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A common way of studying the relationship between neural activity and
behavior is through the analysis of neuronal spike trains that are recorded
using one or more electrodes implanted in the brain. Each spike train typically
contains spikes generated by multiple neurons. A natural question that arises
is “what is the number of neurons ν generating the spike train?” This article
proposes a method-of-moments technique for estimating ν. This technique
estimates the noise nonparametrically using data from the silent region of
the spike train and it applies to isolated spikes with a possibly small, but
nonnegligible, presence of overlapping spikes. Conditions are established in
which the resulting estimator for ν is shown to be strongly consistent. To
gauge its finite sample performance, the technique is applied to simulated
spike trains as well as to actual neuronal spike train data.

1. Introduction. In the field of neuroscience, it is generally acknowledged
that neurons are the basic units of information processing in the brain. They play
this role by generating highly peaked electric action potentials or, more simply,
spikes [cf. Brillinger (1988), Dayan and Abbott (2001)]. A sequence of such spikes
over time is called a spike train. A typical method of recording spike trains is by
inserting electrodes into the brain. In the analysis of a spike train, Brown, Kass
and Mitra (2004) note three goals: (i) identify each spike as “signal” (versus pure
noise), (ii) determine the number of neurons being recorded, and (iii) assign each
spike to the neuron(s) that produced it. (i), (ii) and (iii) are collectively termed
spike sorting in the neuroscience literature, and, as remarked by Brown, Kass and
Mitra (2004), are mandatory for all multi-neuronal spike train data analyses. The
accuracy of spike sorting critically affects the accuracy of all subsequent analyses.
For spike sorting to be well defined, it is generally assumed that each neuron gen-
erates a spike with a characteristic voltage waveshape (apart from noise) and that
distinct neurons have distinct spike waveshapes. For example, Figure 3 in Section 4
presents the different spike waveshapes of 5 neurons that were estimated from real
data.
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This article assumes that (i) has been achieved, that is, each spike in the spike
train has been identified. The objective here is to estimate the number of neurons
that produced the spike train using the data from (i). This problem has the follow-
ing feature that makes it a nonstandard clustering problem. Most often, a spike is
produced by one (and only one) neuron, as no other neuron spikes around that time.
Such a spike is called an isolated spike. On the other hand, there may be instances
where two or more neurons spike in synchrony, that is, at almost the same time [cf.
Lewicki (1998), page R68]. Then the resulting spike is an additive superposition of
the spikes generated by this group of neurons. This spike is called an overlapping
spike. Consequently, if considered as a clustering problem, the number of clusters
will not in general be equal to the number of neurons producing the spike train.

For definiteness we shall assume that there are ν neurons, labeled 1 to ν, gener-
ating the spike train and that n spikes, say, S1, . . . , Sn, are detected and recorded in
the spike train. Here the Si ’s are aligned according to their peaks and each Si ∈ R

d

for some d ∈ Z
+. The d components of Si are the measurements of the voltage

values of the spike on a regular grid of time-points around the peak (or maximum)
of the spike. Writing Si = (Si,1, . . . , Si,d)′ ∈ R

d , we assume that

Si,j = �i,j + ηi,j ∀i = 1, . . . , n, j = 1, . . . , d,(1)

where ηi,j , i = 1, . . . , n, j = 1, . . . , d , are i.i.d. noise random variables with mean
0, variance σ 2 and �i = (�i,1, . . . ,�i,d)′ ∈ R

d , i = 1, . . . , n, are i.i.d. random
vectors. The �i ’s and ηi,j ’s are assumed to be all independent. �i denotes the
denoised spike shape of Si and is random because the denoised spike shape is a
function of the particular neuron(s) generating it and time lag in the spiking times
if there are ≥2 neurons. Let α ∈ R

d be a constant vector such that α′α = 1. In
Sections 4 and 5, α is taken to be the first principal component of S1, . . . , Sn and
0.01n vector 0’s. However, other choices of α are possible too. For each spike Si ,
define

Xi = α′Si ∀i = 1, . . . , n,(2)

which is the projection of Si onto α. It follows from (1) that X1, . . . ,Xn are i.i.d.
random variables. As observed by Ventura (2009), either implicitly or explicitly,
almost all spike sorting methods assume that Xi has a mixture distribution with
probability density function of the form

ν∑
q=1

∑
1≤j1<···<jq≤ν

πj1,...,jq hj1,...,jq (x) ∀x ∈ R,(3)

where πj1,...,jq is the probability that Si is generated by (and only by) neurons
j1, . . . , jq . The hj1,...,jq ’s are usually assumed to be Gaussian densities [cf. Lewicki
(1994, 1998)], even though t densities have also been proposed [cf. Shoham, Fel-
lows and Normann (2003)].
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In this article we shall not assume that hj (·), j = 1, . . . , ν, are Gaussian or t

densities but only that hj (·) = fμj ,σ 2(·) belongs to a location family of probability
densities [cf. Lehmann (1983), page 154]. It is noted that this location family con-
tains both Gaussian and t densities. Here μj and σ 2 denote the mean and variance
induced by the density fμj ,σ 2 .

Due to the complex nature of spike overlap, we do not think it is accurate to
model each hj1,...,jq , 2 ≤ q ≤ ν, as a Gaussian or a t density (or, indeed, any other
parametric density having only a small number of unknown parameters). For ex-
ample, h1,2 depends on noise as well as on the time lag between the spiking times
of neurons 1 and 2. As the time lag is also random and that the phenomenon of
neurons spiking in close proximity to each other is still not well understood, we
feel it is more appropriate to model h1,2 using a nonparametric density (rather than
a parametric one). In particular, in this article, we shall assume that (3) is of the
form

f (x) =
ν∑

j=1

πjfμj ,σ 2(x)

(4)

+
ν∑

q=2

∑
1≤j1<···<jq≤ν

πj1,...,jq

∫
R

fμ,σ 2(x) dGj1,...,jq (μ),

where π1 ≥ π2 ≥ · · · ≥ πν > 0 and Gj1,...,jq ’s are unknown absolutely continu-
ous probability distributions. Consequently, (4) leads to a nonparametric location
mixture.

The objective is to estimate ν in (4) using the sample X1, . . . ,Xn and an inde-
pendent auxiliary sample of i.i.d. observations Y1, . . . , Ym obtained from the silent
region of the spike train. The silent region is defined to be the sections of the spike
train where there are no spikes. Hence, the Yl’s are defined as

Yl = (η∗
l,1, . . . , η

∗
l,d)α ∀l = 1, . . . ,m,(5)

where η∗
l,1, . . . , η

∗
l,d are noise voltage measurements on a regular grid of d consec-

utive time-points of the silent region of the spike train. We assume that η∗
l,j , ηi,k ,

1 ≤ l ≤ m,1 ≤ i ≤ n,1 ≤ j, k ≤ d , are i.i.d. random variables with mean 0 and
variance σ 2. In this article a method-of-moments estimator ν̂ for ν is proposed.
This estimator has a number of attractive properties. First, this article establishes a
reasonably transparent theory justifying/supporting ν̂. In particular, ν̂ is a strongly
consistent estimator for ν under mild conditions. Second, the estimator can be
computed without first (or concurrently) computing the other unknown quantities
in (4). Consequently, it is computationally very fast relative to, say, EM or Markov
chain Monte Carlo (MCMC) algorithms.

