 1103 children have two 24 h re-
calls and the rest have only one. We used the dietary intake data to calculate the
12 HEI-2005 components plus energy. In addition, besides age, gender, race and
interaction terms, two covariates were employed, along with an intercept. The first
was a dummy variable indicating whether or not the recall was for a weekend day
(Friday, Saturday or Sunday) because food intakes are known to differ systemat-
ically on weekends and weekdays. The second was a dummy variable indicating
whether the 24 h recall was the first or second such recall, the idea being that there
may be systematic differences attributable to the repeated administration of the
instrument.
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5.2. Contextual information. When we ran our program based on the variables
in Table 1, the results were disastrous. Mixing of the MCMC sampler was very
poor, with long sojourns in different regions.

The reason for this failure to converge depends on the context of the dietary
variables. For example, whole grains are a subset of total grains. Thus, if some-
one consumes any whole grains, then necessarily, with probability 1.0, that person
also consumes total grains. Such a restriction cannot be handled by our model,
because it would force one of the random effects U to equal infinity. A similar
thing happens for energy. Calories coming from saturated fat are a subset of total
calories, as are calories from SoFAAS, so there is a restriction that total calories
must be greater than calories from saturated fat and also greater than calories from
SoFAAS. Since the latter sum makes up a significant portion of calories, this re-
striction is not something that our model can handle well.

Luckily, there is an easy and natural context-based solution. Instead of using
total grains in the model, we used grains that are not whole grains, that is, refined
grains, thus decoupling whole grains and total grains, and removing the restriction
mentioned above. Similarly, instead of using total fruit, we use fruit that is not
whole fruits, that is, fruit juices. Additionally, instead of using total vegetables,
we use total vegetables excluding dark green and orange vegetables and legumes.
Finally, instead of total energy, we use total energy minus the sum of energy from
saturated fat (11% of mean energy) and from SoFAAS (35% of mean energy). We
recognize that there is overlap of energy from saturated fat and energy from solid
fat, but this has no impact on our analysis since total energy has sources other than
these two. An alternative, of course, would have been to simply use total energy
minus energy from SoFAAS,

This is sufficient to estimate the distributions of interest. If, for example, in the
new data set 7;; represents usual intake of nonwhole fruits, and 7;5 is usual intake
of whole fruits, then the usual intake of total fruits is 7;; + 7;2. Similar remarks
apply for total grains and total vegetables.

With these new variables, our model mixed well and gave reasonable looking
answers that, as mentioned in Section 4, give similar results to other methods em-
ployed with smaller parts of the data set.

5.3. Estimation of the HEI-2005 scores. In the Introduction we posed 4 ques-
tions to which answers had not been possible previously. The first open question
concerned the distribution of the HEI total score. Along the way toward this, Ta-
ble 2 presents the energy-adjusted distributions of the dietary components used in
the HEI-2005. Table 3 presents the distributions of the HEI-2005 individual com-
ponent scores and the total score, with a graphical view given in Figure 1.

Table 3 presents the first estimates of the distribution of HEI-2005 scores for
a vulnerable subgroup of the population, namely, children aged 2—-8 years. A pre-
vious analysis of 2003-2004 NHANES data, looking separately at 2-5 year olds
and 6-11 year olds, was limited to estimates of mean usual HEI-2005 scores [59.6
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TABLE 2

Estimated distributions of energy-adjusted usual intakes for children aged 2-8;
NHANES, 2001-2004

Percentile
Component Units Mean 5th  10th 25th 50th 75th 90th 95th
Total fruit cups/(1000 kcal) 0.70 0.14 021 037 062 095 130 154
0.02 0.02 0.02 002 002 0.03 0.05 0.07
Whole fruit cups/(1000 kcal) 0.31 0.04 0.07 0.14 026 042 0.61 0.73

0.02 0.01 0.01 0.02 002 0.03 0.04 0.06

Total vegetables  cups/(1000 kcal) 047 023 027 036 046 058 0.69 0.77
0.01 0.02 0.02 0.02 0.01 0.02 0.03 0.03

DOL cups/(1000 kcal) 0.05 0.00 0.01 0.02 003 0.07 0.11 0.15
0.00 0.00 0.00 0.00 000 0.00 0.01 0.01

Total grains ounces/(1000 kcal) 3.32 235 254 287 328 372 4.16 4.45
0.05 0.08 0.07 0.06 0.05 006 0.08 0.10

Whole grains ounces/(1000 kcal) 0.27 0.05 0.07 0.13 023 036 0.52 0.64
0.01 0.01 0.01 0.02 0.01 0.02 0.03 0.04

Milk cups/(1000 kcal) 097 028 038 0.60 090 126 1.64 190
0.02 0.03 003 0.02 002 003 0.05 0.07

Meat and beans ounces/(1000 kcal) 1.84 1.06 121 148 180 2.16 2.51 2.73
0.04 0.09 0.08 006 0.04 0.04 0.05 0.07

