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DENSITY ESTIMATION FOR GROUPED DATA WITH
APPLICATION TO LINE TRANSECT SAMPLING

BY WONCHEOL JANG AND JI MENG LOH

University of Georgia and Columbia University

Line transect sampling is a method used to estimate wildlife populations,
with the resulting data often grouped in intervals. Estimating the density from
grouped data can be challenging. In this paper we propose a kernel density
estimator of wildlife population density for such grouped data. Our method
uses a combined cross-validation and smoothed bootstrap approach to select
the optimal bandwidth for grouped data. Our simulation study shows that
with the smoothing parameter selected with this method, the estimated den-
sity from grouped data matches the true density more closely than with other
approaches. Using smoothed bootstrap, we also construct bias-adjusted con-
fidence intervals for the value of the density at the boundary. We apply the
proposed method to two grouped data sets, one from a wooden stake study
where the true density is known, and the other from a survey of kangaroos in
Australia.

1. Introduction. In ecology it is often of great interest to study the abun-
dance of wildlife populations. A common approach for estimating the abundance
of a biological population is distance sampling [Barabesi (2000); Barabesi, Greco
and Naddeo (2002); Chen (1996)], of which line transect sampling is an example.
A comprehensive review of distance sampling can be found in Burnham, Anderson
and Laake (1980) and Buckland et al. (2001).

In such studies the detectability of individual data points often varies with the
distance and selection biases are common. In the basic line transect scheme, for
example, a number of lines of total length L are randomly placed in the region
of interest. Observers then move along these lines and record the perpendicular
distance of each detected animal from the line. Animals further away from the lines
are more likely to be missed and this can be modeled via a detection probability
function p(x) that represents the conditional probability of detecting an animal,
given that the animal is at a perpendicular distance x from the line. Buckland et al.
(2001) showed that the density function of observed distances, denoted f (x), can
be obtained from p(x) by rescaling p(x) to integrate to 1.

In line transect sampling, it is assumed that the line transects are placed inde-
pendently of the animal population so that the animals are distributed uniformly
in distance from the lines. The decrease in observations with distance is then at-
tributed to the detection function p(x).
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Several assumptions about p(x) are also often made. Since animals are more
likely to be missed with increasing distance from the observer, p(x) is assumed to
be montonically decreasing with x. Furthermore, it is assumed that p(0) = 1 and
p′(0) = 0, where p′ is the derivative of p with respect to x, the former represent-
ing the assumption that an animal on the line will not be missed. By adding the
assumption that

∫ ∞
0 p(x)dx < ∞, Burnham and Anderson (1976) showed that the

average number of animals per unit area, D, can be estimated with

D̂ = nf̂ (0)

2L
,(1.1)

where n is the number of observations, L is the total length of the line transects
and f̂ (0) is an estimate of f (0).

The rather unintuitive formula (1.1) can be better understood as follows; sup-
pose that a strip of width 2w and total length L is surveyed and n animals are
detected. The animal density is then given by

D = n

2wLPa

,

where Pa is the unconditional detection probability of an animal in the strip of
area 2wL, which can be expressed as

Pa = 1

w

∫ w

0
p(x)dx.

With f (x) = p(x)/
∫ w

0 p(x)dx, and p(0) = 1, one can show

Pa = 1

wf (0)
,

giving (1.1).
Due to the difficulty in measuring distances, the observations are often grouped

into convenient distance markers, such as multiples of five or ten. Thus, estimation
of animal populations using line transect sampling involves estimating a density
function f from grouped data. In particular, the value of the density at the bound-
ary, specifically, at x = 0, is of interest.

Various estimation techniques have been proposed for use with line transect
data. Buckland et al. (2001) introduced parametric modeling of f , of which
Fourier series estimators [Burnham, Anderson and Laake (1980)] form a subclass.
Other methods include kernel density estimation [Chen (1996); Mack and Quang
(1998)] and semiparametric methods [Barabesi (2000); Barabesi, Greco and Nad-
deo (2002)]. The reader is asked to refer to the cited works for details on these
methods.

Parametric methods work well if the model is correct. Also, in smaller data sets,
the data may be grouped into as few as 3 or 4 groups. In these cases, parametric
models using covariate information will be useful [Marques and Buckland (1992)].
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Here, we focus on nonparametric methods, in particular, on kernel density estima-
tion using grouped data. In the context of line transect sampling, the aim will be
the estimation of f (0). However, our proposed method for bandwidth selection in
density estimation from grouped data has applications beyond line transect sam-
pling (see Section 7).

Nonparametric estimation of f (0) has a number of challenges in the grouped
data setting:

1. Density estimation from grouped data: When data are grouped, using risk func-
tion estimators such as the cross-validation score function to choose the optimal
smoothing parameter can be problematic since the risk function estimators tend
to be monotone decreasing functions of the smoothing parameter. As a result,
using cross-validation for optimal smoothing parameter selection may lead to
undersmoothing.

