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APPROACHES FOR MULTI-STEP DENSITY FORECASTS WITH
APPLICATION TO AGGREGATED WIND POWER

BY ADA LAU1 AND PATRICK MCSHARRY2

University of Oxford

The generation of multi-step density forecasts for non-Gaussian data
mostly relies on Monte Carlo simulations which are computationally inten-
sive. Using aggregated wind power in Ireland, we study two approaches of
multi-step density forecasts which can be obtained from simple iterations so
that intensive computations are avoided. In the first approach, we apply a lo-
gistic transformation to normalize the data approximately and describe the
transformed data using ARIMA–GARCH models so that multi-step forecasts
can be iterated easily. In the second approach, we describe the forecast densi-
ties by truncated normal distributions which are governed by two parameters,
namely, the conditional mean and conditional variance. We apply exponential
smoothing methods to forecast the two parameters simultaneously. Since the
underlying model of exponential smoothing is Gaussian, we are able to obtain
multi-step forecasts of the parameters by simple iterations and thus generate
forecast densities as truncated normal distributions. We generate forecasts for
wind power from 15 minutes to 24 hours ahead. Results show that the first
approach generates superior forecasts and slightly outperforms the second
approach under various proper scores. Nevertheless, the second approach is
computationally more efficient and gives more robust results under different
lengths of training data. It also provides an attractive alternative approach
since one is allowed to choose a particular parametric density for the fore-
casts, and is valuable when there are no obvious transformations to normalize
the data.

1. Introduction. Wind power forecasts are essential for the efficient opera-
tion and integration of wind power into the national grid. Since wind is variable
and wind energy cannot be stored efficiently, there are risks of power shortages
during periods of low wind speed. Wind turbines may also need to be shut down
when wind speeds are too high, leading to an abrupt drop of power supply. It is
extremely important for power system operators to quantify the uncertainties of
wind power generation in order to plan for system reserve efficiently [Doherty and
O’Malley (2005)]. In addition, wind farm operators require accurate estimations
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of the uncertainties of wind power generation to reduce penalties and maximize
revenues from the electricity market [Pinson, Chevallier and Kariniotakis (2007)].

Since the work of Brown, Katz and Murphy (1984) in wind speed forecasting
using autoregressive models, there has been an increasing amount of research in
wind speed and wind power forecasts. Most of the early literature focuses on point
forecasts, and in recent years more emphasis has been placed on probabilistic or
density forecasts because of the need to quantify uncertainties. However, the num-
ber of studies on multi-step density forecasts is still relatively small, not to mention
the evaluation of forecast performances for horizons h > 1. Early works on multi-
step density forecasts can be found in Davies, Pemberton and Petruccelli (1988)
and Moeanaddin and Tong (1990), where the densities are estimated using recur-
sive numerical quadrature that requires significant computational time. Manzan
and Zerom (2008) propose a nonparametric way to generate density forecasts for
the U.S. Industrial Production series, which is based on bootstrap methods. How-
ever, Monte Carlo simulations are required and this approach is also computation-
ally intensive.

One of the approaches to wind power forecasting is to focus on the modeling
of wind speed and then transform the data into wind power through a power curve
[Sanchez (2006)]. An advantage is that wind speed time series are smoother and
more easily described by linear models. However, a major difficulty is that the
shape of the power curve may vary with time, and also it is difficult to quantify
the uncertainties in calibrating the nonlinear power curve. Another approach is
to transform meteorological forecasts into wind power forecasts, where ensemble
forecasts are generated from sophisticated numerical weather prediction (NWP)
models [Taylor, McSharry and Buizza (2009), Pinson and Madsen (2009)]. This
approach is able to produce reliable wind power forecasts up to 10 days ahead,
but it requires the computation of a large number of scenarios as well as expensive
NWP models. A third approach to wind power forecasting focuses on the direct
statistical modeling of wind power time series. In this case the difficulty lies on
the fact that wind power time series are highly nonlinear and non-Gaussian. In
particular, wind power time series at individual wind farms always contain long
chains of zeros and sudden jumps from maximum capacity to a low value due
to gusts of wind since turbines have to be shut down temporarily. Nevertheless,
it has been shown that statistical time series models may outperform sophisti-
cated meteorological forecasts for short forecast horizons within 6 hours [Milligan,
Schwartz and Wan (2004)]. Extensive reviews of the short term state-of-the-art
wind power prediction are contained in Landberg et al. (2003), Giebel, Karin-
iotakis and Brownsword (2003) and Costa et al. (2008), in which power curve
models, NWP models and other statistical models are discussed.

In this paper we adopt the third approach and consider modeling the wind power
data directly. We aim at short forecast horizons within 24 hours ahead, since for
longer forecast horizons the NWP models may be more reliable. As mentioned
above, wind power time series are highly nonlinear. Aggregating the individual
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wind power time series will smooth out the irregularities, resulting in a time series
which is more appropriately described by linear models under suitable transforma-
tions. Aggregated wind power generation is also more relevant to power companies
since they mainly consider the total level of wind power generation available for
dispatch. Thus, it is economically important to generate reliable density forecasts
for aggregated wind power generation.

For this reason, as a first study, this paper considers the modeling of aggregated
wind power time series. One may argue that utilizing spatiotemporal correlations
among individual wind farms may improve the results in forecasting aggregated
wind power. We will show in Section 4 that this is not the case here, at least by
the use of a simple multiple time series approach. Unless one is interested in the
power generated at individual wind farms, it is more appropriate to forecast the
aggregated wind power as a univariate time series. We propose two approaches
of generating multi-step ahead density forecasts for wind power generation, and
we demonstrate the value of our approaches using wind power generation from 64
wind farms in Ireland. In the first approach, we demonstrate that the logistic func-
tion is a suitable transformation to normalize the aggregated wind power data. In
the second approach, we describe the forecast densities by truncated normal distri-
butions which are governed by two parameters, namely, the conditional mean and
conditional variance. We apply exponential smoothing methods to forecast the two
parameters simultaneously. Since the underlying model of exponential smoothing
is Gaussian, we are able to obtain multi-step forecasts of the parameters by simple
iterations and thus generate forecast densities as truncated normal distributions.
Although the second approach performs similarly to the first in terms of our eval-
uation of the wind power forecasts, it has numerous advantages. It is computation-
ally more efficient, its forecast performances are more robust, and it provides the
flexibility to choose a suitable parametric function for the density forecasts. It is
also valuable when there are no obvious transformations to normalize the data.

Our paper is organized as follows. In Section 2 we describe the wind power
data that we use in our study. Then we explain the two approaches of generating
multi-step density forecasts in Section 3. The first approach concerning the logis-
tic transformation is described in Section 3.1, while in Section 3.2 we give the
details on the second approach using exponential smoothing methods and trun-
cated normal distributions. In Section 4 we construct 4 benchmarks to gauge the
performances of our approaches, and we evaluate the forecast performances us-
ing various proper scores. Finally, we conclude our paper in Section 5, where we
summarize the benefits of our approaches and discuss important future research
directions.