Oil grams/(1000 kcal)  7.13  4.05 4.60 563 693 841 9.90 10.89
023 024 021 0.17 020 035 054 0.68
Saturated fat % of energy 11.71 856 9.20 10.33 11.64 13.01 14.32 15.13
0.15 025 020 0.1 0.15 022 032 038
Sodium grams/(1000 kcal) 1.49 1.16 123 134 148 1.63 1.77 1.86
0.01 0.02 0.02 001 0.01 0.02 0.03 0.03
SoFAAS % of energy 36.93 27.19 29.28 32.87 36.90 40.96 44.61 46.77

048 093 081 063 048 049 064 0.75

For each dietary component, the first line = estimate from our model, while the second line is its
BRR-estimated standard error. Here, “DOL” is dark green and orange vegetables and legumes. Also,
“SoFAAS?” is calories from solid fats, alcoholic beverages and added sugars. Total Fruit, Whole Fruit,
Total Vegetables, DOL and Milk are in cups. Total Grains, Whole Grains and Meat and Beans are
in ounces. Oil and Sodium are in grams. Saturated Fat and SoFAAS are in % of energy. Further
discussion of the size of the BRR-estimated standard errors is given in the supplementary material
[Zhang et al. (2011)].

and 54.7, respectively; see Fungwe et al. (2009)]. The mean scores noted here are
comparable to those and reinforce the notion that children’s diets, on average, are
far from ideal. However, this analysis provides a more complete picture of the state
of US children’s diets. By including the scores at various percentiles, we estimate
that only 5% of children have a score of 69 or greater and another 10% have scores
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TABLE 3

Percentile
Component Mean Sth 10th 25th 50th 75th 90th 95th
Total fruit 3.55 0.87 1.31 2.33 3.90 5.00 5.00 5.00
0.09 0.13 0.14 0.15 0.15 0.00 0.00 0.00
Whole fruit 3.14 0.49 0.82 1.71 3.24 5.00 5.00 5.00
0.14 0.12 0.16 0.21 0.26 0.03 0.00 0.00
Total vegetables 2.16 1.02 1.24 1.63 2.10 2.62 3.15 3.48
0.06 0.10 0.10 0.07 0.06 0.07 0.12 0.16
DOL 0.62 0.05 0.09 0.21 0.45 0.86 1.38 1.76
0.04 0.02 0.03 0.04 0.05 0.06 0.08 0.13
Total grains 4.81 3.92 4.23 4.79 5.00 5.00 5.00 5.00
0.03 0.13 0.12 0.09 0.00 0.00 0.00 0.00
Whole grains 0.90 0.16 0.24 0.43 0.75 1.21 1.74 2.13
0.04 0.04 0.05 0.05 0.05 0.05 0.10 0.14
Milk 6.77 2.15 2.96 4.62 6.91 9.67 10.00 10.00
0.12 0.23 0.22 0.18 0.17 0.25 0.00 0.00
Meat and beans 7.22 4.23 4.83 5.91 7.21 8.64 10.00 10.00
0.16 0.34 0.30 0.23 0.17 0.15 0.11 0.00
Oil 5.92 3.37 3.83 4.69 5.77 7.01 8.25 9.07
0.18 0.20 0.18 0.14 0.17 0.29 0.45 0.57
Saturated fat 5.16 0.00 1.09 3.18 5.38 7.48 8.53 8.96
0.21 0.35 0.51 0.35 0.24 0.23 0.13 0.16
Sodium 4.52 1.25 2.05 3.31 4.62 5.83 6.85 7.44
0.09 0.30 0.24 0.15 0.09 0.11 0.16 0.19
SoFAAS 8.73 2.15 3.60 6.02 8.73 11.42 13.81 15.21
0.32 0.50 0.42 0.33 0.32 0.42 0.54 0.62
Total Score 53.50 37.42 40.74 46.73 53.68 60.36 65.87 68.96
0.81 1.45 1.34 1.09 0.83 0.82 0.96 1.08

For each component score, the first line = estimate from our model, while the second line is its
BRR-estimated standard error. The total score is the sum of the individual scores. Here, “DOL” is
dark green and orange vegetables and legumes. Also, “SoFAAS” is calories from solid fats, alcoholic
beverages and added sugars. Further discussion of the size of the BRR-estimated standard errors is
given in the supplementary material [Zhang et al. (2011)].

of 41 or lower. While not in the table, we also estimate that the 99th percentile
is 74. This analysis suggests that virtually all children in the US have suboptimal
diets and that a sizeable fraction (10%) have alarmingly low scores (41 or lower.)

We have also considered whether our multivariate model fitting procedure gives
reasonable marginal answers. To check this, we note that it is possible to use the
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FIG. 1. The estimated percentiles of the HEI-2005 total score. The horizontal axis is the per-
centile of interest, for example, 0.5 refers to the median, while the vertical axis gives percentile
of the HEI-2005 scores. Standard error estimates are given in Table 2.