2. Density estimation at the boundary: Since distances are nonnegative, the sup-
port of the density should not include any negative values. To satisfy this con-
dition, one must modify the original kernel density estimator to remove any
boundary bias.

3. Obtaining confidence intervals: The standardized form of the nonparametric
estimator f̂ can be expressed as the sum of two terms:

f̂ (x) − f (x)√
Var(f̂ (x))

= f̂ (x) − E(f̂ (x))√
Var(f̂ (x))

+ E(f̂ (x)) − f (x)√
Var(f̂ (x))

.

While the first term converges to the standard normal distribution by the central
limit theorem, in nonparametric inference the second term is not negligible be-
cause of the bias-variance trade-off. Common smoothing techniques require the
bias and the standard error to be of the same order. Therefore, confidence inter-

vals based on the traditional form of f̂ (x)±zα/2

√
Var(f̂ (x)) do not necessarily

achieve the nominal level.

Note that the second and third points above are also common issues in non-
parametric inference for ungrouped data as well. Chen (1996) and Mack and
Quang (1998) used kernel methods to address these two issues for ungrouped
data. Barabesi, Greco and Naddeo (2002) developed a semiparametric method for
grouped data, but used the traditional form of the confidence interval for f (0).
Optimal bandwidth selection plays an important role in addressing the second and
third issues whether data are grouped or not. In this work, we develop an inference
procedure that addresses all three issues together.

Specifically, we propose a combined cross-validation and smoothed bootstrap
procedure to select the optimal bandwidth in kernel density estimation with
grouped data and to construct bias-adjusted confidence intervals for the density
at the boundary. To adjust for the boundary bias, we employ a symmetrization
technique introduced by Buckland (1992). Our methods can be easily extended to
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multivariate cases. We are not aware of any other work that addresses all afore-
mentioned issues together.

The paper is organized as follows. Section 2 provides a brief overview of kernel
density estimators and includes a description of the symmetrization technique for
kernel density estimates at the boundary. In Section 3 we introduce a smoothed
bootstrap approach for bandwidth selection for grouped data. Section 4 explains
our approach for constructing bias-adjusted confidence intervals for f (0) and the
animal population density D. We present two case studies in Section 5, one us-
ing data from a wood stake study and the other from a survey of kangaroos in
Australia. Section 6 shows the performance of the proposed method in simulation
studies with data generated from artificially constructed densities commonly used
to test kernel density estimators as well as with a simulated line transect data set.
Concluding remarks follow in Section 7.

2. Inference for f (0). Suppose that we have a sample X1, . . . ,Xn from the
density function f (x). The nonparametric kernel density estimator of f (x) is
given by

f̂h(x) = 1

nh

n∑
i=1

K

(
x − Xj

h

)
,

where h is the bandwidth and K is a bounded, symmetric kernel function integrat-
ing to one. In kernel methods, the choice of the bandwidth is more crucial than the
choice of kernel. The bandwidth specifies the amount of smoothing applied to the
data and controls the performance of f̂h(x). For grouped data, the choice of h will
be addressed in Section 3. We use the Gaussian kernel throughout this paper.

In line transect sampling, the interest is in the value of the density at the bound-
ary x = 0, f (0), since this quantity is related to the animal population density.
It is well known that kernel estimators suffer from high bias near boundaries
[Wasserman (2005)]. Barabesi (2000) used local likelihood density estimation to
reduce this boundary bias, and Barabesi, Greco and Naddeo (2002) extended this
approach to grouped data. We will instead employ the symmetrization technique
used in Chen (1996), originally suggested by Buckland (1992). The key idea of
the symmetrization technique is to duplicate the data by reflecting the data about
the boundary: we replace each data value xi with xi and its reflection −xi about 0.
Then we assume that the data consist of values y1, . . . , y2n where y2i−1 = xi and
y2i = −xi . Thus, X = |Y | and we have

f (x) = g(x) + g(−x),

where g is the density of y. The kernel estimator of g is

ĝh(x) = 1

2nh

2n∑
k=1

K

(
x − yk

h

)
= 1

2nh

n∑
i=1

[
K

(
x − xi

h

)
+ K

(
x + xi

h

)]
,
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so that we have, as the kernel estimator of f (0),

f̂h(0) = 2ĝh(0) = 1

nh

2n∑
k=1

K

(
0 − yk

h

)
= 2

nh

n∑
i=1

K

(
xi

h

)
,

where the last equality is due to the symmetry of the Gaussian kernel about zero.

3. Bandwidth selector for grouped data. Here, we first describe the cross-
validation method and the smoothed bootstrap method for bandwidth selection
with ungrouped data. After highlighting difficulties with using these methods with
grouped data, we introduce a combined cross-validation and smoothed bootstrap
strategy that can deal with such grouped data.