We would like to add that the above problem of estimating ν can be regarded
as robust and (yet) consistent estimation of the number of components of a finite
mixture where the latter is subjected to a small but nonnegligible contamination
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by a nuisance distribution. While quite a number of papers have been written on
estimating the number of components of a finite mixture [cf. Dacunha-Castelle and
Gassiat (1997) and references cited therein], we are not aware of any work in the
statistics literature that deals with this problem when the mixture is contaminated
by another distribution.

On the neuroscience literature side, numerous algorithms for spike sorting have
been proposed. A review of spike sorting algorithms and a discussion of their
strengths and limitations can be found in Lewicki (1998). In particular, a consider-
able number of spike sorting algorithms assume that the proportion of overlapping
spikes is negligible relative to the proportion of isolated spikes and, hence, the
possible presence of overlapping spikes is ignored. With this assumption, many
spike sorting algorithms further assume that the number of neurons ν is known
and the problem reduces to a standard classification problem. If ν is unknown,
other spike sorting algorithms use various EM or MCMC methods for determining
ν as well as for assigning spikes to the neurons [cf. Pouzat, Mazor and Laurent
(2002), Nguyen, Frank and Brown (2003), Wood and Black (2008)]. However,
Brown, Kass and Mitra [(2004), page 456] noted that MCMC techniques have yet
to be widely tested in spike sorting.

Spike sorting algorithms that take overlapping spikes into account usually in-
volve significant user input [cf. Mokri and Yen (2008)]. Section 5 of Lewicki
(1998) discusses the use of templates, independent component analysis and neural
networks to handle overlapping spikes and the limitations of these methods. If
ν is known, there are at least two model-based approaches for handling overlap-
ping spikes. The first approach considers a (ν +1)-component mixture distribution
with the first ν components modeling the spike waveforms of the ν neurons. The
(ν + 1)th component is a uniform density over a suitably large region of the sam-
ple space [cf. Sahani (1999), page 95] that serves as an approximate model for the
overlapping spikes. The second approach is a trimming method where a number
of the largest observations (outliers) are omitted [cf. Gallegos and Ritter (2005),
García-Escudero et al. (2008)]. The rationale is that most of the outliers correspond
to overlapping spikes and, hence, the remaining observations should be comprised
essentially of isolated spikes.

The rest of the article is organized as follows. Section 2 introduces a number of
trigonometric moment matrices. Theorem 1 derives some explicit error bounds for
their eigenvalues. Motivated by these error bounds, Section 3 proposes a method-
of-moments estimator ν̂ for ν. Theorem 2 shows that ν̂ is a strongly consistent
estimator for ν under mild conditions. A point of note is that Theorem 2 does
not require the proportion of overlapping spikes to be asymptotically negligible as
sample size tends to infinity.

Section 4 presents a detailed simulated spike train study that investigates the
finite sample accuracy of ν̂. Each spike train is generated by ν neurons where
ν varies from 1 to 5. The spike shapes of these neurons are estimated from real
data. There are 8 experiments in the study which present a variety of different
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FIG. 1. A portion of Lewicki’s actual spike train recording.

spike train situations depending on the proportion of overlapping spikes, the spike
detection technique and sample sizes n,m. Table 1 summarizes the 8 experiments
as a factorial design. This study finds that ν̂ has very good accuracy with regard
to these 8 experiments for moderately large sample sizes such as n = 1000 and
m = 2000. As a comparison, we have also applied the SpikeOMatic software [cf.
Pouzat, Mazor and Laurent (2002); Pouzat et al. (2004)] to obtain an alternative
estimate ν̂1 for ν in 2 of these experiments.

Section 5 considers two spike train data sets taken from Lewicki (1994). The
first is an actual 40-second spike train recording and the second is a synthesized
recording using 6 spike shapes estimated from the first data set. Figure 1 presents
a portion of the actual spike train recording. Lewicki (1994) inferred that ν is 6
for the actual recording. Three estimators are used to estimate ν from each spike
train, namely, ν̂2 by Lewicki’s spike sorting algorithm [cf. Lewicki (1994)], ν̂1 by
SpikeOMatic software [cf. Pouzat, Mazor and Laurent (2002)] and ν̂. For the syn-
thesized recording, we obtain ν̂1 = ν̂2 = 5 while ν̂ = 4 or 5 depending on whether
the threshold of ν̂ is set to 1.0 or 0.8, respectively. On the other hand, for the actual
spike train recording, we obtain ν̂1 = 12, ν̂2 = 9 while ν̂ = 4 or 5 depending on
whether the threshold of ν̂ is set to 1.0 or 0.8, respectively. Thus, relative to ν̂1 and
ν̂2, ν̂ is a more stable estimate with respect to these 2 data sets.

The article ends with some concluding remarks in Section 6. The symbols R,C

denote the set of real numbers, complex numbers respectively, and all proofs are
deferred to the Appendix.

2. Some trigonometric moment matrices. This section constructs a num-
ber of trigonometric moment matrices and derives explicit error bounds for their
eigenvalues. Following the notation in (4), let θ denote a random variable with
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cumulative distribution function

Fθ(μ) =
ν∑

j=1

πj I{μ ≥ μj } +
ν∑

q=2

∑
1≤j1<···<jq≤ν

πj1,...,jq Gj1,...,jq (μ)

(6)
∀μ ∈ R,

where π1 ≥ π2 ≥ · · · ≥ πν > 0 and I{·} denotes the indicator function. For sim-
plicity, let πcont be the proportion of overlapping spikes and πcontFcont be the con-
tinuous component of Fθ . Then

πcont =
ν∑

q=2

∑
1≤j1<···<jq≤ν

πj1,...,jq = 1 −
ν∑

j=1

πj ,

πcontFcont(μ) =
ν∑

q=2

∑
1≤j1<···<jq≤ν

πj1,...,jq Gj1,...,jq (μ) ∀μ ∈ R.

Let p ≥ ν be an integer. Motivated by the ideas of Lindsay (1989a), (1989b) on
moment matrices and finite mixtures, we define a function Tp : R → C

(p+1)×(p+1)

by

Tp(x) =

⎛
⎜⎜⎜⎜⎜⎝

1 eix ei2x . . . eipx

e−ix 1 eix . . . ei(p−1)x

e−i2x e−ix 1 . . . ei(p−2)x

...
...

...
. . .

...

e−ipx e−i(p−1)x e−i(p−2)x . . . 1

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

1
e−ix

e−i2x

...

e−ipx

⎞
⎟⎟⎟⎟⎟⎠ (1, eix, ei2x, . . . , eipx),

where i = √−1. We further define matrices corresponding to the discrete compo-
nent and the continuous component of Fθ by

Mp,disc =
ν∑

i=1

πiTp(μi) =

⎛
⎜⎜⎜⎜⎜⎝

1 . . . 1
e−iμ1 . . . e−iμν

e−i2μ1 . . . e−i2μν

...
. . .

...

e−ipμ1 . . . e−ipμν

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

π1 0 . . . 0
0 π2 . . . 0
...

...
. . .

...

0 0 . . . πν

⎞
⎟⎟⎟⎠

×
⎛
⎝ 1 eiμ1 ei2μ1 . . . eipμ1

...
...

...
. . .

...