SAS procedure NLMIXED separately for each component to fit a model with one
episodically consumed food group or daily consumed dietary component together
with energy. The marginal distributions of each such component done separately
are quite close to what we have reported in Table 3, as is our mean, which is 53.50
compared to the mean of 53.25 based on analyzing one HEI-2005 component at
a time with the NLMIXED procedure. The only case where there is a mild dis-
crepancy is in the estimated variability of the energy-adjusted usual intake of oils,
likely caused by the NLMIXED procedure itself, which has an estimated variance
9 times greater than our estimated variance.

Of course, it is the distribution of the HEI-2005 total score that cannot be esti-
mated by analysis of one component at a time.

There are other things that have not been computed previously that are simple
by-products of our analysis. For example, the correlations among energy-adjusted
usual intakes involving episodically consumed foods have not been estimated pre-
viously, but this is easy for us; see Table 4. The estimated correlation of —0.64
between energy-adjusted total fruit and energy-adjusted SOFAAS, and the —0.47
correlation between DOL and SoFAAS are surprisingly high.

5.4. Component scores and other scores. As described in the Introduction, an
open problem has been to estimate the correlation between the individual score on
each dietary component and the scores of all other dietary components. In their
Table 3, Guenther et al. (2008) consider this problem, but of course they did not
have a model for usual energy adjusted intakes, and instead they used a single 24 h
recall. In Table 5 we show the resulting correlations using (a) a single 24 h recall;
(b) the mean of two 24 h recalls for those who have two 24 h recalls; and (c) our
model for usual intake. The numbers for the former differ from that of Guenther
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TABLE 4
Estimated correlation matrix for energy-adjusted usual intakes

Component TF WF TV DOL TG WG Milk Meat Oil SatFat Sodium SoFAAS

TF 1 0.76 0.07 0.41 —0.10 0.33 0.16 0.08 -0.35 —0.38 —0.25 —0.64
WF 1 0.14 049 0.03 0.35 0.10 0.05-0.17 —0.30 —-0.20 —0.51
TV 1 0.51 —0.25-0.23 -0.09 0.51 —0.08 0.08 042 -0.16
DOL 1 —0.08 0.11 0.14 0.25-0.06 —0.23 0.01 —0.47
TG 1 0.30-0.30-0.13 0.44 —0.36 0.17 -0.22
WG 1 0.18-0.18 =0.11 —0.29 —-0.17 —-0.46
Milk 1 -037-021 021 =027 -0.21
Meat and beans 1 —0.06 —0.08 039 -0.19
0il 1 —0.06 0.11 0.05
SatFat 1 0.09 0.46
Sodium 1 0.04
SoFAAS 1

Here TF = Total Fruits, WF = Whole Fruits, TV = Total Vegetables, WG = Whole Grains, TG =
Total Grains, SatFat = Saturated Fat. Here, “DOL” is dark green and orange vegetables and legumes.
Also, “SoFAAS” is calories from solid fats, alcoholic beverages and added sugars.

TABLE 5
Estimated correlations between each individual HEI-2005 component score and the sum of the
other HEI component scores, that is, the difference of the total score and each individual component

First24 h Two 24 h Model BRR s.e.
Total fruit 0.38 0.44 0.62 0.05
Whole fruit 0.31 0.37 0.59 0.10
Total vegetables 0.09 0.11 0.10 0.11
DOL 0.18 0.24 0.41 0.07
Total grains 0.00 0.00 0.06 0.11
Whole grains 0.12 0.16 0.53 0.08
Milk —0.07 —0.01 0.01 0.08
Mean and beans —0.03 —0.01 —0.03 0.15
Oil 0.08 0.05 -0.17 0.08
Saturated fat 0.21 0.23 0.36 0.06
Sodium —0.03 0.05 0.07 0.12
SoFAAS 0.52 0.59 0.72 0.04

The column labeled “Two 24 h” is the naive analysis that uses the mean of the two 24 h recalls,
while the column labeled “First 24 h” is the naive analysis that uses the first 24 h recall. The column
labeled “Model” is our analysis, and the column labeled “BRR s.e.” is the estimated standard error
of our estimates. Here, “DOL” is dark green and orange vegetables and legumes. Also, “SoFAAS” is
calories from solid fats, alcoholic beverages and added sugars.

et al. (2008) because we are considering here a different population than do they.
A striking and not unexpected aspect of this table is that for those components with



A NEW MULTIVARIATE MODEL FOR DIETARY DATA 1473

nontrivial correlations, the correlations all increase as one moves from a single 24 h
recall to the mean of two 24 h recalls and then finally to estimated usual intake.
Thus, for example, the correlation between the HEI-2005 score for total fruit and
its difference with the total score is 0.38 for a single 24 h recall, 0.44 for the mean
of two 24 h recalls and then finally 0.62 for usual intake.

5.5. Distributions of intakes for subsets of HEI total scores. A third open
question is as follows: among those whose total HEI-2005 score is >50 or <50,
what is the distribution of energy-adjusted usual intake of whole grains, whole
fruits, dark green and orange vegetables and legumes (DOL) and calories from
solid fats, alcoholic beverages and added sugars (SoOFAAS)? This follows nat-
urally from our method. Following (3.8), let G1(Tpi) be energy adjusted usual
intake and let Gg(fbi) be the HEI total score. Then the distributions in ques-
tion for when the tolal HEI-2005 score is >50 can be estimated as F (x) =

t P wil{G(Ty) < x}{Ga(Tpi) > 50/ S0y b wiI{Go(Tpi) > 50}.