In density estimation, the performance of the density estimate f̂h is highly sen-
sitive to the choice of the smoothing parameter h and one often selects the optimal
smoothing parameter from observed data using some criterion of performance.
A common criterion is the risk function, R(f, f̂h), defined to be the expectation of
a loss function, L(f, f̂h), often chosen to be the integrated squared error (ISE):

L(f, f̂h) = ISE =
∫

[f̂h(x) − f (x)]2 dx.

The risk function can be written as a sum of the squared bias term and the variance
term,

R(f, f̂h) = E(L(f, f̂h)) =
∫

bias2(f̂h(x)) dx +
∫

Var(f̂h(x)) dx,

hence, the optimal smoothing parameter is chosen to balance the tradeoff between
the bias and the variance.

The integrated squared estimator (ISE) can be written as

ISE =
∫

[f̂h(x) − f (x)]2 dx

(3.1)
=

∫
f̂ 2

h (x) dx − 2
∫

f̂h(x)f (x) dx +
∫

f 2(x) dx.

Since the last term on the right-hand side of (3.1) is independent of h, minimiz-
ing ISE is equivalent to minimizing the first two terms. As f is not known, the
middle term has to be estimated, usually by cross-validation or bootstrap.

With cross-validation, this middle term is estimated by

−2

n

n∑
i=1

f̂ −i
h (Xi),

where

f̂ −i
h (x) = 1

h(n − 1)

n∑
j �=i

K

(
x − Xj

h

)
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is the kernel estimate of f with the ith data point removed. Thus, the cross-
validation function is

CV(h) =
∫

f̂ 2
h (x) dx − 2

n

n∑
i=1

f̂ −i
h (Xi),

and the value of h that minimizes this function is chosen as the bandwidth.
An asymptotic justification of the cross-validation procedure can be found in
Stone (1984).

The bootstrap is an alternative to cross-validation for bandwidth selection
[Taylor (1989)]. However, the nonparametric bootstrap method of sampling the
data points with replacement and obtaining bootstrap density estimates from the
bootstrap samples cannot capture the bias since the bootstrap estimates are un-
biased. Thus, the smoothed bootstrap is used instead. This involves obtaining an
initial density estimate, f̂ (x;hin), using a pilot bandwidth value hin and obtaining
smoothed bootstrap samples by drawing samples from this initial density estimate.
The optimal bandwidth is then the value of h that minimizes

BMISE(h) = ES

∫
[f̂ S(x;h) − f̂ (x;hin)]2 dx,(3.2)

where f̂ S is the kernel density estimate for the smoothed bootstrap sample gener-
ated from f̂ (x;hin) and ES represents the mean over the smoothed bootstrap sam-
pling distribution. This smoothed bootstrap approach can often perform better than
cross-validation. See the work done by Faraway and Jhun (1990) and Jones, Mar-
ron and Sheather (1996) for the details. Faraway and Jhun (1990) recommended
choosing the pilot estimate with cross-validation.

The cross-validation and smoothed bootstrap methods described above work
well with ungrouped data. In practice, however, data are often binned or rounded
to some extent. Suppose we have a mesh {tk}Kk=0 specifying K intervals. The actual
data (X1, . . . ,Xn) is not recorded as such, but instead is of the form (v1, n1), . . . ,

(vK,nK) where nk is the count in the bin Bk = [tk−1, tk) and vk is typically taken
to be the midpoint of the bin Bk . Often the bin size δk = tk − tk−1 is constant for
all k, but this is not required in our proposed method.

It is well known that using the cross-validation function to select the smoothing
parameter leads to undersmoothing if the proportion of tied data is larger than
some threshold [Silverman (1986)]. Indeed, any reasonable risk function estimate
may not work as a criterion for choosing the optimal smoothing parameter if there
is significant overlapping in the data.

This can be explained heuristically. Since the risk function can be written as a
sum of a squared bias term and a variance term, selecting the bandwidth that mini-
mizes the risk function selects the amount of smoothing that balances the bias and
the variance. When data are grouped, however, there are additional biases so that
the squared bias term dominates the variance term in the risk function. As a smaller
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bandwidth reduces the bias, using the risk function produces undersmoothing. In
density estimation, this means that the selected optimal bandwidth will be close
to 0.

To address this problem, we propose a new bandwidth selection procedure for
kernel density estimation using a combined cross-validation and smoothed boot-
strap strategy. To estimate f (0) in line transect sampling, we use this new method
for bandwidth selection (Steps 2–6 below) together with the symmetrization tech-
nique of Section 2 (Step 1).

Suppose we have grouped data with a number of counts within each bin. The
estimation procedure involves the following steps:

1. Apply the symmetrization technique to Xi, i = 1, . . . , n, to obtain Y =
(Y1, . . . , Y2n). Note that X is binned, so many of the Xi’s, and thus the Yi ’s,
overlap. This symmetrization step is performed to reduce the boundary bias
in the estimation of f (0). The remaining steps form the smoothed bootstrap
procedure for bandwidth selection for grouped data.

2. For each bin k = 1, . . . ,K , generate noise from the uniform [−δk/2, δk/2] dis-
tribution and add them to the data points, so that the data points no longer
overlap. Let YU = (YU

1 , . . . , YU
2n) denote the new data.

