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Based on a data set obtained in a dental longitudinal study, conducted
in Flanders (Belgium), the joint time to caries distribution of permanent first
molars was modeled as a function of covariates. This involves an analysis
of multivariate continuous doubly-interval-censored data since: (i) the emer-
gence time of a tooth and the time it experiences caries were recorded yearly,
and (ii) events on teeth of the same child are dependent. To model the joint
distribution of the emergence times and the times to caries, we propose a de-
pendent Bayesian semiparametric model. A major feature of the proposed ap-
proach is that survival curves can be estimated without imposing assumptions
such as proportional hazards, additive hazards, proportional odds or acceler-
ated failure time.

1. Introduction. The past three decades have witnessed a dramatic decline
in the prevalence of dental caries in children in countries of the Western World
[De Vos and Vanobbergen (2006)]. However, the disease has now become concen-
trated in a small group of children, with the majority unaffected; about 10-15% of
the children now experience 50% of all caries lesions and 25-30% suffer 75% of
lesions [Marthaler, O’Mullane and Vrbic (1996); Petersson and Bratthall (1996)].
The most likely explanation for the difference in oral health seems to be socio-
economic environmental factors and it occurs early in childhood [Willems et al.
(2005)]. Therefore, to improve dental health, early identification of groups at a
particular risk of developing caries becomes essential. In this paper we present a
Bayesian analysis of a longitudinal data set, gathered in the Signal-Tandmobiel®
study, to investigate the relationship between some potential exposure variables
and the emergence and development of caries in permanent teeth.

The Signal-Tandmobiel® study is a 6-year longitudinal oral health study in-
volving children from Flanders (Belgium) and conducted between 1996 and 2001.
Dental data were collected on gingival condition, dental trauma, tooth decay, pres-
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ence of restorations, missing teeth, stage of tooth eruption, orthodontic treatment
need, etc. Additionally, information on oral hygiene and dietary behavior was col-
lected from a questionnaire completed by the parents. The children were examined
annually during their primary school time by one of sixteen trained and half yearly
calibrated dental examiners. More details on the Signal-Tandmobiel® study can be
found in Section 4.1 and in Vanobbergen et al. (2000). A primary objective of the
investigation is to assess the association of some covariates with the emergence
and development of caries in permanent teeth. In particular, we are interested in
studying the effect of the age at start brushing (in years) and of deciduous sec-
ond molars health status [sound/affected; teeth 55, 65, 75, 85, respectively, see
Figure 1a] on caries susceptibility of the adjacent permanent first molars [teeth
number 16, 26, 36, 46, see Figure 1b]. Additionally, we considered the impact of
gender (girl/boy), presence of sealants in pits and fissures of the permanent first
molar (none/present), occlusal plaque accumulation on the permanent first mo-
lar (none/in pits and fissures/on total surface) and reported oral brushing habits
(not daily/daily). Note that pits and fissures sealing is a preventive action which is
expected to protect the tooth against caries development. The information on oc-
clusal plaque accumulation, presence of sealants in pits and fissures and reported
oral brushing habits was obtained at the examination where the presence of the
permanent first molar was first recorded.

The response of interest is the time to caries development on the permanent
dentition which corresponds to the time from tooth emergence to onset of caries.
Due to the setup of the study (annual visits of dentists), the onset time and the
failure time could only be recorded at regular intervals and observations on both
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F1G. 1. European notation for the position of (a) deciduous (primary); and (b) permanent teeth.
Maxilla = upper jaw, mandible = lower jaw. In (a) the fifth and the eight quadrants are at the
right-hand side of the subject, and the sixth and the seventh quadrants are to the left. In (b) the
first and the fourth quadrants are at the right-hand side of the subject, and the second and the third
quadrants are to the right.



2128 JARA, LESAFFRE, DE IORIO AND QUINTANA

Observed failure time (’UL U}

Observed onset time (uL U] ijs Vij

ijs Wi

True onset time 710 True failure time 77

True event time 7,

1 i 1

Examinations: Sil1 Sil2 Sil3 Sila Sil5 Sil6

FI1G. 2. An example of doubly interval censoring. A scheme of a doubly-interval-censored observa-
tion obtained by performing examinations to check the event status at times sjj1, ..., Sjje- The onset
time is left-censored at time ”iUl = $i11, that is, interval-censored in the interval ("‘le’ "‘zUl] = (0, si;11,

the failure time is interval-censored in the interval (vi]jl, vil,]l] = (515, Si16]-

events were, therefore, interval-censored. A graphical illustration of a possible evo-
lution of a tooth is shown in Figure 2. This type of data structure, often referred
to as doubly-interval-censored failure time data, is common in medical research,
especially in the context of the analysis of acquired immunodeficiency syndrome
(AIDS) incubation time, the time between the human immunodeficiency virus in-
fection and the diagnosis of AIDS.

Several approaches have been proposed over the past few years for the analy-
sis of doubly-interval-censored data. De Gruttola and Lagakos (1989) suggested
a nonparametric maximum likelihood (NPML) estimator of univariate survival
functions. Alternative methods were subsequently given by Bacchetti and Jew-
ell (1991), Gémez and Lagakos (1994), Sun (1995) and Gémez and Calle (1999).
Kim, De Gruttola and Lagakos (1993) generalized the one-sample estimation pro-
cedure of De Gruttola and Lagakos (1989) to a Cox proportional hazards (PH)
model. Their method, however, needs to discretize the data. Cox regression with
the onset time interval-censored and the event time right-censored has been consid-
ered by Goggins, Finkelstein and Zaslavsky (1999), Sun, Liao and Pagano (1995)
and Pan (2001). To simplify the analysis, all of these methods make a rather un-
realistic independence assumption between the onset and time-to-event variables
[see, e.g., Sun, Lim and Zhao (2004)].