2. Wind power data. We consider aggregated wind power generated from 64
wind farms in Ireland for approximately six months from 13-Jul-2007 to 01-Jan-
2008. The data are recorded every 15 minutes, giving a total number of 16,512
observations during the period. The locations of the wind farms are shown in Fig-
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FIG. 1. The locations of 64 wind farms in Ireland. There are 68 wind farms and wind power time
series in the raw data, but 4 pairs of wind farms are so close that they are essentially extensions
from the corresponding old wind farm. As a result, we simply consider 64 wind farms here. The wind
farms are distributed throughout Ireland, and Arklow Banks is the only offshore wind farm.

ure 1. One of the wind farms, known as Arklow Banks, is offshore.3 We sum up the
capacities4 of all wind farms and the total capacity is 792.355 MW. In order to fa-
cilitate comparisons between data sets with different capacities, we normalize the
aggregated wind power by dividing by the total capacity, that is, 792.355 MW, and
so the normalized data is bounded within [0,1]. We have checked that forecast re-
sults, in particular, for approaches involving nonlinear transformations, are in fact
insensitive to the exact value of normalization.5 We dissect the data into a training
set of about 4 months (the first 11,008 data points) for parameter estimation, and a
testing set of about two months (the remaining 5504 data points) for out-of-sample
forecast evaluations. Figures 2 and 3 show the original and the first differences of
the normalized aggregated wind power respectively. It is clear that wind power
data are nonstationary. The variance is changing with time, showing clusters of
high and low variability. Also, there are some occasional spikes. Figures 4 and 5
show the autocorrelation function of the wind power and its first differences re-
spectively. Autocorrelation is significantly reduced by taking first differences.

3Detailed information of individual wind farms, such as latitude, longitude and capacity, is pro-
vided by Eirgrid plc and can be found in Lau (2010).

4The capacity is the maximum output of a wind farm when all turbines operate at their maximum
nominal power.

5In our paper the value of normalization must not be smaller than the total capacity since we will
consider the logistic transformation (1).
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FIG. 2. Time series of normalized aggregated wind power from 64 wind farms in Ireland, where the
aggregated wind power is normalized by the total capacity of 792.355 MW. The data are dissected
into a training set and a testing set as shown by the dashed line. About four months of data are
used for parameter estimation, and the remaining two months of data are used for out-of-sample
evaluation.

FIG. 3. First differences of normalized aggregated wind power. It is clear that the variance changes
with time, and there is volatility clustering as well as sudden spikes. The data are dissected by the
dashed line into a training set and a testing set.
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FIG. 4. Sample ACF of the time series of normalized aggregated wind power up to a lag of 7 days.
The autocorrelations decay very slowly. It shows that the wind power data are highly correlated and
may incorporate long memory effects.

FIG. 5. Sample ACF of the first differences of normalized aggregated wind power up to a lag of 7
days. The dashed lines are the confidence bounds at 2 standard deviations, assuming that the data
follow a Gaussian white noise process. The autocorrelations are significantly reduced, but they are
still significant up to a lag of 7 days.
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FIG. 6. Long term seasonality appears in the wind data. We regress the data in the training set with
16 harmonics of sines and cosines with periods T = j/(90×96), j = 1, . . . ,16, so that the maximum
period is 90 days. The fit gives an R2 = 0.395. The thin dashed line is the observed normalized wind
power and the solid line is the fitted time series with a cycle of 90 days. The vertical dashed line
dissects the data into a training set and a testing set.

Since our aim is to generate short term forecasts up to 24 hours ahead, we do
not focus on modeling any long term seasonality, which often appears in wind data
due to the changing wind patterns throughout the year. For example, we can model
a cycle of 90 days by regressing the data in the training set with 16 harmonics of
sines and cosines with periods T = j/(90 × 96), j = 1, . . . ,16. This gives a fitted
time series as shown in Figure 6 with R2 = 0.395. One may then model the desea-
sonalized data, but studies show that results may be worse than those obtained by
modeling the seasonality directly [Jorgenson (1967)]. On the other hand, we are
more interested in the diurnal cycle since it plays a more important role in intraday
forecasts. Diurnal cycles may appear in wind data due to different temperatures
and air pressures during the day and the night, and wind speeds are sometimes
larger during the day when convection currents are driven by the heating of the
sun. Thus, we try to fit the training data with harmonics of higher frequencies,
such as those with T = j/96 where j is an integer. However, results show that
those harmonics cannot help us to explain the variances in the data, and, thus, we
decide to exclude the modeling of any diurnal cycle in this paper.

Aggregated wind power time series, although smoother than those from indi-
vidual wind farms, are non-Gaussian. In particular, they are nonnegative. Figure 7
shows the unconditional density of aggregated wind power. This distribution has
a sharper peak than the normal distribution and is also significantly right-skewed.
Common transformations for normalizing wind speed data include the logarithmic
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FIG. 7. Unconditional empirical density of the normalized aggregated wind power, fitted using the
data in the training set. The density is clearly non-Gaussian since the data is bounded. The density
is skewed and has a sharper peak than the Gaussian distribution. This density gives the climatology
forecast benchmark.

transformation and the square root transformation [Taylor, McSharry and Buizza
(2009)]. However, those transformations are shown to be unsatisfactory for our
particular wind power data as demonstrated in Figures 8 and 9. Nevertheless, we
could transform the wind power data yt by a logistic transformation. This can be
traced back to the work of Johnson (1949), and recently Bjørnar Bremnes (2006)
applies this transformation to model wind power. The logistic transformation is
given by

zt = log
(

yt

1 − yt

)
, 0 < yt < 1,(1)

and the transformed data zt gives a distribution which can be well approximated
by a Gaussian distribution as shown in Figure 10. In contrast with individual wind
power data, we do not encounter any values of zero or one and so (1) is well
defined. In Section 3.1 we apply this transformation and build a Gaussian model
to generate multi-step density forecasts for wind power.

3. Approaches for density forecasting. Since our aim of this paper is to gen-
erate multi-step ahead density forecasts without relying on Monte Carlo simula-
tions, it is important that our approach can be iterated easily. For this reason, in
both of the following approaches, we consider a Gaussian model at certain stages
so that we can iterate the forecasts in a tractable manner.
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FIG. 8. Density of the wind power data after applying the logarithmic transformation, which re-
mains non-Gaussian. The logarithmic transformation is a common transformation to convert wind
speed data into an approximate Gaussian distribution, but is clearly unappropriate for wind power
data. The solid line is the fitted Gaussian distribution by maximizing the likelihood.

FIG. 9. Density of the wind power data after applying the square root transformation, which re-
mains non-Gaussian. The square root transformation is a common transformation to convert wind
speed data into an approximate Gaussian distribution, but is clearly inappropriate for wind power
data. The solid line is the fitted Gaussian distribution by maximizing the likelihood.
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FIG. 10. Density of the wind power data after applying the logistic transformation, which can be
well approximated by a Gaussian distribution. The solid line is the fitted Gaussian distribution by
maximizing the likelihood.

3.1. Gaussian model for transformed data. In the first approach, we consider
the transformation of wind power data into an approximately Gaussian distribution
so that we could describe the transformed data by a simple Gaussian model, in par-
ticular, the conventional ARIMA–GARCH model with Gaussian innovations. As
discussed in Section 2, we transform the wind power data by the logistic function
in (1). This transformation maps the support from (0,1) to the entire real axis, and
Figure 10 shows that this results in an approximately Gaussian distribution.