3. Use cross-validation to calculate the optimal bandwidth for YU .
4. Repeat Steps 2 and 3 1000 times and let the average of the optimal bandwidths

be hin. An initial density estimate ĝ(y;hin) is then obtained using hin as the
pilot bandwidth.

5. Generate B smoothed bootstrap samples YS = (Y S
1 , . . . , Y S

2n) from ĝ(y;hin).
6. With the smoothed bootstrap samples, evaluate BMISE as a function of h and

find the value of h that minimizes BMISE(h), denoted hS .
7. Compute f̂ (0) = 2 · ĝ(0;hS).

In short, we are using a smoothed bootstrap approach with the pilot band-
width hin found using cross-validation on grouped data with random noise added
to them. Note that the smoothed bootstrap in Step 5 above produces bootstrap
samples YS from ĝ(y;hin), and the optimal bandwidth hS is chosen based on YS

not YU . Thus, the choice of hS is not directly affected by the dependence created
in the symmetrization step.

REMARK 1. Smoothed bootstrap samples can be generated from ĝ(y;hin) by
rejection sampling, but can be generated more simply as follows:

1. Use the naive bootstrap to resample Y ∗
1 , . . . , Y ∗

2n from YU
1 , . . . , YU

2n.
2. Generate zi from K(·). In our case, since we are using the Gaussian kernel, we

generate zi from the standard normal.
3. Set YS

i = Y ∗
i + hin · zi for i = 1, . . . ,2n.

REMARK 2. A referee suggested using a different noise distribution than the
uniform in Step 2 above, specifically, that the noise distribution be proportional to
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the detection function. As our method is intended for applications besides distance
sampling, we decided not to pursue this here.

4. Confidence intervals for f (0) and D. In this section we construct boot-
strap confidence intervals for f (0) based on the kernel density estimates. Con-
structing confidence intervals for densities requires accounting for the bias that is
not captured in the naive bootstrap procedure. Hall (1992) proposed two meth-
ods to account for the bias: explicit bias estimation and undersmoothing. The
former method involves estimating the leading term of the bias explicitly to ob-
tain a bias-adjusted bootstrap t-confidence interval. The leading term of the bias
is a functional of the second derivative of f and Hall (1992) suggested using a
plug-in kernel estimator of the derivative. In the undersmoothing method, a sub-
optimal bandwidth of a smaller order than the optimal bandwidth is chosen to

make [E(f̂ (x)) − f (x)]/
√

Var(f̂ (x)) negligible.
Assuming that the maximum number d for which the dth derivative, f (d), exists

and is known, Hall (1992) compared the two approaches and recommended the
undersmoothing method. However, in practice, the value of d is usually unknown.
Furthermore, there are no useful guidelines for the choice of the plug-in kernel
estimator of the derivative and the amount of undersmoothing.

Thus, we propose using smoothed bootstrap to estimate the bias of the kernel
density estimate and construct several confidence intervals based on our smoothed
bootstrap procedure. These confidence intervals are based on studentized and non-
studentized pivot statistics. We use these confidence intervals in our simulation and
case studies.

To construct confidence intervals, we first follow Steps 1 to 7 in Section 3 to
generate smoothed resamples. For smoothed resample XS

b , b = 1, . . . ,B , define

f̂ S
b (x;hS) = 1

nhS

n∑
i=1

K

(
x − XS

i,b

hS

)
.

Define the pivot statistic RS
n,b(x) = f̂ S

b (x;hS) − f̂ (x;hin). If we let rS
α denote

the α sample quantile of (RS
n,1, . . . ,R

S
n,B), then a 100(1 − α)% bootstrap pivot

confidence interval for f (x) is(
f̂ (x;hS) − rS

1−α/2, f̂ (x;hS) − rS
α/2

)
.(4.1)

Faraway and Jhun (1990) used a similar pivot statistic to construct simultaneous
confidence bands for f .

An alternative is to construct confidence intervals based on a studentized version
of the above pivot statistic. It is known that studentized confidence intervals are
more accurate since these intervals are second-order accurate [Wasserman (2005)].
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With a suitable estimator σ̂ S
b of the standard deviation σ(x) of f̂ (x), we can use

the studentized pivot

US
n,b = f̂ S

b (x;hS) − f̂ (x;hin)

σ̂ S
b (x)

,

yielding a 100(1 − α)% bootstrap studentized pivotal interval(
f̂ (x;hS) − uS

1−α/2σ̂ (x), f̂ (x;hS) − uS
α/2σ̂ (x)

)
,(4.2)

where uS
α is the α sample quantile of (US

n,1, . . . ,U
S
n,B). Please refer to the Appen-

dix for details on how to obtain σ̂ S
b .

To construct a confidence interval of D, we use equation (1.1). Here there is
additional variability in D̂ due to n being random. Buckland et al. (2001) showed
that the standard error of D̂ is given by

σ̂D = D̂

√√√√(
Var(n)

n2 +
[
σ̂ (0)

f̂ (0)

]2)
.