1 eiμν ei2μν . . . eipμν

⎞
⎠ ,(7)
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Mp,cont =
∫

R

Tp(μ)fcont(μ)d(μ) =
∫ 2π

0
Tp(μ)

∞∑
j=−∞

fcont(μ + 2πj)d(μ),

where fcont is the probability density function of the distribution Fcont. Finally, we
define

Mp = E[Tp(θ)] = Mp,disc + πcontMp,cont.

Let λi(A) denote the ith largest eigenvalue of A where A is an arbitrary (p + 1)×
(p + 1) Hermitian matrix. Hence, λ1(A) ≥ λ2(A) ≥ · · · ≥ λp+1(A).

THEOREM 1. With the above notation, suppose that μ1, . . . ,μν are all dis-
tinct, 0 ≤ μ1, . . . ,μν < 2π . Then for i = 1, . . . , ν, we have

(p + 1)πi + 2ππcont

{
min

0≤μ<2π

∞∑
j=−∞

fcont(μ + 2πj)

}

−
√√√√2

∑
1≤j<k≤ν

πjπk

∣∣∣∣1 − ei(p+1)(μj−μk)

1 − ei(μj−μk)

∣∣∣∣2

≤ λi(Mp)(8)

≤ (p + 1)πi + 2ππcont

{
max

0≤μ<2π

∞∑
j=−∞

fcont(μ + 2πj)

}

+
√√√√2

∑
1≤j<k≤ν

πjπk

∣∣∣∣1 − ei(p+1)(μj−μk)

1 − ei(μj−μk)

∣∣∣∣2.
Also, for i = ν + 1, . . . , p + 1, we have

2ππcont min
0≤μ<2π

∞∑
j=−∞

fcont(μ + 2πj)

(9)

≤ λi(Mp) ≤ 2ππcont max
0≤μ<2π

∞∑
j=−∞

fcont(μ + 2πj).

The following is an immediate corollary of Theorem 1.

COROLLARY 1. Suppose the conditions of Theorem 1 are satisfied. Then for
any constant γ > 0, there exists a positive integer pγ such that

λν(Mp) > γ
√

p + 1 > λν+1(Mp) ∀p ≥ pγ .

Also, λν+1(Mp) is bounded uniformly in p. Finally, λi(Mp) ∼ (p + 1)πi , ∀1 ≤
i ≤ ν, as p → ∞.
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Corollary 1 gives, at least in principle, a way for estimating ν by estimating the
eigenvalues of Mp .

3. A method-of-moments estimator for ν. Let ηi,j , i = 1, . . . , n, j =
1, . . . , d , and �i , i = 1, . . . , n, be as in (1) and Xi = α′Si , i = 1, . . . , n, be as
in (2). Then X1, . . . ,Xn is an i.i.d. sequence of observations from the mixture
distribution given by (4). We observe that

Xi = θi + Ỹi ∀i = 1, . . . , n,

where θi = α′�i and Ỹi = (ηi,1, . . . , ηi,d)′α are independent random variables hav-
ing cumulative distribution function Fθ , given by (6), and probability density func-
tion f0,σ 2 , respectively. θi can be regarded as the signal and Ỹi the zero-mean noise.
Here we assume that E(e−ikỸ1) �= 0 for all k ∈ {1, . . . , p}. This is a very weak as-
sumption and is satisfied by, for example, mean-centered normal, t and Gamma
distributions. Because θ1 and Ỹ1 are independent, we have

E(e−ikθ1) = E(e−ikX1)[E(e−ikỸ1)]−1.

Let Y1, . . . , Ym be as in (5). We observe that the Yl’s are obtained from the voltage
measurements at different time-points of the silent region of the spike train. Then
Y1, . . . , Ym are i.i.d. with density f0,σ 2 and are also independent of X1, . . . ,Xn. As
Y1 has the same distribution as Ỹ1, we have

E(e−ikY1) �= 0 ∀k ∈ {1, . . . , p}.(10)

Since Mp = E[Tp(θ)], we shall estimate Mp using its sample analog, that is,
the (p + 1) × (p + 1) matrix M̂p whose (j, k)th element is given by

(M̂p)j,k = n−1 ∑n
i=1 e−i(j−k)Xi

m−1 ∑m
l=1 e−i(j−k)Yl

.(11)

M̂p is a Hermitian matrix and, hence, its eigenvalues are real numbers. The
method-of-moments estimator ν̂ for ν is as follows. Let γ , pγ and p ≥ pγ be
as in Corollary 1. Define

ν̂ = #{i : 1 ≤ i ≤ p + 1, λi(M̂p) > γthreshold},(12)

where γthreshold = γ
√

p + 1 and #{·} denotes set cardinality. We call γthreshold the
threshold parameter of ν̂.

THEOREM 2. Let ν̂ be as in (12) with p ≥ pγ . Suppose (10) and the conditions
of Theorem 1 hold. Then ν̂ → ν almost surely as min(m,n) → ∞.

For ν̂ to perform well, it is necessary to obtain a good choice of the threshold
parameter γthreshold. The usual methods, such as cross-validation, for determining
the value of the threshold parameter do not seem to work here. Instead we shall
compute explicit error bounds for λi(M̂p), i = 1, . . . , p + 1, below. These error
bounds shall serve as guidelines for setting the value of γthreshold.
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LEMMA 1. Let ε > 0 be a constant,

�j,ε =
{∣∣∣∣m

−1 ∑m
l=1 e−ijYl

E(e−ijY1)
− 1

∣∣∣∣ > ε

}
∀j = 1, . . . , p,

and �ε = ⋃p
j=1 �j,ε . Then

P(�ε) ≤
p∑

j=1

min
{

6

m2[ε|E(e−ijY1)|]4

(
1 + O

(
1

m

))
,

42

m3[ε|E(e−ijY1)|]6

(
1 + O

(
1

m

))}
.

It is interesting to note that for the parameter values and sample sizes that we
are concerned with in this article, the inequality of Lemma 1 gives a smaller up-
per bound than those obtained via the Hoeffding or Bernstein exponential-type
inequalities.

THEOREM 3. Let �ε be as in Lemma 1, �c
ε be its complement and E�c

ε denote
the conditional expectation given �c

ε . Then with the assumptions of Theorem 1,√√√√
E�c

ε

∑p+1
i=1 [λi(M̂p) − λi(Mp)]2

p + 1
(13)

≤
√√√√√ 2

n(1 − ε)2

p∑
j=1

p − j + 1

(p + 1)|ψZ(σj)|2 + pε2

(1 − ε)2 ,

where Z = Y1/σ , ψZ(t) = Ee−itZ for all t ∈ R and, hence, Ee−ijY1 = ψZ(σj).

We remark that the upper bounds of the inequalities of Lemma 1 and Theo-
rem 3, though relatively simple, are conservative in that the quantities on the left-
hand side are substantially smaller than those on the right-hand side. Nonethe-
less, we shall end this section with an example which computes the upper bounds
in Lemma 1 and Theorem 3 explicitly. Suppose ε = 0.05, p = 20, σ = 0.1,
Y1 ∼ N(0, σ 2), n = 1000 and m = n2. Then P(�ε) ≤ 0.01 and

E�c
ε

∑p+1
i=1 [λi(M̂p) − λi(Mp)]2

p + 1
≤ 0.12.