As wind power data are nonstationary, so are the transformed data and we con-
sider the first differences wt = zt − zt−1. When compared with the original first
differences yt − yt−1 in Figure 3, the logistic transformed values zt have fewer
volatility clusterings and a smaller autocorrelation. This is shown in Figure 11 and
Figure 12, respectively. Thus, we model zt by an ARIMA(p,1, q)–GARCH(r, s)

model6

wt = μ +
p∑

i=1

φiwt−i +
q∑

j=1

θj εt−j + εt , εt |Ft−1
i.i.d.∼ N(0, σ 2

ε;t ),

(2)

σ 2
ε;t = ω +

r∑
i=1

αiε
2
t−i +

s∑
j=1

βjσ
2
ε;t−j ,

6We have also considered modeling zt by ARMA(p, q)–GARCH(r, s) models, but they are not
selected based on the BIC values.
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FIG. 11. First differences of the logistic transformed wind power. The variance is not changing as
fast as before, and the amount of volatility clusterings is reduced. However, the time series is still
nonstationary. The data are dissected by the dashed line into a training set and a testing set.

FIG. 12. Sample ACF of the first differences of logistic transformed wind power up to a lag of 7
days. The dashed lines are the confidence bounds at 2 standard deviations, assuming that the data
follow a Gaussian white noise process. The autocorrelations are slightly smaller than that for the
original data, which is shown in Figure 5.
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where wt = zt − zt−1, μ,φi, θj ,ω,αi, βj are constant coefficients satisfying the
usual conditions [Tsay (2005)] and Ft consists of all the past values of z up to time
t . We also consider an ARIMA(p,1, q) model for zt with constant conditional
variance Var[εt |Ft−1] = σ 2

ε;t = σ 2
ε , so as to compare with the ARIMA(p,1, q)–

GARCH(r, s) model. We select the models by minimizing the Bayesian Informa-
tion Criteria (BIC). Parameters are estimated by maximizing the Gaussian likeli-
hood.

The optimal h-step ahead forecasts ẑt+h|t and σ̂ 2
ε;t+h|t can be easily ob-

tained, and the corresponding h-step ahead density forecast of Zt+h is given
by the Gaussian distribution, that is, fZt+h|t ∼ N(ẑt+h|t , σ̂ 2

t+h|t ) so that σ̂ 2
t+h|t =

Var[zt+h|Ft ] can be obtained from {σ̂ 2
ε;t+j |t }hj=1 in a standard way, for example,

by expressing the model in a moving average (MA) representation [Tsay (2005)].
To restore the density of the normalized aggregated wind power Yt+h, we compute
the Jacobian of the transformation in (1) where |J | = |dz/dy| = 1/[y(1−y)]. The
density of Yt+h is then given by fYt+h|t (yt+h) = |J |fZt+h|t (zt+h), that is,

fYt+h|t (yt+h) = 1

yt+h(1 − yt+h)

1√
2πσ̂ 2

t+h|t
(3)

× exp
[(

−
(

log
(

yt+h

1 − yt+h

)
− ẑt+h|t

)2)/
(2σ̂ 2

t+h|t )
]
.

Note that (3) is the h-step ahead conditional density of Yt+h given the conditional
point forecast of ẑt+h|t at time t .

3.2. Exponential smoothing and truncated normal distribution. The second
approach deals with the original wind power data yt directly. However, since the
data are non-Gaussian, there is a problem with the iteration of multi-step ahead
density forecasts. We handle this by expressing the h-step ahead conditional den-
sity as a function of its first two moments. For instance, the one-step ahead density
is written as ft+1|t (y; μ̂t+1|t , σ̂ 2

t+1|t ), where μ̂t+1|t = E[yt+1|Ft ] is the conditional

mean and σ̂ 2
t+1|t = Var[yt+1|Ft ] = Var[εt+1|Ft ] = σ̂ 2

ε;t+1|t is the conditional vari-

ance.7 At this moment, we do not attempt to figure out the exact form of the density
function ft+1|t . Given any ft+1|t and a model M for the dynamics, we can always
evolve the density function so that

ft+1|t (y; μ̂t+1|t , σ̂ 2
t+1|t )

M−→ ft+h|t (y; μ̂t+h|t , σ̂ 2
t+h|t ),

(4) μ̂t+h|t = p
(h)
M (μ̂t+1|t , . . . , μ̂t+h−1|t ;y1, . . . , yt ),

σ̂ 2
t+h|t = q

(h)
M (σ̂ 2

ε;t+1|t , . . . , σ̂ 2
ε;t+h|t ),

7In this paper, σ̂ 2
t+h|t denotes the conditional variance of the data yt+h, while σ̂ 2

ε;t+h|t denotes the

conditional variance of the innovation εt+h, so that in general σ̂ 2
t+h|t is a function of σ̂ 2

ε;t+j |t with
j = 1, . . . , h.
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where
M−→ denotes the process of evolving the dynamics and generating h-step

ahead density forecasts under the unknown model M , which in practice may re-
quire the use of Monte Carlo simulations. Here p

(h)
M and q

(h)
M stand for functions

that give the conditional mean and the conditional variance of yt , with parameters
that depend on the model M and the forecast horizon h.

It is difficult to obtain any closed form for ft+h|t if the distribution of inno-
vations εt is non-Gaussian. Thus, we propose to use a two-step approach to ap-
proximate ft+h|t . In the first step, we attempt to model the dynamics of the condi-
tional mean 
̂t+h|t and the conditional variance ŝ2

t+h|t of the data using a Gaussian
model G. This is expressed as

Step 1: 
̂t+h|t = p
(h)
G (
̂t+1|t , . . . , 
̂t+h−1|t ;y1, . . . , yt ),

(5)
ŝ2
t+h|t = q

(h)
G (ŝ2

ε;t+1|t , . . . , ŝ2
ε;t+h|t ),

where p
(h)
G and q

(h)
G stand for functions that give the conditional mean and the con-

ditional variance of yt+h, with parameters that depend on the Gaussian model G

and horizon h. In model G, the innovations are additive and are assumed to be i.i.d.
Gaussian distributed. For example, G can be the conventional ARIMA–GARCH
model with Gaussian innovations. This may be violated in reality, so 
̂t+h|t and
ŝ2
t+h|t obtained from model G may not be the true conditional mean μ̂t+h|t and

conditional variance σ̂ 2
t+h|t respectively. They only serve as proxies to the true

values.
Although model G may not describe real situations, we rely on a second step

for remedial adjustments such that the final density forecast is an approximation
to reality. In the second step, we assume that the h-step ahead density ft+h|t can
be approximated by a parametric function D, which is characterized by a location
parameter and a scale parameter. In particular, the location parameter and the scale
parameter are obtained from the conditional mean 
̂t+h|t and the conditional vari-
ance ŝ2

t+h|t respectively, which are estimated from the Gaussian model G. Thus,
we simply take

