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Determining the magnitude and location of neural sources within the
brain that are responsible for generating magnetoencephalography (MEG)
signals measured on the surface of the head is a challenging problem in func-
tional neuroimaging. The number of potential sources within the brain ex-
ceeds by an order of magnitude the number of recording sites. As a conse-
quence, the estimates for the magnitude and location of the neural sources
will be ill-conditioned because of the underdetermined nature of the prob-
lem. One well-known technique designed to address this imbalance is the
minimum norm estimator (MNE). This approach imposes an L2 regulariza-
tion constraint that serves to stabilize and condition the source parameter es-
timates. However, these classes of regularizer are static in time and do not
consider the temporal constraints inherent to the biophysics of the MEG ex-
periment. In this paper we propose a dynamic state-space model that accounts
for both spatial and temporal correlations within and across candidate intra-
cortical sources. In our model, the observation model is derived from the
steady-state solution to Maxwell’s equations while the latent model repre-
senting neural dynamics is given by a random walk process. We show that
the Kalman filter (KF) and the Kalman smoother [also known as the fixed-
interval smoother (FIS)] may be used to solve the ensuing high-dimensional
state-estimation problem. Using a well-known relationship between Bayesian
estimation and Kalman filtering, we show that the MNE estimates carry a
significant zero bias. Calculating these high-dimensional state estimates is a
computationally challenging task that requires High Performance Computing
(HPC) resources. To this end, we employ the NSF Teragrid Supercomputing
Network to compute the source estimates. We demonstrate improvement in
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performance of the state-space algorithm relative to MNE in analyses of sim-
ulated and actual somatosensory MEG experiments. Our findings establish
the benefits of high-dimensional state-space modeling as an effective means
to solve the MEG source localization problem.

1. Introduction. Electromagnetic source imaging is a neuroimaging tech-
nique that permits study of neural events on a millisecond timescale. This type of
imaging reveals brain dynamics that cannot be seen with imaging modalities such
as functional magnetic resonance imaging (fMRI) or positron emission tomog-
raphy (PET) that capture brain activity on a much slower timescale. Two of the
most important examples of electromagnetic imaging are electroencephalography
(EEG) and magnetoencepholography imaging (MEG). These modalities acquire
multiple time series recorded at locations exterior to the skull and are generated,
respectively, by electric and magnetic fields of neuronal currents within the cor-
tex of the brain [Hämäläinen et al. (1993), Nunez (1995)]. In these experiments
subjects execute a task that putatively activates multiple brain areas. In the case of
EEG recordings, the mode of acquisition involves affixing an array of electrodes
to the surface of the scalp and measuring the potential differences relative to a ref-
erence node. In contrast, MEG records extremely weak magnetic fields emanating
from the brain on the order of femtoTesla, that is, 10−15 Tesla [Nunez (1995)]. To
put these quantities into context, the magnetic field of the earth is around 5 × 10−5

Tesla while that of a present-day magnetic resonance scanner used for medical di-
agnostic imaging ranges between 1.5 and 7 Tesla. Because the magnetic fields of
the brain are extremely weak, a specially shielded room and highly sensitive array
of detectors, called superconducting quantum interference devices (SQUIDs), are
required to undertake the MEG recordings.

Generating images of the brain’s cortical activity from MEG time-series record-
ings requires solving a high-dimensional ill-posed inverse problem. In the case of
MEG imaging, the nonunique nature of the inverse problem arises because the
number of potential three-dimensional brain sources (as a consequence of the bio-
physics of the problem) is infinite, while the measured two-dimensional SQUID
array typically contain 306 magnetometer and gradiometer detectors.

The accuracy of the inverse solution depends critically on two main features
of the problem, specifically, the precision of the forward model and the choice of
inverse solution algorithm. The MEG forward model is designed to describe how
activity propagates from sources in the cortex to the SQUID detectors. These for-
ward models are normally constructed by combining information about head and
brain geometry with the electromagnetic properties of the skull, dura and scalp
to yield a numerical approximation to Maxwell’s quasistatic equations; see, for
example, Hämäläinen et al. (1993). Under this forward model the strength of the
magnetic field recorded at a given SQUID detector near the surface of the head is
approximately proportional to the reciprocal of its squared distance from a given
cortical source. The second consideration we face relates to the choice of source
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localization algorithm. Solving this localization problem is one of the most techni-
cally challenging in MEG imaging research and has been an active area of methods
development for both EEG and MEG over the past two decades. Historically, two
of the most popular methods for solving the EEG/MEG inverse problem have been
the dipole-based and (linear) distributed-source methods.

