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FALSE DISCOVERY RATES IN SOMATIC MUTATION STUDIES
OF CANCER!

BY LORENZO TRIPPA AND GIOVANNI PARMIGIANI
Dana-Farber Cancer Institute and Harvard School of Public Health

The purpose of cancer genome sequencing studies is to determine the
nature and types of alterations present in a typical cancer and to discover
genes mutated at high frequencies. In this article we discuss statistical meth-
ods for the analysis of somatic mutation frequency data generated in these
studies. We place special emphasis on a two-stage study design introduced
by Sjoblom et al. [Science 314 (2006) 268—274]. In this context, we describe
and compare statistical methods for constructing scores that can be used to
prioritize candidate genes for further investigation and to assess the statistical
significance of the candidates thus identified. Controversy has surrounded the
reliability of the false discovery rates estimates provided by the approxima-
tions used in early cancer genome studies. To address these, we develop a
semiparametric Bayesian model that provides an accurate fit to the data. We
use this model to generate a large collection of realistic scenarios, and eval-
uate alternative approaches on this collection. Our assessment is impartial in
that the model used for generating data is not used by any of the approaches
compared. And is objective, in that the scenarios are generated by a model
that fits data. Our results quantify the conservative control of the false dis-
covery rate with the Benjamini and Hockberg method compared to the em-
pirical Bayes approach and the multiple testing method proposed in Storey
[J. R. Stat. Soc. Ser. B Stat. Methodol. 64 (2002) 479-498]. Simulation re-
sults also show a negligible departure from the target false discovery rate for
the methodology used in Sjoblom et al. [Science 314 (2006) 268-274].

1. Introduction. The systematic investigation of the genomes of human can-
cers has recently become possible with improvements in sequencing and bioin-
formatic technologies. Sjoblom et al. (2006) and Wood et al. (2007) determined
the sequence of comprehensive collections of coding genes (CCDS and RefSeq)
in colorectal and breast cancers, and provided a catalogue of somatic mutations.
In this context, a somatic mutation is a tumor-specific mutation not present in
the germline of the patient whose tumor contained it. Subsequently, Greenman
et al. (2000) investigated somatic mutations in the coding exons of 518 protein
kinase genes in a large and diverse set of human cancers. More recently, mutation
data from glioblastoma tissues have been studied in the The Cancer Genome At-
las project (2008) and Parsons et al. (2008), and from pancreatic cancer in Jones
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et al. (2008). Statistical analysis of the data generated in these studies poses new
challenges that are worthy of careful consideration. Greenman et al. (2006) have
provided an in-depth analysis of data generated by one-stage studies. To make
optimal use of sequencing resources, Sjoblom et al. (2006) introduced a two-stage
design, with the stages termed “Discovery” and “Validation.” The Discovery Stage
consists of a catalog of mutations in all genes considered, for example, all genes in
the CCDS database. This design permitted selection of the subset of genes that har-
bored at least one somatic mutation, termed “Discovered.” This subset was further
investigated in a Validation Stage which cataloged somatic mutations in discovered
genes in an independent set of tumor samples. Genes that were mutated in at least
one tumor in the Validation set were termed “Validated.” In this article we con-
sider this two-stage design. Sjoblom et al. (2006) and Wood et al. (2007), adopting
this experimental design, discovered that among the genes whose mutations are
likely responsible for carcinogenesis, the majority, the “hills,” had mutations in
small subgroups of cases, while only a handful of genes, the “mountains,” were
mutated in large subgroups. Thus, the hills and not the mountains dominate the
cancer genome landscape. This imbalance emphasizes the importance of statisti-
cal methods in identifying the mutations involved in the carcinogenesis process.
The somatic mutations found in cancer tissues are either “drivers” or “passen-
gers” [Wood et al. (2007)]. Driver mutations are causally involved in the neoplastic
process and are positively selected during tumorigenesis. Passenger mutations pro-
vide no positive or negative selective advantage to the tumor but are retained by
chance during repeated rounds of cell division and clonal expansion. The overar-
ching goal of the statistical analysis of cancer mutation data is to identify genes
that are most likely to contain driver mutations on the basis of their mutation type
and frequency. This is done by quantifying the evidence that the mutations in a
gene reflect underlying mutation rates that are higher than the passenger rates.
Early cancer genome projects provided a rank order of genes by their potential
to be drivers of carcinogenesis based on mutation frequencies in tumors as well
as the genes’ size and nucleotide compositions. To provide an indication of the
significance of lists of possible driver genes, they also provided estimates of the
false discovery rate (FDR), that is, the expected proportion of putative drivers that
are actually passengers, or the proportion of erroneously rejected null hypothe-
ses [Benjamini and Hochberg (1995)]. Since the seminal article of Benjamini and
Hochberg (1995), several authors have proposed alternative methods that control
the FDR with improved operating characteristics. Important contributions include
relaxing the independence assumption among the test statistics and handling dis-
crete statistics [Benjamini and Yekutieli (2001)]. Reviews are given in Dudoit,
Shaffer and Boldrick (2003), Cheng and Pounds (2007) and Farcomeni (2008).
Despite a rich literature, applications often include heuristic arguments and, in
most cases, the choice of a method is far from trivial: a trade-off arises between
methods which have been proved through rigorous analytical arguments to con-
trol the FDR under a specified threshold and less conservative procedures that rely
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on heuristic arguments, examples and asymptotic theory. The trade-off between
methodological rigor and operating characteristics becomes particularly relevant,
for example, when the independence hypothesis is inappropriate or when data are
highly discrete. Applications often ignore these problems.