Step 2: ft+h|t (y; μ̂t+h|t , σ̂ 2
t+h|t ) ≈ D(y; 
̂t+h|t , ŝ2

t+h|t )(6)

as the h-step ahead density forecast where D is a function depending on two pa-
rameters only. As a result, the two-step approach may be able to give a good es-
timation of ft+h|t if (6) is a close approximation. In (6) the correct conditional

mean μ̂t+h|t and conditional variance σ̂ 2
t+h|t are generated by p

(h)
M (·) and q

(h)
M (·)

under the true model M , while the corresponding proxy values 
̂t+h|t and ŝ2
t+h|t

are generated by p
(h)
G (·) and q

(h)
G (·) under a Gaussian model G. Empirical studies

will be needed to determine the appropriate Gaussian model G as well as the best
choice D in order to approximate the final density ft+h|t .
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For our normalized aggregated wind power yt , choosing D as the truncated nor-
mal distribution bounded within [0,1] gives a good approximation of ft+h|t . Trun-
cated normal distributions have been applied successfully in modeling bounded,
nonnegative data [Sanso and Guenni (1999), Gneiting et al. (2006)]. We consider
D to be parameterized by the location parameter 
̂t+h|t and the scale parameter
ŝ2
t+h|t , where N(
̂t+h|t , ŝ2

t+h|t ) is the corresponding normal distribution without

truncation. Note that 
̂t+h|t and ŝ2
t+h|t will be the true conditional mean and condi-

tional variance if the data are indeed Gaussian. The density function ft+h|t is then
given by (6) so that

ft+h|t (y; μ̂t+h|t , σ̂ 2
t+h|t ) = 1

ŝt+h|t

(
ϕ

(
y − 
̂t+h|t

ŝt+h|t

))

(7) /(
�

(
1 − 
̂t+h|t

ŝt+h|t

)
− �

(−
̂t+h|t
ŝt+h|t

))

for y ∈ (0,1), where ϕ and � are the standard normal density and distribution
function respectively.

Instead of directly estimating 
̂t+h|t and ŝ2
t+h|t using the ARIMA–GARCH

models, we find that a better way is to smooth the two parameters simultaneously
by exponential smoothing methods. Exponential smoothing methods have been
widely and successfully adopted in areas such as inventory forecasting [Brown
and Meyer (1961)], electricity forecasting [Taylor (2003)] and volatility forecast-
ing [Taylor (2004)]. A comprehensive review of exponential smoothing is given by
Gardner (2006). Hyndman et al. (2008) provide a state space framework for expo-
nential smoothing, which further strengthens its value as a statistical model instead
of an ad hoc forecasting procedure. Ledolter and Box (1978) show that exponential
smoothing methods produce optimal point forecasts if and only if the underlying
data generating process is within a subclass of ARIMA(p, d, q) processes. We ex-
tend this property and demonstrate that simultaneous exponential smoothing on
the mean and variance can produce optimal point forecasts if the data follow a
corresponding ARIMA(p, d, q)–GARCH(r, s) process. This enables us to gener-
ate multi-step ahead forecasts for the parameters 
̂t+h|t and ŝ2

t+h|t by iterating the
underlying ARIMA–GARCH model of exponential smoothing.

3.2.1. Smoothing the location parameter only. For the simplest case, let us
assume that the conditional variance of wind power is constant. This means that we
only need to smooth the conditional mean 
t , while the conditional variance s2

t will
be estimated directly from the data via estimating the variance of innovations ŝ2

ε .
From now on, we refer to the conditional mean as the location parameter and the
conditional variance as the scale parameter so as to remind us that they correspond
to the truncated normal distribution. Again, the h-step ahead scale parameter ŝ2

t+h|t
is obtained as a function of ŝ2

ε .
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By simple exponential smoothing, the smoothed series of the location parameter

t is given by St , which is updated according to

St = αyt + (1 − α)St−1,(8)

where yt is the observed wind power at time t and 0 < α < 1 is a smoothing para-
meter. We initialize the series by setting S1 = y1, and the one-step ahead forecast is

̂t+1|t = St . Iterating (8) gives 
̂t+h|t = St . However, the forecast errors yt − 
̂t |t−1

are highly correlated, with a significant lag one sample autocorrelation of 0.2723.
A simple way to improve the forecast is to add a parameter φs to account for
autocorrelations in the forecast equation [Taylor (2003)]. We call this the simple
exponential smoothing with error correction. The updating equation is still given
by (8), but the forecast equation is modified as


̂t+1|t = St + φs(yt − St−1),(9)

where |φs | < 1. Note that it is now possible to obtain negative values for 
̂t+1|t
in (9) and in such cases 
̂t+1|t is obviously not the true conditional mean. Nev-
ertheless, this is not a problem here since 
̂t+1|t essentially serves as the location
parameter of the truncated normal distribution, which can be negative. Follow-
ing the taxonomy introduced by Hyndman et al. (2008), we denote (8) and (9)
as the ETS(A,N,N |EC) method, where ETS stands for both an abbreviation for
exponential smoothing as well as an acronym for error, trend and seasonality re-
spectively. The A inside the bracket stands for additive errors in the model, the first
N stands for no trend, the second N stands for no seasonality and EC stands for
error correction.

By directly iterating (8) and (9) and expressing ŷt+h|t = 
̂t+h|t , we have


̂t+h|t = St + αφs(1 − φh−1
s )

1 − φs

(yt − St−1) + φh
s (yt − St−1)(10)

for h > 1. To generate h-step ahead forecasts of ŝ2
t+h|t , it is important that we iden-

tify an underlying model corresponding to our updating and forecast equations (8)
and (9). It can be easily checked that the ETS(A,N,N |EC) method is optimal for
the ARIMA(1,1,1) model, in the sense that the forecasts in (9) are the minimum
mean square error (MMSE) forecasts. Expressed in the form of an ARIMA(1,1,1)

model with Gaussian innovations, the ETS(A,N,N |EC) method can be written as

wt = φswt−1 + εt + (α − 1)εt−1, εt
i.i.d.∼ N(0, s2

ε ),(11)

where wt = yt − yt−1, εt is the Gaussian innovation with mean zero and constant
variance s2

ε , and α,φs are the smoothing parameters in (8) and (9). It can also be
easily verified that (10) is identical to the h-step ahead forecasts obtained from the
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ARIMA(1,1,1) model in (11). It then follows from the ARIMA(1,1,1) model
that the h-step ahead forecast variance is given by

ŝ2
t+h|t = ŝ2

ε

h∑
j=1

�2
h−j ,(12)

where �0 = 1,�h = φh
s + α(1 − φh

s )/(1 − φs) for h ≥ 1, and ŝ2
ε is the estimated

constant variance of the innovations. Note that in this case, (12) is the explicit form
of ŝ2

t+h|t = q
(h)
G (ŝ2

ε ) in (5).
Since maximum likelihood estimators are well known to have nice asymptotic

properties, we estimate the three parameters α,φs and ŝ2
ε by maximizing the likeli-

hood of the truncated normal distribution ft+1|t (yt+1; 
̂t+1|t , ŝ2
t+1|t ). One may also

consider minimizing the mean continuous ranked probability scores (CRPS) of the
density forecasts [Gneiting et al. (2005, 2006)], but this requires a much larger
amount of computation. Although it may slightly improve the density forecasts,
minimizing the CRPS is not appealing here since we aim at generating multi-step
forecasts in a computationally efficient way. After obtaining the parameters, from
(10) and (12) we can generate the h-step ahead density forecasts using (7).