Dipole-based methods model the underlying neuronal sources as discrete cur-
rent dipoles whose location, orientation and amplitude are unknown quantities to
be estimated [Mosher, Lewis and Leahy (1992), Uutela, Hämäläinen and Salmelin
(1998)]. Choosing the number of dipoles to include in the model is problematic.
Eigenvalue decomposition methods have been developed to address this model se-
lection issue [Mosher, Lewis and Leahy (1992)]. However, these approaches still
require subjective interpretation when the eigenvalue distribution does not yield
an obvious distinction between the signal and noise subspaces. In addition, find-
ing the best-fitting parameters for the multidipole model requires nonlinear op-
timization. Since the measured fields depend nonlinearly on the dipole position
parameters, typical minimization routines may not yield the globally optimal esti-
mates for these parameters. Proposed solutions to this problem include the MUSIC
(MUltiple SIgnal Classification) algorithm [Mosher and Leahy (1998)], global op-
timization algorithms and partly heuristic model constructions that use interactive
software tools [Uutela, Hämäläinen and Salmelin (1998)]. However, none of these
methods utilize the temporal sequence of the signals, that is, if the original data
points are first permuted and an inverse permutation is applied to the source esti-
mates, the results are the same as without permutation. Finally, in many important
clinical and neuroscientific applications, such as epilepsy, sleep or general anes-
thesia, the dipole model is inappropriate, since the generating currents are most
likely distributed across large areas on the cortex.

In the distributed source models, each location in the brain represents a possible
site of a current source. Since the number of unknown sources vastly outnumbers
the number of EEG or MEG data recordings, constraints are required to obtain a
unique solution. The minimum-norm estimator (MNE) employs an L2-norm data
“fidelity” term to quantify the relationship between the observed magnetic field
recordings and the estimated source predictions and an L2-norm regularization
or penalty term on the magnitude of those solutions. While the minimum-norm
estimate (MNE) yields the solution with the smallest energy (sum of squares)
across the solution space [Hämäläinen et al. (1993)], it tends to consistently fa-
vor low-amplitude solutions that are located close to the scalp surface. The rel-
ative contribution of the data term and source term can be controlled or tuned
through a regularization parameter. In MNE, the data term is specifically the L2-
norm of spatially whitened data while the source term is the L2-norm of the cur-
rent amplitudes. A well-known variant of this approach is the LORETA (LOw-
Resolution Electromagnetic Tomography Algorithm), where the L2-norm source
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term specified in MNE is replaced by a weighted norm that approximates the spa-
tial Laplacian of the currents [Pascual-Marqui, Michel and Lehmann (1994)]. In
the case of minimum-current estimates (MCE) [Uutela K. Hämäläinen and Som-
ersalo (1999)], the source term is taken to be the L1-norm of the source current
amplitudes. A consequence of this choice is that the estimates will be sparse as op-
posed to diffuse, leading to families of solutions that may closely resemble those
uncovered through a dipolar analysis.

Beamformer approaches, originally inspired by problems in radar and sonar
array signal processing [Krim and Viberg (1996)], seek to localize EEG/MEG ac-
tivity by specifying a series of spatial filters, each tuned to maximize sensitivity
to a particular spatial location within the brain [Van Veen et al. (1997)]. These
methods assume, however, that EEG/MEG sources are spatially uncorrelated, and
are limited by interference crosstalk from sources outside the focus of the beam-
former spatial filter. A more recent related approach by Zumer et al. (2007) fea-
tures a graphical model framework to characterize the probabilistic relationships
among latent and observable temporal sources for averaged ERP data. Once a low-
dimensional statistical data subspace is estimated, the algorithm computes full pos-
terior distributions of the parameters and hyperparameters with the primary objec-
tive of alleviating temporal correlation between spatially distinct sources (source
separation). In later work [Zumer et al. (2008)] this approach is extended some-
what to include explicit temporal modeling by drawing on estimated weightings
from a predefined family of smooth basis functions. Wipf et al. (2010) explores an
alternate procedure to empirical Bayesian source modeling that attempts to simul-
taneously capture and model correlated source-space dynamics in the presence of
unknown dipole orientation and background interference.

Bayesian approaches to MEG source localization have included Phillips et al.
(2005), Mattout et al. (2006) and Friston et al. (2008). Collectively, these tech-
niques construct the source localization problem within an instantaneous empiri-
cal Bayes framework. These approaches specify a nested and hierarchical series of
spatial linear models to be subsequently solved under a penalized Restricted Max-
imum Likelihood (ReML) procedure. The multiresolutional nature of this regime
carries with it a measure of spatial adaptation for the estimated hyperparameters
since the spatial clusters of activated dipoles are amalgamated across several (or-
thogonal) scales. At the same time the most likely set of spatial priors for each
competing model is chosen using information selective model ranking procedures.
The latter approach [Friston et al. (2008)] extends the use of ReML to engender a
framework aiming to move from parametric spatial priors to larger sets of imputed
sources with localized but not necessarily continuous support. The principle ad-
vantage of this extension is its intrinsic ability to capture source solutions ranging
from sparse dipole models at one end of the localization spectrum to dense but
smooth distributed configurations of spatial dipoles at the other.
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State-space methods featuring latent temporal models have recently been pro-
posed. For example, studies by Galka, Yamashita and Ozaki (2004) and Yamashita
et al. (2004) have used a random-walk dynamical model with Laplacian spa-
tial constraints to represent the dynamics of EEG source currents, employing the
Kalman filter and recursive least-squares framework to perform source localiza-
tion. Daunizeau and Friston (2007) used a state-space model to capture latent neu-
ronal dynamics by placing a first-order autorgressive (AR) model within a full
spatiotemporal variational Bayes procedure. Each ensemble of sources is charac-
terized by establishing an effective region of influence in which the hidden neural
state-dynamics are assumed constant. This leads to a temporal representation of
each region in terms of a single average dynamic.

