
The Annals of Applied Statistics
2010, Vol. 4, No. 3, 1403–1429
DOI: 10.1214/10-AOAS335
© Institute of Mathematical Statistics, 2010

MODELING LARGE SCALE SPECIES ABUNDANCE WITH
LATENT SPATIAL PROCESSES1

BY AVISHEK CHAKRABORTY, ALAN E. GELFAND, ADAM M. WILSON,
ANDREW M. LATIMER AND JOHN A. SILANDER, JR.

Duke University, Duke University, University of Connecticut, University of
California, Davis and University of Connecticut

Modeling species abundance patterns using local environmental features
is an important, current problem in ecology. The Cape Floristic Region (CFR)
in South Africa is a global hot spot of diversity and endemism, and provides
a rich class of species abundance data for such modeling. Here, we propose
a multi-stage Bayesian hierarchical model for explaining species abundance
over this region. Our model is specified at areal level, where the CFR is di-
vided into roughly 37,000 one minute grid cells; species abundance is ob-
served at some locations within some cells. The abundance values are or-
dinally categorized. Environmental and soil-type factors, likely to influence
the abundance pattern, are included in the model. We formulate the empiri-
cal abundance pattern as a degraded version of the potential pattern, with the
degradation effect accomplished in two stages. First, we adjust for land use
transformation and then we adjust for measurement error, hence misclassi-
fication error, to yield the observed abundance classifications. An important
point in this analysis is that only 28% of the grid cells have been sampled
and that, for sampled grid cells, the number of sampled locations ranges from
one to more than one hundred. Still, we are able to develop potential and
transformed abundance surfaces over the entire region.

In the hierarchical framework, categorical abundance classifications are
induced by continuous latent surfaces. The degradation model above is built
on the latent scale. On this scale, an areal level spatial regression model was
used for modeling the dependence of species abundance on the environmental
factors. To capture anticipated similarity in abundance pattern among neigh-
boring regions, spatial random effects with a conditionally autoregressive
prior (CAR) were specified. Model fitting is through familiar Markov chain
Monte Carlo methods. While models with CAR priors are usually efficiently
fitted, even with large data sets, with our modeling and the large number of
cells, run times became very long. So a novel parallelized computing strat-
egy was developed to expedite fitting. The model was run for six different
species. With categorical data, display of the resultant abundance patterns is
a challenge and we offer several different views. The patterns are of impor-
tance on their own, comparatively across the region and across species, with
implications for species competition and, more generally, for planning and
conservation.
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1. Introduction. Ecologists increasingly use species distribution models to
address theoretical and practical issues, including predicting the response of
species to climate change [Midgley and Thuiller (2007), Fitzpatrick et al. (2008),
Loarie et al. (2008)], designing and managing conservation areas [Pressey et al.
(2007)], and finding additional populations of known species or closely related
sibling species [Raxworthy et al. (2003), Guisan et al. (2006)]. In all these ap-
plications the core problem is to use information about where a species occurs
and about relevant environmental factors to predict how likely the species is to be
present or absent in unsampled locations.

The literature on species distribution modeling covers many applications; there
are useful review papers that organize and compare model approaches [Guisan and
Zimmerman (2000), Guisan and Thuiller (2005), Elith et al. (2006), Graham and
Hijmans (2006), Wisz et al. (2008)]. Most species distribution models ignore spa-
tial pattern and thus are based implicitly on two assumptions: (1) environmental
factors are the primary determinants of species distributions and (2) species have
reached or nearly reached equilibrium with these factors [Schwartz et al. (2006),
Beale et al. (2007)]. These assumptions underlie the currently dominant species
distribution modeling approaches—generalized linear and additive models (GLM
and GAM), species envelope models such as BIOCLIM [Busby (1991)], and the
maximum entropy-based approach MAXENT [Phillips and Dudík (2008)]. The
statistics literature covers GLM and GAM models extensively. The latter tends to
fit data better than the former since they employ additional parameters but lose
simplicity in interpretation and risk overfitting and poor out-of-sample prediction.
Climate envelope models and the now increasingly-used maximum entropy meth-
ods are algorithmic and not of direct interest here.

In addition to the fundamental ecological issues mentioned above, complication
arises in various forms in modeling abundance from imperfect survey data such as
observer error [Royle et al. (2007), Cressie et al. (2009)], variable sampling inten-
sity, gaps in sampling, and spatial misalignment of distributional and environmen-
tal data [Gelfand et al. (2005a)]. First, since a region is almost never exhaustively
sampled, individuals not exposed to sampling will be missed. Second, it may be
that potentially present individuals are undetected [Royle et al. (2007)] and, possi-
bly vice versa, for example, a false positive misclassification error with regard to
species detection [Royle and Link (2006)]. A third complication is that ecologists
and field workers are biased against absences; they tend to sample where species
are, not where they aren’t. Such preferential sampling and its impact on inference
is discussed in Diggle, Menezes and Su (2010). Further complications arise with
animals due to their mobility. Previous work has developed spatial hierarchical
models that accommodate some of these difficulties, fitting these models to pres-
ence/absence data in a Bayesian framework [Hooten, Larsen and Wikle (2003),
Gelfand et al. (2005a, 2005b), Latimer et al. (2006)].

The species distribution modeling discussed above is either in the pres-
ence/absence or presence-only data settings; there is relatively little work on spa-
tial abundance patterns, despite their theoretical and practical importance [Kunin,
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Hartley and Lennon (2000), Gaston (2003)]. Our primary contribution here is to
develop a hierarchical modeling approach for ordinal categorical abundance data,
explained by the suitability of the environment, the effect of land use/land trans-
formation, and potential misclassification error. Ordinal classifications are often
the case in ecological abundance data, especially for plants [Sutherland (2006),
Ibáñez et al. (2009)]. From a stochastic modeling perspective, categorical data can
be viewed as the outcome of a multinomial model, with the cell probabilities de-
pendent on background features. Within a Bayesian framework such modeling is
often implemented using data augmentation [Albert and Chib (1993)], introducing
a latent hierarchical level. There, the ordered classification is viewed as a clipped
version of a single latent continuous response, introducing cut points. See also De
Oliveira (2000) and Higgs and Hoeting (2010).

At the latent level, suitability of the environment can be modeled through re-
gression. Availability in terms of land use degrades suitability. That is, an impor-
tant feature of our modeling, from an ecological point of view, is that it deals
with transformation of the study area by human intervention. In much of the re-
gion, the “natural” state of areas has been altered to an agricultural or urban state,
or the vegetation has been densely colonized by alien invasive plant species. So,
we cannot treat the entire region as equally available to the plant species we are
modeling. We must introduce a contrast between the current abundance of species
(their transformed or adjusted abundance) and their potential distributions in the
absence of land use change (potential abundance). These notions are formally de-
fined at the areal unit level in Section 3. A further degradation enabling the pos-
sibility of misclassification and/or observer error in the data collection procedure
can be accounted for as measurement error in the latent surface. There is a sub-
stantial literature on measurement error modeling for continuous observations, for
example, Fuller (1987), Stefanski and Carroll (1987), and Mallick and Gelfand
(1995). In our modeling we impose a hard constraint: with no potential presence
(i.e., an unsuitable environment), we can observe only zero abundance. We enforce
this constraint on the latent scale. With cut points, modeled as random, we provide
an explanatory model for the observed categorical abundance data. Furthermore,
we can invert from the latent abundance scale to the categorical abundances to pre-
dict abundance for unsampled cells and also to predict abundance in the absence
of land use transformation.