In this article we consider methods that are specific to somatic mutation anal-
ysis, and assess them by a novel model-based approach. Our idea is to develop a
“super partes” model that can be used to provide highly realistic artificial datasets
for method evaluation. We refer to these as data-driven simulated scenarios. Our
scheme for evaluating alternative methods can take into account possible discrep-
ancies between methods’ assumptions and the data. We apply this comparison
method by revisiting the Sjoblom et al. (2006) methodology as well as the al-
ternative approaches proposed shortly afterward by several groups [Forrest and
Cavet (2007), Getz et al. (2007), Rubin and Green (2007) and Parmigiani et al.
(2007a, 2007b)]. We discuss the application of this scheme to the data collected in
Wood et al. (2007).

The article is structured in 5 sections. In Section 2 we introduce the notation
for modeling mutation counts in tumor tissues and present our probability model.
In Section 3 we briefly review techniques for controlling or estimating false dis-
covery rates, and specific approaches for the analysis of somatic mutation data. In
Section 4 we compare these approaches. Final remarks are given in Section 5.

2. Data-driven simulation scenarios.

2.1. Approach. The idea of data-driven simulations is structured in two steps.
First we select a flexible probability model for the observed mutations. The model
includes model-specific parameters, genes-specific latent variables and observable
mutation counts. The model is consistent with widely established assumptions on
carcinogenesis. Prior distributions on the unknown model parameters are spec-
ified by using both external experimental results and heuristic data-driven ap-
proaches. Second, we infer the genes-specific latent variables, including driver
status, through a Monte Carlo Markov chain (MCMC) algorithm and generate sim-
ulated data sets consistent with the Wood et al. (2007) study.

Throughout the article this Bayesian model is used only for generating simu-
lated data sets that are highly consistent with the observed data in Wood et al.
(2007) and are impartial to the FDR approaches examined. In principle, the model
could be used directly for selecting genes having high posterior probabilities of
being drivers. Other potential applications of the model include (i) predicting the
experimental outcomes for ongoing studies, (ii) optimally choosing the resource
allocation for the validation stage using a decision theoretic approach and, more
generally, (iii) developing adaptive strategies for sequencing experiments. Never-
theless, here we prefer limiting our comparisons to highly computationally effi-
cient methods whose operating characteristics can be assessed via Monte Carlo



FALSE DISCOVERY RATES IN SOMATIC MUTATION STUDIES 1363

TABLE 1
Summary of notation for the data produced by the study for the gth gene,
and associated gene-specific parameters

Mutation counts

X ;,m number of mutations of type m detected in gene g in the Discovery Stage.

X ém number of mutations of type m detected in gene g in the Validation Stage.
Coverage

Tg]m coverage of type m in gene g in the Discovery Stage.

Tg2m coverage of type m in gene g in the Validation Stage.
Mutation rates

an1 rate of mutation of type m in the Discovery Stage.

y,%l rate of mutation of type m in the Validation Stage.

Og multiplicative gene-specific random effect.

techniques over a large number of data sets. Moreover, it would be circular to si-
multaneously use our Bayesian model for FDR estimation and for generating data
for evaluation. As noted in Getz et al. (2007), the performance of some methods
could be sensitive to the distribution underlying the experimental data; using a
probability model that fits the observed data, but also averages across plausible
values of the unknown parameters, allows us to provide appropriately objective
comparisons.

2.2. Sampling model. While cancer genome sequencing projects produce a
wealth of information, in this article we will focus on the somatic mutation counts,
broken down by gene and context, and considered separately for the Discovery
and Validation Stages. Table 1 summarizes the notation we will use. Our model
applies to a single disease, say, colorectal cancer, at a time. The probability model
is defined on the basis of a few well-established assumptions that allow to specify
a distribution of mutation counts conditional on unknown gene-specific mutation
rates. Using latent variables, we specify a model allowing for unknown compo-
sition of the genome in terms of passengers and drivers, and for heterogeneous
mutation rates across driver genes. More formally, we assume that, for each gene
and sample, the number of mutations of type m, that is, the number of identical
mutations that can occur only in a specific context, for example, C to G in a CpG
locus, is a mixture of Poisson distributions,