Ou, Hämäläinen and Golland (2009) have developed a mixed L1L2-norm penal-
ized model to estimate MEG/EEG sources. This methodology allows for spatially
sparse solutions while ensuring physiologically plausible and numerically stable
time course reconstructions through the use of basis functions. Since estimation
of this kind of mixed-norm regularized problems represents a computational chal-
lenge, convex-cone optimization methods are implemented to efficiently compute
the MEG/EEG source estimates. These procedures are shown to yield significant
improvement over conventional MNE approaches in both simulated and actual
MEG data.

In the majority of MEG stimulus response experiments, the objective is to esti-
mate the activity in a given brain region based on multiple repetitions of the same
stimulus. The time interval of the MEG recordings after the onset of the stimulus
is usually around 1,000 msec. Consequently, the optimal estimate of the source
activity at a given time point should be based on all the data recorded in this time
window, as opposed to only the recordings within a small instantaneous subinterval
as is the case in the MNE algorithm.

Thus, in the current work, we model the spatiotemporal structure of the MEG
source localization problem as a full-rank state-space estimation procedure. In con-
trast to previous related approaches, for example, Galka, Yamashita and Ozaki
(2004), Yamashita et al. (2004) and Ou, Hämäläinen and Golland (2009), we re-
cover the underlying neural state dynamics across the entire solution space using
all information available in the MEG measurements to compute a new source es-
timate at each location and time point. We do not restrict our state-covariance
structure to operate either through reduced-rank approximations or through “small-
volume” state-space models that operate within localized spatial neighborhoods
[Galka, Yamashita and Ozaki (2004), Yamashita et al. (2004)]. The analysis com-
putes activity at a particular source with activity at that source combined with
(potentially all) neighboring sources in both preceding and subsequent time pe-
riods (spatiotemporal correlation). We find that solution of the resulting high-
dimensional state-space model requires the application of high performance com-
puting (HPC) resources.
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We show that two solutions that are naturally suited to this type of dynamic
inverse problem are the Kalman filter and the fixed-interval smoother [Kitagawa
and Gersch (1996), Kay (1993)]. These algorithms are based on a series of math-
ematical relationships that employ principles from electromagnetic field theory to
relate the observed MEG measurements to the underlying dynamics of the current
source dipoles. In contrast to popular source localization methods such as MNE
where the regularization constraints are formulated in terms of a fixed-error co-
variance matrix, the state-space estimators feature time-varying error covariances
and propagate past (and future) information into the current update.

We describe how these algorithms may be used to perform this state estimation
by conducting the computation on the NSF Teragrid Supercomputing Network. In
Section 3 we detail the necessary supercomputing methods needed to implement
the high-dimensional state-space estimation. We demonstrate the improvement in
performance of the state-space algorithm relative to MNE in analyses of a simu-
lated MEG experiment and actual somatosensory MEG experiment.

2. Theory. We assume that in an MEG experiment a stimulus is applied T

times and at each time for a (short) window of time following the application of the
stimulus MEG activity is measured simultaneously in S SQUID recording sites.
Let Ys,r (k) denote the measurement at time k at location s on repetition r where
k = 1, . . . ,N, s = 1, . . . , S and r = 1, . . . , T . We take Ys(k) = T −1 ∑T

r=1 Ys,r (k)

and we define Yk = Y(Y1(k), . . . , YS(k)) to be the S × 1 vector of measurements
recorded at time k. We assume that there are P current sources in the brain and
that the relation between the MEG recordings and the sources is defined by

Yk = HJk + εk,(2.1)

where Jk = (Jk,1, . . . , Jk,P ) is the 3P × 1 vector of source activities at time k,
each Jk,i is a 3 × 1 vector, and H is the S × 3P lead field matrix, derived as
described in Hämäläinen et al. (1993). This matrix is approximated in practice
using the known conductivity profile of an MRI-derived T1 image to derive a one-
layer head model using the boundary element method [Hämäläinen and Sarvas
(1989)]. Furthermore, εk is a zero mean Gaussian noise with covariance matrix �ε .
To build on an idea originally suggested in the EEG literature [Galka, Yamashita
and Ozaki (2004), Yamashita et al. (2004)], we assume that the Jk behave like a
stochastic first-order process with a potentially weighted neighborhood (six direct
neighbors in the case below) constraint defined at voxel p by

Jk,p = Jk−1,p + 1

6
m−1

�

∑

�∈M(�)

Jk−1,� + vk,(2.2)

where M(�) is some small neighborhood around voxel p and m� is a mask of
(estimated) autoregressive weights, and vk is a 3P × 1 vector of Gaussian noise
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with mean zero and covariance matrix �w . The linear structure in equation (2.2)
means that we can generalize this structure into matrix format such that all sources
in the brain (i.e., not only local relationships) are encompassed in the model. That
is,

Jk = FJk−1 + vk.(2.3)

If F is an identity matrix, the state dynamics reduce to a random walk process.
Equations (2.1) through (2.3) define the observation and latent time-series equa-
tions, respectively, for a state-space model formulation that can be used to provide
a dynamic description of the MEG source localization problem.