With spatial data collection, we anticipate spatial pattern in abundance and thus
introduce spatial structure into our modeling. That is, causal ecological explana-
tions such as localized dispersal, as well as omitted (unobserved) explanatory vari-
ables with spatial pattern such as local smoothness of geological or topographic
features, suggest that, at sufficiently high resolution, abundance of a species at one
location will be associated with its abundance at neighboring locations [Ver Hoef
et al. (2001)]. Moreover, through spatial modeling, we can provide spatial adjust-
ment to cells that have not been sampled, accommodating the gaps in sampling
and irregular sampling intensity mentioned above. In particular, we create a latent
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process model through a trivariate spatial process specification, with truncated sup-
port, to capture potential abundance, land transformation-adjusted abundance, and
measurement error-adjusted abundance. Since our environmental information is
available at grid cell level, we use Markov random field (MRF) models [Besag
(1974), Banerjee, Carlin and Gelfand (2004)] to capture spatial dependence and to
facilitate computation. However, we work with a large landscape of approximately
37,000 grid cells which leads to very long run times in model fitting and so we
introduce a novel parallelized computing strategy to expedite fitting.

There have been other recent developments in modeling of species abundances,
some using Bayesian hierarchical models. First, there has been some work on de-
veloping models that deal almost exclusively with animal census data, including
count data and mark-recapture data [Royle et al. (2007), Conroy et al. (2008),
Gorresen et al. (2009)]. Potts and Elith (2006) provide an overview of abun-
dance modeling, in fact, five regression models (Poisson, negative binomial, quasi-
Poisson, the hurdle model, and the zero-inflated Poisson) fitted for one particular
plant example. These models focus on correcting observer error and bias as well as
under-detection (the species is present but not observed), whence the “true” abun-
dance is virtually always higher than observed [Royle et al. (2007), Cressie et al.
(2009)]. We note some very recent work on working with ordinal species abun-
dance in plant data by Ibáñez et al. (2009). This approach takes ordinally scored
abundances and uses an ordered logit hierarchical Bayes model to infer potential
abundances for species that are still spreading across the landscape.

The advantages of working within the Bayesian framework with Markov chain
Monte Carlo (MCMC) model fitting are familiar by now—full inference about
arbitrary unknowns, that is, functions of model parameters and predictions, can
be achieved through their posterior distributions, and uncertainty can be quanti-
fied exactly rather than through asymptotics. In this application we work with the
disaggregated data at the level of individual species and sites to present spatially
resolved abundance “surfaces” and to capture uncertainty in model parameters.
Doing this turns out to be more difficult than might be expected, as we reveal in our
model development section. The key modeling issues center on careful articulation
of the definition of events and associated probabilities, the misalignment between
the sampling for abundance (at the relatively small sampling sites) and the avail-
able environmental data layers (at a scale of minute by minute grid cells, roughly
1.55 km × 1.85 km over the region), the sparseness of observations in terms of
the entire landscape (with uneven sampling intensity including many “holes”), the
occurrence of considerable human intervention with regard to land use across the
landscape (“transformation”), and the need for spatially explicit modeling.

The format of the paper is as follows. Section 2 describes the motivating data set.
Section 3 develops the multi-level abundance model. Section 4 details the compu-
tational and inference issues. In Section 5 we present an analysis of the data from
the Cape Floristic Region (CFR) and conclude with some discussion and future
extensions in Section 6.
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2. Data description. The focal area for this abundance study is the Cape
Floristic Kingdom or Region (CFR), the smallest of the world’s six floral king-
doms (Figure 1). As noted above, it encompasses a small region of southwestern
South Africa, about 90,000 km2, including the Cape of Good Hope, and is par-
titioned into 36,907 minute-by-minute grid cells of equal area. It has long been
recognized for high levels of plant species diversity and endemism across all spa-
tial scales. The region includes about 9000 plant species, 69% of which are found
nowhere else [Goldblatt and Manning (2000)]. Globally, this is one of the highest
concentrations of endemic plant species in the world. It is as diverse as many of
the world’s tropical rain forests and apparently has the highest density of globally
endangered plant species [Rebelo (2002)]. The plant diversity in the CFR is con-
centrated in relatively few groups, such as the icon flowering plant family of South
Africa, the Proteaceae. We focus on this family because the data on species distri-
bution and abundance patterns are sufficiently rich and detailed to allow complex
modeling. The Proteaceae have also shown a remarkable level of speciation, with
about 400 species across Africa, of which 330 species are 99% restricted to the
CFR. Of those 330 species, at least 152 are listed as “threatened” with extinction
by the International Union for the Conservation of Nature. Proteaceae have been
unusually well sampled across the region by the Protea Atlas Project of the South
African National Biodiversity Institute [Rebelo (2001)]. Data were collected at
record localities: relatively uniform, geo-referenced areas typically 50 to 100 m in
diameter. In addition to the presence (or absence) at the locality of protea species,
abundance of each species along with selected environmental and species-level in-
formation were also tallied [Rebelo (1991)]. To date, some 60,000 localities have
been recorded (including null sites), with a total of about 250,000 species counts
from among some 375 proteas [Rebelo (2006)].

FIG. 1. Location of the Cape Floristic Region (CFR) of South Africa. Inset shows the location of
the CFR within the African Continent. The 90,000 km2 region was divided into 36,907 1-minute cells
for modeling.
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Abundance is given for a sampling locality. Evidently, there is no notion of
abundance at a point; however, with roughly 60,000 sites sampled over the entire
CFR, the relative scale of the Protea Atlas observations is small enough when com-
pared to our areal units to be considered as “points.” In the literature, abundance is
sometimes measured as percent cover [Mueller-Dombois and Ellenberg (2003)].
In our data set, abundance is recorded as an ordinal categorical classification of
the count for the species with four categories: category 0: none observed, category
1: 1–10 observed, category 2: 11–100 observed, category 3: >100 observed. Such
categorization is fast and efficient for studying many species and many sampling
locations but is certainly at risk for measurement error in the form of misclassifi-
cation. Additionally, a large number of cells were not sampled at all. In fact, only
10,158, that is, 28%, were sampled at one or more sites. Even among cells sam-
pled, some have just one or two sites while others have more than 100, reflecting
the irregular and opportunistic nature of the sampling rather than an experimentally
designed sampling plan.