@1 Xignl0. pi. nm ~ Poisson(oinuby Tigm) and 0y " F,

where i indexes a tumor, g indexes a gene and Tj,,, denotes the coverage, or the
number of successfully sequenced nucleotides susceptible to mutation of type m in
gene g and sample i. The parameter 7, represents the rate of mutations of type m
among passengers. The multiplicative factor p; is designed to capture the fact that
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the abundance of mutations varies across tumors. The transition of a tissue from
normal to cancer can be described as a progressive accumulation of mutations,
some of them are drivers and some are passengers. This dynamic varies across tu-
mors; such heterogeneity is the focus of a significant portion of cancer research;
see Stratton, Campbell and Futreal (2009) for a stimulating discussion. Our model,
as well as those used in the previously mentioned cancer studies, describes a snap-
shot of this dynamic process at the time of sequencing. The product (p;n,,) can
be interpreted as the rate of mutations of type m in tumor i, assuming that the nu-
cleotide is part of a passenger gene. The gene-specific latent variables 0, capture
gene-specific variation across the genome; if 6, = 1, gene g is a passenger, while
higher values identify the drivers. Our model assumes that the rates of mutation
across different types m of mutations in a single gene g are proportional to the
rates of mutation in a passenger gene. Finally, F is the distribution of 8,’s across
the genome. It allows for values of 1 or bigger and allows for a concentration of
mass on the value of 1, corresponding to the passengers.

The overall structure of the model reflects the assumption that the drivers have
higher rates of mutation than the passengers. The analyses in Sjéblom et al. (2006)
and Wood et al. (2007) were aimed at selecting cancer genes with mutation rates
higher than the hypothesized passenger rates. The use of the Poisson distribution
in (2.1) is motivated by the fact that, under mild assumptions, it well approximates
a more rigorous multinomial model [Wood et al. (2007)] obtained by modeling
possible mutations in a single gene as binary variables.

Values of individual passenger rates (p;7;,,) can be obtained using data external
to the somatic mutations counts [Sjoblom et al. (2006), Wood et al. (2007)]. This
allows us to simplify the model (2.1) by collapsing data across patients. Once the
intensities (p;7,,) are known, the collapsed counts data (X g, = ) _; Xjg) are suf-
ficient statistics for evaluating the likelihood function. This allows for a consider-
able reduction of the computational requirements. We will thus use the alternative
representation of (2.1):

(2.2) X gml0g. Vi ~ Poisson(ymfg Tem) and 6~ F,

where X, is the total number of mutations of type m harbored in the gth gene,
Tom =2_; Tigm and Tgm¥Ym = 3_; Pinlm Tigm-

Multistage designs are attractive strategies for identifying cancer genes; the first
stage indicates a subset of genes that are more likely to be drivers and, in the sub-
sequent phase, only this subset is analyzed. Relevant cost—effectiveness analysis
and comparisons of alternative designs for genome-wide studies are illustrated in
Satagopan et al. (2002), Satagopan and Elston (2003), Satagopan, Venkatraman
and Begg (2004), Kraft (2006), Skol et al. (2006), Wang and Stram (2006) and
Parmigiani et al. (2009). In the studies discussed by Sjoblom et al. (2006) and
Wood et al. (2007), at the end of the first stage all genes which harbored one or
more mutations are considered for further study. We will use the notation X ;,m and



FALSE DISCOVERY RATES IN SOMATIC MUTATION STUDIES 1365

X 2m for denoting the number of mutations in the two phases. Similarly, Tglm and

ngm denote the coverages and (y,}w y,%l) the rates for the discovery and validation
phases. Model (2.2) can be adapted to the two-stage design as follows:

X1m|9g,yn11 ~ P01sson(ym0g gm)

- |
. ) )/ ~ .
em> g Vim P01sson(y29g ngm) if X;,m > 0,
6, & F.

In these expressions the coverages Tglm and ngm are considered fixed. While some
variation may be experimentally observed, this is unlikely to be related to a gene’s
driver status, and, thus, it is appropriate to model the data conditionally on the
coverages. For our purpose, the following three considerations are critical:

Two-stage design. Only genes that harbor at least one mutation in the Discovery
Stage are sequenced in the Validation Stage. This screening condition needs to be
taken into account when assessing significance using p-values or other methods
that rely on the sampling distribution.

Coverage. The number of nucleotides successfully sequenced is generally
smaller than the gene length times the number of tumors analyzed. For exam-
ple, certain exons may be technically challenging to sequence. It is appropriate
to apply stringent quality criteria to sequencing data, which lead to the exclusion
of nucleotides whose sequence could not be identified with certainty. Nucleotides
excluded, or not covered, should not be included in statistical evaluations. In what
follows p-values and other statistics used for prioritizing putative driver genes are
computed taking into account, for each gene, which loci have been sequenced.

Context. The third consideration involves the observed bases in the mutations.
In sequencing studies, the precise bases that comprise the mutation, as well as the
neighboring bases, termed “mutation contexts,” are important. We use a classifica-
tion of contexts provided in Wood et al. (2007). This is a partition of the sequenced
basis. For our purpose, it is relevant that each subset has specific rates of mutation
under the passenger status. This fact implies that the priority given to a gene in
further studies and the statistical significance of a gene should depend not only on
the number of nucleotides but also on the gene-specific basis sequence.