For the analysis of multivariate doubly-interval-censored survival data, frailty
models were discussed in Komarek et al. (2005) and Komarek and Lesaffre (2008)
considering versions of the Cox PH and accelerated failure time (AFT) models,
respectively. In the latter case, each distributional part is specified in a flexible way
as a penalized Gaussian mixture with an overspecified number of mixture compo-
nents and under the assumption of independence between the onset and time-to-
event variables. These models provide useful summary information in the absence
of estimates of a baseline survival distribution and may be formulated in a para-
metric or semi-parametric fashion. However, under these models the regression
coefficients describe changes in individual responses due to changes in covariates,
they induce a particular association structure for the clustered variables, and rely
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heavily on the (conditional or subject-specific) assumptions of PH or AFT in the
relationship between the covariates and the survival times. While the PH model
assumes the covariates act multiplicatively on a baseline hazard function, the AFT
model assumes that covariates act multiplicatively on arguments of the baseline
survival function. Although other type of models, such as additive hazards (AH)
or proportional odds (PO), could be considered in a frailty model context, all these
assumptions may be considered too strong in many practical applications. For in-
stance, under these models survival curves from different covariate groups cannot
cross which can be unrealistic in some applications [see De Iorio et al. (2009)].
This issue is particularly relevant for doubly-interval-censored data where the de-
gree of available information to perform diagnostic techniques is rather reduced
due to the censoring mechanism.

In this paper we discuss a Bayesian semiparametric approach for the analy-
sis of multivariate doubly-interval-censored data where the dependence across
sub-populations, defined by different combinations of the available covariates,
is introduced without assuming independence between the onset and time-to-
event variables, without requiring data discretization, and any of the commonly
used assumptions for the inclusion of covariates in survival models. We extend
recent developments on dependent nonparametric priors, initially proposed by
MacEachern (1999, 2000), to provide a framework for modeling multivariate
doubly-interval-censored data where the resulting survival curves have a mar-
ginal (or population level) interpretation and are not subject-specific. It must be
pointed out that the dental data has been analyzed before. However, the previous
approaches were deficient in that either the doubly-interval-censored nature was
not taken into account [Leroy et al. (2005)] or restrictive in the sense that the focus
was on conditional interpretation of the effects of the covariates via frailty models
and relying on the AFT or PH assumption [Komarek et al. (2005); Komarek and
Lesaffre (2008)]. Overcoming these problems largely motivates the developments
presented in this paper.

The rest of the paper is organized as follows. In Section 2 we introduce the
proposed model, which is based on the two parameter Poisson—Dirichlet process,
and discuss its main properties. Section 3 presents the analysis of simulated data
which illustrate the main advantage of the proposed model. Section 4 describes the
analysis of the Signal-Tandmobiel® study. A final discussion section concludes the
article.

2. The model.

2.1. Survival regression framework. Let TiQ and Tlf, i=1,....m, j=
1,...,n, be continuous random variables defined on [0, o0) denoting the true
chronological onset and event times for the jth measurement of the ith experi-
mental unit, respectively, and let T”T = Tlf — Tl? be the true time-to-event. For
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example, in our case TUT is the true time to caries for the jth tooth of the ith child,

with TZJO denoting the true emergence time and Tlf the age of caries development.
Assume that for each of the m experimental units we record the p-dimensional
and g-dimensional covariate vectors Xg e X9 c R? and xl-Tj e XT c R? associ-
ated to the onset time TijO and to the time-to-event Tl.]T., respectively. Let Tl.O =

o O/ E _ E Ev/ T _ T T/ o o' T’/
(T‘ll”]—'ll’l)/’ Tl _/(’1';1,,7;”),1,‘1 _(’I‘l,l”]-'ln)’Tl_(Tl 7Tl)7
Xl-O = diag(xg e Xg ), Xl-T = diag(xiT1 e XiTn) and X; = diag(XiO, Xl.Tn), i =
1,...,m.

In order to model the joint distribution of the true chronological onset times
and true time-to-events T; as a function of covariates, X;, we consider a mixture

model. Specifically, we assume T; |X; - X, i=1,...,m, with
@.1) fx (1%, Gx) = [ Kan Gl B dGx, (),

where ko, (-|p, X) denotes a 2n-variate density on ]Ri” with location g and un-
structured scale matrix X taking into account the association among variables
of the same experimental unit, respectively, and where the mixing distributions
Gx,, ..., Gx, € {Gx:X € X} are dependent probability measures. The set of de-
pendent probability measures {Gx : X € X'} is defined in the complete space of the
predictors X and the degree of dependence among the elements is governed by
the value of the covariates X. If Gx were indexed by a finite-dimensional vector of
hyper-parameters, for example, normal moments, then the model would reduce to a
traditional parametric hierarchical model. In contrast, in a nonparametric Bayesian
approach, every element in the set {Gx :X € X'} is a random probability measure
and an appropriate prior probability model F for the complete set of unknown
distributions indexed by the set of covariates {Gx:X € X} is specified. In other
words, F is a distribution over related probability distributions

(2.2) [Gx:X e X)|F ~F.