If we follow the common practice of using the Poisson for the distribution of n,
Var(n) can be estimated by the value of n, and the above expression simplifies to

σ̂D = D̂

√√√√(
1

n
+

[
σ̂ (0)

f̂ (0)

]2)
.

We use this latter formula in our analyses and simulation study.
Using the same approach of defining a studentized pivot statistic, we get the

following 100(1 − α)% confidence interval for D:

(D̂ − wS
1−α/2σ̂D, D̂ − wS

α/2σ̂D),

where wS
α is the α sample quantile of the pivot statistics WS

n,1, . . . ,W
S
n,B computed

from the bootstrap sample, and σ̂D is as given above. See the Appendix for details.

5. Case studies. We next look at two case studies, one involving a wooden
stake data set and the other a survey of kangaroos in Australia. All computation,
including implementation of our smoothed bootstrap method, was done with the
R statistical language [R Development Core Team (2008)]. The code will be avail-
able as supplemental material at the Annals of Applied Statistics website.

5.1. Stake data in Utah. We consider here a wooden stakes data set from Lo-
gan, Utah, which was also analyzed by Burnham, Anderson and Laake (1980),
Barabesi (2000), Barabesi, Greco and Naddeo (2002). This data set was collected
as part of a larger study on line transect sampling. In particular, 150 wooden stakes
were put within 20 m of a transect line in a meadow near Logan, Utah. The length
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of the transect line was 1000 m and the actual density of stakes was known to be
D = 37.5 stakes/hectare. An observer walked along the transect line and searched
visually for the stakes.

Out of 150 stakes, 68 were observed. The actual perpendicular distances of the
identified stakes from the transect line are given in Table 6 of Burnham, Anderson
and Laake (1980). We notice that more than one stake is found at some distances.
In an actual application these distances are not known, but are estimated by the
observer. With ten distance categories with end points 1,2,3,4,5,7,9,11,15,20,
the data then consist of counts of 8,6,4,13,7,8, 7,6,5,4 in the ten distance cat-
egories. Note that the intervals do not have the same length.

Figure 1 shows a histogram of the relative frequencies and kernel density esti-
mates with bandwidths obtained using different selection methods.

The density estimate with the smoothed bootstrap bandwidth seems a better
fit and also yields the estimate f̂ (0) = 0.1033, or D̂ = 35.11, which is closer to
the true density D = 37.5. For both grouped and ungrouped data, we received the
following warning message: minimum occurred at one end of the range from R and
the lower bounds of the bandwidth range were chosen as optimal bandwidths with
cross-validation. With cross-validation bandwidth selectors based on ungrouped
data and grouped data, we found D̂ = 34.07 and D̂ = 34.58 respectively.

FIG. 1. Wooden stakes with kernel density estimates.
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TABLE 1
Confidence intervals for D

Method 95% interval

Fourier series method with ungrouped data [Burnham, Anderson and Laake (1980)] (32.28, 45.72)
Fourier series method with grouped data [Burnham, Anderson and Laake (1980)] (23.95, 40.90)
Local likelihood [Barabesi (2000)] (27.20, 52.09)
Local least squares [Barabesi, Greco and Naddeo (2002)] (22.13, 49.25)
Smoothed bootstrap (26.65, 45.57)

Burnham, Anderson and Laake (1980) fit Fourier series models to the un-
grouped and grouped data to obtain confidence intervals for D. As pointed out in
Mack and Quang (1998), the Fourier series method requires specifying a horizon,
the maximum sighting distance, which is not well defined for grouped data.

Barabesi (2000) suggested a local likelihood method to make inference for
f (0), but the method is mainly developed for ungrouped data. Barabesi, Greco
and Naddeo (2002) used density estimation with local least squares to obtain esti-
mates for D, with bandwidth chosen using a plug-in method. While their method
can be used for grouped data, the resulting confidence interval for f (0) does not
account for the estimation bias.

Table 1 shows the confidence interval we constructed from the wood stake data
using the bootstrap method described in Section 4. For comparison, we have also
included in the table confidence intervals obtained from the above-mentioned ref-
erences. While all confidence intervals cover the true value D = 37.5, there are
interesting differences.

First note that the first confidence interval is based on the ungrouped data and,
thus, it is the shortest. Information is lost when data are grouped, and it is expected
that the other confidence intervals will not be as precise. The second confidence
interval is based on the Fourier series method, applied to the grouped data. This is
a parametric method based on the maximum likelihood estimator and the length of
this confidence interval is shorter than other confidence intervals using the grouped
data. The confidence interval on the third line is based on a method developed for
ungrouped data but applied to the grouped data. Notice the much wider confidence
interval obtained as a result. While the fourth confidence interval is valid, it fails to
consider the estimation bias. Note that our confidence interval is shorter than other
nonparametric confidence intervals.