The results are provided in Table 6, with a graphical view in Figure 2. The
results show that those who have poorer diets with usual HEI-2005 total score < 50
are consistently eating poorer diets, that is, less whole fruits, less whole grains and
less DOL, but higher SOFAAS.

TABLE 6
Estimated distributions of energy-adjusted usual intake for those whose total HEI-2005
total scores are <50 and >50

Percentile

Component Mean s.d. Sth 10th  25th  50th  75th  90th  95th

Whole fruit
Total score <50 0.15 0.12 0.02 0.03 0.07 0.12 0.21 0.30 0.38
Total score >50 0.39 0.22 0.11 0.15 0.23 0.35 0.51 0.68 0.80

Whole grains
Total score <50 0.18 0.13 0.03 0.05 0.09 0.15 0.25 0.36 0.44
Total score >50 0.32 020 0.07 0.10 0.17 0.28 0.42 0.59 0.70
DOL
Total score <50 0.02  0.02 0.00 0.00 0.01 0.02 0.03 0.05 0.07
Total score >50 0.06  0.05 0.01 0.01 0.03 0.05 0.09 0.13 0.17
SoFAAS
Total score <50 4243 397 36.40 37.59 39.66 42.16 4492 47.67 49.42
Total score >50 33.83 444 26.01 27.89 3097 34.15 3698 39.28 40.57

Total Score 53.50 9.58 3742 40.74 46.73 53.68 60.36 65.87 68.96

Here, “DOL” is dark green and orange vegetables and legumes. Also, “SoFAAS” is calories from
solid fats, alcoholic beverages and added sugars. Units of measurement are given in Table 2.
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FIG. 2. The estimated percentiles of the energy-adjusted usual intakes for Whole fruits (top left)
in cups/(1,000 kcal), Whole grains (top right) in ounces/(1,000 kcal), DOL (bottom left) in cups/
(1,000 kcal) and calories from SoFAAS (bottom right) in % of Energy. The solid lines are for those
whose usual HEI-2005 total score is <50, that is, poorer diets, while the dashed lines are for those
whose usual HEI-2005 total score is >50, that is, better diets.

5.6. Dietary consistency. We stated in the Introduction that it is interesting
to understand the percentage of children whose usual intake HEI score exceeds
the median HEI score on all 12 HEI components. Those median scores, say,
(x1,...,K12), are estimated in Table 3. If G j(Tbi) is the HEI component score for
episodically consumed food j, then following (3.8) the quantity in question can
be estimated as Y/, Zle w; H§:1 I{Gj(Tb,-) > kit Yie Zle w;. We esti-
mate that the percentage is 6%, woefully small. The percentage of children whose
usual intake HEI score exceeds the median HEI score on all 12 HEI components
is 0.24%. Figure 3 gives the estimated probabilities of exceeding the « percentile
on all 12 HEI components simultaneously, for« =1,2,...,99.

5.7. Uncertainty quantification. The BRR standard errors of HEI-2005 com-
ponents’ adjusted usual intakes and scores are shown in Tables 2 and 3. The
BRR weights are only used in variance calculations. Once we have estimated
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FI1G. 3. The Y-axis gives the estimated probabilities of exceeding the k (X-axis) percentile on all 12
HEI components, fork =1,2,..., 99; see Section 5.6.

some quantity, say, 6, from the sample using sample weight, we will need to
compute the same quantity using, in succession, the 32 BRR weights. This will
give us 32 estimates @1 §2 e §32. The BRR estimate for the variance of 8 is
(32 x 0.49)"! 222:1(@;7 — 5)2. The 32 in the denominator is for the 32 different
estimates from the 32 different sets of weights, and the 0.49 is the square of the
perturbation factor used to construct the BRR weight sets [Wolter (1995)].

6. Further discussion of the analysis.

6.1. Never consumers. An aspect of the modeling that we have not discussed
is the possibility that some people never, ever consume an episodically consumed
dietary component. Our model does not allow for this, for general reasons and for
reasons that are specific to our data analysis.

It is in principle possible to add an additional modeling step for nonconsumers,
via fixed effects probit regression, but we do not think this is a practical issue in
our case, for two reasons:

e The first is that the HEI-2005 is based on 6 episodically consumed dietary com-
ponents, namely, total fruit, whole fruit, whole grains, total vegetables, DOL
and milk, the latter of which includes cheese, yogurt and soy beverages. None
of these are “lifestyle adverse,” unlike, say, alcohol. While 40% of the responses
for whole fruits, for example, equal zero, the percentage of children who never
eat any whole fruits at all is likely to be minuscule.

e Even if one disputes whether there are very few individuals who never consume
one of the dietary components, then it necessarily follows that we have overesti-
mated the HEI-2005 total scores, and, hence, the estimates of the proportion of
individuals with alarmingly low HEI scores are deflated, and not inflated. The
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reason is that our model suggests everyone has a positive usual intake of the 6
episodically consumed dietary components. Since the HEI-2005 score compo-
nents are nondecreasing functions of usual intake of the episodically consumed
dietary components, this would mean that we overestimate the HEI-2005 total
score.