Here we focus on the class of discrete random probability measures that can be
represented as

(2.3) Gx(B) =) widp(x) (B),
=1

where B is a measurable set, w1, w;, ... are random weights satisfying 0 < w; < 1
and P(3°72, oy = 1) =1, and where 39(x),(-) denotes a Dirac measure at the
random locations 6 (X)1, 6(X)2, ..., which are assumed to be independent of the
{wr1}1=1 collection. We discuss specific choices for the random probability mea-
sure F in (2.2) in the next sections. To better explain our proposal, we start with a
review of the construction of priors over related distributions.
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2.2. Priors over related distributions. The problem of defining priors over
related random probability distributions has received increasing attention over
the past few years. MacEachern (1999, 2000) proposes the dependent Dirichlet
Process (DDP) as an approach to define a prior model for an uncountable set
of random measures indexed by a single continuous covariate, say, x {G,:x €
X C R}. The key idea behind the DDP is to create an uncountable set of Dirichlet
Processes (DP) [Ferguson (1973)] and to introduce dependence by modifying the
Sethuraman’s (1994) stick-breaking representation of each element in the set. If G
follows a DP prior with precision parameter M and base measure G, denoted by
G ~ DP(MGy), then the stick-breaking representation of G is

(2.4) G(B)=) by (B),
=1

where 6//Go " Gy and @ = ViTT;(1 — V), with Vi[M " Beta(1, M).
MacEachern (1999, 2000) generalizes (2.4) by assuming the point masses 6 (x);,
[=1,..., to be dependent across different levels of x, but independent across /.
This approach has been successfully applied to ANOVA [De Iorio et al. (2004)],
survival [De Iorio et al. (2009)], spatial modeling [Gelfand, Kottas and MacEach-
ern (2005)], functional data [Dunson and Herring (2006)], time series [Caron et al.
(2008)] and discriminant analysis [De la Cruz, Quintana and Miiller (2007)]. Moti-
vated by regression problems with continuous predictors, Griffin and Steel (2006)
and Duan, Guindani and Gelfand (2007) developed models where the dependence
is introduced by making the weights dependent on covariates.

Alternatives to these approaches include incorporating dependency by means
of weighted mixtures of independent random measures [Miiller, Quintana and
Rosner (2004); Dunson and Park (2008)]. This approach was originally proposed
by Miiller, Quintana and Rosner (2004), motivated for the problem of borrowing
strength across related submodels. For regression problems with continuous pre-
dictors, Dunson and Park (2008) proposed a countable mixture where the weights
depend on the covariates through the introduction of a bounded kernel function
in the stick-breaking construction of the weights. The latter approach requires the
choice of a metric for the covariate values and, therefore, is not naturally extended
to include factors and continuous predictors jointly in the model.

We build our proposal on the construction introduced in De Iorio et al. (2004)
and De Iorio et al. (2009) because it is a natural approach to introduce depen-
dence on both factors and continuous covariates which are commonly of inter-
est in survival models. We consider the class of discrete Linear Dependent (LD)
models defined as follows. For any given value of the covariates X € X, in the
notation of our motivating problem, the 2n-dimensional atoms in the mixing
distribution Gx(-) = > 72, w8g(x), () follow linear (in the parameters) models
0(X); = XB;, where the B;’s represent n(p + ¢)-dimensional vectors of regres-
sion coefficients. Therefore, in the dependent mixture model given by expression
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(2.1), P(p = 60(X); = XB;) = w; and the dependence is introduced in the point
mass locations #(X); through a linear model, where the regression coefficients

B, are i.i.d. random vectors from a distribution G, ; L Gy. For simplicity of
explanation, consider the case of n = 1 and an ANCOVA type of design matrix

1 V0o 0 0
X_(001vz)’

where V is an indicator variable and Z is continuous. For example, V could be the
gender indicator and Z the age at start brushing. In the LD model the dependence
across the random distributions is achieved by imposing a linear model on the point
masses

B _ Bu+ BaV
0(X); =XB; = <,331 + BuV +,3512)'

As in a standard linear model, B1; and B3; can be interpreted as intercepts for the
point masses associated to the onset time and to the time-to-event, respectively,
while fy; and B4; are the main effects of gender for the onset and time-to-event,
respectively, and Bs; can be interpreted as a slope coefficient associated to the
age at start brushing for the time-to-event. Note that the linear specification is
highly flexible and can include standard nonlinear transformations of the contin-
uous predictors, for example, additive models based on B-splines [see, e.g., Lang
and Brezger (2004)], as well as linear forms in the continuous predictors them-
selves.

2.3. The proposal. In this paper we extend the DDP framework to a construc-
tion that is based on the general class of Poisson—Dirichlet (PD) processes [see,
e.g., Pitman (1996) and Pitman and Yor (1997)]. The PD processes belong to the
class of species sampling models [see, e.g., Pitman (1996)] and admit the DP prior
as an important special case. The PD process can also be defined as in expres-
sion (4), where the random weights w; are independent for the 6;’s and the 6; are
i.i.d. from a distribution Go. The weights still admit a stick-breaking representa-

tion w; = V; ]_[j<l(1 — V), but in this case V; b Beta(l — a, b + ja), where
eithera = —«x <0and b = ¢k, forsomex >0and ¢ =2,3,...,or0<a < 1 and

b > —a. We restrict our attention to the parameter space A = {(a,b) € R?:0 <
a < 1,b > —a} because this is large enough to include two important special cases.
When a =0 and b = M, Ferguson’s DP(M Gg) follows. Whena=y,0 <y <1,
and b =0, the PD(y, 0) yields a measure whose random weights are based on a
stable law with index y. The DP and stable law are key processes because they
represent the canonical measures of the PD process [Pitman and Yor (1997)].

It is now straightforward to extend the Linear Dependent framework to the PD
process assuming a linear model for the atoms of the process. In this way we can
define a model for related probability distributions of the form

(2.5) {Gx:X € X}|a, b, Go ~ LDPD(a, b, Gy),
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where LDPD(a, b, G) refers to a Linear Dependent PD prior, with parameters
a, b, and Gg. An appealing property of the LDPD survival model given by ex-
pressions (2.1) and (2.5) is that it can be understood on the basis of an equivalent
model reformulation as a mixture of multivariate AFT regression models. Given
a particular matrix of covariates X € X, the vector of kernel locations p in the
mixture model (2.1) takes the value X8, where the mixture is defined with respect
to the regression coefficients 8. In other words, the model can be alternatively
formulated by defining the mixture of multivariate regression models,

2.6) ACIE.G) = / ko (-1XB. £)dG ()
forall X € X, and
2.7) Gla,b, Gy~ PD(a, b, Gy).