2.3. A Bayesian approach to generating simulation scenarios. For our analy-
sis we propose embedding the sampling model (2.3) in a Bayesian semiparametric
model. This will allow us to generate possible scenarios consistent with the data
from the Wood et al. (2007) study. We use a Dirichlet process prior [Ferguson
(1973)] for the unknown distribution F,

2.4) F ~ Dirichlet(A),
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where A is a positive measure on [1, 00). Reviews on the Dirichlet process and
applications in biostatistics are given in Dunson (2010) and Miiller and Quintana
(2004).

We chose the Dirichlet mixture model because of its flexibility compared to
alternative parametric prior distributions. Simple preliminary analysis of the mu-
tation data shows that the so-called mountains can have mutation rates over 100-
folds higher than the passengers, while hills have markedly lower rates. To capture
both the mountains and the hills, we specify a sufficiently flexible prior on the
unknown mixing distribution F. As shown in Venturini, Dominici and Parmigiani
(2008), Bayesian mixtures model effectively heavy tail distributions; in contrast,
the posterior behavior of more parsimonious parametric models can be strongly
biased.

In order to generate scenarios consistent with the data in Wood et al. (2007),
we use a Monte Carlo Markov chain algorithm discussed in Escobar and West
(1995). The sampler is based on the Polya urn representation of the Dirichlet pro-
cess [Blackwell and MacQueen (1973)] and has been studied for posterior simula-
tion under the generic Dirichlet mixture model

p(xl,...,xnw):]‘[/p(x,-w)dF(e), F ~ Dirichlet(A).
i=1

The only condition for implementing the sampling scheme of Escobar and West
(1995) is that for every subset {iy, ..., i, } of distinct integers ranging from 1 to n,
the integral

(2.5) [ T1pcxileya.40)

j=1

can be easily computed. To this end, we specify the prior parameter A propor-
tional to a spiked distribution, including a point mass at {1} and a shifted gamma
distribution with support [1, 00), that is,

(2.6) A(dx) o< 81(dx) +cl(x > l)e—a(X—l)(x _ 1)b—1 dx,

where 41 (+) is a Dirac measure, / (-) is the indicator function and a, b, c are strictly
positive. It can be verified that this choice of .4 allows us to analytically solve
integral (2.5).

We chose the mean of the random distribution F by a simple procedure. We
recall that the centering distribution of the Dirichlet process is A(dx)/A([1, 00));
for every subset B of the real line, if 0 < A(B) < A([1, 00)), then F(B), a pri-
ori, is beta distributed, with mean A(B)/.A([1, 00)); see Ferguson (1973). In order
to specify the centering distribution, we first compute the maximum likelihood
estimator F' of the mixing distribution in (2.3). Then, we specify the parameter
A({1})/A([1, 00)), this is the a priori expectation of the unknown proportion of
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passenger genes. In what follows A({1})/.A([1, 00)) is set equal to 1:"([1, 2)). Fi-
nally, the parameterization of the centering distribution is completed by setting a
and b in (2.6) so that the means and variances of the two distributions Ia (dx) and
A(dx)/A([1, 00)) are identical. The steps outlined have clear interpretations, nev-
ertheless, the choice A({1})/A([1, 00)) = ﬁ([l, 2)) is, to some extent, arbitrary;
we also implemented posterior inference for alternative prior parameterizations:
these include A({1})/A([1, 00)) equal to F([1, 1.5)), F([1,3)) and F([1,4)). We
did not observe marked sensitivity; for example, the ratio between the maximum
and the minimum posterior estimates of the number of drivers is equal to 1.06.

We use the contexts and mutations classification discussed in Wood et al.
(2007). This classification is important because it allows us to account for vari-
ations in the rates of mutations for passengers across loci, with rates depending
on the basis sequences. This classification includes 25 possible types of mutations
(m=1,...,25). The rates for the 1st and the 2nd stage (an1 and yﬁ) were mea-
sured using SNP data. The SNP-based approach estimates the passenger mutation
rates by comparing the nonsynonymous to synonymous mutation ratios in cancer
and normal tissues. This approach has been considered in Wood et al. (2007). It
estimates the passenger rates using sequencing data from loci which are known
for not contributing to carcinogenesis, and thus are not positively selected during
carcinogenesis; this characteristic is the defining feature of passenger genes.

A key advantage of the Bayesian estimate of the mixing distribution, compared
to the maximum likelihood estimate F, is that it allows us to fully take into account
the uncertainty on the distribution of rates across genome, and to produce data sets
under many different plausible versions of this distribution.

The MCMC algorithm outlined, after a sufficient number of burn-in iterations,
produces approximate samples from the conditional distribution of the latent vari-
ables given the data. The number of burn-in iterations can be assessed by means
of standard diagnostic procedures for MCMC methods; see, for example, Smith
(2007). Each iteration of the MCMC algorithm provides a collection of 6,’s which
is used as a simulation scenario. For each scenario we generate a single data set X
using (2.3). Each scenario can be used to evaluate a given list of putative drivers
by checking the proportion of genes in the list for which 6, = 1.