4. Simulated spike train study. In this section we shall study the finite sam-
ple performance of the method-of-moments estimator ν̂ given by (12) via simu-
lated spike trains.
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4.1. Spike train generation. For realism, we use spike shapes estimated from
real data to generate the spike train. The spike shapes are obtained by apply-
ing Pouzat’s software SpikeOMatic which is available at www.biomedicale.univ-
paris5.fr/SpikeOMatic.html to a tetrode data set recorded from the locust (Schisto-
cerca americana) antennal lobe. This tetrode data is distributed with the SpikeO-
Matic software at www.biomedicale.univ-paris5.fr/SpikeOMatic/Data.html. It is a
20-second recording sampled at 15 kHz from a tetrode filtered between 300 Hz
and 5 kHz. Pouzat, Mazor and Laurent (2002) and Pouzat et al. (2004) are two
papers behind the software SpikeOMatic.

SpikeOMatic is applied to the locust data and we selected the 6 spike shapes
with the largest numbers of spikes. These (four-channel) spike shapes are shown
in Figure 2. As the two spike shapes with the smallest first channel positive peak
heights have significant difference only in the fourth channel, we will delete one
of them in order to generate single channel data in which distinct spike shapes are
different enough to be distinguished. The resulting 5 spike shapes are shown in
Figure 3 with the noise standard deviation σ = 1.

Once the spike shapes are obtained, a Poisson process is simulated to select the
time of spike events. Given that a spike occurred, a random variable with categor-
ical distribution is generated indicating which neuron has spiked. The categorical
distribution is assumed to have equal probabilities for each of ν possible spike
shapes where ν is the number of neurons (i.e., π1 = · · · = πν ≤ 1/ν). Here ν ranges
from 1 to 5. The πi’s can be set to different values but they should not be too close
to zero. This is necessary because if one of the neurons has infinitesimally small
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FIG. 2. Six four-channel spike shapes from the locust data.

http://www.biomedicale.univ-paris5.fr/SpikeOMatic.html
http://www.biomedicale.univ-paris5.fr/SpikeOMatic/Data.html
http://www.biomedicale.univ-paris5.fr/SpikeOMatic.html
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FIG. 3. Five one-channel spike shapes selected with σ = 1.

probability of spiking, then it would appear that no algorithm can estimate ν well
with a finite sample.

As noted previously, Pouzat’s locust data is a 20-second recording sampled
at 15 kHz. Thus, the recording has 300,000 time-points on a regular grid.
There are about 1000 spikes detected. Hence, the collective firing rate is about
1000/300,000 = 1/300. In our simulations, we choose a similar collective firing
rate of 1/400, as this gives about 10% overlapping spikes.

SpikeOMatic rescales the data such that the noise standard deviation σ = 1. In
the generation of a spike train, independent standard Gaussian noise, or t5 distrib-
uted noise (with degree of freedom 5) multiplied by

√
3/5, is added to the “signal.”

Multiplication by
√

3/5 is needed since t5 distribution does not have standard de-
viation 1. Here “signal” refers to either the spike shape or 0 (in the case of pure
noise).

4.2. Spike detection. As mentioned in the Introduction, one of the tasks of
spike sorting is to identify each spike in the spike train. This is known as spike de-
tection. The function find.spikes.with.template provided by SpikeOMatic is used
to detect spikes from spike train recordings. In our study, the detection threshold is
set to 2.25σ (which is one of the recommended values of SpikeOMatic) where σ is
the noise standard deviation. This is because the spike shape with the smallest posi-
tive peak height (in Figure 3) is close to 3σ and we do not want to consistently miss
detecting spikes with this spike shape. The function find.spikes.with.template uses
template to detect spikes and, hence, there should not be too many false positives
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with detection threshold = 2.25σ if the noise is Gaussian. However, this threshold
would present problems if the noise has a heavy-tailed distribution such as the t5
distribution (cf. Experiment 6 of Section 4.4). For more details of spike detection
via SpikeOMatic, we refer the reader to the documentation for the software.

4.3. Setting the tuning parameters of ν̂. We observe from the definition of ν̂

in (12) that ν̂ is not scale invariant and that ν̂ has three tuning parameters, namely,
σ , p and γthreshold, to be determined in order to use ν̂. First we observe that it is
usually the case that the silent region forms a sizeable part of a spike train. Since
data from the silent region can be used to estimate σ , we shall, without loss of
generality, assume in this subsection that σ is known.

The function make.sweeps of SpikeOMatic extracts the spikes and the pure
noise observations and automatically rescales them such that the noise standard
deviation is 1. After extracting the spikes, we shall further rescale them such that
the noise standard deviation σ = 0.1. The rationale for this will be explained later.
Next we set γthreshold = 1 with the implicit assumption that (p + 1)πν > γthreshold.
We observe from (8) that the latter is a rough proxy for λν(M̂p) > γthreshold. This
implicit assumption is indeed satisfied for all the 8 experiments. (If this does not
hold, we would have to set a smaller value for γthreshold with a corresponding in-
crease in false positives.)

Let S1, . . . , Sn ∈ R
d denote the extracted spikes. The (normalized) first princi-

pal component α ∈ R
d of S1, . . . , Sn,0, . . . ,0 is computed. Here 0 ∈ R

d and the
number of 0’s used to compute α is taken to be 0.01n (to the nearest integer). The
0’s are needed in the computation of α because if not, α is not well defined in the
case of ν = 1 and i.i.d. Gaussian noise. Next define Xi = α′Si as in the Introduc-
tion. The rationale for projecting the spikes onto the first principal component is
the hope that this direction will best separate the spike shapes from one another as
well as from pure noise (which is represented by 0’s).

Now we argue that σ should be neither too small nor too large after rescaling.
If σ is large, then ψZ(σj) will be small. [For example, if the noise is Gaussian,
we have ψZ(σj) = e−j2σ 2/2.] Thus, the bound as on the right-hand side of (13)
is large. This indicates that the estimation error of the eigenvalues will be large,
resulting in poor performance of ν̂.

On the other hand, if σ is scaled too small, the distance between some pair of
μj ’s would likely be small, that is, for some j �= k, |1 − ei(μj−μk)| will be small.
This implies that the lower bound in (8) can be less than the threshold parameter
γthreshold = 1. This again results in poor performance of ν̂. Consequently, we would
like the following condition to be satisfied:

CONDITION (I):

√√√√√ 2

0.952n

p∑
j=1

p − j + 1

(p + 1)|m−1 ∑m
l=1 e−ipYl |2 + 0.052p

0.952 ≤ 1

3
.



188 M. LI AND W.-L. LOH

Since m is large, we observe that |E(e−ipY1)| ≈ |m−1 ∑m
l=1 e−ipYl |. Consequently,

the left-hand side of the inequality in Condition (I) is an approximation for the
right-hand side of (13) with ε = 0.05 and can be used as an approximate up-
per bound for the standard error of the eigenvalue estimates in (13). Thus, if
Condition (I) holds, γthreshold = 1 is very likely to exceed 3 times this standard
error and that, for sufficiently small πcont, λν+1(M̂p) ≤ 1. Finally we choose
p = pmax where pmax is the largest value of p satisfying Condition (I). Numer-
ical experiments on the accuracy of ν̂ with these values of σ = 0.1, p = pmax, and
γthreshold = 1 will be reported in Section 4.4.