3.2.2. Smoothing both the location and scale parameters simultaneously.
Next, we consider heteroscedasticity for the conditional variances of wind power.
In this case, apart from smoothing the location parameter 
t , we also simultane-
ously smooth the scale parameter s2

t . In fact, we smooth the variance of innovations
s2
ε;t and obtain the scale parameter s2

t as a function of s2
ε;t as in (5).

Equipped with the one-step ahead forecast of the location parameter 
̂t |t−1, we
may calculate the squared difference between 
̂t |t−1 and the observed wind power
yt , that is, (yt − 
̂t |t−1)

2, as the estimated variance s2
ε;t at time t . Applying simple

exponential smoothing, the smoothed series of s2
ε;t is given by Vt , which is updated

according to

Vt = γ (yt − 
̂t |t−1)
2 + (1 − γ )Vt−1,(13)

where yt is the observed wind power at time t , 
̂t |t−1 is obtained by (9) and 0 <

γ < 1 is a smoothing parameter. We initialize the series by setting V1 to be the
variance of the data in the training set. In fact, the forecasts are not sensitive to the
choice of initial values due to the size of the data set. The one-step ahead forecast
is given by ŝ2

ε;t+1|t = Vt . Again, the forecast errors are highly correlated and it is
better to include an additional parameter φv in the forecast equation to account for
autocorrelations. The modified forecast equation is then given by

ŝ2
ε;t+1|t = Vt + φv[(yt − 
̂t |t−1)

2 − Vt−1],(14)

where |φv| < 1. Unfortunately, a major drawback of introducing this extra term
in the forecast equation is that negative values of ŝ2

ε;t+1|t may occur. Although
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this does not happen in our data, we modify our approach and consider smoothing
the logarithmic transformed scale parameter log s2

ε;t such that negative values are
allowed since we aim at developing a general methodology that applies to different
data sets. The smoothed series for log s2

ε;t is then given by logVt . Denoting εt =
yt − 
̂t |t−1 and et = εt/

√
Vt , the estimated logarithmic variance at time t is now

chosen to be g(et ) instead of log ε2
t so that

g(et ) = θ(|et | − E[|et |]),(15)

where θ is a constant parameter. This ensures that g(et ) is positive for large values
of et and negative if et is small. The updating equation and the forecast equation
are now written respectively as

logVt = γg(et ) + (1 − γ ) logVt−1,
(16)

log ŝ2
ε;t+1|t = logVt + φv[g(et ) − logVt−1],

which are analogous to (13) and (14), except that a logarithmic transformation is
taken and (yt − 
̂t |t−1)

2 is replaced by g(et ). We initialize the series by setting
logV1 = 0. In fact, the smoothing procedure is insensitive to the initial value due
to the size of the data set.

Now, the h-step ahead forecasts of 
̂t+h|t are still obtained from (10), but to
generate h-step ahead forecasts of ŝ2

t+h|t we need to identify an underlying model
for this smoothing method. We summarize our exponential smoothing method for
both 
t and s2

t by combining (8), (9) and (16):

St = αyt + (1 − α)St−1,


̂t+1|t = St + φs(yt − St−1),
(17)

logVt = γg(et ) + (1 − γ ) logVt−1,

log ŝ2
ε;t+1|t = logVt + φv[g(et ) − logVt−1],

where g(et ) is given in (15) and et as defined previously. There are four smooth-
ing parameters α,γ,φs,φv and a parameter θ for the estimated logarithmic vari-
ance g(et ). We adopt the taxonomy similar to that for exponential smooth-
ing for the location parameter as described in Section 3.2.1, and denote (17)
as the ETS(A,N,N |EC)–(A,N,N |EC) method where the second bracket of
(A,N,N |EC) indicates the exponential smoothing method applied for smooth-
ing the variance. We aim at identifying (17) with an ARIMA–GARCH model.
Using (11) as the ARIMA(1,1,1) model for yt and writing εt = yt − 
̂t |t−1, the
last equation in (17) can be written as

log ŝ2
ε;t+1|t = logVt + φv[g(et ) − logVt−1]

= γg(et ) + (1 − γ ) logVt−1 + φv[g(et ) − logVt−1]
= (γ + φv)g(et ) − φv logVt−1(18)
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+ (1 − γ ){log s2
ε;t − φv[g(et−2) − logVt−2]}

= (γ + φv)g(et ) − φvg(et−1) + (1 − γ ) log s2
ε;t ,

where we have used the updating equation in (16). This is the exponential GARCH,
that is, EGARCH(2,1) model for the conditional variance of innovations εt

[Nelson (1991)]. Unlike the conventional EGARCH models for asset prices, g(et )

is symmetric since there is no reason to expect volatility to increase when wind
power generation drops. In summary, the exponential smoothing method in (17) is
optimal for the ARIMA(1,1,1)–EGARCH(2,1) model, which can be written as

wt = φswt−1 + εt + (α − 1)εt−1, εt |Ft−1
i.i.d.∼ N(0, s2

ε;t ),
(19)

log s2
ε;t = (1 − γ ) log s2

ε;t−1 + (γ + φv)g(et−1) − φvg(et−2),

where wt = yt − yt−1 and g(et ) is given in (15), and we have assumed Gaussian
innovations so that E[|et |] = √

2/π . Similarly, we estimate the five parameters
α,φs, γ,φv and θ by maximizing the truncated normal likelihood as mentioned
in Section 3.2.1. Now, equipped with the ARIMA(1,1,1)–EGARCH(2,1) model
in (19), the h-step ahead forecasts for the scale parameter ŝ2

ε;t+h|t can be easily

obtained [Tsay (2005)]. Consequently, the h-step ahead forecasts ŝ2
t+h|t can be

expressed as a function of {ŝ2
ε;t+j |t }hj=1, which is analogous to (12) except that the

expression is much more complicated and, in practice, one would simply iterate
the forecasts. The h-step ahead density forecasts can then be obtained using (7).

4. Forecast evaluations.

4.1. Benchmark models. In this section we apply the approaches of density
forecasts in Section 3 to forecast normalized aggregated wind power in Ireland. To
evaluate the forecast performances of our approaches, we compare the results with
four simple benchmarks. The first two benchmarks are the persistence (random
walk) forecast and the constant forecast, which are both obtained as truncated nor-
mal distributions in (7). For the persistence forecast, we estimate the h-step ahead
location parameter 
̂t+h|t and scale parameter ŝ2

t+h|t using the latest observations,
that is,


̂t+h|t = yt , ŝ2
t+h|t =

∑N
j=1(yt+1−j − yt−j )

2

N
(20)

for t > N . We find that taking N = 48, that is, using data in the past 12 hours,
gives an appropriate estimate for ŝ2

t+h|t .
For the constant forecast, we estimate the constant location parameter 
̂t+h|t and

scale parameter ŝ2
t+h|t using data in the whole training set. They are given by the
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sample mean and the sample variance of the 11,008 observations in the training
set, so that


̂t+h|t = 
̂ =
∑11,008

j=1 yj

11,008
, ŝ2

t+h|t = ŝ2 =
∑11,008

j=1 (yj − 
̂)2

11,007
.(21)

We have also considered generating the persistence and constant forecasts using
the first approach as described in Section 3.1. However, our results show that the
second approach gives a better benchmark in terms of forecast performance.