The discrete nature of the PD realizations leads to their well-known clustering
properties. The choice of parameters a and b in the PD process controls the clus-
tering structure [Lijoi, Mena and Priinster (2007b)]. Given m observations, when
a =0 (i.e., a DP) the number of clusters n*(m) is a sum of independent indicator
variables, which implies n*(m)/logm — b almost surely and n*(m) is asymptot-
ically normal [Korwar and Hollander (1973)]. Under the model with 0 <a < 1
and b > —a the sequence {n*(m)} is an inhomogeneous Markov chain such that
n*(m)/m® — S almost surely, for a random variable S with a continuous density
on (0, co) depending on (a, b) [Pitman and Yor (1997)]. The asymptotic behavior
of the distribution of the number of clusters indicates that a general PD model in-
creases as m® which is much faster than the logarithmic rate of the DP model. In
general, values of a close to 1 favor the generation of a larger number of clusters.

Besides the clustering structure implied by the extra a parameter in the PD
process, its role can be also understood when the distribution of PD realizations is
applied to a partition of the space of interest. In particular, for measurable sets B,
B; and B, with B1 N By = &, it follows that [Carlton (1999)]

] _
(2.8) Var(G(B)) = Go(B)(1 — Go(B))(b +Cll)
and
1 _
(2.9) Cov(G(B1), G(By)) = —Go(31>G0(32)<b +cll)

Therefore, the extra a parameter controls the variability and covariance of disjoint
sets of the PD realizations. When a — 1, G is highly concentrated around Gy
and the covariance between disjoint sets is small. When a = 0 we recover the
corresponding expressions for the DP. Note that the correlation between G (Bj)
and G (B3) does not depend on the parameter (a, b) and, therefore, is the same as
the one arising from the DP model.
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To date, most practical implementations of PD processes have considered the
parameters a and b as fixed at user-specified values [see, e.g., Ishwaran and James
(2001)], fixed at empirical Bayes estimates [see, e.g., Lijoi, Mena and Priinster
(2007a)], or explored the effect of different combinations of fixed values for these
parameters on the inferences [see, e.g., Navarrete, Quintana and Miiller (2008)].
Lijoi, Mena and Priinster (2008), on the other hand, proposed independent discrete
uniform priors with support points {0.01,0.02, ...,0.99} and {0, 1, ..., 2000} for
a and b, respectively. Here we allow a and b to be random, having continuous
random probability distributions supported on the restricted parameter space under
consideration. Moreover, we allow a to be zero with positive probability in order
to test whether the data arose from LDDP versus a more general LDPD process
using a Bayes factor. This additional flexibility can be incorporated at essentially
no additional computational cost.

2.4. The hierarchical representation. So far, we have focused on modeling
the joint distribution of the survival times of interest, namely, the true chronolog-
ical onset times TZJO and true times-to-event TlT However, in our setting the ob-
L
ij

E L U7.; _ L L
and {Tij € (vij,vl.j].z =1,....,m,j=1,...,n}, where Ui and v

U
Viis
ical onset, TijO, and event time, Tlf, for observation j from experimental unit
i were observed, respectively. Under the assumption of noninformative censor-

served data are given by the events {Tl-JO € (u ufj]:i =1,....m,j=1,...,n},
L
ij’
represent the lower and upper limits of the intervals where the chronolog-

and ug and

ing, we define a model for the events AI.O = {Ti;) € (u{}, u%]:j =1,...,n} and
AZ.E = {Tif € (viLj, vl-l]]-] :j =1,...,n}, by introducing latent vectors TiO and TlE.
We assume

(2.10) (T2, TE)|hx, ™ by,

with ax, (T2, TE|X, G) = fx,(T?, TE — T?|%, G) and where fx, (|, G) is
defined as in (2.6). Notice that a choice of the continuous kernel k defines the
model. A multivariate log-normal distribution is convenient for practical reasons.
Let z; = (log Ti?, ...,log Tig, log TE ..., log Tig)’ denote the logarithmic trans-
formation of the true chronological onset times and true times-to-event such that

2n
@1  fx,(Ti|%,G) =/<N2n(zi 1X:8. ) [] n;1> dG(p),
j=1

where Ny, (-|p, X) refers to a 2n-dimensional normal distribution with mean p
and covariance matrix X. The mixture model fx, can be equivalently written as a
hierarchical model by introducing latent variables 87 such that

i.n.d.
2.12) z|B5 N Ny (XiBE, X)),
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iid

(2.13) ,BT,...,ﬁ:llG ~' G
and
(2.14) Gla,b, Gy~ PD(a, b, Go),

where the baseline distribution G is assumed to be n(p + ¢)-dimensional normal
distribution Go(B) = Ny(p+q)(m, S).

2.5. Some properties. An important property of the proposed model given by
expressions (2.11)—(2.14) is that the complete distribution of survival times is al-
lowed to change with values of the predictors (including properties such as skew-
ness, multimodality, quantiles, etc.) instead of just one or two characteristics, as
implied for many commonly used survival models. However, we make explicit the
dependence of some functionals of interest of the distribution of the event times
on the covariates in order to compare them to the corresponding expression arising
from the commonly used models. The implied marginal mean, hazard function and
cumulative distribution (CDF) function for coordinate j in the vector T;, T;;, as
functions of the associated vector of the design matrix X;, x;;, are given by

o
(2.15) E(T;jlxij) =Y w exp{x];B; +0.557},
=1

L2101 fo 02 (exp{=xX;;B/}1)