2.1. Standard MEG inverse solution. The standard approach to the MEG
source localization problem is to solve an L2 regularized least-squares problem
at each time k. That is,

‖Yk − HJk‖2
�ε

+ ‖Jk − μ‖2
C,(2.4)

where ‖y − x‖2
Q denotes the Mahalanobis distance between the vectors y and x

with error covariance matrix Q, μ is an offset parameter (prior mean) and C is the
regularization covariance matrix [Hämäläinen and Ilmoniemi (1994)].

If we take μ = 0 and define the source covariance matrix as C = λR, where R

is a diagonal, scaled matrix normally computed in advance, and if λ > 0, then at
each time k an instantaneous MEG source estimate (the MNE solution) is given as

J MNE
k = λRHT (λHRHT + �ε)

−1Yk(2.5)

for k = 1, . . . ,N . The MNE estimate is a local Bayes’ estimate because it uses in
its computation only the data Yk at time k and the Gaussian prior distribution with
mean μ = 0 and covariance matrix λR. Hence, the MNE estimation procedure
imposes no temporal constraint on the sequence of solutions.

2.2. Kalman filter solution. Given the state-space formulation of the MEG
observation process in equations (2.1) and (2.3), it follows that the optimal estimate
of the current source at time k using the data Y1, . . . , YN up through time N is given
by the Kalman filter [Kitagawa and Gersch (1996)]

Jk|k−1 = FJk−1|k−1,(2.6)

Wk|k−1 = Wk−1|k−1 + �w,(2.7)

Kk = Wk|k−1H
T [HWk|k−1H

T + �ε]−1,(2.8)

Jk|k = Wk|k−1H
T [HWk|k−1H

T + �ε]−1Yk

(2.9)
+ [I − KkH ]Jk|k−1,
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which simplifies to

Jk|k = Jk|k−1 + Kk[Yk − HJk|k−1],(2.10)

Wk|k = [I − KkH ]Wk|k−1(2.11)

for k = 1, . . . ,N , given initial conditions J0 ∼ N(0,W0|0),�w = W0|0. At each
time k the Kalman filter computes p(xk|Y1, . . . , Yk), which is the Gaussian dis-
tribution with mean Jk|k and covariance matrix Wk|k . In terms of the regulariza-
tion criterion function in equation (2.4), the Kalman filter solution is equivalent
to choosing at time k, μ = [I − KkH ]FJk−1|k−1 and C = Wk|k−1, where we have
used the matrix inversion lemma to re-express the Kalman filter update in equation
(2.9) in order that we can compare it directly with the MNE solution in equation
(2.5). From this comparison we see that the Kalman solution improves upon the
MNE solution in two important ways. First, in the Kalman solution, the offset
parameter and the regularization matrix are different at each time k and are given,
respectively, by μ and the one-step prediction error covariance matrix Wk|k−1. The
MNE solution at each time k has a fixed prior mean μ = 0 and (temporally) fixed
regularization matrix C = λR. Because of this choice of regularization constraint,
equation (2.9) shows that the Kalman filter estimate at time k is a linear combina-
tion of Jk−1|k−1, the current source estimate at time k −1, and Yk , the observations
at time k. In contrast, the MNE solution at each time k is a linear combination of
the observed data and a fixed prior mean of μ = 0. In this regard, the MNE esti-
mate biases the solution at each time k toward 0. Taken together, these observations
show that the stochastic continuity assumption in the Kalman state model results
in a time-varying constraint upon the fluctuating source estimates.

2.3. Fixed-interval smoothing algorithm solution. Because the MEG time se-
ries are often fixed length recordings, we can go beyond the estimate Jk|k provided
by the Kalman update and compute the posterior density p(xk|Y1, . . . , YN) at time
k given all the data in the experiment. To do so, we combine the Kalman filter with
the fixed-interval smoothing algorithm (FIS) [Kitagawa and Gersch (1996), Kay
(1993)], that may be computed as follows:

Ak = Wk|kW−1
k+1|k,(2.12)

Jk|N = xk|k + Ak[Jk|k − Jk+1|k],(2.13)

Wk|N = Wk|k + A[Wk|N − Wk+1|k]AT
k(2.14)

for k = N −1, . . . ,1 and initial conditions JN |N and WN |N computed from the last
step of the Kalman filter N . It is well known that p(xk|Y1, . . . , YN) is a Gaussian
distribution with mean Jk|N and covariance matrix Wk|N [Kitagawa and Gersch
(1996), Kay (1993)].
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2.4. Practical considerations. Implementation of the Kalman filter first re-
quires making estimates of both the initial state, the state covariance matrix �w

and the error covariance matrix �ε . We estimated the noise covariance matrix �ε

from measurements taken in the scanner in the absence of a subject. We next esti-
mated the initial state as the MNE solution J MNE

0 and the state covariance matrix
by first computing the MNE source estimates J MNE

1 , . . . , J MNE
N , subsequently de-

riving �w from the sample covariance matrix using a differenced sequence of these
static estimates.