6.2. Computing and data. Our programs were written in Matlab. The pro-
grams, along with the NHANES data we used, are available in the Annals of Ap-
plied Statistics online archive. Although a much smaller amount of computing
effort yields similar results, using 70,000 MCMC steps with a burn-in of 20,000
takes approximately 10 hours on a Linux server.

We also estimated the Monte Carlo standard error which is defined by Flegal,
Haran and Jones (2008) as &,/ J/n, where n is the total of iterations, and n = ab,
where a 1s the number of blocks and b is the block size, and where

jb
Yi=b"' Y g forj=1...a
i=(j—1)b+1

The batch means estimate of 05 is

~2 b o -
Gp=— Z(Yj_gn) :
j=1
The ratio of the Monte Carlo standard error to the estimated standard deviation of
the estimated parameters averages 3.4% for ¥, and 1.7% for §.

Because of the public health importance of the problem, the National Cancer In-
stitute has contracted for the creation of a SAS program that performs our analysis.
It will allow any number of episodically and daily consumed dietary components.
The first draft of this program, written independently in a different programming
language, gives almost identical results to what we have obtained, at least suggest-
ing that our results are not the product of a programming error.

7. Discussion.

7.1. Transformations. In Appendix A.12 we describe how we estimated the
transformation parameters as a separate component-wise calculation. We have
done some analyses where we simultaneously transform each component, and
found very little difference with our results. However, the computing time to im-
plement this is extremely high, because of the fact that different transformations
make data on different scales, so we have to compute the usual intakes at each step
in the MCMC, and not just at the end.
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7.2. What have we learned that is new. There are many important questions
in dietary assessment that have not been able to be answered because of a lack
of multivariate models for complex, zero-inflated data with measurement errors
and a lack of ability to fit such multivariate models. Nutrients and foods are not
consumed in isolation, but rather as part of a broader pattern of eating. There is rea-
son to believe that these various dietary components interact with one another in
their effect on health, sometimes working synergistically and sometimes in oppo-
sition. Nonetheless, simply characterizing various patterns of eating has presented
enormous statistical challenge. Until now, descriptive statistics on the HEI-2005
have been limited to examination of either the total scores or only a single energy-
adjusted component at a time. This has precluded characterization of various pat-
terns of dietary quality as well as any subsequent analyses of how such patterns
might relate to health.

This methodology presented in this paper presents a workable solution to these
problems which has already proven valuable. In May 2010, just as we were submit-
ting the paper, a White House Task Force on Childhood Obesity created a report.
They had wanted to set a goal of all children having a total HEI score of 80 or more
by 2030, but when they learned we estimated only 10% of the children ages 2—8
had a score of 66 or higher, they decided to set a more realistic target. The facility
to estimate distributions of the multiple component scores simultaneously will be
important in tracking progress toward that goal.

7.3. In what other arenas will our work have impact? There are many other
important problems where multivariate models such as ours will be important.
One such problem arises when studying the relationship between multiple di-
etary components or dietary patterns and health outcomes. Traditionally, for cost
reasons, large cohort studies have used a food frequency questionnaire (FFQ) to
measure dietary intake, sometimes with a small calibration study including short-
term measures such as 24 h recalls. However, there is a new web-based instrument
called the Automated Self-administered 24-hour Dietary Recall (ASA24™) (see
http://riskfactor.cancer.gov/tools/instruments/asa24), which has been proposed to
replace or at least supplement the FFQ and which is currently undergoing extensive
testing. The dietary data we will see then is what we have called Y;jx, that is, 24 h
recall data. In order to correct relative risk estimates for the measurement error
inherent in the ASA24™ regression calibration [Carroll et al. (2006)] will almost
certainly be the method of choice, as it is in most of nutritional epidemiology. This
method attempts to produce an estimate of the regression of usual intake on the
observed intakes, and then to use these estimates in Cox and logistic regression
for the health outcome. In order to perform this regression, a multivariate mea-
surement error model will be required, since the regression is on all the observed
dietary intake components in the regression model measured by the ASA24™  and
not on each individual component. Our methodology is easily extended to address
this problem.
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APPENDIX: DETAILS OF THE FITTING PROCEDURE
In this Appendix we give the full details of the model fitting procedure.

A.1. Notational convention. In our example, age was standardized to have
mean 0.0 and variance 1.0, to improve numerical stability.