(2.16) hyox, (1) =
j1Xij FTij|Xij (t)
and
o0
(2.17) Frjix; () =)y FO’OJ; (exp{—x;;8,}1),
=1

respectively, where f, ,2 and F{ ;2 refers to the density and CDF of a lognor-
mal distribution with mean 0 and variance o2, and 012 = X ;. These expressions
show the additional flexibility associated to the proposed model. For instance, in
contrast to a simple AFT survival model based on the lognormal distribution,
the mean function of our proposal given by expression (2.15) is a convex com-
bination of exponential functions. Furthermore, the implied CDF given by ex-
pression (2.17) is a convex combination of CDF’s arising under the AFT model,
Frx,; (1) = Foygg(exp{—x; ; B}t), where covariates act multiplicatively on argu-
ments of the baseline survival function. This simple fact induces an important
property of our proposal, namely, that survival curves are allowed to cross for
different values of a predictor, which is not possible under the AFT assumption.
Other commonly used models such as PH, AH and PO will also fail to capture
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this behavior. Under the PH, AH and PO models, the dependence of the CDF on
predictors is given by

1-— FTU|X'J (t) = {1 — I?Ovaj2 (t)}exp{xijﬂ}’

1-— FTij|Xij (t) = {1 - Foyo-jz(t)}exp{_xéjﬂt}

and
1= Frx; () 1= Foq2®
P = *—exp(x' B},
Tij1xi; (1) FO,U%(t)

respectively. Notice that this constraint associated to the commonly used models
remains if Foo; is modeled in a nonparametric manner and/or if the linear form
x;j B is replaced for a more general function m(X;;). Although some fixes have
been proposed in the context of PH models for this unappealing property, for exam-
ple, the inclusion of interactions with time or stratification, our modeling approach
has proved to be a more flexible alternative. We refer to De lorio et al. (2009) for
a thorough comparison in the context of univariate (not doubly censored) survival
data.

2.6. Prior distributions and MCMC implementation. For a and b we consider
joint prior distributions of the kind p(a, b) = p(a) p(bla), where p(a) is a mixture
of point mass at zero and a continuous distribution on the unit interval (0, 1) and
p(bla) is a continuous distribution supported on (—a, 0o). More specifically, we
assume

(2.18) aln, g, @ ~ A8o(-) + (1 — A) Beta(-|arg, 1)
and
(2.19) bla, up, op ~ N(up, op)I (—a, 00),

where 0 < A < 1, and Beta(-|ag, 1) refers to a beta distribution with parameters
oo and o1. This modeling strategy allows us to explicitly compare a DP model
versus an encompassing PD alternative. Notice that this is an important compo-
nent because the evaluation of any other model comparison criteria would re-
quire the computation of a highly complex area under the multivariate normal
distribution which is difficult to be performed in practice. Finally, to complete
the model specification, we assume independent hyper-priors m ~ Ny, (p44)(1, Y),
S~ IW,p+q)(y,T), and X ~ IWp, (v, R), where I W, (v, ) denotes a 2n-
dimensional inverted-Wishart distribution with degrees of freedom v and scale
matrix 2.

The hierarchical representation of the model allows straightforward posterior
inference with Markov Chain Monte Carlo (MCMC) simulation. As in the con-
text of standard DP models, two different kinds of MCMC strategies could be
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considered for computation in the LDPD model: (I) to marginalize out the un-
known infinite-dimensional distributions [see, e.g., Ishwaran and James (2003) and
Navarrete, Quintana and Miiller (2008)] or (II) to employ a truncation to the stick-
breaking representation of the process [see, e.g., Ishwaran and James (2001)]. In
the case (1), several alternative algorithms could be considered to sample the clus-
ter configurations: (I.a) via a Gibbs scheme through the coordinates [see Navarrete,
Quintana and Miiller (2008) for a discussion in the PD context] or (I.b) to adapt
reversible-jump-like algorithms [see, e.g., Dahl (2005)] to the PD context. Func-
tions implementing these approaches were written in a compiled language and
incorporated into the R library “DPpackage” [Jara (2007)]. A complete descrip-
tion of the full conditionals and algorithms is available in the supplemental article
[Jara et al. (2010a)].

3. An illustration using simulated data. To validate our approach, we con-
ducted the analysis of real-life and simulated data sets. The results of the real-life
data analysis are reported in the supplemental article [Jara et al. (2010b)]. The
simulated data sets mimic to a certain extent the Signal-Tandmobiel® data. We
consider one onset time Tio and one time-to-event time TiT for m = 500 subjects.
We assume a binary predictor and 250 subjects in each level (groups A and B).
Different distributions were assumed for each level of the predictor such that

10g(T0. T, ... 1og(Ty, T fa =" fa
and
10g(T2,. T, ... 1og(TGy. Tho) £ " fp.

Two scenarios for the distributional parts of the model were considered. In sce-
nario I, a mixture of two bivariate lognormal distributions was assumed for group
A while a bivariate lognormal distribution was assumed for group B. An impor-
tant characteristic of scenario I is the bimodal behavior of the distribution of the
onset time and time-to-event in group A. In group B, a unimodal behavior for the
distribution of both variables was assumed. In scenario II, mixtures of bivariate
lognormal distributions were assumed for both groups. However, the components
of the mixtures were specified in such a way that, for group A, the onset times fol-
low a bimodal distribution and the time-to-events follow a unimodal distribution.
In group B, the reverse behavior was assumed, namely, the onset times follow a
unimodal distribution while the time-to-events a bimodal distribution.

In both scenarios and variables of interest, the survival curves for both groups
cross. The true distributions in each scenario are given next:

e Scenario I: Mixture model for group A—Single model for group B.
_ 1.80 —3[5.00 2.50
fA:O'SXNZ([OJS}’IO [2.50 300])

2407 | ,-3[250 1.25
4+ 0.5 x N> <[3.00] ;10 [1.25 100 i|)
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_ 2.1 _»[3.24 8.10
fB:NZ([z.z]’lo [8.10 64 D

e Scenario II: Mixture model for both groups A and B.