4.4. Numerical experiments. In this subsection we shall study the perfor-
mance of the estimator ν̂ of Section 4.3 via 8 simulated spike train experiments.
Each experiment is divided into 5 scenarios depending on the number of neurons
generating the spike train (i.e., ν = 1, . . . ,5). A total of at most 5 neurons are con-
sidered. The spike shapes of these neurons are given in Figure 3. As there are many
ways of selecting ν neurons from 5 neurons if ν < 5, we shall choose the ν neu-
rons in a “least favorable” manner for estimating ν: if ν = 1, we take the neuron
with the smallest peak height in Figure 3 to be the one generating the spike train;
if ν = 2, then we take the 2 neurons with the two smallest peak heights in Figure 3
to be the ones generating the spike train; and so on until we reach ν = 5. In all
the experiments the estimator ν̂ is used after rescaling the data so that σ = 0.1
and setting p = pmax and γthreshold = 1. The spike shape vectors each have d = 45
components. Table 1 summarizes the 8 experiments as a factorial design.

EXPERIMENT 1. In this experiment the noise is i.i.d. Gaussian with mean 0
and variance σ 2 = 1. We assume that the spikes are detected from the spike train
without error (or, equivalently, there exists an oracle spike detector):

• The proportion of overlapping spikes πcont ≈ 0.1 (or 10%).

TABLE 1
Factorial experimental design

Experiment Noise distribution Spike detection algorithm Proportion of
overlapping spikes

1 Gaussian Oracle 10%
2 Gaussian SpikeOMatic 10%
3 Gaussian Oracle 0
4 Gaussian SpikeOMatic 0
5 Student t5 Oracle 10%
6 Student t5 SpikeOMatic 10%
7 Student t5 Oracle 0
8 Student t5 SpikeOMatic 0
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TABLE 2
Approximate values of μ1, . . . ,μν for Experiments 1, 3, 5 and 7

μ1 μ2 μ3 μ4 μ5

Experiment 1 ν = 1 11.1
ν = 2 9.7 13.7
ν = 3 8.4 11.3 15.8
ν = 4 5.7 9.5 12.3 20.4
ν = 5 11.4 14.3 16.9 19.5 58.9

Experiment 3 ν = 1 11.7
ν = 2 8.1 12.4
ν = 3 9.2 12.2 16.6
ν = 4 5.5 9.3 12.0 20.2
ν = 5 11.4 14.3 17.0 19.5 58.9

Experiment 5 ν = 1 11.2
ν = 2 10.3 14.0
ν = 3 9.9 13.0 17.2
ν = 4 5.5 9.2 12.0 20.1
ν = 5 11.4 14.3 16.9 19.4 58.9

Experiment 7 ν = 1 11.6
ν = 2 8.5 12.7
ν = 3 9.1 12.2 16.5
ν = 4 5.5 9.2 12.0 20.2
ν = 5 11.4 14.3 17.0 19.6 58.9

• n = 1000 (or 500), that is, there are 1000 (or 500) spikes detected from the spike
train.

• m = 2n, where m is the number of pure noise observations Yj ’s [as in (5)]
obtained from the silent region of the spike train.

• The approximate μi’s (i.e., the projections of the spike shape vector onto the
first principal component α ∈ R

d ) of these neurons are presented in Table 2.

Table 3 gives the percentage of the time (out of 100 repetitions) that ν̂ = ν, the
true number of neurons producing the spike train. In the case n = 1000, m = 2000,
ν̂ does well, for example, for ν = 2, the percentage of the time ν̂ = ν is 97%. In
the case n = 500 and m = 1000, ν̂ does well for the scenarios 1 ≤ ν ≤ 4 but does
poorly for ν = 5.

REMARK. The Editor raised the following question: “would detection im-
prove if m/n were larger than 2/1?” The nature in which the sample sizes m,n

affect the accuracy of ν̂ is not a straightforward one. If n is held fixed and m is
allowed to increase, then the accuracy of ν̂ should improve. However, if n is also
allowed to increase, then pmax would likewise increase. This implies from (13) and
Condition (I) that ψZ(σpmax) will be harder to estimate because the latter is further
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TABLE 3
Frequency (%) of ν̂ = ν with standard error in parentheses for Experiments 1–8

n m ν = 1 ν = 2 ν = 3 ν = 4 ν = 5

Experiment 1 1000 2000 81 (3.9) 97 (1.7) 100 (0.0) 100 (0.0) 100 (0.0)
500 1000 97 (1.7) 100 (0.0) 100 (0.0) 100 (0.0) 10 (3.0)

Experiment 2 1000 2000 51 (5.0) 79 (4.1) 98 (1.4) 100 (0.0) 100 (0.0)
500 1000 65 (4.8) 99 (1.0) 100 (0.0) 100 (0.0) 22 (4.1)

Experiment 3 1000 2000 89 (3.1) 98 (1.4) 100 (0.0) 100 (0.0) 100 (0.0)
500 1000 91 (2.9) 100 (0.0) 100 (0.0) 100 (0.0) 5 (2.2)

Experiment 4 1000 2000 67 (4.7) 98 (1.4) 100 (0.0) 100 (0.0) 100 (0.0)
500 1000 59 (4.9) 100 (0.0) 100 (0.0) 100 (0.0) 21 (4.1)

Experiment 5 1000 2000 82 (3.8) 97 (1.7) 100 (0.0) 100 (0.0) 100 (0.0)
500 1000 94 (2.4) 99 (1.0) 100 (0.0) 100 (0.0) 6 (2.4)

Experiment 6 1000 2000 0 (0.0) 0 (0.0) 99 (1.0) 100 (0.0) 100 (0.0)

Experiment 7 1000 2000 88 (3.2) 100 (0.0) 100 (0.0) 100 (0.0) 100 (0.0)
500 1000 88 (3.2) 100 (0.0) 100 (0.0) 100 (0.0) 8 (2.7)

Experiment 8 1000 2000 0 (0.0) 0 (0.0) 100 (0.0) 100 (0.0) 100 (0.0)

out in the tail of the characteristic function. Thus, in order to estimate ψZ(σpmax)

accurately, a much larger sample of Y1, . . . , Ym is needed. Thus, doubling both
sample sizes m and n may not necessarily increase the accuracy of ν̂. However,
for sufficiently large m (depending on the value of n), the resulting ν̂ will improve
in accuracy.

EXPERIMENT 2. This experiment is identical to Experiment 1 except that,
more realistically, the oracle spike detector is not used. Instead, as described in
Section 4.2, we use the function find.spikes.with.template (with spike detection
threshold 2.25σ ) provided by SpikeOMatic to detect the spikes of the spike train.
Table 3 gives a summary of the percentage of the time that ν̂ = ν, the true number
of neurons producing the spike train. We observe that for moderately large sample
sizes n = 1000 and m = 2000, the accuracy of ν̂ is still reasonable though not as
high as in Experiment 1. This is due to the fact that spike detection is now not
error free. We note that the scenario ν = 1 with πcont ≈ 0.1 is unlikely to occur in
practice due to the refractory period of a neuron which prevents the occurrence of
overlapping spikes.