3. Supercomputer implementation. Historically the Kalman filter has found
widespread use in several high-dimensional modeling domains, including weather
forecasting [Farrell and Ioannou (2001)] and oceanography [Fukumori et al.
(1993), Fukumori and Malanotte-Rizzoli (1995)]. Kalman filters and fixed-interval
smoothers are advantageous in these scenarios as, under assumptions of linearity
and normality, they are (near) optimal estimators. In addition, their desirable prop-
erties hold across a wide variety of time-varying linear (and nonlinear) models.
However, in its standard form the Kalman filter is computationally prohibitive for
these classes of problems. In the example applications listed above, the numeri-
cal calculations are often carried out on systems of state dimension N ∼ O(107)

with state covariance matrices of size N2 ∼ O(1014) [Farrell and Ioannou (2001)].
Computationally, the most intense aspects of the Kalman algorithm stem from the
prediction update in the covariance matrices that require costly linear algebraic
updates at each time step. Since the dynamical error structure of these systems is
often well understood, many numerical solutions to these kinds of paradigms, for
example, Farrell and Ioannou (2001) and Fukumori and Malanotte-Rizzoli (1995),
employ a range of model-reduction techniques in their formulations to achieve
computational tractability.

In the case of the MEG and EEG inverse problem, the solution space is
∼O(103 − 104), leading to error covariances of dimension P 2 ∼ O(106–108).
Thus, the computational problem is not quite so intensive as in the forecasting ap-
plications, meaning that we can feasibly employ full-rank state-estimation methods
to compute their solution on an HPC system. When performing Kalman filtering,
the computations dominating each time step involve three high-dimensional full-
rank matrix multiplications, leading to a total approximate computational cost of
3P 3 (excluding auxiliary lower dimensional linear operations). When taking into
account ancillary variables, the amount of memory required is at least 24+ gi-
gabytes for each update operation. In addition, the FIS requires one additional
such multiplication at each time step followed by a full-rank P × P matrix in-
version (2P 3). Also, FIS requires approximately three gigabytes of storage space
per time point in order to save the prediction and update covariances (in 32-bit
storage format) estimated during the forward pass of the Kalman filter. The scale
of these computations renders them infeasible on nearly any state-of-the-art stan-
dalone computing resource. To address this limitation, we parallellized the Kalman
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and FIS filtering computations such that the data-intensive parts of the algorithm
were distributed across multiple nodes of a High Performance Computing system
[Blackford et al. (1997)]. For this purpose we utilized the NSF Teragrid resource at
the TACC (Texas Advanced Computing Center). This resource comprised a 1024-
processor Cray/Dell Xeon-based Linux cluster with a total of 6.4 Teraflops com-
puting capacity.

4. Results.

4.1. Simulated MEG experiment. We designed a set of simulation studies to
compare the performance of the dynamic localization methods against MNE. Prior
to constructing the dynamic simulation, we first computed the spatial conductance
profile across the head and specified the spatial resolution of the discretized so-
lution space (source locations). To restrict this source space to the cortical sur-
face, we employed anatomical MRI data obtained from a single subject with a
high-resolution T1-weighted 3D sequence (TR/TE/flip = 2,530 ms/3.49 ms/7◦,
partition thickness = 1.33 mm, matrix = 256 × 256 × 128, field of view =
21 cm×21 cm) in a 3-T MRI scanner (Siemens Medical Solutions, Erlangen, Ger-
many). The geometry of the gray–white matter surface was subsequently com-
puted using an automatic segmentation algorithm to yield a triangulated model
with approximately 340,000 vertices [Dale, Fischl and Sereno (1999)]. Finally, we
utilized the topology of a recursively subdivided icosahedron with approximately
5 mm spacing between the source nodes to give a cortical sampling of approxi-
mately 104 locations across both hemispheres.