To highlight the excellent fit we obtain, Figure 1 provides an overview of 10,000
scenarios sampled by means of the proposed approach. Each iteration attempts to
reproduce the experiment on colorectal tumors discussed in Wood et al. (2007).
They considered 18,190 genes. During the discovery phase, all genes were se-
quenced in 11 tumors. During the validation phase, 769 genes were sequenced in
24 tumors. In the discovery phase, 17,421 genes did not harbor any mutation, 716
genes harbored 1 mutation and 53 genes harbored more than 1 mutation. In the val-
idation phase, 609 did not harbor any mutation, 115 harbored 1 and 45 harbored
more than 1. Figure 1 represents the distribution, across the simulated scenarios,
of the number of genes harboring 0, 1 or more than 1 mutations in the two stages.
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Distributions of the number of genes having 0, 1 and >1 mutations in Discovery and Validation.
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F1G. 1. Correspondence between simulated and observed counts of mutated genes in 10,000 simu-
lated scenarios.

As appropriate, scenarios vary in their number of mutated genes found, while dis-
tributions are centered around the observed data.

The data-driven simulation approach requires the variability across simula-
tions to be consistent with the data. In principle, if the experiment was repeated
several times, one would like to observe a similar degree of variability across
simulations and across experiments. In practice, the degree of variability across
simulations can be critically evaluated by means of inferential arguments. The
bootstrap method is specifically designed for predicting, on the basis of a single
experiment, the degree of variability across independent replicates of the exper-
iment. We compared the degree of variability across simulations, illustrated in
Figure 1, with the variability estimates obtained by bootstrapping. Our applica-
tion of the bootstrap builds on parametric estimates, for each gene, of the prob-
abilities p(¥,, X3, = 1, p(Cp Xg > D, p(C0 X3 = 1,2, X5, = 1) and
P, X ;m >1L,Yy . X z,m > 1), obtained by fitting logistic binary regression mod-
els; these estimates are functions of the gene-specific coverages Tglm. The degree of
uncertainty represented in Figure 1 agrees with the bootstrap estimates; the ratios
between the standard deviations of the six univariate empirical distributions illus-
trated in Figure 1 and the corresponding bootstrap estimates range between 1.03
and 1.17. Note that the six variables considered in Figure 1 define a coarse parti-
tion of the genes; more generally, one can use the bootstrap method for assessing
the degree of variability of other marginal distributions.
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3. Alternative methods for controlling the FDR. In this section we review
alternative FDR methods, we will then compare their operating characteristics by
means of the simulations described in the previous section.

3.1. The Benjamini and Hochberg, and the Storey procedures. Benjamini and
Hochberg (1995) considered which of the null hypotheses (H,,g =1, ..., G), if
any, should be rejected given p-values (Z,4, g =1, ..., G), one for each hypothe-
sis. They proposed a procedure for rejecting a (possibly empty) subset of hypothe-
ses so as to control the FDR, that is,

(3.1)

E (number of erroneously rejected hypotheses)
number of rejected hypotheses

with the proviso that the above ratio is O when none of the hypotheses is rejected.
The expectation in (3.1) is with respect to the unknown joint distribution of the test
statistics Z,. The input of the procedure is the vector (Z,,g =1, ..., G) and the
output is the subset of rejected hypotheses. The p-values corresponding to the true
null hypothesis are independently uniformly distributed. The FDR is an attractive
error measurement in many applications with massive multiple hypotheses testing;
we refer to Dudoit, Shaffer and Boldrick (2003) for a comparison with alternative
error measurements.

Let (Z(1), ..., Z(G)) be the sorted values in ascending order of the p-values
(Z1,...,Zg) and let @ € (0,1) be any desired upper bound for the FDR.
Benjamini and Hochberg (1995) proved that the procedure that rejects the hy-
potheses with a p-value lower than

(3.2) max{{O}U {Z(g):Z(g) <a%”

controls the FDR below «. They show that, for every hypothetical proportion pg
of the true null hypothesis,

(3.3) FDR < poo.

The above inequality shows that the procedure is conservative. Storey (2002) stud-
ied an alternative step-up method which starts from an estimate pg of the propor-
tion of the true null hypothesis and then set a threshold similar to (3.2) indicating
the rejection region. The estimate pg and the inequality (3.3) are used for inflating
the upper bounds «(g/G), g =1,..., G, in (3.2). The estimate of pg is based on
the right tail of the empirical distribution of the p-values.