B 1.8 —3[5.50 2.50
fA=O.5XN2<|:2_2]’10 [2.50 640D

247 2250 1.25
+0'5XN2<[22]10 3[125 640])

B 2.10 _»2[3.24 8.10
fB=O.5XN2<|:0'75]’10 [8,10 30.00:|)

105 x Ny ({2.10} 1073 [32.4 1.25]> .

and

and

0.75 1.25 100

The true onset and event times were interval-censored by simulating the visit times
for each subject in the data set. The first visit was drawn from an N (7, 0.22) dis-
tribution. Each of the distances between the consecutive visits was drawn from an
N(1,0.052) distribution.

The LDPD model was fitted to both simulated data sets using the following
values for the hyper-parameters: A = 0.5, g = a1 =1, up =10, 0, =200, v =4,
Q=DL,y=5T=1L,n=04 and ¥ = 100L4. In each analysis 4.02 millions of
samples of a Markov chain cycle were completed. Because of storage limitations
and dependence, the full chain was subsampled every 200 steps after a burn-in
period of 20,000 samples, to give a reduced chain of length 20,000.

Figures 3 and 4 display the true and estimated survival curves for the onset and
time-to-event under scenarios I and II, respectively. The predictive survival func-
tion closely approximated the true survival functions, which were almost entirely
enclosed in pointwise 95% highest posterior density (HPD) intervals. We note that
these results are for one random sample from two particular densities, and these
conclusions should not be overinterpreted. Nonetheless, these examples do show
that our proposal is highly flexible and is able to capture different behaviors of the
onset and time-to-event survival functions. The examples also show that when a
parametric model is appropriated, the proposed model does not overfit the data.

4. The Signal-Tandmobiel® data.

4.1. The Signal-Tandmobiel® study and the research questions. For this
project 4468 children were examined on a yearly basis during their primary school
time (between 7 and 12 years of age) by one of sixteen dental examiners. Sam-
pling of the children was done according to a cluster-stratified approach with 15
strata. A stratum consists of a particular combination of one of the five provinces in
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F1G. 3. Simulated data—Scenario 1: Estimated survival functions for the onset and time-to-event
times for the group A are displayed in panels (a) and (c), respectively. Estimated survival functions
for the onset and time-to-event times for the group B are displayed in panels (b) and (d), respectively.
The posterior means (solid lines) are presented along the pointwise 95% HPD intervals. The true
functions are presented in dashed lines.

Flanders with one of the three school systems. Schools were selected such that all
children had equal probability of being selected and for each school all children of
the first class were examined. Clinical data were collected by the examiners based
on visual and tactile observations (no X-rays were taken), and data on oral hygiene
and dietary habits were obtained through structured questionnaires completed by
the parents.

The primary interest of our analysis is to study the relationship between
age at start brushing (in years) and deciduous second molars health status
(sound/affected) with caries susceptibility of the adjacent permanent molars. Here,
“affected molar” refers to a tooth that is decayed, filled or missing due to caries.
The deciduous second molars refer to teeth 55, 65, 75 and 85 and first molars refer
to teeth 16 and 26 on the maxilla (upper quadrants), and teeth 36 and 46 on the
mandible (lower quadrants). The numbering of the teeth follows the FDI (Feder-
ation Dentaire Internationale) notation which indicates the position of the tooth
in the mouth (see Figure 1). Position 26, for instance, means that the tooth is in
quadrant 2 (upper left quadrant) and position 6 where numbering starts from the
mid-sagittal plane. The level of decay was scored in four levels of lesion sever-
ity: d4 (dentine caries with pulpal involvement), d3 (limited dentine caries), d2
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FI1G. 4. Simulated data—Scenario 2: Estimated survival functions for the onset and time-to-event
times for the group A are displayed in panels (a) and (c), respectively. Estimated survival functions
for the onset and time-to-event times for the group B are displayed in panels (b) and (d), respectively.
The posterior means (solid lines) are presented along the pointwise 95% HPD intervals. The true
functions are presented in dashed lines.

(enamel cavity) and d1 (white or brown-spot initial lesions without cavitation).
Here we consider level d3 of severity, which defines a progressive disease.

Note that for about five years the deciduous second molars are in the mouth
together with the permanent first molars. It is thus possible that a caries process on
the primary and permanent molar occurs simultaneously. In this case it is difficult
to know whether caries on the deciduous molar caused caries on the permanent
molar or vice versa. For this reason, the permanent first molar was excluded from
the analysis if caries were present when emergence was recorded. Moreover, the
permanent first molar had to be excluded from the analysis if the adjacent decidu-
ous second molar was not present in the mouth already at the first examination. For
948 children none of the permanent first molars was included in the analysis due to
the previously mentioned reasons. In total, 3520 children (12,485 permanent first
molars) were included in the analysis of which 187 contributed one tooth, 317 two
teeth, 400 three teeth and 2616 all four teeth.

4.2. The analysis and the results. We consider gender (0 = boy, 1 = girl) and
the status of the adjacent deciduous second molar (sound = 0, affected = 1) as

covariates for the emergence times Tl? namely, to define the design vectors xl-(j). .
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For the time-to-caries variables, we use a similar set of covariates as Leroy et al.
(2005), namely, the covariate vectors XiTj for the caries part of the model include
gender, presence of sealants on the permanent first molar (0 = absent, 1 = present),
occlusal plaque accumulation for the permanent first molar (O = none, 1 = in pits
and fissures or on total surface), reported oral brushing habits (0 = not daily, 1 =
daily) and status of the adjacent deciduous second molar. In contrast to Leroy et al.
(2005), we did not use the status of the adjacent deciduous first molar as a covariate
due to its large dependence on the status of the adjacent deciduous second molar
and included the age at start brushing in a linear fashion.

For the model, 4.02 millions of samples of a Markov chain cycle were com-
pleted. Because of storage limitations and dependence, the full chain was sub-
sampled every 200 steps after a burn-in period of 20,000 samples, to give a reduced
chain of length 20,000. We consider A = 0.5 reflecting equal prior probabilities for
the LDDP and LDPD models. The values of the other hyper-parameters were taken
asag=0a1 =1, up =10,0, =200, v =10, R =13, y =31, T =g, n = 025 and
Y =100 x Ig. We also performed the analysis with different hyper-parameters
values, obtaining very similar results. This suggests robustness to the prior speci-
fication.