As a comparison, we shall now compute the SpikeOMatic estimate ν̂1 of ν.
Briefly, the SpikeOMatic software uses an EM algorithm to compute ν̂1 based on
a penalized likelihood function. The likelihood is a finite mixture of multivari-
ate normal distributions and the penalty is derived from the Bayesian information
criterion (BIC). This implies the assumption of Gaussian noise and no overlap-
ping spikes. Another point of note is that the SpikeOMatic software assumes at
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TABLE 4
Frequency (%) of ν̂1 for Experiments 2 and 3 with n = 1000 and m = 2000

ν̂1 = 1 ν̂1 = 2 ν̂1 = 3 ν̂1 = 4 ν̂1 = 5

Experiment 2 ν = 1 0 100 0 0 0
ν = 2 0 100 0 0 0
ν = 3 0 100 0 0 0
ν = 4 0 20 80 0 0
ν = 5 0 0 80 20 0

Experiment 3 ν = 1 0 100 0 0 0
ν = 2 0 100 0 0 0
ν = 3 0 70 30 0 0
ν = 4 0 0 100 0 0
ν = 5 0 0 100 0 0

least 2 neurons generating the spike train and, hence, ν̂1 is always ≥2. There are
2 major tuning parameters for the SpikeOMatic software. We take these to be
nb.samples.per.site = 3 and tolerance.factor = 3.5. The other parameters are set
as in the software tutorial 1 distributed with SpikeOMatic. The performance of ν̂1
appears to be rather robust to the choice of the 2 tuning parameters. Table 4 gives
the frequency (%) of ν̂1 for 10 repetitions of the spike train. In particular, when
ν = 2, the frequency of ν̂1 = ν is 100% and when ν = 3,4 or 5, the frequency of
ν̂1 = ν is 0%.

EXPERIMENT 3. In this experiment the noise is i.i.d. N(0,1). We assume that
the spikes are detected from the spike train without error:

• The proportion of overlapping spikes πcont = 0 or, equivalently, that there are
no overlapping spikes.

• n = 1000 (or 500) and m = 2n.
• The approximate μi’s of these neurons are presented in Table 2.

Table 3 gives the percentage of the time (out of 100 repetitions) that ν̂ = ν.
As a comparison, we shall now compute the SpikeOMatic estimate ν̂1 for

ν. We take the major 2 tuning parameters to be nb.samples.per.site = 3 and
tolerance.factor = 3.5. The other parameters are set as in the software tutorial 1
distributed with SpikeOMatic. Table 4 gives the frequency (%) of ν̂1 for 10 repeti-
tions of the spike train. In particular, when ν = 2, the frequency of ν̂1 = ν is 100%,
when ν = 3, the frequency of ν̂1 = ν is 30% and when ν = 4 or 5, the frequency
of ν̂1 = ν is 0%.

EXPERIMENT 4. This experiment is identical to Experiment 3 except that we
use the function find.spikes.with.template (with spike detection threshold 2.25σ )
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provided by SpikeOMatic to detect the spikes of the spike train. Table 3 gives the
percentage of the time (out of 100 repetitions) that ν̂ = ν.

EXPERIMENT 5. In this experiment the noise has the t5 distribution multiplied
by

√
3/5 (so as to have mean 0 and variance 1). We assume that the spikes are

detected from the spike train without error:

• The proportion of overlapping spikes πcont ≈ 0.1 (or 10%).
• n = 1000 (or 500) and m = 2n.
• The approximate μi’s (i.e., the projections of the spike shape vector onto the

first principal component α ∈ R
d ) of these neurons are presented in Table 2.

Table 3 gives the percentage of the time (out of 100 repetitions) that ν̂ = ν.

EXPERIMENT 6. This experiment is identical to Experiment 5 except that we
use the function find.spikes.with.template (with spike detection threshold 2.25σ )
provided by SpikeOMatic to detect the spikes of the spike train. Table 3 gives the
percentage of the time (out of 100 repetitions) that ν̂ = ν. Here the accuracy of ν̂ is
poor for ν = 1 or 2. This is almost certainly due to the heavy-tailed t5 distribution
presenting severe difficulties to the SpikeOMatic spike detection algorithm with
threshold set to 2.25σ .

EXPERIMENT 7. In this experiment the noise has the t5 distribution multiplied
by

√
3/5 (so as to have mean 0 and variance 1). We assume that the spikes are

detected from the spike train without error:

• The proportion of overlapping spikes πcont = 0.0, that is, there are no overlap-
ping spikes.

• n = 1000 (or 500) and m = 2n.
• The approximate μi’s of these neurons are presented in Table 2.

Table 3 gives the percentage of the time (out of 100 repetitions) that ν̂ = ν.

EXPERIMENT 8. This experiment is identical to Experiment 7 except that we
use the function find.spikes.with.template (with spike detection threshold 2.25σ )
provided by SpikeOMatic to detect the spikes of the spike train. Table 3 gives the
percentage of the time (out of 100 repetitions) that ν̂ = ν. As in Experiment 6, the
accuracy of ν̂ here is poor for ν = 1 or 2 and is due to the heavy-tailed t5 distri-
bution presenting severe difficulties to the SpikeOMatic spike detection algorithm
with threshold set to 2.25σ .
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4.5. Study summary. The 8 experiments indicate that for moderately large
sample sizes such as n = 1000 and m = 2000, ν̂ is capable of very good per-
formance if the noise is i.i.d. Gaussian. If the noise has a heavy-tailed distribution
such as the t5 distribution, ν̂ is still capable of very good performance if an oracle
(error free) spike detector is used. One reason for the good performance of ν̂ for
moderately large samples is that in all the experiments the first principal compo-
nent separates the spike shapes from one another as well as from pure noise very
well.

However, for smaller sample sizes such as n = 500 and m = 1000, ν̂ performs
reasonably well for 1 ≤ ν ≤ 4 if the noise is i.i.d. Gaussian but performs poorly for
ν = 5. This implies that the sample size n = 500 is too small for ν̂ to handle the
latter case well.

5. A real data example. This section considers two spike train data sets. Both
of these data sets are taken from Lewicki (1994). One data set is an actual 40-
second spike train recording. The other data set is a synthesized recording using
6 spike shapes estimated from the former data set. For each of the 2 data sets,
we shall compute and compare the estimates of the number of neurons generat-
ing the spike train by applying Lewicki’s software SUN Solaris OS version 1.1.8
[cf. Lewicki (1994)], SpikeOMatic version 0.6-1 [cf. Pouzat, Mazor and Laurent
(2002)] and our proposed method-of-moments estimator ν̂. For simplicity, let ν̂1
denote the estimate of ν given by SpikeOMatic and ν̂2 be corresponding to the
estimate given by the Lewicki software.

5.1. Synthesized data set. The spike shapes, the number of spikes from each
neuron and the number of overlapping spikes for the synthesized recording can be
found in Section 7 of Lewicki (1994). The true number of neurons ν for the syn-
thesized recording is 6. However, all three methods underestimate ν. In particular,
ν̂ = 4 while ν̂1 = ν̂2 = 5. A likely reason is that the two smallest spike shapes are
too close to each other for them to be identified as two distinct spike shapes (and
not one) by the 3 estimators. A graph of the 6 spike shapes is given in Figure 7 of
Lewicki (1994).