5.2. Kangaroo survey data from Australia. Southwell and Weaver (1993)
compared various density estimation techniques for line transect data using a data
set of kangaroo sightings collected at two locations in Australia, Wallaby Creek
and Tidbinbilla Nature Reserve.
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The line-transect work was conducted in a 1.5 km2 region in Wallaby Creek and
in a 0.2 km2 region in Tidbinbilla Nature Reserve. At each site, a grid of equally-
spaced parallel lines were marked, 100 m and 50 m apart respectively at Wallaby
Creek and Tidbinbilla Nature Reserve. An observation session would consist of
first randomly selecting a transect and a direction. An observer would traverse that
transect, then another line transect 400 m (Wallaby Creek) or 200 m (Tidbinbilla)
away, and so on, alternating the direction with each subsequent line transect. Each
observation session would focus on a particular species, the eastern grey kangaroo
(Macropus giganteus) or red-necked wallaby (M. rufogriseus) in Wallaby Creek
and the red kangaroo (M. rufus) in Tidbinbilla.

The kangaroos at both locations were used to the presence of humans. This
allowed the line transects to be more closely spaced than would normally be done.
Furthermore, it is also then relatively straightforward to perform a census of the
kangaroo populations. Thus, the true kangaroo population sizes are known, and
serve as a point of comparison for the line-transect estimation techniques. Here,
we will only use their data on sightings of the eastern grey kangaroo in Wallaby
Creek.

Figure 2 shows a histogram of the eastern grey kangaroo data, together with
kernel density estimates obtained using optimal bandwidths selected using cross-

FIG. 2. Eastern grey kangaroo in Wallaby Creek with kernel density estimates.
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validation on the grouped data and using our smoothed bootstrap method. Also
shown is a density estimate obtained using the Distance software program [Thomas
et al. (2009)]. This density estimate was obtained from the model with a Uniform
key function and polynomial adjustment to the tails. This model was selected from
among the other alternatives using AIC as the criterion.

The cross-validation approach yields a density that essentially has a peak at
every bin, while the density obtained with the Distance software program suggests
that too much smoothing may have been applied. The density estimates obtained
from the models with the next two smallest AIC values, using hazard-rate and half-
normal key functions with cosine adjustments, also suggest over-smoothing (not
shown). The density estimate based on our smoothed bootstrap approach attains
a better fit to the data, with a good balance between smoothing and retaining the
peaks.

The true density D is known to be 44 animals per km2. Using the smoothed
bootstrap approach, we obtained D̂ = 43.71 and a 95% confidence interval of
(37.63, 50.51). For comparison, with the line transect estimate based on the Uni-
form model with polynomial adjustment, we have D̂ = 39.16 with 95% confidence
interval (34.91, 43.94).

6. Simulation. This section contains two parts. Section 6.1 studies the per-
formance of the bandwidth selection procedure together with the symmetrization
technique for estimating f (0) using simulated line transect data.

As our method is applicable to areas beyond line transect sampling, it is of in-
terest to explore its performance under a variety of settings. In Section 6.2 we ap-
ply our bandwidth selection method to data generated from artificially constructed
densities. These densities are mixtures of normals and while such densities are
not considered likely in real applications, they are nevertheless commonly used in
the density estimation community to assess different methods. Here, the aim is to
estimate the whole density function using the selected bandwidth.

6.1. Simulation study 1. Here, we consider a simulated line transect data set
that was generated by Buckland et al. (2001) for comparing various line transect
data analyses. We briefly describe it below, referring the reader to Buckland et al.
(2001) for more details.

The data set was simulated so that the assumptions for line transect sampling
hold. It was based on the context of line transect sampling using 12 parallel line
transects of varying lengths within a region of irregular shape. The detection func-
tion used was the half-normal and the true values of f (0) and D are 0.0798 m−1

(to three significant figures) and 79.79 objects per km2. The model was set up
so that the expected number of observations was 96. The simulated data set has
105 observations. The original data set was ungrouped, but was grouped in various
ways by Buckland et al. (2001) for use with some of the methods considered there.
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FIG. 3. Histogram of the simulated transect line sampling data together with kernel density esti-
mates with bandwidths selected using smoothed bootstrap and cross-validation with grouped data.

We use the data which had been grouped into 20 groups of equal width. Figure 3
shows a histogram of the raw data.

We applied smoothed bootstrap and cross-validation for grouped data to this
data set. The resulting density estimates are shown in Figure 3. Estimates of f (0)

and D are shown in Table 2. This table also contains estimates taken from Table 4.2

TABLE 2
Estimates of f (0) using smoothed bootstrap, cross-validation and several parametric

models fit by Buckland et al. (2001)

Method f̂ (0) D̂

Smoothed bootstrap 0.0751 82.14
Cross-validation 0.0726 79.44
Uniform + cosine 0.0732 80.06
Uniform + polynomial 0.0681 74.43
Half-normal + Hermite 0.0794 86.87
Hazard-rate + cosine 0.0769 84.06

True value 0.0798 79.79
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of Buckland et al. (2001), obtained using parametric models fit to the data. These
involve fitting a key function (uniform, half-normal or hazard-rate) to the data and
then applying an adjustment (cosine, polynomial or Hermite) to the tails.