The posterior probability for a = 0 was 21.63%. Correspondingly, the Bayes
factor for the hypothesis of a LDPD against the DP version of the model was 3.62.
This result suggests a “substantial” support of the data to the PD version of the
model according to the Jeffreys’ scale [Jeffreys (1961), page 432]. As Bayes fac-
tors may be sensitive to the prior specification, we performed a sensitivity analysis
using different prior weights on the LDDP versus a more general LDPD model.
Specifically, we chose A = 0.3 and A = 0.7. The corresponding Bayes factors for
the LDPD against the DP version of the model were 2.72 and 2.21, respectively.
The results, therefore, indicate robustness of the model choice to the prior specifi-
cation. More importantly, in all cases the PD version of the model is to be preferred
when compared to the single precision DP model.

The emergence and caries processes showed a nonsignificant association, evalu-
ated by the Pearson correlation coefficient on the log-scale induced by X, for most
of the teeth, except for tooth 46 where a small negative association was observed.
The posterior mean (95% HPD intervals) for the emergence and caries processes
for tooth 16, 26, 36 and 46 were —0.06 (—0.18; 0.05), —0.06 (—0.18; 0.07), —0.05
(—=0.13; 0.02) and —0.10 (—0.18; —0.02), respectively. The association among
emergence times and among time-to-caries was positive and significant. Table 1
displays the posterior means and 95% HPD intervals for the Pearson correlation
among the teeth. The results indicate an exchangeable correlation matrix would
suffice to explain the emergence process. However, this type of association struc-
ture does not hold for the caries process. The Pearson correlation was bigger for
the log time-to-caries for teeth in the same jaw. Similar and lower associations
were observed when considering diagonally or vertically opponent teeth. Thus,
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TABLE 1
Signal—Tandmobiel® study: Posterior mean (95% HPD interval) for the Pearson correlation
coefficient between log emergence times (upper diagonal) and log time-to-caries (lower diagonal)

for different teeth
Tooth
Tooth 16 26 36 46
16 0.60 (0.56; 0.64) 0.60 (0.56; 0.64) 0.60 (0.56; 0.64)
26 0.88 (0.81; 0.94) 0.59 (0.55; 0.63) 0.59 (0.57; 0.63)
36 0.47 (0.35; 0.57) 0.43 (0.30; 0.55) 0.61 (0.57; 0.65)
46 0.44 (0.28; 0.61) 0.39 (0.22; 0.58) 0.61 (0.54; 0.67)

the results suggest that the correlation structure induced for frailty models is not
appropriate for these data.

In contrast to NPML approaches, an important characteristic of the proposed
model is the ability to make inferences on any quantile of interest. With respect to
the median, neither the emergence nor the caries process exhibit a significant dif-
ference among the four permanent first molars. For all combinations of covariates,
molars of girls tend to emerge earlier than those of boys. However, nonsignifi-
cant differences were found. Regarding caries experience, the difference between
boys and girls was not significant, however, the frequency of brushing, presence of
sealant, presence of plaque, age at start brushing and caries experience of neigh-
boring deciduous second molars have a significant effect on the caries process.
Table 2 shows the posterior mean and the 95% HPD interval for the median emer-
gence time and time-to-caries for teeth 36 and 46 of boys with the “best,” “worst”
and two intermediate combinations of discrete covariates. The results are shown
for 4 different values of age at start brushing.

Figures 5 and 6 illustrate the estimated hazard and survival functions for the
time-to-caries for tooth 16 in boys with the “best,” “worst” and two intermediate
combinations of the discrete covariates by age at start brushing. For children who
started brushing their teeth after the age of 5, a high peak in the hazard function
of caries is observed already less than 1 year after emergence. A smaller peak,
shifted to the right and of much lower magnitude, was observed for children who
brush their teeth before the age of 5. Furthermore, for a given combination of the
discrete predictors, the hazard function for caries crossed for different values of age
at start brushing, suggesting that a proportional hazards model is not an appropriate
alternative for modeling the time to caries. For a given age at start brushing, the
presence of an affected deciduous second molars significantly increases the pick
in the hazard function of caries in the permanent first molar. When the teeth are
daily brushed since an early age, plaque-free and sealed the hazard for caries starts
to increase approximately 2 years after emergence, whereas when the teeth are not
brushed daily and are exposed to other risk factors the hazard starts to increase
immediately after emergence. The peak in the hazard for caries after emergence



TABLE 2

Signal-Tandmobiel® study: Posterior mean (95% HPD interval) for the median emergence time and time-to-caries since emergence (years) for some
covariate combinations and teeth. The results are shown for boys and teeth 36 and 46 with the following combination of the covariates: G1 for no
plaque, present sealing, daily brushing and sound primary second molar, G2 for no plaque, present sealing, daily brushing and affected primary
second molar, G4 for present plaque, no sealing, not daily brushing and sound primary second molar, and G4 for for present plaque, no sealing,

not daily brushing and affected primary second molar

Age at start

brushing (years)

Covariate group

Emergence

Tooth 36

Tooth 46

Caries

Tooth 36

Tooth 46

1

Gl
G2
G3
G4

Gl
G2
G3
G4

Gl
G2
G3
G4

Gl
G2
G3
G4

6.57 (6.54; 6.60)
6.58 (6.54; 6.61)
6.57 (6.54; 6.60)
6.58 (6.54; 6.61)

6.57 (6.54; 6.60)
6.58 (6.54; 6.61)
6.57 (6.54; 6.60)
6.58 (6.54; 6.61)

6.57 (6.54; 6.60)
6.58 (6.54; 6.61)
6.57 (6.54; 6.60)
6.58 (6.54; 6.61)