Turning to the covariates, in Gelfand et al. (2005a, 2005b) 16 explanatory envi-
ronmental variables were studied, capturing climate, soil, and topographic features
(further detail is provided there). Here, we confine ourselves to the six most signifi-
cant variables from that study, which are Evapotranspiration (APAN.MEAN), July
(winter) minimum temperature (MIN07), January (summer) maximum tempera-
ture (MAX01), mean annual precipitation (MEAN.AN.PR), summer soil moisture
days (SUMSMD), and soil fertility (FERT1). Transformed areas (by agriculture,
reforestation, alien plant infestation, and urbanization) were obtained as a GIS
data layer from R. Cowling (private communication). Figure 2 shows the pattern
of transformation across the CFR. Approximately 1/3 of the Cape has been trans-
formed, mainly in the lowlands on more fertile soils where rainfall is adequate
[Rouget et al. (2003)]. Most of the transformation outside of these areas, on the

FIG. 2. Proportion of untransformed land inside the CFR. Most of the transformation is due to
agriculture, but includes dense stands of alien invasive species.
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infertile mountains, is due to dense alien invader species, which are currently a
major threat to Fynbos vegetation and, in particular, to the Proteaceae.

3. Multi-level latent abundance modeling. In Section 3.1 we briefly review
the earlier work on hierarchical modeling for presence/absence data, presented in
Gelfand et al. (2005a, 2005b), in order to reveal how we have generalized it for
the abundance problem. Section 3.2 develops our proposed probability model for
the categorical abundance data. In Section 3.3 discrete probability distributions
are replaced using latent continuous variables. In Section 3.4 we discuss bias is-
sues associated with modeling abundance data and, in particular, how they affect
our setting. Section 3.5 deals with explicit model details for the likelihood and
posterior.

3.1. Hierarchical presence/absence modeling. In Gelfand et al. (2005a,
2005b) the authors model at the scale of the grid cells in the CFR and provide
a block averaged binary process presence/absence model at this scale. In particu-
lar, let Ai ⊂ R

2 denote the geographical region corresponding to the ith grid cell
and X

(k)
i the event that a randomly selected location within Ai is suitable (1) or

unsuitable (0) for species k. Set P(X
(k)
i = 1) = p

(k)
i . Then, p

(k)
i is conceptualized

by letting λ(k)(s) be a binary process over the region indicating the suitability (1)
or not (0) of location s for species k and taking p

(k)
i to be the block average of this

process over unit i. That is,

p
(k)
i = 1

|Ai |
∫
Ai

λ(k)(s) ds = 1

|Ai |
∫
Ai

1
(
λ(k)(s) = 1

)
ds,(3.1)

where |Ai | denotes the area of Ai . From Equation (3.1), the interpretation is that
the more locations within Ai with λ(k)(s) = 1, the more suitable Ai is for species
k, that is, the greater the chance of potential presence in Ai . The collection of
p

(k)
i ’s over the Ai is viewed as the potential distribution of species k.
Let V

(k)
i denote the event that a randomly selected location in Ai is suitable

for species k in the presence of transformation of the landscape. Let T (s) be an
indicator process indicating whether location s is transformed (1) or not (0). Then,
at s, both T (s) = 0 (availability) and λ(k)(s) = 1 (suitability) are needed in order
that location s is suitable under transformation. Therefore,

P
(
V

(k)
i = 1

) = 1

|Ai |
∫
Ai

1
(
T (s) = 0

)
1
(
λ(k)(s) = 1

)
ds.(3.2)

If, for each pixel, availability is uncorrelated with suitability, then Equation (3.2)
simplifies to P(V

(k)
i = 1) = uip

(k)
i , where ui denotes the proportion of area in Ai

which is untransformed, 0 ≤ ui ≤ 1.
Next, assume that Ai has been visited ni times in untransformed areas within

the cell. Further, let y
(k)
ij be the observed presence/absence status of the kth species
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at the j th sampling location within the ith unit. The y
(k)
ij |V (k)

i = 1 are modeled as
i.i.d. Bernoulli trials with success probability q

(k)
i , that is, for a randomly selected

location in Ai , q
(k)
i is the probability of species k being present given the location

is both suitable and available. Of course, given Vi(k) = 0, y
(k)
ij = 0 with probabil-

ity 1. Then, we have that P(y
(k)
ij = 1) = q

(k)
i uip

(k)
i . Gelfand et al. (2005a, 2005b)

model the p
(k)
i and q

(k)
i using logistic regressions. In fact, they use environmen-

tal variables and spatial random effects to model the p
(k)
i ’s, the probabilities of

potential presence, and, to facilitate identifiability of parameters, use species level
attributes to model the q

(k)
i ’s.

3.2. Probability model for categorical abundance. We first define what cate-
gorical abundance means at an areal scale using the four ordinal categories from
Section 2. Suppressing the species index, let Xi denote the classification for a ran-
domly selected location in Ai and define pih = P(Xi = h) for h = 0,1,2,3. If
λ(s) is a four-colored process taking values 0,1,2,3, then pih = 1

|Ai |
∫
Ai

1(λ(s) =
h)ds. That is, pih is the proportion of area within Ai with color h, equivalently,
the proportion in abundance class h. The pih denote the potential abundance prob-
abilities, that is, in the absence of transformation.

We describe land transformation percentage (1 − ui) as a block average of a bi-
nary availability process T (s) over Ai . It can also be interpreted as the probability
that a randomly selected site within Ai is transformed. At a transformed location
abundance must be 0. Thus, as in Equation (3.2), in the presence of transformation,
we revise pih to PT (Xi = h) = 1

|Ai |
∫
Ai

1(T (s) = 0)1(λ(s) = h)ds. Under inde-
pendence of abundance and land transformation, we obtain PT (Xi = h) = uipih.
The uipih denote the transformed abundance probabilities for h �= 0. The proba-
bility of abundance class 0 under transformation is evidently 1 − ui + uipi0. Let
rih denote the abundance class probabilities in the presence of transformation.

Finally, suppose there is an observed categorical abundance at location j within
Ai , say, yij . There is an associated conceptual λij and an observed Tij . Then,
λij �= λijTij if there has been transformation degradation at location j , unless
λij = 0. Furthermore, if there has been a misclassification error at j , yij �= λijTij

unless λij = 0. Let qih denote the abundance class probabilities associated with
the observed abundances. In Section 3.3 we specify a latent trivariate continuous
abundance model that produces the p’s, r’s, and q’s by integrating over appropri-
ate intervals. This latent model can be viewed as the process model for our setting.

The data set consists of observed abundances across several sampling sites
within the CFR. Let D denote our CFR study domain so D is divided into
I = 36,907 grid cells of equal area. For each cell i = 1,2,3, . . . , I , we are
given information on p covariates as vi = (vi1, vi2, . . . , vip). Within Ai , the abun-
dance category of a species was recorded at each of ni sampling sites. For many
cells ni > 1. For site j in Ai we observe yij as a multinomial trial, that is,
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FIG. 3. Cells within the CFR that have at least one observation from the Protea Atlas data set are
shown in light grey, while cells with no observations are shown in dark grey.

yij
i.i.d.∼ mult({qih}), j = 1,2, . . . , ni . We have a large number of unsampled cells,

that is, ni = 0. In fact, out of 36,907 cells, only m = 10,158 (28%) were sampled
at one or more sites. Figure 3 indicates locations of sampled cells. For the unsam-
pled cells there are no yij ’s in the data set. Hence, the inference problem involves
estimation of probabilities over the observed cells as well as prediction over the
unsampled region. Prediction of a categorical response distribution for unsampled
locations in a point level model was discussed in De Oliveira (2000) and Higgs and
Hoeting (2010). In our areal setup with only areal level v’s, we address this prob-
lem with a MRF model, as described in Section 3.3. Again, we seek to infer about
the p’s, r’s, and q’s given the observed y’s for a subset of cells and v’s known for
all cells.