On the other hand, the third and the fourth benchmarks are obtained by es-
timating empirical densities from the data. The third benchmark is the clima-
tology forecast, in which an empirical unconditional density is fitted using data
in the whole training set. The density has been shown in Figure 7 previously.
The fourth benchmark is the empirical conditional density forecast. To be in line
with the use of exponential smoothing to estimate the location and scale para-
meters in Section 3.2, we consider an exponentially weighted moving average
(EWMA) of a set of empirical conditional densities. Due to computational effi-
ciency as well as reliability of density estimations, at each time t we essentially
consider the EWMA of 14 empirical conditional densities gemp({�j

t }), where each
of them is fitted using observations in the past j days with j = 1,2, . . . ,14 and
{�j

t } = {yt−96j+1, yt−96j+2, . . . , yt } is the set of (96 × j) latest observations used
to fit the empirical density. Up to an appropriate normalization constant, the h-step
ahead EWMA empirical conditional density forecast is given by

ft+h|t (y) ∝
14∑

j=1

λ(1 − λ)j−1gemp({�j
t })(22)

so that for any fixed forecast origin t , the h-step ahead density forecasts are iden-
tical for all h > 1. The smoothing parameter in (22) is estimated to be λ = 0.1988,
which is obtained by maximizing the log likelihood, that is,

∑
logft+1|t (λ;yt+1),

using the data in the training set only. It is possible to estimate a smoothing para-
meter for each forecast horizon h. However, the improvements are not significant
and, thus, we simply keep using λ = 0.1988 for all horizons. Figure 13 shows the
exponential decrease of the weights being assigned to different empirical densities
gemp({�j

t }).
In summary, we consider the following 4 benchmarks and 4 approaches of gen-

erating multi-step density forecasts, and compare their forecast performances from
15 minutes up to 24 hours ahead:

1. Persistence forecast [TN]
2. Constant forecast [TN]
3. Climatology forecast [Empirical density]
4. EWMA conditional density forecast [Empirical density]
5. The ARIMA(2,1,3) model [LT]
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FIG. 13. The exponential decrease of the weights λ(1 − λ)j−1 assigned to the empirical condi-

tional densities gemp({�j
t }) fitted with j days of latest observations, where λ = 0.1988 is obtained

by maximizing the likelihood using data in the training set. The EWMA empirical conditional density

forecasts are obtained as the weighted average of gemp({�j
t }).

6. The ARIMA(4,1,3)–GARCH(1,1) model [LT]
7. The ETS(A,N,N |EC) method [TN]
8. The ETS(A,N,N |EC)–(A,N,N |EC) method [TN],

where [LT] stands for logistic transformation and [TN] stands for truncated normal
distribution, so as to remind us how the densities are generated.

4.2. Point forecasts. First, let us evaluate the point forecasts generated by dif-
ferent approaches. We consider the expected values of the density forecasts as the
optimal point forecasts. Given a forecast density, we can obtain the expected value
directly by numerical integration. In particular, for forecast densities in the form of
truncated normal distributions, one may easily write down the expected value as

ŷt+h|t = 
̂t+h|t − 
̂t+h|t
((

ϕ

(
1 − 
̂t+h|t

ŝt+h|t

)
− ϕ

(−
̂t+h|t
ŝt+h|t

))

(23) /(
�

(
1 − 
̂t+h|t

ŝt+h|t

)
− �

(−
̂t+h|t
ŝt+h|t

)))
,

where 
̂t+h|t and ŝ2
t+h|t are the location and scale parameters of the truncated

normal distribution in (7). Note that due to the truncation, the distribution may
not be symmetric and so the expected value is in general different from the
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location parameter, that is, ŷt+h|t 	= 
̂t+h|t . In fact, referring to (5), 
̂t+h|t =
p

(h)
G (
̂t+1|t , . . . , 
̂t+h−1|t ;y1, . . . , yt ) is obtained according to a Gaussian model

G, which may not give the true conditional mean ŷt+h|t of the data, and may
even be negative. Since the final density ft+h|t is only obtained when an appro-
priate function D is chosen, we see that D transforms the conditional mean from

̂t+h|t for Gaussian data to the optimal forecast ŷt+h|t for our data. This is analo-
gous to calculating optimal point forecasts when the loss function is asymmetric
[Christoffersen and Diebold (1997), Patton and Timmermann (2007)]. Since the
normalized aggregated wind power is bounded within [0,1], the loss function is
always asymmetric unless the conditional mean is 
̂t+h|t = 0.5. When the condi-
tional mean is not the optimal forecast, an additional term is added to compensate
for the asymmetric loss. Christoffersen and Diebold (1997) suggest an approxima-
tion to calculate the optimal forecast for conditionally Gaussian data by assuming
ŷt+h|t = G(μt+h|t , σ 2

t+h|t ), where μt+h|t , σ 2
t+h|t are the conditional mean and con-

ditional variance. Their method involves expanding G into a Taylor series.
To evaluate the performances of different forecasting approaches, we calculate

h-step ahead point forecasts for each of the 5504 values in the testing set, where
1 ≤ h ≤ 96, that is, from 15 minutes up to 24 hours ahead. For each forecast hori-
zon h, we calculate the mean absolute error (MAE) and the root mean squared
error (RMSE) of the point forecasts, where the mean is taken over the 5504 h-step
ahead forecasts in the testing set.

Figures 14 and 15 show the results of point forecasts under MAE and RMSE
respectively. The rankings of different approaches are similar under either MAE or
RMSE, except for the ETS(A,N,N |EC)–(A,N,N |EC) method which performs
relatively better under MAE than RMSE. It performs the best under MAE for
long forecast horizons beyond 14 hours. On the other hand, the two ARIMA–
GARCH models outperform all other approaches for short forecast horizons within
12 hours, and are almost as good as the ETS(A,N,N |EC)–(A,N,N |EC) method
for horizons beyond 12 hours.

Interestingly, the ARIMA(2,1,3) model is performing almost identically to the
ARIMA(4,1,3)–GARCH(1,1) model. This phenomenon is in contrast with that
for the ETS methods, where smoothing both the location and scale parameters
do perform much better. It seems that including the dynamics of the conditional
variance in the modeling of the logistic transformed wind power zt cannot improve
the point forecasts under MAE or RMSE. These may be explained by Figure 3
which shows a significantly changing variance in the original wind power data yt ,
and by Figure 11 which shows a fairly constant variance for zt . We will further
investigate this issue in the evaluation of density forecasts using the probability
integral transform (PIT), where we see that the conditional variance models are
indeed capturing the changes in volatility better and thus generate more reliable
density forecasts.