Using MNE, we chose as the region of interest a section of the left hemisphere
over the primary somatosensory and motor cortices. We computed a single layer
homogeneous forward model or lead field matrix H over all the sampled voxels in
the left and right hemispheres. The region of interest contained 125 active voxels
from the more than 10,000 gray matter voxels that could be potential sources for
an observed magnetic field under this parcellation. For this simulation, therefore,
the number of active sources was Pactive = 125, and the number of measurement
channels was S = 306. We next constructed H with dimension 306 × 5,120 (left-
hemisphere), corresponding to a spatial sampling of 5 mm. Note that we chose
to estimate only the dominant normal MEG component at each vertex (i.e., z-
direction) as opposed to estimating the triplet of x, y and z contributions from
which both magnitude and directional information could be resolved. In each of
the chosen 125 voxels in the source space, we generated an “activation” signal con-
sisting of a mixture of 10 and 20 Hz frequencies modulated by a 0.4 Hz envelope to
simulate typical signal patterns commonly observed in the motor and somatosen-
sory cortices; see, for example, Lounasmaa et al. (1995). Next we added Gaussian
noise to all P = 5,120 vertices to generate an image-wide signal-to-noise ratio
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(SNR) that ranged between 0.1 and 2 (in line with typical SNRs encountered in
MEG studies). Specifically, we defined SNR as

‖HJ 2‖
SPσ 2 .(4.1)

When computing the source reconstructions we set the observation covariance ma-
trix as the empty room covariance, that is, that which is generated from background
noise measurements taken from the system while the subject is absent from the
scanner. We computed three inverse solutions: the MNE solution, the KF solution,
and the FIS solution. In this simulation study, we recovered the source estimate
for each method and for each value of SNR using three different choices of tuning
parameter (λ = 0.5,1,3). The time-course length was 120 time points and with an
assumed sampling rate of 600 Hz, equated to a data segment of about 200 msec.

To examine the benefits of the dynamic state-space procedures in relation to
the MNE source localization algorithm, we computed the Kalman and Fixed-
Interval Smoothing filters, generating estimates of the source locations and am-
plitudes within the entire cortex. When applied to the 200 ms window of MEG
data, this analysis averaged about one hour for each simulated record when dis-
tributed across 16 of the CRAY-DELL cores. For each choice of SNR (through a
sweep of 20 SNRs choices equispaced between 0.1 and 2), the FIS algorithm took
around two hours on 24 CRAY-DELL computational nodes, leading to a total CPU
time of around 1,280 hours for the whole simulation. Storage of the prediction and
update covariances for each SNR required approximately 110 gigabytes of disk
space, resulting in a total of 2 Terabytes of storage for each of the three choices of
tuning parameter (λ), that is, 6 Terabytes in total.

Figure 1 illustrates the spatial extent of the simulated signal (a) taken as a snap-
shot at the peak of the damped sinusoidal signal. Yellow to red color map val-
ues indicate progressively smaller current sources (J ) representing ground truth,
panel (a), or the reconstructed estimates (b)–(d). Figure 1 panels (b)–(d) show the
estimates as computed with (b) the minimum norm estimate, (c) the Kalman fil-
ter and (d) the Fixed Interval Smoother. For each method, the SNR as defined
by equation (4.1) and the tuning parameter governing the strength of the estimate
smoothness were set to SNR = λ = 1.

Figure 2 depicts temporal reconstructions for the three methods with the choice
of SNR = λ = 1. For each region A, B or C, the time series at the voxel correspond-
ing to the peak MNE response was plotted and overlaid onto the “ground-truth”
simulated signal. The state-space reconstructions show considerably less variabil-
ity than the static MNE time course, however, the KF approach displays elevated
bias as compared to the FIS method. Furthermore, the KF method contains a tem-
poral shift in relation to the simulated signal that is not apparent in MNE and FIS.
These fundamental differences in the temporal behavior of the three methods are
consistent in space, across SNR, and are invariant to choice of λ.
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FIG. 1. Activation maps in three regions, A, B and C at the peak response time of 126 ms for:
(a) True signal; and source estimates computed by (b) MNE; (c) the Kalman filter; and (d) the Fixed
Interval Smoother. These images were computed using a regularization parameter (λ = 1).

Figures 3 and 4 illustrate the behavior of MSE (Mean-Squared Error) as a func-
tion of SNR for the three choices of tuning parameter: panel (a) λ = 0.5, panel
(b) λ = 1, and panel (c) λ = 3 between the true signal and the estimated signal
for each estimation method. In Figure 3 MSE is calculated at all vertices in the
reconstructed cortical surface and averaged spatially for each choice of SNR. The
fixed-interval smoother shows the lowest MSE which indicates that the estimated
source curves are closer to the ground truth simulations compared to the alternative
methods. By contrast, the MNE approximations show the least favorable recovery
of the simulated sources. In Figure 4 we computed the MSE at each vertex for
each source reconstruction method in the same manner but calculated the average
MSE only within the three activated regions. These plots, therefore, examine the
behavior of the source reconstructions by zooming into areas that contain signal,
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FIG. 2. Time course of source estimates from the simulated MEG experiment for the maximally
responding voxel relative to the MNE solution, where each panel (from top to bottom) corresponds
directly to each of the three regions, A, B and C denoted in Figure 1(a). Green denotes the MNE
solution, red the KF, dark blue is the FIS solution, while cyan represents the true signal.
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FIG. 3. Average percentage relative change in MSE computed as a function of SNR from the simu-
lated MEG experiment for all voxels on the cortical surface for each localization method: MNE (light
gray), Kalman filter (dark gray), and Fixed Interval Smoother (charcoal). (a) λ = 0.5, (b) λ = 1,