3.2. The empirical Bayes method. The use of empirical Bayes procedures for
estimating the FDR has been discussed by several authors, including Efron et al.
(2001), Efron (2003) and Dudoit, Gilbert and Laan (2008). In this approach, one
computes a data summary, or score Zg, that captures departure from the null hy-
pothesis, such as a p-value, a likelihood ratio or other statistics. In our case, Z,
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should capture evidence for the rate of mutation for gene g being higher than the
passenger rate. The empirical Bayes method is based on a mixture representation
of the distribution of these scores:

(3.4) f(@) = pofo(z) + (1 = po) f1(2):

f () is the distribution of a randomly selected score, pg is the unknown proportion
of true passengers, fo(-) is the distribution of a score randomly selected among
passengers and, finally, fi(-) is the distribution of scores among drivers. The ob-
jectives are estimating the conditional probabilities

(I = po) f1(Zy)
pofo(Zg) + (1 — po) f1(Zy)

and identifying a rejection region R containing the more significant scores, such
that

Jr Pofo(z)dz -y
J= Pofo@) + (1 — po) fi(z)dz ~

where « is the target ratio between the mistakenly rejected hypothesis and the total
number of rejections.

The distribution f can be approximated simulating the scores assuming the
genome only consists of passenger genes [Wood et al. (2007)], while the distri-
bution f and the proportion pg are usually estimated by smoothing the scores’
empirical distribution. Finally, expression (3.5) is used for rejecting a subset of
null hypothesis in such a way that the estimated proportion of erroneously rejected
null hypothesis is lower than «.

There is an important difference between the Benjamini and Hochberg (1995)
method and the empirical Bayes method. The former rejects a subset of a list of
null hypotheses and controls the expected proportion of erroneously rejected hy-
potheses. The latter, for a generic rejection region, estimates the proportion of true
null hypotheses; the investigator can then select a subset of hypothesis such that
the estimate is lower than a desired threshold «.

(3.5)

3.3. The CaMP score. Sjoblom et al. (2006) introduced the cancer mutation
prevalence (CaMP) score, to provide a ranking of the Validated genes and select
promising candidates. The score is based on the probability of observing the num-
ber of actually found mutations if the gene was a passenger gene, using a binomial
model:

T! 1 1yl
(0 Yo e -yt xt, 32, =0
m gm m
(3.6) pg= T/ - .
TTIT( 7 ) o =y oo x>
j=1m gm m

0, otherwise.
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Recall that an1 and yn% are expected proportions of nucleotides, in a passenger
gene, harboring mutations of type m. The model takes into account the two-stage
experimental design.

We then rank the pg’s and call g, the resulting ranks. The CaMP score is defined
as

CaMPy(Xyy. ... Xgp Xg1. . Xgp) =—00  if Y X3, =0
m

and

CaMPy (X}, ... Xgp Xg1. -2 Xop) = —logio(pe/qg)  if Y X3, >0.
m

The top row corresponds to genes that are eliminated at the Discovery or Validation
Stage. The goal of the CaMP score is to rank genes according to the strength of
the evidence that they may be mutated at rates higher than the passenger rates. An
advantage of CaMP scores is that they can be easily computed. This definition can
also be seen as an approximation of the Benjamini and Hochberg (1995) proce-
dure. In Sjoblom et al. (2006) a threshold of 1 on the CaMP scores was considered
to generate a list of putative drivers, with the goal of producing a list having ap-
proximately 10% of erroneously discovered drivers. The probabilities p, are not
p-values because they are not tail probabilities, but can be used as approximation
of the p-values if the expected number of mutations in each gene is close to 0.

Forrest and Cavet (2007) proposed to use tail probabilities for controlling the
FDR, though they use a sampling model that does not account for the two-stage
design. Getz et al. (2007) emphasized that p-values can be used for controlling
the FDR and proposed alternative test statistics. The closer test statistics to the
CaMP score are obtained by computing the distribution of p,, under the hypothesis
that the gth gene is a passenger gene, and evaluating the resulting tail probability.
This procedure produces p-values which can be used for controlling the FDR by
applying the Benjamini and Hochberg (1995) method. Getz et al. (2007) noted that
the CaMP score is not a monotone transformation of the probabilities p,; that is,
given two genes g’ and g”, it can happen that py < p,r and CaMPyr < CaMP,.
Getz et al. (2007) also discussed the idea of controlling the FDR by using the
log-likelihood ratio, that is,

log(p(X,16,)) — log(p(X,16,)),

where 0, represents the hypothesis that gene g is a passenger and ég is the gene-
specific maximum likelihood estimate. Rubin and Green (2007) proposed to use
the tail probabilities p(}_,,—; Xgn > x), based on the aggregate number of mu-
tations in a gene. These critiques of the analysis in Sjoblom et al. (2006) and the
alternatives proposed by these authors suggest the idea of systematically assessing
the operative characteristics of alternative approaches. Our comparisons in Sec-
tion 4 consider the CaMP score and the alternative p-values proposed by Getz
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et al. (2007), Forrest and Cavet (2007) and Rubin and Green (2007). These al-
ternative statistics are used for implementing both the Benjamini and Hochberg
(1995) method, the method discussed in Storey (2002) and the Empirical Bayes
method.