3.3. Latent continuous abundances. It is now common to model the probabil-
ity mass function of a scalar ordinal categorical variable through an underlying
univariate continuous distribution. In a more general setup, Le Loc’h and Galli
(1997) and Armstrong et al. (2003) used latent random vectors to define the cat-
egorical probabilities in terms of these vectors taking values within a specific set.
In a similar spirit, corresponding to an observed abundance category variable yij ,
we introduce a continuous latent variable zO,ij such that

yij =
3∑

h=0

h1(αh−1 < zij < αh),

where α = (α−1 = −∞, α0 = 0, α1, α2, α3 = ∞) are an increasing sequence of
cut points. For identifiability and without loss of generality, we can set α0 = 0 and
interpret zO,ij < 0 as an absence, zO,ij > 0 as a presence. We have P(yij = h) =
qih = P(zO,ij ∈ (αh−1, αh)). So qih will be determined by the probability model
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specified for the zO,ij ’s. We will introduce spatial dependence between zO,ij ’s
below but, for now, to simplify notation, we drop the subscript.

A simple model would put a Gaussian distribution on these latent zO ’s whose
means are linear functions of the associated v’s. This would provide a routine
categorical regression model but ignores known land transformation and potential
measurement/ecological error in the recorded abundance categories. Instead, we
introduce zP,ij to provide the pij ’s and zT ,ij to provide the rij ’s. We need a joint
distribution to relate the zP , zT , and zO . From a process perspective in terms of
the proposed degradation, it seems natural to specify this distribution in the form
f (zP )f (zT |zP )f (zO |zT ). Since (zP , zT , zO ) capture the sequential degradation
of an associated categorical abundance distribution, we need to use the same set
of α’s to produce meaningful (p, r, q) respectively. Now, we propose (and clarify)
the following dependence structure. Define c(μ) = μ− φ(μ)

�̄(μ)
, where φ(·) and �(·)

are the standard normal p.d.f. and c.d.f. respectively. Note that c(μ) = E(V |V ∼
N(μ,1),V < 0) so c(μ) ≤ min(0,μ) for all μ ∈ R. Let

P(y = h|zO,u) = 1(αh−1 ≤ zO ≤ αh); 0 ≤ h ≤ 3,

f (zO |zT ) = φ(zO; zT ,1)1zT ≥0 + δzT
1zT ≤0,

(3.3)
f (zT |zP ,u) ∼ uδzP

+ (1 − u)δc(zP ),

f (zP |v,β, τ 2) = φ(zP ;vT β + θ,1).

Again, the conditional modeling above is motivated by the degradation per-
spective. To model the latent zP surface, we use the covariate information, that is,
climate and soil features that are believed to influence the abundance distribution
of different species in different ways. We also add a spatial random effect (θ ) in the
mean function to account for spatial association that may arise from factors, apart
from included covariates, that may have a spatial pattern. The covariate effects β

as well as the spatial random effects θ are species-specific. Variances are fixed at 1
for identifiability (see Section 3.5). Since we are working at areal scale, we assign
each cell a single θ with the prior on θ1,2,...,I specified using a Gaussian Markov
random field (MRF) [Besag (1974)] with first-order adjacency proximities. See
Banerjee, Carlin and Gelfand (2004) for details as well as further references.

Next, the zP surface is degraded by land transformation. A random location in-
side Ai is untransformed with probability ui . Then, zT = zP , that is, a degenerate
distribution at zP given zP . If it is transformed, the degradation occurs so that the
zT corresponds to the zero abundance category. For simplicity (with further discus-
sion below), we make this a degenerate distribution at c(zP ) < 0, whence zT |zP ,u

becomes a two point distribution as above. Again, transformation is equivalent to
absence and since α0 = 0 is the upper threshold for that classification, we need
zT < 0 for a transformed location. When a cell is completely transformed, from
Equation (3.3) we have zT < 0 w.p. 1. For u = 1 (complete availability) zT and zP

are the same. For any 0 < u < 1, we get E(zT |zP ) = uzP + (1 − u)c(zP ).
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Also, since c(x) < x, E(zT |zP ) ≤ zP , which is essential in the sense that trans-
formation can only degrade abundance [and clarifies our choice for c(·)]. Posterior
summaries of zT measure the prevailing abundance under transformation within
the CFR. [In Appendix A.1 we show that |E(zT )| < ∞.] The two-point mixture
distribution also implies the probability of abundance class 0, P(zT < 0) ≥ (1−u),
that is, no matter how large the potential abundance is within a cell, for any u < 1
there is a positive probability that transformed abundance may fall below 0 at a
random location within the cell. Other choices for the zT |zP specification besides
a point mass at c(zP ) include putting a point mass at some arbitrary point c < 0, or
using a truncated normal zT |zP on R

−. In the first case, it is not ensured whether
zT ≤ zP (it depends on whether there are cells with zP < c), while the second
choice adds complication for no benefit, is less interpretable, and does not ensure
zT < zP with probability 1. Also, in Section 4 we show that, in terms of fitting
the model, the specification used in Equation (3.3) is the same as using a truncated
normal distribution for land transformation.

Next, we modify the {zT } surface to produce {zO}. With regard to measure-
ment error, the recorded category of abundance at a particular location can be
different from the prevailing category due to inaccuracy in field assessment of
species quantity. However, we assume that when the potential abundance was zero,
one could not record a nonzero abundance category for it [no false positives, see
Royle and Link (2006) in this regard]. This puts a directional constraint on the ef-
fect of noise. A specification for f (zT |zO) which is coherent with this restriction
has, with zT > 0 (i.e., a presence), zO |zT ∼ N(zT ,1). This is a usual measure-
ment error model (MEM) specification. For a site with no presence zT < 0, our
assumption says there cannot be any measurement error, thus, in Equation (3.3),
for simplicity, we set zO to be the same as zT . Again, other choices of zO |zT can
be considered for the zT < 0 event, but they will not have any impact on estimation
of the zP surface, as we clarify in Section 4. This sequential dependence structure,
zP → zT → zO , implies that if zP < 0 so is zT and zO . Hence, if a site is not
suitable for a species, at no intermediate stage of the model can the site have any
positive probability of species occurrence. A change in category between actual
and observed arises when the noise pushes zT to the other side of some cut point
to produce zO . And, because of the truncation structure, that shift cannot happen
from the left of α0 = 0 to the right.