Since the true detection function is half-normal, it is not surprising that the
half-normal (with Hermite adjustment) gave an estimate of f (0) closest to the
true value. The estimate obtained with smoothed bootstrap was closer to the true
value than the cross-validation estimate and the estimates obtained using the uni-
form model. Note that to get D, the expected value E(n) = 96 was used in the
formula (1.1), while for the estimates, n = 105 was used.

We note also that the simulated data had an outlier and Buckland et al. (2001)
recommended truncating about 5% of the data, corresponding to dropping six of
the largest observations in this case. After truncation, f̂ (0) and D̂ were 0.0844
and 87.98 using the half-normal model with Hermite adjustment. Our method is
nonparametric and, hence, we do not make assumptions about the form of the
density. In particular, our estimate f̂ (0) is robust to outliers in the tails because
the kernel estimate is based on local smoothing. Hence, the presence of outliers
does not adversely affect the estimation of f (0) and our method does not require
truncation.

Using the formulas in Section 4, we obtained standard errors of 0.017 and 20.36
for f̂ (0) and D̂ respectively, assuming the Poisson distribution as the sampling
distribution for n. Nominal 95% confidence intervals for f (0) and D, obtained by
bootstrap, were (0.061,0.092) and (67.18,101.33) respectively.

With a normal approximation approach in Buckland et al. (2001), 95% confi-
dence intervals for D are (60.14, 113.60) and (59.36, 116.30) (with truncation).

6.2. Simulation study 2. In this section we present results from a simulation
study testing the effectiveness of our bandwidth selection method for estimating
the whole density function from binned data, a special case of grouped data.

We used four mixture normal densities taken from Marron and Wand (1992).
The parameters for the mixture densities are shown in Table 3 and plots of these
densities are shown in Figure 4 (solid lines). All simulation studies were imple-
mented using the R. We generated a sample of size 500 from each of these densities
and binned the data using a bin size of 0.25.

TABLE 3
Parameters for mixture normal densities

Model Density
∑K

k=1 pkN(μk,σ 2
k )

1 Gaussian N(0,1)

2 Separated bimodal 1
2N(− 3

2 , ( 1
2 )2) + 1

2N( 3
2 , ( 1

2 )2)

3 Claw 1
2N(0,1) + ∑4

k=0
1

10N(k
2 − 1, ( 1

10 )2)

4 Asymmetric claw 1
2N(0,1) + ∑1

k=−2
2k−1

30 N(k + 1
2 , ( 2−k

10 )2)
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FIG. 4. Plots showing the true densities of the 4 models we considered (solid lines) and the kernel
density estimates (dashed lines) using the cross-validation optimal bandwidths obtained from the
binned data, hbin

cv .

Thus, we have two data sets for each model, one raw and one binned. Optimal
bandwidth selection using cross-validation was applied to each data set, yielding
bandwidth values hraw

cv,i and hbin
cv,i for i = 1, . . . ,4, which are cross-validation opti-

mal bandwidths obtained from the ith raw data set and ith binned data set respec-
tively. In R, this is done using the function bw.ucv. Since this is an optimization
problem, a built-in range of bandwidths is used in the function. For all models
we considered, applying the function to the binned data sets yielded the warning
message “minimum occurred at one end of the range,” suggesting that the optimal
bandwidths found using cross-validation are near 0.
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FIG. 5. Plots showing the true densities of the 4 models we considered (solid lines) and the kernel
density estimates (dashed lines) using the cross-validation optimal bandwidths obtained from the
original, raw data, hraw

cv .

Each pair of selected bandwidths are then used with the binned data to obtain
kernel density estimates. The results are shown in Figures 4 and 5, which are re-
spectively plots of the kernel density estimators using hbin

cv,i and hraw
cv,i .

Figure 4 shows the problem of using cross-validation on the binned data to ob-
tain optimal bandwidths. As can be seen, the selected bandwidths hbin

cv,i are too
small, resulting in severe under-smoothing (dashed lines). In Figure 5 we find that
if the underlying true density is relatively smooth (models 1 and 2), using the op-
timal bandwidths for the raw data, hraw

cv,i , on the binned data works well. However,
if the true density is less smooth, using hraw

cv,i is not appropriate for the binned data.
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FIG. 6. Plots showing the true densities of the 4 models we considered (solid lines) and the kernel
density estimates (dashed lines) using the initial bandwidths hin obtained from Step 4 of the smoothed
bootstrap procedure.

Thus, methods such as that proposed by Chiu (1991) that aim to obtain approxi-
mations to hraw

cv may not work if the true density is not sufficiently smooth.
Figure 6 shows plots of kernel density estimates using the pilot bandwidths hin

obtained from Step 4 of our procedure described in Section 3. These plots are
similar to those in Figure 5, with density estimates close to the true densities if the
true densities are sufficiently smooth, but with severe under-smoothing otherwise.