4. Simulation study. In this section we compare alternative methods for iden-
tifying driver genes using the 10,000 simulation scenarios described in Section 2.
The Wood et al. (2007) study considered both colon and breast tumors. Here we
consider each tumor type separately, and repeat the same analysis.

Our simulation study compares the performance of alternative methods for rank-
ing cancer genes and selecting putative cancer genes. Table 2 provides the average
operating characteristics across all the simulated scenarios. All methods are set to
control the FDR at 10% and 20% levels in turn. The empirical Bayes method esti-
mates the FDR: the investigator controls the FDR by approximately matching the

TABLE 2
Operating Characteristics of 9 alternative procedures. Comparison between the Benjamini and
Hochberg (BH), Storey (ST) and empirical Bayes (EB) methods. The average operating
characteristics have been computed setting the FDR control at the 10% and 20% levels

False discoveries Average number of
Scores proportion selected genes
Method or p-values a=10% oa=20% a=10% a=20%
Colon-based simulations
BH CaMP score 0.101 0.218 150.4 221.8
BH p(ZX,]ng > x) 0.074 0.146 115.1 198.7
BH likelihood ratio 0.071 0.144 135.2 208.2
EB CaMP score 0.106 0.232 162.3 242.6
EB pX X,ﬁw > x) 0.100 0.238 147.8 250.4
EB likelihood ratio 0.102 0.211 163.8 237.2
ST CaMP score 0.104 0.220 157.3 235.4
ST p> X',’,,g > Xx) 0.099 0.232 146.5 242.4
ST likelihood ratio 0.100 0.207 159.0 231.6
Breast-based simulations
BH CaMP score 0.098 0.196 146.6 218.8
BH p(X Xing > X) 0.075 0.150 119.4 193.7
BH likelihood ratio 0.074 0.141 131.7 205.3
EB CaMP score 0.108 0.216 158.2 226.7
EB p> X,j,,g > X) 0.105 0.225 139.6 235.0
EB likelihood ratio 0.098 0.209 153.5 2234
ST CaMP score 0.103 0.213 157.6 219.5
ST p X,J,,g > Xx) 0.101 0.222 136.8 228.6

ST likelihood ratio 0.096 0.207 147.6 221.2
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desired level o and the estimated proportion of false discoveries. Table 2 shows
the average proportion of genes erroneously classified as drivers. Our results em-
phasize that operating characteristics are quite conservative when the FDR is con-
trolled, on the basis of alternative p-values, using the Benjamini and Hochberg
(1995) procedure. They also illustrate the importance of quantifying this conser-
vative behavior by contrasting it with alternative methods such as the method pro-
posed in Storey (2002) and the Empirical Bayes method. The Bayesian model of
Section 2 allows us to simulate mutations across the genome, while the operating
characteristics of the alternative methods shown in Table 2 provide approximations
of their performances. The interpretation of the simulation study is anchored to the
modeling assumptions formalized in Section 2. The results provide a solid basis
for choosing among alternative methods.

All the methods considered produce lists of putative drivers genes with an aver-
age misclassification error below the 11% when the control of the FDR is set at the
10% level. If the desired « level is 10 %, our results indicate that, when the CaMP
scores are adopted, with the Benjamini and Hochberg (1995) procedure, the av-
erage proportion of false discoveries is approximately equal to «, while under the
empirical Bayes method and the Storey (2002) method, a slight excess of false dis-
coveries is observed. We note, both in the colon and breast simulation studies, that
the use of the likelihood ratios or the p-values p(}_ X ,ﬁg > x) with the Benjamini
and Hochberg (1995) procedure, on average, selects a substantially lower num-
ber of putative drivers than the alternative approaches. When the likelihood ratio

and the p-value p(3_ X ,J,.lg > x) are compared, under the empirical Bayes method
and the Storey (2002) method, the likelihood ratio seams preferable; the average
proportions of false discoveries are similar, but the likelihood ratio statistics select

larger sets of putative drivers than the p-values p(3_ X ,j,,g > x). Also, when com-
paring the empirical Bayes method and the Storey (2002) method based on the
likelihood ratio statistics, we observed only small variations both in the average
proportion of false discoveries and in the average number of putative drivers. The
operating characteristics when « is set at the 20% level confirm the conservative
behavior of the Benjamini and Hochberg (1995) procedure with the likelihood ra-

tios or the p-values p(3>_ X ,Lg > x), but also show departures from the target FDR
« of the Empirical Bayes method and the Storey (2002) method. These results hold
for both colorectal and breast cancer. When « is equal to 20%, the likelihood ratio

seems preferable to the p-value p(3_ X ,/ng > x), under both the empirical Bayes
method and the Storey (2002) method; the likelihood ratios select putatitive drivers
with an average misclassification error closer to the 20% target than the p-values.
The simulation-based comparison also allows us to asses the variability of the
false discoveries proportion across scenarios, summarized in Figure 2. Each box
plot is representative of the simulation-based distribution of the proportion of erro-
neously rejected hypothesis. The degree of variability is similar for all the methods
considered; this similarity indicates that the average operating characteristics con-
cisely reported in Table 2 are sufficient for a reliable evaluation of the methods.
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Colon-based simulations
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FI1G. 2.  The distribution of the true false discovery proportions across simulated scenarios. Each
box plot corresponds to one of the methods (o = 10%) considered in the simulation study. The lines of
a box plot correspond to the median and to the 10th, 25th, 75th and 90th percentiles of the empirical
distribution of the false discoveries proportion.