An alternative way to jointly model (zO, zT ) could use a bivariate normal dis-
tribution with support truncated to R

2 − [0,∞) × (−∞,0]. However, this spec-
ification fails to produce an f (zO |zT ) which match our intuition about how the
degradation took place. Also, from the distributional perspective, the truncated
normal redistributes the mass contained inside the left-out region uniformly across
the support, whereas the specification in Equation (3.3) shifts the mass only to
(zO < 0), which is more in agreement with modeling a data set such as ours where
we have an inflated number of reported zero abundances.
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The simple dependence structure for zT |zP allows us to marginalize over zT

and work with zP and zO |zP as our joint latent distribution. We have

f (zO |zP ) =
{

uφ(zO; zP ,1) + (1 − u)δc(zP ), zP > 0,
uδzP

+ (1 − u)δc(zP ), zP < 0.(3.4)

Rewriting Equation (3.4) in a simpler form, we get

f (zO |zP ) ∼ u[φ(zO; zP ,1)1zP ≥0 + δzP
1zP ≤0] + (1 − u)δc(zP ).(3.5)

Moreover, Equation (3.5) has a nice interpretation in the sense that, first, it indi-
cates whether the land is transformed or not with probability 1 − u. If the land
is transformed, it sets observed abundance to be zO = c(zP ) < zP . In the case of
available land, if there is a potential presence, it allows for a MEM around zP ; in
the case of absence, it stays fixed at zP . Since zO is related to the observed data
and zP is our surface of interest, the marginalization removes one stage of hierar-
chy from our model fitting and thus reduces correlation, yielding better behaved
MCMC in model fitting. Furthermore, we can retrieve the zT surface after the fact
since f (zT |zO, zP ) ∝ f (zT |zP )f (zO |zT ).

3.4. Measurement error and bias issues. In the Introduction we noted that
measurement error and bias typically occur with ecological survey data. It can
manifest itself in the form of detection error, spatial coverage bias [Royle et al.
(2007)], and under-reporting of absences. How do these biases arise in our mod-
eling? Noteworthy points here are (i) the difference between obtaining abundance
as actual counts as opposed to through ordinal classifications and (ii) what “no
abundance” means across our collection of grid cells.

Nondetection bias (i.e., undetected individuals in a sampled location) tends to
be discussed more with regard to animal abundance [Ver Hoef and Frost (2003),
Royle et al. (2007), Gorresen et al. (2009)]. Using counts, evidently observed abun-
dance is at most true abundance; error can occur in only one direction. With ordi-
nal counts, the bias is still expected to reflect under-reporting but, depending upon
the categorical definitions, will be much less frequent and need not be absolutely
so. For example, in our data set, plant population size is visually estimated and
an observation, especially of large populations, could potentially have error in ei-
ther direction. In our modeling, “true” abundance is not “potential” abundance.
For us, one could envision true abundance on the latent scale as a “true” trans-
formed abundance, say, z̃T with measurement error yielding zO . Then, one might
insist that our measurement error model requires zO ≤ z̃T . Under our measure-
ment error formulation using zT , we even allow zO > zP to account for potential
overestimation of abundance. Evidently, since yO may occasionally be less than
the potential classification yP at that location, we may be slightly underestimating
potential abundance. We don’t expect this to be consequential and, in any event,
with no knowledge about the incidence of under-classification in our setting, we
have no sensible way to correct for this bias.
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Turning to spatial coverage bias (i.e., individuals not exposed to sampling will
be missed), for us, with only 28% of grid cells sampled, we certainly are subject to
this. However, the spatial modeling we introduce helps in this regard. The mean of
zP,ij is vT

i β + θi regardless of whether we collected any data in Ai . So, the regres-
sion is expected to find the appropriate level for the cell and the spatial smoothing
associated with the θi is expected to provide suitable local adjustment. We could
argue that, if sampling of grid cells is random, this bias can be ignored.

Perhaps the most difficult bias to address is the under-sampling of absences.
This bias counters the previous ones; under-sampling of absences will tend to pro-
duce over-estimates of potential abundance. In our setting, under-sampling of ab-
sences is reflected in the decision-making that leads to only 28% of cells being
sampled, that is, it is not a random 28% that have been sampled. Different from
spatial coverage bias, in this context, the ecologist expresses confidence that the
species is not present in some of the unsampled cells. If this is so and we were
to set some additional abundances to 0, this would assert that these “0”s are not
nondetects and would diminish potential abundance, opposite to the case of non-
detects. Of course, in the absence of actual data collection, we would not see any
of these 0’s and would adopt model-based inference regarding potential abundance
for these cells. In any event, with no explicit knowledge of how sampling sites were
chosen, we are unable to attempt correction for this bias. Possibly, approaches to
address the effects of preferential sampling [Diggle, Menezes and Su (2010)] could
be attempted here.

3.5. Likelihood and posterior distribution. The posterior distributions of in-
terest, p and r , will be constructed in the post MCMC analysis (discussed in detail
in Section 4.3). From the conditional structure we first write P(y = c|zO,α) =
1zO∈(αc−1,αc). So the likelihood function for a single sample y turns out to be
L(y|zO,α) = ∏3

k=0 1(zO ∈ (αk−1, αk))
1(y=k). Now f (zO |zP ) can be written as

in Equation (3.5).
Again, we have I cells with ni sampling sites within Ai . For each yij we intro-

duce a corresponding zO,ij, and hence a pair of zT ,ij , zP,ij , to represent the event
happening at the j th sampling site within Ai . We work directly with the zO |zP

structure. Since we are interested in the areal level abundance distribution and have
covariates at areal resolution, we assume for fixed i, zP,ij

i.i.d.∼ N(·;vT
i β + θi,1).

It is also assumed that the zO,ij ’s are conditionally independent given the zP,ij ’s.
Without loss of generality, re-index cells so that the first m of them are sampled

and the last I − m are not. The latter cells have no contribution to the y column
and, hence, no associated zO appears in the likelihood. Using a nonspatial model,
we would work with a posterior on the domain of sampled cells only. But assuming
a CAR prior structure with adjacency proximity matrix W for the θ over the whole
domain enables us to learn about zP for unsampled cells. In summary, the posterior
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distribution takes the following form, up to proportionality, with 
 = (α,β, θ):

π(zP , zO,
|y,v,u) ∝
m∏

i=1

ni∏
j=1

L(yij |zO,ij ,α)f (zO,ij |zP,ij )f (zP,ij |vi,
)

× π(
),
(3.6)

π(
) = π(α)π(β)π(θ),

π(θ1,2,...,I ) = CAR(η0,W).

We turn to the identifiability of the set of parameters under the hierarchical de-
pendent latent structure. First, with a latent continuous process yielding an ordinal
categorical variable, the mean and scale of the distribution can be identified only
up to their ratio. In Equation (3.3) the dependence across (zp, zT , zO) is specified
through conditional means. Hence, all Gaussian distributions there are specified
with standard deviation 1. Four categories of abundance allow three free probabil-
ities and the corresponding four latent surfaces will also have 3 degrees of freedom.
As noted above, we set α0 = 0 with α1, α2 as free parameters.