As described in Section 3.1, the observed, transformed nonzero 24 h re-
calls were standardized to have mean 0.0 and variance 2.0. More precisely, for
£=1,2,...,6, we first transformed the nonzero food group data as Z; ¢y =
g(Yi2ek, o), and then we standardized these data as Q; ook = \/Q{Z,-,%k —
w(re)}/o(Ae), where {(Ar¢),o(Ag)} are the mean and standard deviation of
the nonzero food intakes Z; 2¢ ;. Similarly, for nonepisodically consumed di-
etary components and energy we transformed to Z; g4¢ x = &(Yi 64¢.k, A¢) for
£=17,...,13, and then standardized to Q; ¢+¢x = \/E{Z,',6+g,k — o)}/ o ().
Of course, whether the food group is consumed or not is Q; 2¢—1.x = Yi 2¢—1.x for
£=1,...,6. Collected, the data are Q,-k = (Qijk)}gzl- The terms {u(A¢), o (M)}
are not random variables but are merely constants used for standardization, and we
need not consider inference for them. Back-transformation is discussed in Appen-
dix A.11.

A.2. Prior distributions. Because the data were standardized, we used the
following conventions:

e The prior for all 8; were normal with mean zero and variance 100.

e The prior for ¥, was exchangeable with diagonal entries all equal to 1.0 and
correlations all equal to 0.50. There were 21 degrees of freedom in the inverse
Wishart prior, that is, m,, = 21. Thus, the prior is IW{(m, — 19— 1) X}, prior, Mu}.
We experimented with this prior by using zero correlation, and the results were
essentially unchanged.

e The prior for r; is Uniform[—1, 1]. Set the initial value: ry =0,k =1, ..., 5.

e The prior for 6y is Uniform[—r, 7r]. Set the initial value: 6, =0,k =1, ..., 25.

e The priors for v2g, V44, ..., v12,12 and v13.13, ..., V19,19 were Uniform[—3, 3].
Set the initial values: vy = vy =--- = V(2,12 = V3,13 ="'+ =7V]9,19 = 1.

e For the rest of the nondiagonal v;;’s which could not be determined by the re-
strictions, we used Uniform[—3, 3] priors. Set the initial values to be 0.

The constraints on ¥, are nonlinear, and our parameterization enforces them
easily without having to have prior distributions for the original parameterization
that satisfy the nonlinear constraints.

The key thing that makes things work well with the other components of the
matrix V with =, = VVT is that we have standardized the data as described in
Appendix A.1. With this standardization, things become much nicer. For example,
the variance of the ¢’s for energy is 2}9:1 vfg, j- However, since the sample vari-
ance for energy is standardized to equal 2.0, we simply just need to make priors

for vyg, ; be uniform on a modest range to have real flexibility.
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A.3. Generating starting values for the latent variables. While we observe

Qix, in the MCMC we need to generate starting values for the latent variables
Wix = (Wij) 2, to initiate the MCMC:

For nutrients and energy, Q;jx = W;jx, no data need be generated, j =
13,...,19.

For the amounts, Q;, Q4. Qick, Qisk, Qi 10,k and Q; 12k, we set Wi =
Qioks Wiak = Qiak, Wiek = Qick> Wisk = Qisk> Wi10x = Qi 10,4 and W 12 =
Qi 12,k- B

For consumption, we generate U; as normally distributed with mean zero
and covariance matrix given as the prior covariance matrix for X,. For £ =
1,....6, we also compute zjx = X5, ; Bae—1.prior + Ui2e—1 + Zik|, where
Zix = Normal(0, 1) are generated independently. We then set W;2p—1 % =
2ik Qi2e—1,k — Zik (1 — Qi20—1,6)-

Finally, we then updated W;; by a single application of the updates given in
Appendix A.9.

A.4. Complete data loglikelihood. Let J = 19. The complete data include

the indicators of whether a food was consumed, the W variables and the random
effect U variables. The loglikelihood of the complete data is

6 n m
Z Z Z10g{Qi,2£—1,k1(Wi,2e_1,k > 0)

(=1i=1k=1
+ (1= Qi2e—1,)I (Wi2e—1x <0)}

+ (Z wi/2) log(1Z, ') — (1/2) Y w; U=, '0;

i=1 i=1

J
— (1/2) >~ (Bj — Bj.prior) ' Q.5 (Bj — Byj.prior)
j=1
+{0my + T+ 1)/2Mog(15, ') — {0my — J — 1)/2} trace(Su,prior Z,, )

5

202002 2 o 9 2 2

— (1/2) ) wim; log{(v3,v34VgeVsVio, 10V12,12V13.13 - v3,) [ [ (1 = 7))
i=1 g=1

n m;
— (/D> wi Y Wik — (X[ Bre - X BT = Uy 2!
i=1 k=1

X AWix — (X B1r - X BT — U}

We used Gibbs sampling to update this complete data loglikelihood, the details for
which are given in subsequent appendices. The weights w; are integers and are
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used here in a pseudo-likelihood fashion. One can also think of this as expanding
each individual into w; individuals, each with the same observed data but different
latent variables. For computational convenience, since we are only asking for a
frequentist estimator and not doing full Bayesian inference, the latent variables in
the process are generated once for each individual. Estimates of X, ¥, and 8; for
j=1,...,J were computed as the means from the Gibbs samples. Once again,
we emphasize that we are not doing a proper Bayesian analysis, but only using
MCMC techniques to obtain a frequentist estimate, with uncertainty assessed using
the frequentist BRR method.