(c) λ = 3.
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FIG. 4. Average percentage relative change in MSE computed as a function of SNR in the simulated
MEG experiment across all active sources for each localization method: MNE (light gray), Kalman
filter (dark gray), and Fixed Interval Smoother (charcoal). (a) λ = 0.5, (b) λ = (c), λ = 3.
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thus decoupling the model fits to areas of true signal from those vertices contain-
ing background noise. The three methods show similar behavior as in Figure 3
in the activated regions, with the fixed-interval smoother again showing superior
performance to the other two methods. As a consequence of the relative MSE er-
rors exhibiting significantly smaller values in these signal-rich regions, we display
their effects on a log linear scale to better delineate the salient differences between
methods.

5. Somatosensory MEG experiment. To illustrate the state-space and MNE
methods on an actual MEG experiment, we estimated the sources of the alpha (8–
13 Hz) and mu (10 Hz and 20 Hz) spontaneous brain activity using anatomically-
constrained whole-head MEG. Synchronous cortical rhythmic activity of large
populations of neurons is associated with distinct brain states and has been the sub-
ject of extensive investigation using unit electrophysiology, as well as EEG, MEG
and fMRI techniques [Lounasmaa et al. (1995), Salmelin and Hari (1994)]. The al-
pha rhythm is recorded over the posterior parts of the brain, being strongest when
the subject has closed eyes and reduced when the subject has open eyes. Sources
of alpha rhythm have been identified with MEG and EEG to lie in the parietooc-
cipital sulcus and calcarine fissure [Freeman, Ahlfors and Menon (2009)]. The mu
rhythm represents activity close to 10 and 20 Hz in the somatomotor cortex, and is
known to reflect resting states characterized by lack of movement and somatosen-
sory input. The 20 Hz component tends to be localized in the motor cortex, anterior
to location of the 10 Hz component [Lounasmaa et al. (1995)], being specifically
suppressed or elevated at topographic locations representing moving or resting in-
dividual limbs, respectively. By comparison, the 10 Hz component arises in the
somatosensory cortex, and is thought to reflect the absence of sensory input from
the upper limbs [Liljeström et al. (2005), Salmelin et al. (2005)].

Following approval by the Massachusetts General Hospital Human Research
Committee, the MEG signals were acquired in a healthy male subject in a magnet-
ically and electrically shielded room at the Martinos Center for Biomedical Imag-
ing at the Massachusetts General Hospital. MEG signals were recorded from the
entire head using a 306-channel dc-SQUID Neuromag Vectorview system (Elekta
Neuromag, Elekta Oy, Helsinki, Finland) while the subject sat with his head in-
side the helmet-shaped dewar containing the sensors. The magnetic fields were
recorded simultaneously at 102 locations, each with 2 planar gradiometers and 1
magnetometer at a sampling rate of 600 Hz, minimally filtered to (0.1–200 Hz).
The positions of the electrodes in addition to fiduciary points, such as the nose,
nasion and preauricular points, were digitized using the 3Space Isotrak II System
for subsequent precise co-registration with MRI images. The position of the head
with respect to the helium-cooled dewar containing the measurement SQUIDS
was determined by digitizing the positions of four coils that were attached to the
head. These four coils are subsequently employed by the MEG sensors to assist in
co-registration.



DYNAMIC STATE-SPACE METHODS FOR MEG 1223

Ongoing magnetic activity was thus recorded under the following three condi-
tions: (1) at rest with eyes closed; (2) at rest with eyes open; and (3) during sus-
tained finger movement with eyes open. As described in previous studies, exami-
nation of raw data revealed strong alpha activity when the subject had eyes closed,
and dampened or no alpha rhythm when the subject had eyes open (i.e., at rest or
during sustained finger movement conditions). The mu activity was strongest at
rest (i.e., with eyes open or closed) and suppressed during sustained fingers move-
ment condition. 2 s long periods of raw data with either large amplitude alpha
waves (e.g., during eyes-closed conditions) or large amplitude mu waves (e.g., dur-
ing hand/finger resting conditions) were used as the input signal for MEG source
localization. In addition, the empty MEG room noise was recorded just before the
start of the experiment and subsequently used as measurement noise in the estima-
tion of the alpha and mu activity generators.

Figure 5 depicts the net estimated current distributions characterized in each
panel by the length of each current triplet. In the inverse calculations, the orien-
tation of the estimated currents was fixed such that they lay perpendicular to the
cortical mesh. Each panel reveals the relative effect of the state-space approaches
as compared to those gained from the static MNE technique as the dynamics of
the mu-rhythm time course unfold (Figure 6). In all cases, we can observe regions
in the central sulcus showing strong activation, but the FIS and KF solutions show
stronger activations than those obtained through the MNE method. Moreover, Fig-
ure 6 shows that the reconstructed time courses of the KF and FIS solutions are
much less variable than those of the MNE solution.