We also need to ensure that all three z surfaces can be distinguished from each
other. Since transformation percentage 1 − u is given a priori, it is straightfor-
ward to separate zP and zT . We turn to the joint distribution for zP , zO given
as zO |zP ∼ N(zP ,1), zP ∼ N(vβ + θ,1). With fixed variances and no constraint
on measurement error, there would be no need to bring in zP ; it is redundant,
there is no way to distinguish between zP and zO , and one can use the marginal
zO ∼ N(vβ + θ,2). Now the constraint comes into the picture; it makes the zO

surface non-Gaussian though the zP surface is. The greater the measurement er-
ror, the more departure from Gaussianity in the marginal distribution of zO . Again,
the measurement error cannot be estimated on any absolute scale, since the latent z

scales are fixed for identifiability. It will be controlled by parameters like β and θ .
To compare the relative effect of measurement error across different species, under
fixed scale parameters, P(zP < 0) is a candidate but other model features can be
informative as well.

Finally, the full model specification, described in Equation (3.3), can be repre-
sented through a graphical model, shown in Figure 4.

4. Posterior computation and inference. Here, we describe how to design a
computationally efficient MCMC algorithm for the model. We then discuss how to
summarize the posterior samples to estimate important model features.

4.1. Sampling. Introduction of latent layers, although increasing the parame-
ter dimension in the model, makes the posterior full conditionals standard and easy
to sample from. Our goal is to efficiently estimate components of 
 which control
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FIG. 4. Graphical model for latent abundance specification at site j within cell Ai . z’s denote
latent abundance processes, observed (O), transformed (T), and potential (P); y’s denote inter-
val-censored abundances, observed (O), and potential (P); u is proportion of land untransformed,
v’s are covariates, β’s are regression coefficients, α’s are cut points for z scale, and θ ’s are spatial
random effects.

potential abundance. We rewrite Equation (3.5) as follows:

f (zO |zP ) = uφ(zO; zP ,1)1zP ≥0 + [
uδzP

+ (1 − u)δc(zP )

]
1zP ≤0

(4.1)
+ (1 − u)δc(zP )1zP >0,

and work with Equation (4.1) to implement the computation for the model fitting.
We start with updating all zO, zP using (
(t);y,v,u) and then drawing com-

ponents of 
 from their respective posterior full conditionals based on zP,(t+1),

zO,(t+1). Given the draw from zP , sampling the components of 
 is standard as
in almost any spatial regression analysis (see Appendix A.3). For the set of θ ’s,
after sampling them sequentially, we need to “center them on the fly” [Besag and
Kooperberg (1995), Gelfand and Sahu (1999)]. The more challenging part is to
update zO, zP |
. In Albert and Chib (1993) the latent variables were sampled in
the MCMC from mutually independent truncated Gaussian full conditionals, with
the support determined by the corresponding classification. For our model, the
posterior full conditional for any zO is

π(zO |zP , y,u) ∝ f (zO |zP )1
(
zO ∈ (αy−1, αy)

)
.

We take two different strategies to update zP , zO depending on the observed y.
For any site with nonzero y we have (with α0 = 0) f (zO, zP |y > 0, u) ∝
φ(zO |zP )1zO∈(αy−1,αy)φ(zP ), which amounts to sampling first a univariate nor-
mal zO,(t+1)|(zP,(t), y,α) truncated within (α

(t)
y−1, α

(t)
y ) and then from zP,(t+1)|

zO,(t+1),

(t) which is also Gaussian [with location (zO,(t+1) + μ(t))/2 and scale√

1/2 where μ(t) = vT β(t) + θ(t)]. For a site with observed y = 0 the case is more
complicated, with details provided in Appendix A.2. All of the sampling distribu-
tions required in MCMC are listed in Appendix A.3.

4.2. Computational efficiency. The algorithm described above is computation-
ally demanding as we have two latent variables to sample at each sampling site and



1418 A. CHAKRABORTY ET AL.

FIG. 5. An example grid to illustrate parallel CAR implementation. Normal sequential updating
would have required 120 steps in each iteration. By dividing the rectangle into 12 segments of 6
cells each with 48 boundary cells (shown in dark grey), each segment can be updated independently
(conditional on the boundaries). In this example the parallelization results in only 54 updating steps.

one spatial parameter for each of the grid cells. However, since zP , zO are inde-
pendent across cells given 
, we can update them all at once. The problematic part
is sampling the spatial effects, with approximately 37,000 grid cells. To handle this
issue, we used a parallelization method where D is divided into disjoint and ex-
haustive subregions D1,D2, . . . ,DL along with a resultant set of boundary cells B

arising through the CAR proximity matrix. Thus, once θB is updated conditional
on the rest, then θD1, θD2, . . . , θDL

given θB can be updated in parallel.
This algorithm is illustrated in Figure 5, where we have a 15 × 8 rectangular

region with an adjacency structure W which puts weight only on the cells shar-
ing a common boundary. Sequential updating would have required 120 steps. We
constructed a set of 48 boundary cells B (the dark cells in Figure 5). It divides the
rectangle into 12 segments of 6 cells each, so that conditional on θB , those seg-
ments can be updated independently of each other so we need only 54 updating
steps. This is only an illustrative example, but for large regions, this may signif-
icantly improve the run time. However, the time required for communication and
data assimilation is an issue for this parallelization method. With increasing L,
although the time required for the sequential updating within each Di goes down,
the size of B increases as does the amount of communication required within the
parallel architecture. So a trade-off must be determined for choosing L; in our
setting L = 11 worked well.

4.3. Posterior summaries. There are several ways to summarize inference
about the p and r distributions. According to our model, for Ai , pih = �(αh −
vT
i β − θi) − �(αh−1 − vT

i β − θi). Posterior samples of β, θ, τ 2 enable us to com-
pute samples of the pi . A posterior sample of ri can be constructed using the
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relation ri ≡ (1 − ui + uipio, uipi1, uipi2, uipi3). Additionally, we can calculate
the mean as well as the uncertainty from these samples, enabling maps for trans-
formed abundance (r) and potential (p) abundance. For each of pi and ri , we have
4 submaps, one for each abundance category. This is useful in terms of assessing
high and low abundance regions for the species. The β’s provide (up to fixed scale)
the effect of a particular climate or soil-related factor on the abundance of a par-
ticular species. Comparison of the p and r maps informs about the effect of land
transformation. One may also be interested in capturing p or r through a single
summary feature rather than all 4 categorical probabilities. Grouped mean abun-
dance (expectation with respect to the p or r distribution) can be used with suitable
categorical midpoints. We note that the posterior inference can also be summarized
on the latent scale using posterior samples of the z’s. However, working on the z

scale can only provide relative comparison.

5. Data analysis. We have implemented the described model on abundance
data for several different plant species over the whole CFR. We centered and
scaled all the v’s before using them in the model. As priors we used π(α) ≡ 1,
π(β) = N(0, φI) with large φ = 100. For θ , we used η2

0 = 0.1 and W to be a
binary matrix with w(i, j) = 1 iff d(i, j) < 0.30. The threshold 0.30 was used to
provide an 8 nearest neighbor structure for most of the cells. However, for bound-
ary cells, the number of neighbors varies from 3 to 6. The parallelization algorithm
was implemented inside R (http://www.r-project.org) using l = 11. The run time
for an individual species was about 9000 iterations/day. The outputs presented be-
low are created by first running 12500 iterations of MCMC, discarding the initial
7500 samples, and thinning the rest at every fifth sample. The β’s were quick to
converge, but the α sequences were highly autocorrelated and moved more slowly
in the space.