With reference to ν̂, we have set the tuning parameters to γthreshold = 1, σ =
0.1 and p = pmax as in Section 4. pmax turns out to be 18. SpikeOMatic is used
for spike detection and n = 746 spikes are detected. Table 5 lists the eigenvalues
λ1(M̂p) ≥ · · · ≥ λ19(M̂p) with λ5(M̂p) = 0.96 < γthreshold = 1. Thus, as it stands,
our estimate ν̂ misses returning the value 5 by a very narrow margin. Also, we
observe from Lewicki (1994) that πν−1 + πν ≤ 32/895 ≈ 0.036, which is rather
small. In fact, (pmax + 1)0.036 ≈ 0.68, which is way below γthreshold. Thus, if we
suspect that πν is this small, we should lower the value of γthreshold to below 1. For
example, if γthreshold is set to be 0.8 say, we shall obtain ν̂ = 5 for the synthesized
data set. However, reducing the value of γthreshold would, of course, increase the
chance of false positives too.
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TABLE 5
The eigenvalues in decreasing order computed from our algorithm for the two data sets

Synthesized recording 7.86 4.73 4.52 2.02 0.96 0.25 0.10 0.05 0.03 0.01
0.00 0.00 0.00 0.00 0.00 0.00 −0.02 −0.09 −1.42

Actual recording 6.64 3.83 1.59 1.17 0.86 0.67 0.48 0.33 0.20 0.14
0.11 0.07 0.05 0.01 −0.04 −0.11

5.2. Actual spike train data. When the 3 methods are applied to the actual
spike train data set, we obtain ν̂ = 4 while ν̂1 = 12 and ν̂2 = 9. Lewicki [(1994),
page 1020] inferred that the number of neurons ν generating the actual spike train
recording is still 6. Thus, it would appear that ν̂1 and ν̂2 have overestimated ν and
that they give rather different values of ν for the synthesized and actual data sets.
On the other hand, ν̂, with the tuning parameters as in Section 4, gives ν̂ = 4 as
in the synthesized data set. This shows that ν̂ is rather stable and is probably less
variable than ν̂1 or ν̂2. As in the discussion of Section 5.1, if we suspect that πν

is very small such that (pmax + 1)πν < 1, we should lower the value of γthreshold
in order to detect this spike shape. If we reduce the value of γthreshold to 0.8, we
obtain ν̂ = 5 (from the eigenvalues of Table 5).

We conclude this section by presenting the parameter settings for the three
methods. The parameters for Lewicki’s software are set as his default values for
the analysis of the synthesized recording. Here a spike is defined as the window
of measurements that are within 1.0 millisecond prior to the occurrence of the
peak and 4.0 milliseconds after the occurrence of the peak. Since the sampling
frequency is 20 kHz, there are 20 measurements before the peak and 80 measure-
ments after the peak.

The parameters for SpikeOMatic software are given in Table 6. For the detailed
explanation of the meaning of the parameters, we refer the reader to the SpikeO-
Matic manual which comes along with the software. We further note that the spike
length is chosen to be d = 100, the same as for Lewicki’s software, and n = 1447
spikes are detected with m = 2000.

With respect to ν̂, the spike detection procedure of SpikeOMatic is used. This
part of the parameter setting is the same as in Table 6. Here d = 100, spike detec-
tion threshold = 3.00σ and the other tuning parameters for ν̂ are the same as in
Section 4.

6. Concluding remarks. In conclusion, this article proposes a new estima-
tor ν̂ for estimating the number of neurons ν in a multi-neuronal spike train. ν̂ has
a number of advantages over alternative estimators for ν in the existing literature.
First, it is a method-of-moments estimator and uses trigonometric moment matri-
ces in its construction (unlike maximum likelihood estimators). As a result, the
assumptions needed for ν̂ are minimal. Indeed, the model (4) on which it is based
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TABLE 6
Parameter settings for SpikeOMatic

Parameter Value

template.length 160
threshold 3.0
sweep.length 100
peak.location 20
nb.noise.evt 2000
nb.samples.per.site 6
tolerance.factor 3.5
nb.clusters.min 2
nb.cluster.max 12
nb.iterations 25
nb.tries 20

is a nonparametric mixture distribution. (4) takes explicitly into account the pos-
sibility of overlapping spikes while no parametric assumptions are made on the
noise distribution or the overlapping spike distribution.

Second, we have managed to develop a rigorous nonasymptotic theory in sup-
port of ν̂. This theory is reasonably simple and transparent. In particular, it shows
that ν̂ is a strongly consistent estimator of ν under mild conditions. Also, perhaps
more importantly, the nonasymptotic error bounds of Theorems 1 and 3 provide
us with a way of setting the tuning parameters γthreshold, p and σ so as to ensure
that ν̂ performs well in practice. The latter is further justified by applying ν̂ to a
number of spike train simulations in Section 4 and to an actual spike train data set
in Section 5.

Finally, we have assumed independent noise (i.e., the ηi,k’s and η∗
l,j ’s of Sec-

tion 1) throughout this article. If the noise is a stationary and weakly dependent
process, Theorem 2 still holds (i.e., ν̂ is strongly consistent) as long as

1

n

n∑
i=1

e−i(j−k)Xi → Ee−i(j−k)X1,

(14)
1

m

m∑
l=1

e−i(j−k)Yl → Ee−i(j−k)Y1 ∀1 ≤ j, k ≤ p + 1,

almost surely as min(m,n) → ∞. We observe that (14) is a rather mild condition
and is satisfied by many weakly dependent processes.

APPENDIX

PROOF OF THEOREM 1. First suppose that i ∈ {1, . . . , ν}. We observe from
Lemma 3 below that λi(Mp,disc) = λi(B). Let B† = diag((p + 1)π1, . . . , (p +
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1)πν). Using Theorem A.37 of Bai and Silverstein (2009), we have
ν∑

i=1

[λi(B) − λi(B
†)]2 ≤

ν∑
j=1

ν∑
k=1

|Bjk − B
†
jk|2

= 2
∑

1≤j<k≤ν

πjπk

∣∣∣∣1 − ei(p+1)(μj−μk)

1 − ei(μj−μk)

∣∣∣∣
2

.

Thus,

|λi(Mp,disc) − (p + 1)πi | ≤
√√√√2

∑
1≤j<k≤ν

πjπk

∣∣∣∣1 − ei(p+1)(μj−μk)

1 − ei(μj−μk)

∣∣∣∣
2

.

Since Mp = Mp,disc +πcontMp,cont, we observe from Corollary 4.9 of Stewart and
Sun (1990) and Lemma 4 that

λi(Mp) ≥ λi(Mp,disc) + πcontλp+1(Mp,cont)

≥ (p + 1)πi + 2ππcont

{
min

0≤μ<2π

∞∑
j=−∞

fcont(μ + 2πj)

}

−
√√√√2

∑
1≤j<k≤ν

πjπk

∣∣∣∣1 − ei(p+1)(μj−μk)

1 − ei(μj−μk)

∣∣∣∣
2

,

λi(Mp) ≤ λi(Mp,disc) + πcontλ1(Mp,cont)

≤ (p + 1)πi + 2ππcont

{
max

0≤μ<2π

∞∑
j=−∞

fcont(μ + 2πj)

}

+
√√√√2

∑
1≤j<k≤ν

πjπk

∣∣∣∣1 − ei(p+1)(μj−μk)

1 − ei(μj−μk)

∣∣∣∣
2

.