In summary, analysis of the somatosensory experiment showed approximate
agreement between MNE and the state-space models. As in the simulated MEG
experiment, we note that the magnitudes of the estimate sources were greater for
the state-space models (Figure 5). The temporal dynamics of the FIS agreed more
closely with the MNE than with the KF (Figure 5). Not surprisingly, because the
state-space models imposed a temporal constraint, their estimates were smoother
than the MNE estimates (Figure 6). Also, as in the simulated MEG experiment, the
KF estimates of the source amplitudes were larger than those computed by either
MNE or the FIS.

6. Discussion. We have developed and implemented a state-space model so-
lution to the MEG inverse problem. We examined its performance relative to the
MNE algorithm on simulated and actual MEG experimental data. A simple ana-
lytic analysis showed that the state-space approach offers two important improve-
ments over MNE. Namely, the KF/FIS estimate equation (2.9) uses a dynamic
L2-norm regularization mean equation (2.6) and covariance matrix equation (2.7)
update at each step, whereas the MNE estimate equation (2.5) uses a static L2-
norm regularization zero mean and static covariance matrix to compute its instan-
taneous estimate. Making the prior mean zero at each update biases every solution
toward zero. This makes it difficult to identify sources that are nonzero but weak
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FIG. 5. Source activation maps showing instantaneous reconstructions for the sensorimotor task.
Each column shows the temporal evolution at the five peak modes of the mu-rhythm for each of the
three methods: Minimal Norm Estimator (MNE); Kalman filter (KF); and Fixed Interval Smoother
(FIS). The red and blue color maps correspond to inward and outward current flow, respectively. This
reconstruction was carried out using a regularization parameter value of λ = 1.
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FIG. 6. Representative time course reconstructions extracted from locations in the somatosensory
cortex at 492 ms in Figure 5: MNE (blue), Kalman filter (green) and Fixed Interval Smoother (red).

(low amplitude). In contrast, the KF/FIS estimate is more likely to identify a weak
source because if the source estimate at the previous time point, that is, 1 msec
before, was similarly weak, it would be combined with the current observation to
identify what would most likely be an attenuated source at the current time point.
Second, the KF source estimates use all of the observations from the start of the
experiment to the current time, then the FIS equation (2.13) uses the KF source
estimates to compute new estimates based on all of the experimental observations.
In contrast, the MNE source estimate uses only the observations recorded at the
current time. Given that the MEG updates are computed every millisecond, the so-
lutions at adjacent time periods are likely to be strongly correlated. Our state-space
approach imposes a dynamic L2-norm regularization constraint to use this tem-
poral information, whereas MNE imposes the same static L2-norm regularization
constraint at each time point and thus does not consider the temporal structure. Our
simulation studies demonstrated that the KF and FIS estimates are more accurate
in terms of MSE (Figures 3 and 4) compared with MNE. Although the spatial maps
of the state-space and MNE had comparable spatial extent, the KF and FIS esti-
mates captured more accurately the magnitude of the activations (Figure 1). This
accounts for the lower MSE for the FIS and the KF relative to MNE despite small
numbers of erroneous activations in the case of the state-space models outside the
areas of actual activations (Figure 1). In addition, the two state-space solutions
were considerably smoother and in closer agreement with the simulated signal
than the MNE solution. The KF which computes its estimates based exclusively
on data up to the current time had a temporal lag with respect to the true signal
(Figure 2). That is, the locations of the signal peaks and troughs were offset with
respect to their true temporal locations. In addition, the KF estimates overestimated
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the true signal amplitude (Figure 2). The backward pass of the FIS corrected both
of these problems, yielding a closer agreement with the true signal and a lower
MSE (Figure 2). Although in the analysis of the actual MEG experiment MNE
and the state-space models source estimates were in approximate agreement (Fig-
ure 5), the magnitudes of the FIS estimates were more consistent with those of the
KF estimates, whereas the temporal dynamics of the FIS estimates followed more
closely those of the MNE estimates (Figure 5). The KF estimates of the source
amplitudes were larger than those computed by the either MNE or the FIS (Fig-
ure 6). Although our findings establish the feasibility of using high-dimensional
state-space models for solving the MEG inverse problem, they also suggest sev-
eral extensions. In our analysis we computed the KF and FIS estimates by testing
different values of the regularization parameter. This parameter can be estimated
in an empirical Bayesian [Lamus et al. (2007)] or a fully Bayesian framework.
The spatial component of the model can be improved by using the structure of the
particular experimental design to proposed specific forms of the F state-transition
matrix. There are a broad range of techniques that have been used to accelerate
computations in high-dimensional state-space models. The forward model can be
extended to include subcortical sources. The MEG and EEG recordings are usually
recorded simultaneously. Our state-space paradigm can be applied to the problem
of estimating the sources from these two sources. These extensions will be the
topics of future reports.
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