Here we consider two species, Protea punctata (PRPUNC) and Protea repens
(PRREPE). A summary of the model output is presented through the following
table and diagrams. Table 1 provides the mean covariate effects for both species
along with the 95% equal tail credible interval width (in parentheses). Considering
95% equal tail credible interval, all the covariate effects are significant except Fert1
for P. punctata.

TABLE 1
Posterior summaries for covariate effects (mean and 95% c.i. width)

Species Apan.mean Max01 Min07 Mean.an.pr Sumsmd Fert1

PRPUNC 1.2275 −0.9436 −0.8248 0.2439 0.1834 0.0306
(0.3809) (0.2768) (0.1143) (0.1158) (0.2006) (0.1089)

PRREPE 0.6825 −0.4512 −0.0864 0.1753 −0.2958 0.0566
(0.1710) (0.1179) (0.0612) (0.0673) (0.0996) (0.0455)

http://www.r-project.org
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FIG. 6. Posterior mean spatial effects (θ ) for Protea punctata (PRPUNC) and Protea repens
(PRREPE). These effects offer local adjustment to potential abundance. Cells with values greater
than zero represent regions with larger than expected populations, conditional on the other covari-
ates.

The mean posterior spatial effects are shown in Figure 6. Note that the spatial
effects for the two species have quite different patterns, with Protea repens having
a region of low values in the northeast and larger values elsewhere, while Pro-
tea punctata is more even across the landscape, but with lower values toward the
edges of the CFR. These surfaces capture the spatial variability in abundance that
is not explained by the other covariates within the model. This suggests that the
covariates predict higher abundance of P. repens in the northwest than what was
observed, perhaps indicating some unobserved limiting factor (such as unsuitable
soils, more extreme seasonality in rainfall, or dispersal limitations). Similarly for
P. punctata, the covariates may over-predict abundances at the edges of the CFR
where many environmental factors change as one transitions to other biome types.

Figures 7 and 8 show the mean posterior abundance category probabilities (po-
tential and transformed) for P. punctata (Figure 7) and P. repens (Figure 8). Com-
paring these plots among rows contrasts the probabilities associated with each
abundance class for the species, while comparing between columns shows the ef-
fects of landscape transformations on abundance class probabilities. Both species
show higher predicted abundances coinciding with mountainous areas of the CFR.
This is where the fynbos biome dominates the landscape and where proteas are
characteristically the dominant, indicator species [Rebelo et al. (2006)]. Note that
P. punctata, a less common species, is only slightly affected by landscape trans-
formation, while there are dramatic differences for P. repens (Figures 9 and 10).
This is because P. punctata is mostly limited to dry, rocky, or shale slopes [Rebelo
(2001)] which are less suitable for agriculture or development and thus mostly un-
transformed. P. repens, on the other hand, is much more ubiquitous across the re-
gion and can frequently occur in lowland areas that have been largely transformed
by human activities [Rebelo (2001), Rebelo et al. (2006)].
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FIG. 7. Abundance category probability maps for Protea punctata (PRPUNC) for untransformed
(left) and transformed (right) situations. Values are cellwise posterior mean probabilities for the
abundance classes. Class 0 means the probability the species is absent, while classes 1–3 indicate
estimated abundance from 1–10, 11–100, 100+ individuals, respectively.

It is also useful to summarize these data through mean potential abundance
and mean transformed abundance (see Section 4.3) as in Figures 9 and 10. These
figures allow inspection of the underlying latent surfaces that are of interest to
ecologists as a continuous relative representation of species abundances. However,
the latent “z” scales may be difficult to interpret ecologically and, thus, estimated
potential and transformed abundance (using the grouped mean) are also shown.
These represent the expected abundance (with respect to the p’s or r’s) of a species
at a randomly selected sample location in that grid. The associated display makes
it easy to visualize the effects of habitat transformation on protea populations.
P. punctata shows almost no effects of landscape transformation, while large dif-
ferences are apparent for P. repens. Note the large transformed regions in the south
and west where the expected abundance of plants has dropped from more than 50
to near zero. It is also apparent that, across the landscape, P. punctata tends to have
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FIG. 8. Abundance category probability maps for Protea repens (PRREPE) for untransformed
(left) and transformed (right) situations. Values are cellwise posterior mean probabilities for the
abundance classes. Class 0 means the probability the species is absent, while classes 1–3 indicate
estimated abundance from 1–10, 11–100, 1008 individuals, respectively.

a higher expected mean abundance at any given sample point than does P. repens
(Figures 9 and 10).

6. Discussion and future work. Building on previous efforts that have ad-
dressed the presence/absence of species, we have presented a modeling frame-
work for learning about potential patterns for species abundance not degraded by
land transformation and potential measurement error. The model was built using a
hierarchical latent abundance specification, incorporating spatial structure to cap-
ture anticipated association between adjacent locations. Along with potential pat-
tern, we also have an estimate of transformed abundance pattern. Comparison of
these two patterns is helpful for understanding the effect of land transformation on
species presence and abundance and, in particular, for disentangling these effects
from those of other environmental factors. This may facilitate designing strategies



SPATIAL MODELING FOR SPECIES ABUNDANCE 1423

FIG. 9. Mean posterior abundance summaries for Protea punctata (PRPUNC). On the latent
z-scale, “Mean z[P ]” refers to the potential abundance, while “Mean z[T ]” refers to the poten-
tial abundance corrected for habitat transformation. The Grouped Mean Abundance rescales the
Mean z[P ] surface to the expected potential size of a population in a grid cell (using the observed
abundance classes: absent, 1–10, 10–100, 100+). The Group Mean Transformed Abundance shows
the expected size of a population after correcting for habitat transformation.

for species conservation as well as understanding the overall effects of climate
change.

This work has applications in biogeography and in conservation biology [Pearce
and Ferrier (2001), Gaston (2003)]. We can now develop predictive maps of “high
quality” habitat sites within a species range, based on high predicted abundances.
This will help identify prime locations for effective conservation efforts. We can
also estimate the impact of habitat transformation on the size of the population
using the information from Figures 8 and 10, and thus identify threats to con-
servation. Predictive abundance maps will also be useful to explore patterns in
biodiversity and species abundances. Do species abundances tend to peak in the
middle of the species’ range [Gaston (2003)]? Do areas of high biodiversity tend
to have lower species abundances? Are there areas that are rich in both abundance
and biodiversity (perhaps identifying ideal regions for conservation efforts)?