6.57 (6.54; 6.60)
6.58 (6.54; 6.61)
6.57 (6.54; 6.60)
6.58 (6.54; 6.61)

6.56 (6.53; 6.60)
6.57 (6.54; 6.61)
6.56 (6.53; 6.60)
6.57 (6.54: 6.61)

6.56 (6.53; 6.60)
6.57 (6.54; 6.61)
6.56 (6.53; 6.60)
6.57 (6.54; 6.61)

6.56 (6.53; 6.60)
6.57 (6.54; 6.61)
6.56 (6.53; 6.60)
6.57 (6.54; 6.61)

6.56 (6.53; 6.60)
6.57 (6.54: 6.61)
6.56 (6.53; 6.60)
6.57 (6.54; 6.61)

9.99 (8.80; 11.18)
7.72 (6.68; 8.54)
5.98 (4.98; 6.85)

11.08 (9.82; 12.29)

8.63 (7.65;9.73)
6.66 (5.85; 7.46)
5.16 (4.38; 5.94)

9.67 (8.09; 11.28)
7.49 (6.32; 8.72)
5.78 (4.85; 6.74)
4.47 (3.71;5.31)

8.46 (6.50; 10.45)
6.54 (5.07; 8.01)
5.04 (3.91; 6.25)
3.91 (3.00; 4.87)

12.62 (11.44; 13.82)

11.89 (10.65; 13.17)

9.72 (8.45; 11.04)
8.49 (6.95; 9.79)
6.83 (5.49; 7.94)

10.48 (9.24; 11.765)

8.47 (7.23; 9.63)
7.37 (6.32; 8.39)
5.94 (5.04; 6.75)

9.25 (7.39; 11.29)
7.47 (5.86; 9.18)
6.47 (5.33; 7.65)
5.22 (4.22; 6.20)

8.28 (5.69; 11.21)
6.69 (4.56;9.11)
5.76 (4.26; 7.53)
4.65 (3.38; 6.14)
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F1G. 5. Signal—Tandmobiel® study: Estimated hazard function for tooth 16 of boys who started
brushing their teeth at the age of 1 (solid line), 3 (dashed line), 5 (dotted line) or 7 (dotted—dashed
line). Panels (a) and (b) present the results for no plaque, present sealing, daily brushing and sound
primary second molar (a) or affected primary second molar (b). Panels (c) and (d) present the results
for present plaque, no sealing, not daily brushing and sound primary second molar (c) or affected
primary second molar (d).

can be explained by the fact that teeth are most vulnerable for caries soon after
emergence when the enamel is not yet fully developed. The curves for girls were
similar, and are therefore omitted.

Figure 6 also shows the way in which the age at start brushing is related to
the caries process. The bigger the age at start brushing, the bigger the prevalence
of caries. However, this increase in the prevalence is only observed in the first
years after emergence. After 5 years since emergence, the prevalence of caries
experience tends to be the same (and can in fact be the same, depending on the
exposure to other risk factors) regardless of the age at start brushing. This re-
sult suggests that PH, AFT, AH or PO models are not appropriate for the analy-
sis of caries experience since their are constrained in such a way that survival
curves are not allowed to cross for different values of a predictor. Although the
peak in the hazard for caries at approximately 1-2 years after emergence was
also observed in Leroy et al. (2005) and Komarek and Lesaffre (2008), this in-
teresting finding was not detected due to the models considered by these au-
thors.
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FIG. 6. Signal-Tandmobiel® study: Estimated survival function for tooth 16 of boys who started
brushing their teeth at the age of 1 (solid line), 3 (dashed line), 5 (dotted line) or 7 (dotted—dashed
line). Panels (a) and (b) present the results for no plaque, present sealing, daily brushing and sound
primary second molar (a) or affected primary second molar (b). Panels (c) and (d) present the results
for present plaque, no sealing, not daily brushing and sound primary second molar (c) or affected
primary second molar (d).

5. Concluding remarks. We have introduced a probability model for depen-
dent random distributions in the context of multivariate doubly-interval-censored
data. The main features of the proposed model are ease of interpretation, the abil-
ity of testing the hypothesis of the independence between onset and time-to-event
variables, efficient computation and the fact that assumptions on survival curves,
such as proportional hazards, additive hazards, proportional odds or accelerated
failure time, are not needed.

The proposal is based on a LDPD model, which contains the LDDP model as
an important special case, and is specified in such a way that a simple hypothesis
test for a LDDP versus a more general LDPD alternative can be performed with
no real additional computational effort and without the need of independent fit of
the models.

Several extensions of this work are possible. We are currently working on a
version of the model that takes into account potential misclassification of the caries
process and its effect on the corresponding inferences. Finally, the extension of the
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model allowing for weight dependent covariates is also the subject of ongoing
research.
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SUPPLEMENTARY MATERIAL

Supplement A: MCMC schemes for posterior computation (DOI: 10.1214/
10-AOAS368SUPPA; .pdf). A complete description of the full conditionals for
marginal and conditional MCMC algorithms for fitting the LDPD survival model
for doubly-interval-censored data is given.

Supplement B: The HIV-AIDS data (DOI: 10.1214/10-AOAS368SUPPB;
.pdf). The analysis of the data set considered by De Gruttola and Lagakos (1989)
is presented. This analysis allows for the comparison of the LDPD model with the
one-sample nonparametric maximum likelihood estimator proposed by De Grut-
tola and Lagakos (1989). The data set considers information from a cohort of
hemophiliacs at risk of human immunodeficiency virus (HIV) infection from infu-
sions of blood they received periodically to treat their hemophilia in two hospitals
in France. For this cohort both infection with HIV and the onset of acquired im-
munodeficiency syndrome (AIDS) or other clinical symptoms could be subject to
censoring. Therefore, the induction time between infection and clinical AIDS are
treated as doubly-censored.
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