A.5. Complete conditionals for r;, 6, and v,,. Except for irrelevant con-
stants, the complete conditional forr, (¢ =1,...,5)1s

1 n
log[r, [rest] = ) Zwimi log(1 — rqz)
i=1

1 n m; ~ -
=5 2 wi ) Wik = XguBr,- Xijo Pro)' = Ui}!
i=1 k=1

x o Wik — (X[ B o X B19)T = T

Except for irrelevant constants, the complete conditionals for vy, (¢ =2,4,6, 8,
10,12,13,...,19) are

1 n
log[vgg|rest] = —3 Z w;m; log(vgq)

i=I
1 n m; ~ "
=5 2o wi Y (Wi = (Xiybr, -, XipouBro)' = Uil
i=1 k=l
x o Wik — (X[ B oo X o B19)T — T

Except for irrelevant constants, the compete conditionals for 6, (¢ =1, ...,25)
and nondiagonal free parameters v, are

1 n m; ~ -
log[ix[rest] = =5 > Jw; 3 {Wix = (XjBr, -, Xj1oxP19)' = Ui)!
i=l1 k=1

xS Wik — (X Bro oo X 104 B19)T = Ui}

The full conditionals do not have an explicit form, so we use a Metropolis—
Hastings within a Gibbs sampler to generate it:

o 74y (g=1,...,5). We discretize the values of r, to the set {—0.99+2 % 0.99(; —
1)/(M — 1)}, where j =1,..., M and we choose M =41.
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Proposal: The current value is r, ;. The proposed value of r4 ;11 is selected
randomly from the current value and the two nearest neighbors of r, ;. Then
rq.1+1 is accepted with probability min{1, g(ry,;+1)/g(ry,1)}, Where

gy ox (1 — yz)_l/22?=1 w;m;

l n
X exp[—EZwi

m;

Wik — (X Br. oo X 19 1 B10)T = Ui T2, (-)},
1

i=1 k=
where here and in what follows, for any A, AT Ee_l (o) = ATES_1 A.
o 0, (g=1,...,25). We discretize similarly as above.

Proposal: The current value is 6, ;. The proposed value 6, ;11 is selected
randomly from the current value and the two nearest neighbors of 6, ;. Then
64.1+1 1s accepted with probability min{l1, g(6,,,41)/g(84,:)}, where

1 n m; — - _

g(y) exp[—i Y owi Y Wik — (X[ Br. - X0 Br19)T — Uil XS 1(-)].
i=1 k=1

o vy, (9 =2,4,6,8,10,12,13,...,19). Proposal: The current value is vy ;.

A candidate vgq 41 is generated from the Uniform distribution of length 0.4

with mean vy, ;. The candidate value vy, ;41 1S accepted with probability

min{l, g(qu,t—H )/g(qu,t)}, where

g(y) oy~ Ziziwimi

l n
X exp|:—52wi

i=1 k=

m;

Wik — (XJ kB oo X 1o 1 B1o0)T = Ui T2, (-)}.
1

e Nondiagonal free parameters v,,. Proposal: The current value is v,q, ;. The
candidate value v, ;11 is generated from the Uniform distribution of length
0.4 with mean v, ;. The candidate value is accepted with probability min{1,

g8(Wpq.t+1)/8(Wpq.1)}, where

1 n m; — - _
g(y) exp{—i S owi Y Wik — (X[ B, X o 4 B1o)T — UiTE; 1(-)].
i=1 k=1

A.6. Complete conditionals for X,,. The dimension of the covariance matri-
ces is J = 19. By inspection, the complete conditional for X, is

n
[X,|rest] = IW{ (my —J — 1)zu,prior + Z w; U; Ul‘T7 n-+ mu}7
i=1
where here IW = the Inverse-Wishart distribution. The density of IW (€2, m) for a
J x J random variable is
IW(Q,m) = f(QI2,m) o< | Q"D 2 expl — L trace(20 ™).

This has expectation Q/(m — J — 1).
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A.7. Complete conditionals for B. Let the elements of X ! be agj ‘. For
any j, except for irrelevant constants,

1
log[Bjlrest] = =2 (B — Bj.prior) " 2. (Bj = B prior)

1 n
—>Yw

i=1 k=

m;

(Wijk — X[ B — Uij)iodl
1

n m;
=D wi Y Y o Wijk — X[iBj — Uip) Wiek — X[y Be — Use)
i=1  k=1£+#j

1
T T,—1
=CiBj - E:Bjcz B
which implies [B;|rest] = Normal(C>Cy, C;), where

n . mi -1
C = (ng}j—f—zwi(f‘gﬂ ZXiij;l;'k> ;

i=1 k=1

m;

n
Cr = QE,ljﬁj,pn'or +> wi > od! Xij(Wijk — Uij)
il k=1

n m;
Y wi Y3 o Wink — X[yBe — Uio) Xijie
=1 k=10

A.8. Complete conditionals for U;. The NHANES 2001-2004 weights are
integers, representing the number of children that each sampled child represents.
Thus, as described therein, the loglikelihood in Section A.4 could also be rewritten
equivalently by developing w; pseudo-children, each with the same observed data
values. It thus does not make sense to use the weights to generate an individual U;.
Instead, as described in Section A.4, for computational convenience for generating
a U to represent w; children, we set the weight for that child temporarily = 1.0.
Then, except for irrelevant constants,