To illustrate the importance of accounting for the two stages of the experimen-

tal design in computing tail probabilities p(3>_ X}, ¢ > X), we repeated the analysis
ignoring the two-stage structure. That is, we computed the tail probabilities un-
der the erroneous assumption that the mutation counts were observed in a single
stage experiment. We observed a substantial reduction of the average number of
selected genes, across simulation scenarios, when the tail probabilities are used
for implementing the Benjamini and Hochberg (1995) procedure; with o = 20%
in the colon cancer and breast cancer cases, the averages become 165.6 and 157.0,
respectively, and, with @ = 10%, they decrease to 98.4 and 96.2.

Another important question concerns the fidelity of the ranking provided by
these statistics. Figure 3 shows the Bayesian estimates of the left side of the ROC
curves corresponding to each of the scores considered. The ROC curves are com-
puted by separately estimating the scores’ distributions across drivers and across
passengers. The partial area under the curve is truncated at the 2% specificity level.
This is equal to 2.05 x 1073 for the log-likelihood ratio test statistic, 1.94 x 1073
for the p-values p(3_ X ,Jng > x) and 1.87 x 1073 for the CaMP scores. The ROC
curves estimates suggest that the log-likelihood ratio test statistic provides best
discrimination, though differences are small.

5. Discussion. The investigation of somatic alterations is of primary interest
in cancer research. Recent sequencing technologies have brought new insight into
this question by revealing a landscape characterized by mutations involving a large
number of driver genes, each altered in a relatively small fraction of tumors. When
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F1G. 3. Estimated ROC curves for the log-likelihood ratio test statistics (solid line), the p-values
p>_X ;4,5. > x) (dotted line) and the CaMP scores (dashed line).

the earlier of these studies began to emerge, the cancer research community was
faced with unexpected heterogeneity and complexity, which required a significant
change of perspective in both basic and clinical cancer investigations. The earliest
genome-wide investigations [Sjoblom et al. (2006)] proposed this change of land-
scape based on a relative small number of samples. A key element in support of
this proposal were estimates of the statistical significance of the reported list of
driver genes [Sjoblom et al. (2006)]. These estimates were challenged: alternative
approaches were proposed which would have led to reporting a drastically reduced
number of candidate drivers at the same significance level.

Subsequent studies have provided strong supporting evidence for this new land-
scape, as well as validation for the driver role of many of the individual genes
initially identified in Sjoblom et al. (2006). However, from a statistical standpoint,
it remains very interesting to understand whether the initial conclusion was statis-
tically sound based on the evidence available at the time, in part because similar
problems will arise again in other cancer types and in other fields of genomics and
evolutionary biology. Thus, our focus in this article has been the rigorous evalua-
tion of methods for the identification of driver genes, with special emphasis on the
methods that have been instrumental in the change of landscape we just described.

In the statistical literature, two common approaches for the evaluation of
methodologies are asymptotic properties and scenario-based simulation studies.
Asymptotic conclusions can be difficult to extrapolate to small samples. Scenario-
based simulations can lack objectivity and comprehensiveness, and it can be a chal-
lenge to gauge whether the conclusions are applicable or not to a specific context of
interest. To overcome these difficulties, we have proposed and implemented an al-
ternative concept, which we hope will be very broadly applicable across statistics,
and contribute to a more objective assessment of alternative methods. The idea
is to construct a “super partes” model that is (a) independent of the approaches
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being compared; (b) fits the data and available substantive knowledge well; and
(c) can produce artificial data sets accounting for all relevant uncertainties, in-
cluding parameter and potentially model uncertainty. This model is then used to
simulate objective data-driven scenarios for method comparison. In this article our
implementation of the super-partes model is based on Bayesian nonparametrics,
an approach that can satisfy all three of the requirements above.

Strengths of the approach we proposed are the clear interpretation of both the
assumptions captured by the Bayesian model and the average operating charac-
teristics. The probability model’s ability to reproduce the data structure allows to
effectively interpret the results. The proposed evaluation scheme could be extended
further to allow for more complex assumptions such as dependency among genes
belonging to common functional pathways.

When applied to the controversy surrounding FDR control of early cancer
genome studies, our method shows that the estimates provided in Sjoblom et al.
(2006) are quite accurate despite the approximations used. Also, the Benjamini
and Hochberg (1995) method is severely conservative. Last, the Empirical Bayes
method and the Storey method based on likelihood ratios emerge as the preferred
choices, though the margin of improvement is dependent on the control level.
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