This proves the first statement of Theorem 1. Next, suppose that i ∈ {ν+1, . . . , p+
1}. Then λi(Mp,disc) = 0. Using Corollary 4.9 of Stewart and Sun (1990) and
Lemma 4 again, we obtain the second statement of Theorem 1. �

LEMMA 2. Let m > n be positive integers and A be a m × n matrix with
complex-valued entries. Then the eigenvalues of AA∗ are the eigenvalues of A∗A
and (m − n) zeros where A∗ denotes the conjugate transpose of A.

PROOF. We observe from the singular value decomposition of A that A =
UDV ∗ where U is a m × m unitary matrix, D a m × n diagonal matrix with
nonnegative real numbers on the diagonal and V a n × n unitary matrix. Then
A∗A = V D∗DV ∗, and AA∗ = UDD∗U∗. Lemma 2 follows since D∗D and DD∗
are both diagonal matrices. �
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LEMMA 3. Let Mp,disc be as in (7). With the notation and assumptions of
Theorem 1, we have

λi(Mp,disc) = λi(B) ∀i = 1, . . . , ν,

λi(Mp,disc) = 0 ∀i = ν + 1, . . . , p + 1,

where B is a ν × ν Hermitian matrix defined by

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(p + 1)π1
√

π1π2
1 − ei(p+1)(μ1−μ2)

1 − ei(μ1−μ2)

√
π1π2

1 − ei(p+1)(μ2−μ1)

1 − ei(μ2−μ1)
(p + 1)π2

...
...

√
π1πν

1 − ei(p+1)(μν−μ1)

1 − ei(μν−μ1)

√
π2πν

1 − ei(p+1)(μν−μ2)

1 − ei(μν−μ2)

. . .
√

π1πν

1 − ei(p+1)(μ1−μν)

1 − ei(μ1−μν)

. . .
√

π2πν

1 − ei(p+1)(μ2−μν)

1 − ei(μ2−μν)

. . .
...

. . . (p + 1)πν

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

PROOF. Let

� =

⎛
⎜⎜⎜⎜⎜⎝

1 . . . 1
e−iμ1 . . . e−iμν

e−i2μ1 . . . e−i2μν

...
. . .

...

e−ipμ1 . . . e−ipμν

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

√
π1 0 . . . 0
0

√
π2 . . . 0

...
...

. . .
...

0 0 . . .
√

πν

⎞
⎟⎟⎟⎠ .

Then Mp,disc = ��∗ and B = �∗�. Lemma 3 follows from Lemma 2. �

LEMMA 4. Let Mp,cont be as in (7). With the notation and assumptions of
Theorem 1, we have

2π min
0≤μ<2π

∞∑
j=−∞

fcont(μ + 2πj)

≤ λp+1(Mp,cont) ≤ λ1(Mp,cont)

≤ 2π max
0≤μ<2π

∞∑
j=−∞

fcont(μ + 2πj).
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PROOF. Let a = (a1, . . . , ap+1)
′ ∈ C

p+1. Then

a∗Mp,conta

a∗a
=

∑p+1
k=1

∑p+1
j=1 [∫ 2π

0
∑∞

l=−∞ fcont(μ + 2πl)ei(k−j)μ dμ]aka
∗
j

a∗a

=
∫ 2π

0 |∑p+1
k=1 ake

ikμ|2 ∑∞
l=−∞ fcont(μ + 2πl) dμ∑

k |ak|2

= 2π
∫ 2π

0 |∑p+1
k=1 ake

ikμ|2 ∑∞
l=−∞ fcont(μ + 2πl) dμ∫ 2π

0 |∑k akeikμ|2 dμ
.

Thus, for an arbitrary a ∈ C
p+1 such that a∗a = 1,

2π min
0≤μ<2π

∞∑
j=−∞

fcont(μ + 2πj)

≤ a∗Mp,conta

≤ 2π max
0≤μ<2π

∞∑
j=−∞

fcont(μ + 2πj).

Since λ1(Mp,cont) = supa∈Cp+1,a∗a=1 a∗Mp,conta and λp+1(Mp,cont) =
infa∈Cp+1,a∗a=1 a∗Mp,conta, Lemma 4 is proved. �

PROOF OF THEOREM 2. We observe from the strong law of large numbers
that M̂p → Mp almost surely as min(m,n) → ∞. This implies that λν+1(M̂p) <

γ
√

p + 1 < λν(M̂p) almost surely as min(m,n) → ∞. �

PROOF OF LEMMA 1. Using Markov’s inequality, we observe for � =
1, . . . , p that

P(��,ε) = P

(∣∣∣∣∣ 1

m

m∑
j=1

(e−i�Yj − Ee−i�Y1)

∣∣∣∣∣ ≥ ε|E(e−i�Y1)|
)

≤ E[|m−1 ∑m
j=1(e

−i�Yj − Ee−i�Y1)|k]
[ε|E(e−i�Y1)|]k ∀k ∈ Z

+.

Taking k = 3,4, we obtain

P(��,ε) ≤ min
{

6

m2[ε|E(e−i�Y1)|]4

(
1 + O

(
1

m

))
,

42

m3[ε|E(e−i�Y1)|]6

(
1 + O

(
1

m

))}
. �
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PROOF OF THEOREM 3. Using Theorem A.37 of Bai and Silverstein (2009),
we have

E�c
p+1∑
i=1

[λi(M̂p) − λi(Mp)]2

≤ E�c
p+1∑
j=1

p+1∑
k=1

|(M̂p)j,k − (Mp)j,k|2

= 2
p∑

j=1

(p − j + 1)E�c
∣∣∣∣n

−1 ∑n
i=1 e−ijXi

m−1 ∑m
l=1 e−ijYl

− E(e−ijX1)

E(e−ijY1)

∣∣∣∣
2

= 2
p∑

j=1

(p − j + 1)

[
E�c

∣∣∣∣n
−1 ∑n

i=1 e−ijXi

m−1 ∑m
l=1 e−ijYl

− E(e−ijX1)

m−1 ∑m
l=1 e−ijYl

∣∣∣∣
2

+ E�c
∣∣∣∣ E(e−ijX1)

m−1 ∑m
l=1 e−ijYl

− E(e−ijX1)

E(e−ijY1)

∣∣∣∣
2]

(15)

= 2
p∑

j=1

(p − j + 1)

[
E�c

∣∣∣∣n
−1 ∑n

i=1 e−ijXi

m−1 ∑m
l=1 e−ijYl

− E(e−ijX1)

m−1 ∑m
l=1 e−ijYl

∣∣∣∣
2

+ |E(e−ijX1)|2E�c
∣∣∣∣ 1

m−1 ∑m
l=1 e−ijYl

− 1

E(e−ijY1)

∣∣∣∣
2]

≤ 2
p∑

j=1

(p − j + 1)

[
E|n−1 ∑n

i=1 e−ijXi − E(e−ijX1)|2
(1 − ε)2|E(e−ijY1)|2

+ ε2|E(e−ijX1)|2
(1 − ε)2|E(e−ijY1)|2

]

≤ 2

(1 − ε)2

p∑
j=1

(p − j + 1)

[
1

n|E(e−ijY1)|2 + ε2
]
.

�
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