- | PSSR
log[U;|rest] = _EwiUi 2, U

1 & ~ _
- Wi S Wik — (X iBr. - X101 B10) T — U} 2!
k=1

x (Wi — (X 1, XiT,19,k1319)T — U}

e e i~
=ClU; - 5U,.Tc2 '0;.
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Remembering that for purposes of this section we are setting w; = 1.0, this implies
that [U; |rest] = Normal(C»>Cy, C>), where

=" 4+mzH7h

m;
Cr=) " T Wi — (X[ 1B, X[ 19 4 B19) ).
k=1

A.9. Complete conditional for W;, £ =1,3,5,7,9,11. Here we do the
complete conditional for W;s with £ =1,3,5,7,9, 11. Except for irrelevant con-
stants,

log[Wik|rest] = log{ Qiex I (Wigk > 0) + (1 — Qiei) I (Wi < 0)}
- %wi(Wilk — XN B1 = Uit ..., Witox — XiT]g,kﬂw — Ui 19)
x 21T
=log{Qiex I (Wiek > 0) + (1 — Qigr) I (Wigr < 0)}

1
— —wiGSM(Wigk - XiTZkﬂg — Uir)?

2
—w; Y0 Witk — XiyBe — Ui) Wik — XjjuBj — Uij)
J#
=log{Qiex I Wigk > 0) + (1 — Qiox) I (Wigx < 0)} + C1 Wigk
12 i
- EWiékCZ ;

where, using the convention of Appendix A.8,
C2=1/(0;")
Ci =0 XjuBe +Ui) = Y_ o Wijk — X[ Bj — Uij).
Jj#t
If we use the notation TN (i, 0, ¢) for a normal random variable with mean ©

and standard deviation o that is truncated from the left at ¢, and similarly use
TN_(u, o, c) when truncation is from the right at c, then it follows that with © =

C2Cr and o =C,/?,

[Wigk|rest] = Qiex TN (1, 0,0) + (1 — Qiex) TN— (11, 0, 0)
=p+ Qiex TN1(0,0, =) + (1 = Qiet) TN_(0, 0, —p)
=p+ Qiex TN1 (0,0, =) = (1 = Qier) TN (0, 0, )
=pn+0{QiTN4 (0,1, —p/0) — (1 = Qier) TN1 (0, 1, p/0)}.
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Generating TN (0, 1,¢) is easy: if ¢ < 0, simply do rejection sampling of a
Normal(0, 1) until you get one that is > c. If ¢ > 0, there is an adaptive rejec-
tion scheme [Robert (1995)].

A.10. Complete conditionals for Wiz, Wiar, Wier, Wisk, Wi 10,k and
Wi 12,k when not observed. For p =2,4,6,8, 10, 12, the variable W;; is not
observed when Q; , 1 =0, or, equivalently, when W; ;, | x < 0. Except for ir-
relevant constants,

log[ Wi |rest] = ——wz ZZG’ (Wijk — iTjkﬂj — Uij)(Wiek — X}y Be — Uie)

1 _
= —EWS)I(CZ ! + Cl Wipk,
where, using the convention of Appendix A.8,
Co=1/(0P);

C = a”p(X,pk,Bp + Uip) — Z o Wik — X}Be — Uie).
t#£p
Therefore,

[Wipklrest] = Qipk Qi p—1.4 + (1 — Qi p—1,1) Normal(C2Cy, C2).

A.11. Usual intake, standardization and transformation. Here we present
detailed formulas for functions defined in Section 3.4. When A = 0, the back-
transformation is

g7 (2. 0) = exp{u(0) + o (0)z//2};

E)zgt;l(z,O)/Bz2 ( ) _1

When A # 0, the back-transformation is
g @) =[1+2{u0) +omz/V2)]'%
2( »)

(z,0).

—2+1/a

08y (2 1)/02 = == (1 = W1+ 2{n(R) + 0 (1)z/v/2}]

A.12. Transformation estimation. As part of an earlier project [Freedman
et al. (2010)], we estimated the transformations for one food/nutrient at a time us-
ing the method of Kipnis et al. (2009), both for the data and also for each BRR
weighted data set. To facilitate comparison with the one food/nutrient at a time
analysis, in our analysis of all HEI-2005 components, we used these transforma-
tions as well. Of course, our methods can be generalized to allow for estimation
of the transformations as well. By allowing a different transformation for each
BRR weighted data set, we have captured the variation due to estimation of the
transformations.
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SUPPLEMENTARY MATERIAL
Supplement A: Additional tables (DOI: 10.1214/10-AOAS446SUPPA).

Supplement B: Data files of the NHANES data used in the analysis (DOI:
10.1214/10-AOAS446SUPPB; .zip).

Supplement C: Matlab programs for the data analysis (DOI: 10.1214/10-
AOAS446SUPPC; .zip).
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