There are several natural extensions. One is to study the temporal change in
abundance. With abundance data collected over time as well as associated envi-
ronmental factors such as rainfall and temperature, dynamic modeling of species
abundance with changing environmental factors may give a clearer picture of how
a species is responding to climate change. Indeed, when connected to future cli-
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FIG. 10. Mean posterior abundance summaries for Protea repens (PRREPE). On the latent
z-scale, “Mean z[P ]” refers to the potential abundance, while “Mean z[T ]” refers to the poten-
tial abundance corrected for habitat transformation. The Grouped Mean Abundance rescales the
Mean z[P ] surface to the expected potential size of a population in a grid cell (using the observed
abundance classes: absent, 1–10, 10–100, 100+). The Group Mean Transformed Abundance shows
the expected size of a population after correcting for habitat transformation.

mate scenarios, we may attempt to forecast prospective species abundance. Simi-
larly, if the transformation data is also time varying, we could illuminate the effect
of land transformation in greater detail.

The current model uses transformation percentage (1−u) in a deterministic way
(transformation having a binary effect on potential abundance). In other cases (e.g.,
to study abundance pattern of animals) it may be reasonable to treat transformation
as another covariate influencing species habitat. Also, it may be imagined that the
relationship between potential abundance and environmental variables is not linear
as specified in equation (3.3), for example, environmental variables may affect
larger abundance classes differently from smaller abundance classes; piecewise
linear specification, introducing different regression coefficients over the different
abundance classes, could be explored.

Another possible extension lies in joint modeling of two or more species. One
may wish to learn whether two plant varieties are sympatric or allopatric and
whether or not there is evidence for competitive interactions or facilitation. Such
modeling can be done by extending our model to have multiple (zP,k, zT ,k, zO,k)

surfaces, where k is the species indicator. Dependence can be introduced across
zP,k surfaces by modeling θ(k) using an MCAR [Gefand and Vounatsou (2003),
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Jin, Carlin and Banerjee (2005)]. Fitting such models will be very challenging if
there are many grid cells.

Instead of taking an areal level approach, if covariate information is available
at point level (where sampling sites are viewed as “points” within the large re-
gion, D), one may consider a point-level model. This amounts to replacing the
CAR model with a Gaussian process prior for the spatial effects. With many sam-
pling sites, we will need to use appropriate approximation techniques [Banerjee et
al. (2008)].

APPENDIX

A.1. Proof of E(zT ) finite. E(zT ) = E(E(zT |zP )) = E(uzP + (1 − u) ×
c(zP )) = E(zP − (1 − u)

φ(zP )
1−�(zP )

). Assuming zP ∼ N(μ,1), it is enough to show∫ ∞
−∞

φ(x)
1−�(x)

φ(x − μ)dx < ∞.

Consider the quantity x2 φ(x)
1−�(x)

φ(x − μ), if x → −∞, it goes to 0. When x →
∞, we have

lim
x→∞x2 φ(x)

1 − �(x)
φ(x − μ)

L′ptal= lim
x→∞

2xφ(x)φ(x − μ) − x3φ(x)φ(x − μ) − x2(x − μ)φ(x)φ(x − μ)

−φ(x)

= 0.

So lim|x|→∞ x2 φ(x)
1−�(x)

φ(x − μ) = 0, thus, we can get B1 < 0,B2 > 0, such that
φ(x)

1−�(x)
φ(x − μ) < 1

x2 for all x /∈ (B1,B2). Hence, the result follows.

A.2. Posterior simulation of z’s for a site with no presence observed. We
subdivide by considering the ways that we can generate a 0 realization of y based
on Equation (3.5) [one may also use Equation (3.3) to do this]:

(i) The area is untransformed, the species was potentially there, but missed
during data collection or it was absent at that time instance; the event is
1zP ≥α0,zO≤α0 with prior probability π1 = uP (zP ≥ α0, zO ≤ α0).

(ii) Potentially the species was absent there; the event is 1zP ≤α0 with prior prob-
ability π2 = P(zP ≤ α0).

(iii) The species was potentially there 1zP ≥α0 , but the area was transformed; the
event has prior probability π3 = (1 − u)P (zP ≥ α0).

These three events are exhaustive and mutually exclusive for the event (y = 0).
Thus, f (zP , zO |y = 0,
) is a 3-component mixture. To draw a (zP , zO ) pair
from this distribution amounts to first choosing a component and then drawing
a pair (zP , zO ) from that component distribution. By Bayes’ rule, conditional
on observed (y = 0), these three cases can happen with posterior probability
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πi/
∑3

l=1 πl, i = 1,2,3. So we use a multinomial to select which of these events
took place. Before going into case by case details, it is worth mentioning that in
all these cases the sampling from the joint density of chosen mixture component
was done via the marginal f (zP | · ·) followed by f (zO |zP , · ·). The advantage
of this scheme is that we don’t need to draw from the latter because zO ’s cor-
responding to y = 0 are not involved in posterior full conditionals of any other
parameters in the model (as α0 = 0, fixed). If the second case is selected, then
f (zO, zP |·, ·) ∝ [uδzP

+ (1 − u)δc(zP )]1zO≤01zP ≤0φ(zP ) and thus marginalizing
over zO , we get f (zP | · ·) ∝ φ(zP )1zP ≤0 which is a truncated Gaussian on R

−.
Similarly under case (iii), we need to simulate zP from φ(zP )1zP ≥0, a Gaussian
truncated on R

+. In case (i), f (zO, zP | · ·) ∝ φ(zO; zP ,1)1zP ≥01zO≤0φ(zP ), so
marginalizing over zO we get f (zP | · ·) ∝ φ(zP )(1 − �(zP ))1zP ≥0. An efficient
way to draw from this density is to propose a zP from a truncated normal on
R

+ and do a Metropolis–Hastings update with an independent proposal, using the
quantity (1 − �(·)). However, all sampling distributions are summarized in Ap-
pendix A.3 below.

A.3. Posterior full conditionals needed for Gibbs sampling.

• If yij > 0, draw zO,ij ∼ N(zP,ij ,1)1(αyij −1,αyij
). Draw zP,ij ∼ N(

vT
i β+θi

2 +
zO,ij

2 , 1
2).

• If yij = 0, compute pij = (u�2([0,∞] × [−∞,0];μij ,
0),1 − �(vT
i β +

θ), (1 − u)�(vT
i β + θi)), where μij = (vT

i β + θi, v
T
i β + θi) and 
0 =

(
1
1

1
2

)
are the location and dispersion parameters for bivariate normal joint prior
distribution of (zO,ij , zP,ij ). Draw dij

i.i.d.∼ mult(pij ). If dij = 1, propose
z

propose
P,ij ∼ N(vT

i β + θi,1)1(0,∞) and do a Metropolis–Hastings sampler using

(1 − �(·)). Else if dij = 2, draw zP,ij ∼ N(vT
i β + θi,1)1(−∞,0), else draw

zP,ij ∼ N(vT
i β + θi,1)1(0,∞).

• Draw αh = unif(maxij :yij=h zO,ij ,minij :yij=h+1 zO,ij ), h = 1,2.
• Draw β ∼ N(μβ,
β)

∏
i,j N(zP,ij ;vi, β, θi).

• Draw θi ∼ N(zP,ij ;vi, β, θi)N(

∑
j wij θj

wi+ ,
τ 2

0
wi+ ) for i = 1,2, . . . ,m. Draw θi ∼

N(

∑
j wij θj

wi+ ,
τ 2

0
wi+ ) for i = m + 1,2, . . . , I .
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