As discussed in Section 1, one may argue that spatiotemporal information
among individual wind farms should be deployed to forecast aggregated wind
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FIG. 14. Mean absolute error (MAE) of point forecasts generated by different approaches
for forecast horizons from 15 minutes to 24 hours ahead. The ARIMA–GARCH models on
logistic transformed data perform best for short horizons less than 12 hours whereas the
ETS(A,N,N |EC)–(A,N,N |EC) method with truncated normal distribution is best for horizons
greater than 12 hours.

FIG. 15. Root mean squared error (RMSE) of point forecasts generated by different approaches
for forecast horizons from 15 minutes to 24 hours ahead. Results are similar to those under MAE.
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TABLE 1
Summary of point forecast performances of different approaches under RMSE. The bold numbers

indicate the best approach at that forecast horizon

1 hour 6 hours 12 hours 24 hours

Persistence forecast 0.036 0.138 0.191 0.229
Constant forecast 0.263 0.263 0.263 0.263
Climatology forecast 0.285 0.285 0.285 0.285
EWMA conditional density 0.177 0.192 0.203 0.211
ARIMA(2,1,3) 0.032 0.118 0.177 0.207
ARIMA(4,1,3)–GARCH(1,1) 0.031 0.117 0.177 0.209
ETS(A,N,N |EC) 0.032 0.126 0.193 0.230
ETS(A,N,N |EC)–(A,N,N |EC) 0.034 0.126 0.176 0.215

BLUP (Multiple time series approach) 0.037 0.123 0.188 0.229

power. To show that it is indeed better to forecast the aggregated power as a uni-
variate time series, we consider a simple multiple time series approach. We obtain
the best linear unbiased predictor (BLUP) of wind power generation at a single
wind farm using observations in the neighborhood, where the predictor is the best
in the sense that it minimizes mean square errors. In other words, it is simply the
kriging predictor which is widely applied in spatial statistics [Cressie (1993), Stein
(1999)]. It can be easily extended to deal with spatiotemporal data [Gneiting, Gen-
ton and Guttorp (2007)], and more details could be found in Lau (2010). Comput-
ing the BLUP relies on the knowledge of the covariances of the process between
different sites. In the context of spatiotemporal data, we obtain the BLUP by calcu-
lating the empirical covariances among the wind power at different spatial as well
as temporal lags.8 We then substitute the empirical covariances into the formula of
BLUP. We apply this method and obtain 1, 6, 12 and 24 hours ahead point fore-
casts for the power generated at each individual wind farm, aggregate all power
and normalize the result by dividing by 792.355 MW. We compute the RMSE of
these aggregated forecasts, and find that aggregating individual forecasts cannot
beat the performances of our approaches in Section 3. The results are displayed in
Table 1. Of course, one may expect that more sophisticated spatiotemporal models
may be able to outperform our methods here, but this will be of more interest to
individual power generation instead of aggregated ones as discussed in this paper.

4.3. Density forecasts. For the density forecasts, we use the continuous ranked
probability score (CRPS) to rank the performances. Gneiting and Raftery (2007)
discussed the properties of CRPS extensively, showing that it is a strictly proper

8One needs to decide the number of temporal lags to be included in calculating the BLUP. In our
case of empirical covariances, we find that including temporal lags within the past hour is generally
the best. Forecast performances deteriorate when one considers too many temporal lags.
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score and a lower score always indicates a better density forecast. CRPS has be-
come one of the popular tools for density forecast evaluations, especially for en-
semble forecasts in meteorology. We have also analyzed the performances of den-
sity forecasts using other common metrics such as the negative log likelihood
(NLL) scores. However, we advocate the use of CRPS for ranking different ap-
proaches since CRPS is more robust than the NLL scores, while the latter is always
severely affected by a few extreme outliers [Gneiting et al. (2005)]. One may need
to calculate the trimmed mean of the NLL scores in order to resolve this prob-
lem [Weigend and Shi (2000)]. Also, CRPS assesses both the calibration and the
sharpness of the density forecasts, while the NLL scores assesses sharpness only.

Similar to evaluating point forecasts, we generate h-step ahead density fore-
casts for each of the 5504 values in the testing set where 1 ≤ h ≤ 96. For each
h-step ahead density forecast ft+h|t , let Ft+h|t be the corresponding cumulative
distribution function. The CRPS is computed as

CRPS =
∫ 1

0
[Ft+h|t (y) − 1(y − yt+h)]2 dy,(24)

where 1(·) is the indicator function which is equal to one when the argument is
positive. Again, the mean CRPS is taken over the 5504 h-step ahead density fore-
casts in the testing set.

Figure 16 shows the performances of density forecasts under mean CRPS.
The rankings are similar to those under MAE and RMSE in point forecasts.

FIG. 16. Mean continuous ranked probability score (CRPS) of density forecasts generated by dif-
ferent approaches for forecast horizons from 15 minutes to 24 hours ahead. Rankings are similar to
those under MAE and RMSE in point forecasts.
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TABLE 2
Summary of density forecast performances of different approaches under CRPS. The bold numbers

indicate the best approach at that forecast horizon

1 hour 6 hours 12 hours 24 hours

Persistence forecast 0.019 0.077 0.111 0.137
Constant forecast 0.159 0.159 0.159 0.159
Climatology forecast 0.175 0.175 0.175 0.175
EWMA conditional density 0.098 0.111 0.120 0.127
ARIMA(2,1,3) 0.017 0.065 0.100 0.119
ARIMA(4,1,3)–GARCH(1,1) 0.016 0.063 0.099 0.120
ETS(A,N,N |EC) 0.017 0.068 0.109 0.129
ETS(A,N,N |EC)–(A,N,N |EC) 0.017 0.069 0.100 0.124

The two ARIMA–GARCH models outperform all other approaches for all fore-
cast horizons. Table 2 summarizes the main results. Again, the performances
of the ARIMA(2,1,3) model are very similar to that of the ARIMA(4,1,3)–
GARCH(1,1) model and, in contrast, the ETS(A,N,N |EC)–(A,N,N |EC)

method is significantly better than the ETS(A,N,N |EC) method. To investigate
the value of including the dynamics of conditional variances, we consider the
probability integral transform (PIT). For one-step ahead density forecasts ft+1|t ,
the PIT values are given by

z(yt+1) =
∫ yt+1

0
ft+1|t (y) dy.(25)

Diebold, Gunther and Tay (1998) show that the series of PIT values z are
i.i.d. uniform if ft+1|t coincides with the true underlying density from which
yt+1 is generated. For each forecasting approach, we calculate the percentage
of PIT values below the 5th, 50th and 95th quantiles of the U [0,1] distrib-
ution, that is, the percentage of PIT values smaller than 0.05, 0.5 and 0.95
respectively. We denote them by P5,P50 and P95, and calculate the devia-
tions of the percentages (P5 − 5), (P50 − 50) and (P95 − 95). Figure 17 shows
the deviations, where we only focus on the two ETS methods and the two
ARIMA–GARCH models. We see that the ETS(A,N,N |EC)–(A,N,N |EC)
method and the ARIMA(4,1,3)–GARCH(1,1) model indeed generate density
forecasts which are better calibrated. In particular, the overall calibration of the
ETS(A,N,N |EC)–(A,N,N |EC) method is the best, indicating that it provides
the most reliable descriptions of the changing volatility over time. Note that a pos-
itive slope in Figure 17 implies a density forecast which is over-conservative and
has a large spread, while a negative slope implies the opposite. Thus, for one-
step ahead forecasts, the ARIMA–GARCH models are over-conservative, while
the ETS methods are over-confident.
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FIG. 17. We calculate the percentages P5, P50 and P95 of PIT values smaller than
0.05, 0.5 and 0.95 respectively, and calculate the deviations (P5 − 5), (P50 − 50) and
(P95 − 95). The ETS(A,N,N |EC)–(A,N,N |EC) method and the ARIMA(4,1,3)–GARCH(1,1)

model indeed generate better calibrated density forecasts. The overall calibration of the
ETS(A,N,N |EC)–(A,N,N |EC) method is the best, indicating that it provides the most reliable
descriptions of the changing volatility over time. Note that a positive slope implies a ddnsity forecast
which is over-conservative, while a negative slope implies the opposite.