Plots of kernel densities estimates using the smoothed bootstrap optimal band-
widths hS are shown in Figure 7 (dotted lines). For comparison, the kernel density
estimates using hraw

cv with the raw data (the best case scenario) are also shown in
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FIG. 7. Plots showing the true densities of the 4 models we considered (solid lines) and the kernel
density estimates (dashed lines) using optimal bandwidths selected using smoothed bootstrap, hS .
The dashed lines are density estimates using cross-validation optimal bandwidth from the original,
raw data.

dashed lines. Note that the dotted lines are very close to the dashed lines in spite
of some information loss due to the binning. It is clear that in all the models we
considered, the resulting density estimates are much smoother and closer to the
true densities than using hbin

cv , hraw
cv or hin on the binned data. Table 4 summarizes

the optimal bandwidth values chosen by different bandwidth selectors.

7. Concluding remarks. In this paper we introduced a combined cross-
validation and smoothed bootstrap approach for obtaining kernel density estimates
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TABLE 4
Bandwidth comparisons for mixture normal densities

CV with CV with Initial Smoothed
Model raw data binned data bandwidth bootstrap

1 0.316 0.034 0.154 0.154
2 0.191 0.054 0.148 0.144
3 0.058 0.028 0.066 0.074
4 0.093 0.034 0.101 0.112

from grouped data. Our simulation results show that the smoothing parameter
found using our method produced density estimates that matched the true density
most closely compared with competing methods.

In line transect sampling it is the value of the density at the boundary, specif-
ically f (0), that is of interest, since the estimate of f (0) is used to estimate the
animal population density. We showed that the symmetrization technique of Chen
(1996) together with our bandwidth selection procedure was able to produce good
estimates of both the stake density and the eastern grey kangaroo density.

There are some limitations to our method. For application to line transet sam-
pling, we are restricted to data that is sufficiently large and grouped into about 10
intervals. With smaller data sizes, the data may be grouped into as few as 3 or 4
intervals. In such cases, we do not expect a nonparametric kernel method to work
well. Often, a parametric model involving covariates is used instead.

The methodology developed in this paper has wider potential application in
other scientific areas. For example, economists often want to make inference for
income distributions in developing counties where only grouped data are available
to outsiders [Wu and Perloff (2007)]. In astronomy, Efron and Tibshirani (1996)
applied a semiparametric density estimator to the estimation for density of galaxy
for which counts on a fine grid are variables. Complex survey data are another
possible application [Bellhouse and Staffor (1999)]. We will explore some of these
applications in future work.

APPENDIX A: ESTIMATION OF σ 2(x)

We describe how to estimate the variance σ 2(x) of f̂ (x). It can be shown that

σ 2(x) = 1

nh2

∫
K

(
x − y

h

)2

f (y) dy − 1

n

[
1

h

∫
K

(
x − y

h

)
f (y) dy

]
,

and Hall (1992) proposed the following estimator of σ(x):

[σ̂ (x)]2 = 1

nh

[
1

nh

n∑
i=1

K

(
x − Xi

h

)2

− hf̂ (x)2
]
.
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With our smoothed bootstrap samples, we can estimate the variance by

[σ̂ S
b (x)]2 = 1

nhS

[
1

nhS

n∑
i=1

K

(
x − XS

i,b

hS

)2

− hSf̂ S
b (x;hS)2

]
,

and use σ̂ S
b (x) in the studentized pivot statistic US

n,b.

APPENDIX B: CONFIDENCE INTERVAL FOR D

Chen (1996) showed that

D̂ − D − b̂ias(D̂)

σ̂D

→ N(0,1),

where b̂ias(D̂) = nf (2)(0)h2/(2L) and f (2) is the second derivative of f .
Based on the same approach that we used to obtain a confidence interval for

f (0), we define a studentized pivot statistic:

WS
n.b = D̂S

b − D̂hin

σ̂ S
b,D

,

where

D̂hin = nf̂ (0;hin)

2L
, D̂S

b = nf̂ S
b (0;hS)

2L
,

σ̂ S
b,D = D̂S

b

√√√√(
Var(n)

n2 +
[

σ̂ 2
b (0)

f̂ S
b (0;hS)

]2)
.

With B bootstrap samples, we get values WS
n,1, . . . ,W

S
n,B . A 100(1 − α)% confi-

dence interval for D is then given by

(D̂ − wS
1−α/2σ̂D, D̂ − wS

α/2σ̂D),

where wS
α is the α sample quantile of (WS

n,1, . . . ,W
S
n,B).

SUPPLEMENTARY MATERIAL

R codes for simulation and case studies (DOI: 10.1214/09-AOAS307SUPP;
.zip). This zip files contains two R scripts for the simulation and case studies de-
scribed in Jang and Loh (2009).
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