Figure 17 only reflects information on the marginal distributions of the PIT
values. Stein (2009) suggests that it is also valuable to evaluate the distributions
conditioned on volatile periods. It is particularly important to capture the vari-
ance dynamics during times of large volatilities, since for most of the times one
does not want to underestimate the risk by proposing an over-confident density
forecast. Underestimating large risks usually leads to a more disastrous outcome
than overestimating small risks. Following Stein (2009), we compare the ability
of the approaches in capturing volatility dynamics during the largest 10% of vari-
ance. To estimate the variance of the data in the testing set, we directly adopt the
persistence forecast ŝ2

ε;t+1|t in (20), which essentially gives the 12-hour moving
average of realized variance. Figure 18 shows the changing variance, where the
largest values mostly occur in early December. The times corresponding to the
largest 10% of variance are selected and we compare the distribution of z(yt+1)

at those times. The PIT diagrams are shown in Figure 19. It demonstrates that
the ARIMA–GARCH model indeed gives better calibrated one-step ahead density
forecasts than the ARIMA model during volatile periods. The differences between
the two ETS methods are even more significant, where the ETS(A,N,N |EC)

method gives over-confident density forecasts that underestimate the spread.
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FIG. 18. Estimated variance of data in the testing set using the persistence forecast ŝ2
ε;t+1|t in

(20), which essentially gives the 12-hour moving average of realized variance. Clearly, the variance
changes with time and the largest values mostly occur in early December.

5. Conclusions and discussions. In this paper we study two approaches for
generating multi-step density forecasts for bounded non-Gaussian data, and we
apply our methods to forecast wind power generation in Ireland. In the first ap-
proach, we demonstrate that the logistic transformation is a good method to nor-
malize wind power data which are otherwise highly non-Gaussian and nonstation-
ary. We fit ARIMA–GARCH models with Gaussian innovations for the logistic
transformed data, and out-of-sample forecast evaluations show that they generate
both superior point and density forecasts for all horizons from 15 minutes up to
24 hours ahead. A second approach is to assume that the h-step ahead conditional
densities are described by a parametric function D with a location parameter 
̂

and scale parameter ŝ2, namely, the conditional mean and the conditional vari-
ance of yt that are generated by an appropriate Gaussian model G. Results show
that choosing D as the truncated normal distribution is appropriate for aggregated
wind power data, and in this case 
̂ and ŝ2 are the mean and variance of the origi-
nal normal distribution respectively. We apply exponential smoothing methods to
generate h-step ahead forecasts for the location and scale parameters. Since the un-
derlying models of the exponential smoothing methods are Gaussian, we are able
to obtain multi-step forecasts by simple iterations and generate forecast densities
as truncated normal distributions.

Although the approach using exponential smoothing methods with truncated
normal distributions cannot beat the approach considering logistic transformed
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FIG. 19. Histograms of PIT values conditioned on the largest 10% of estimated variance, where
the one-step ahead density forecasts are generated using the ARIMA(2,1,3) model (top left), the
ARIMA(4,1,3)–GARCH(1,1) model (top right), the ETS(A,N,N |EC) method (bottom left) and
the ETS(A,N,N |EC)–(A,N,N |EC) method (bottom right). The dotted lines correspond to 2 stan-
dard deviations from the uniform density.

data, they are still a useful alternative to produce good density forecasts due to sev-
eral reasons. First, forecast performances of the exponential smoothing methods
are more robust under different lengths of training data, especially when the size
of the training set is relatively small and the estimation of the ARIMA–GARCH
models may not be reliable to extrapolate into the testing set. This has been demon-
strated in our data, where we take 40% of the data as the training set and the re-
maining as the testing set. In such a case, the ETS(A,N,N |EC)–(A,N,N |EC)
method performs better than the approach with logistic transformed data [Lau
(2010)]. Second, in the first approach using ARIMA–GARCH models, we have
to select the best model using BIC whenever we consider an updated training set.
This is not necessary for the exponential smoothing methods. Third, an advantage
of forecasting by exponential smoothing methods is that it is computationally more
efficient to calculate point forecasts due to the closed form of density function that
we have chosen, namely, the truncated normal distribution D. On the other hand,
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in the first approach, we have to transform the Gaussian densities and calculate
the expected value of the transformed densities by numerical integrations, which
require much more computational power. The second and third points are critical
since, in practice, many forecasting problems require frequent online updating. Fi-
nally, the second approach allows us to choose a parametric function D for the
forecast densities, which gives us more flexibility and one may generate improved
density forecasts by testing various possible choices of D. This advantage is partic-
ularly important when there are no obvious transformations to normalize the data,
and when there is evidence that supports simple parametric forecast densities.

In summary, we have developed a general approach of generating multi-step
density forecasts for non-Gaussian data. In particular, we have applied our ap-
proaches to generate multi-step density forecasts for aggregated wind power data,
which would be economically valuable to power companies, national grids and
wind farm operators. It would be interesting and challenging to propose modified
methods based on our current approaches, so that reliable density forecasts for in-
dividual wind power generation could be obtained. Individual wind power time
series are interesting since they are highly nonlinear. Sudden jumps from maxi-
mum capacity to zero may occur due to gusts of winds, and there may be long
chains of zero values because of low wind speeds or maintenance of turbines.
Characteristics of individual wind power densities include a positive probability
mass at zero as well as a highly right-skewed distribution, and it would be chal-
lenging to generate multi-step density forecasts for individual wind power data.
Another important area of future research is to develop spatiotemporal models
to generate density forecasts for a portfolio of wind farms at different locations.
Recent developments in this area include Hering and Genton (2010). Some pos-
sible approaches include the process-convolution method developed and studied
by Higdon (1998), which has been applied to the modeling of ocean temperatures
and ozone concentrations. Another possible approach is the use of latent Gaussian
processes. Those approaches have been studied by Sanso and Guenni (1999) who
consider the power truncated normal (PTN) model, and by Berrocal, Raftery and
Gneiting (2008) who consider a modified version of the PTN model called the
two-stage model. Spatiotemporal models will be important to wind farm investors
to identify potential sites for new farms. It would also be of great importance to
the national grid systems where a large portfolio of wind farms are connected,
and sophisticated spatiotemporal models may be constructed to improve density
forecasts for aggregated wind power by exploring the correlations of power gener-
ations between neighboring wind farms.
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