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HIGH-THROUGHPUT DATA ANALYSIS IN BEHAVIOR GENETICS*

BY ANAT SAKOV, ILAN GOLANI, DINA LIPKIND AND YOAV BENJAMINI

Tel Aviv University

In recent years, a growing need has arisen in different fields for the de-
velopment of computational systems for automated analysis of large amounts
of data (high-throughput). Dealing with nonstandard noise structure and out-
liers, that could have been detected and corrected in manual analysis, must
now be built into the system with the aid of robust methods. We discuss such
problems and present insights and solutions in the context of behavior genet-
ics, where data consists of a time series of locations of a mouse in a circu-
lar arena. In order to estimate the location, velocity and acceleration of the
mouse, and identify stops, we use a nonstandard mix of robust and resistant
methods: LOWESS and repeated running median. In addition, we argue that
protection against small deviations from experimental protocols can be han-
dled automatically using statistical methods. In our case, it is of biological
interest to measure a rodent’s distance from the arena’s wall, but this measure
is corrupted if the arena is not a perfect circle, as required in the protocol. The
problem is addressed by estimating robustly the actual boundary of the arena
and its center using a nonparametric regression quantile of the behavioral
data, with the aid of a fast algorithm developed for that purpose.

1. Introduction. The open field study of behavior in animals is a subject of
interest in ethology and behavior genetics, and more recently has turned out to
be a working tool in drug discovery and development [Hall (1936); Bolivar, Cook
and Flaherty (2000); Steele et al. (2007); Brunner, Nestlerc and Leahyc (2002)].
In such a study an animal is placed in a circular arena, with no attraction or con-
straints, and is free to explore it. The animals behavior is tracked to produce path
data: a time series of recorded locations (Xi, Yi). Typical path data include tens of
thousands of observations per animal with several experimental groups of animals.
Quantitative summaries of the path (known as endpoints), the simplest example of
which is the total distance traveled, are used by scientists to identify behavioral
differences between groups.

Paths generated by rodents in an open field, while seemingly random, are struc-
tured and consist of typical patterns of behavior: progression segments separated
by lingering segments [Drai, Benjamini and Golani (2000); Golani, Benjamini and
Eilam (1993)]. The latter are either complete arrests or segments in time in which
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the rodent performs small local movements (e.g., stretching and scanning) which
are captured by a sensitive tracking system.

Path data are prone to suffer from noise and outliers. During progression a track-
ing system might lose track of the animal, inserting (occasionally very large) out-
liers into the data. During lingering, and even more so during arrests, outliers are
rare, but the recording noise is large relative to the actual size of the movement
(the smallest value that the noise can take is 1 pixel which ranges between 0.5–
2 cm). The statistical implications are that the two types of behavior require dif-
ferent degrees of smoothing and resistance. An additional complication is that the
two interchange many times throughout a session. As a result, the statistical solu-
tion adopted needs not only to smooth the data, but also to recognize, adaptively,
when there are arrests. To the best of our knowledge, no single existing smoothing
technique has yet been able to fulfill this dual task. We elaborate on the sources
of noise, and propose a mix of LOWESS [Cleveland (1979)] and the repeated
running median [RRM; Tukey (1977)] to cope with these challenges (Section 2).
Once the path has been smoothed, the quantitative summaries are computed from
the smoothed path data for each animal, an approach advocated by Ramsay and
Silverman (1997).

One of our experiments was conducted in 3 laboratories simultaneously, and
we noticed that measures relating to distance from the wall [believed to reflect
the level of anxiety of a mouse; Hall (1936); Archer (1973); Walsh and Cummins
(1976); Finn, Rutledge-Gorman and Crabbe (2003)] were inconsistent across the
laboratories. This is known as the replicability problem and is of deep concern in
behavioral research because such experiments are conducted in many laboratories
[Crabbe, Wahsten and Dudek (1999)]. A close inspection revealed that although
the three arenas were supposed to be circular, one arena was slightly distorted
at a level hardly noticeable to the eye, affecting the measures related to distance
from the wall. Since the actual location of the wall was not available from the
tracking system, the distances from the wall were computed using the planned
center and radius. Clearly with such a practice, a distorted circular shape leads to
wrong distance computations and consequently harms replicability.

One solution would be to build a new arena, of an exact circular shape, and rerun
the experiment. However, assuring perfect circularity is difficult, and furthermore,
it would not solve the possible imperfect circularity problem in other laboratories.
We offer a solution utilizing the fact that mice tend to move along the boundary,
and use mouse location within the arena to estimate the position of its wall by a
nonparametric regression quantile [Koenker (2005)]. The rationale for the solution
proposed and a technique to estimate the arena’s center are presented in Section 3.

As noted before, studies of open field behavior may have several hundreds of
animals per study. Hence, any solution needs to be automatic (e.g., identification
of outliers) and fast (so-called “high-throughput”). Both LOWESS and RRM meet
these criteria. Our experience has shown that embedding existing nonparametric
regression quantile algorithms into a high-throughput environment is difficult due
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to their execution time and convergence problems. As a result, we developed a fast
algorithm for that purpose. The algorithm is presented in Section 3, as well as a
comparison of its performance with an existing algorithm.

The motivation and characteristics of the problems addressed in the paper came
from studies of mice, but the statistical and computational issues are of broader
relevance. There are many other examples of studies involving automatic path
tracking, including those of flies [Branson et al. (2009); Valente, Golani and Mitra
(2007); Besson and Martin (2005)], pigs [Lind et al. (2005)], fish and larger marine
animals [Royer and Lutcavage (2008)] and even human babies [Vitelson (2005)],
to name a few. Although some of these studies address, in particular, the com-
plications involved in the analysis of the tracked path [Lind et al. (2005); Royer
and Lutcavage (2008)], most users of tracking systems are typically unaware of
the consequences of the inherent noise and outliers, and the burden of providing
sufficient protection is shifted onto the developers of the systems [e.g., the Ehto-
Vision® tracking system; Noldus, Spink and Tegelenbosch (2001); Spink et al.
(2001)].

The problem of boundary and center estimation of a circle has also a broader
importance and applications in areas such as image processing [Shapiro (1978);
Kim (1984)], physics [Karimaki (1991)] and the analysis of data gathered from a
circular system such as an eye [Wang, Sung and Venkateswarlu (2005)], to name
a few. The common assumption in these studies is that the circle is perfect and the
estimation of the boundary is reduced to that of the estimation of the radius and the
center, which is mostly done by least squares or maximum likelihood approaches.
Efforts have been devoted to study properties of the estimator and to develop sim-
ple algorithms to solve these nonlinear problems [Chan, Elhalwagy and Thomas
(2002); Zelniker and Clarkson (2006)]. Here, too, we push the current method-
ology forward by addressing both the estimation of the center and the boundary
when the shape is only approximately circular. It is our impression that more in-
volvement of statisticians is needed as statistical issues are ignored or handled
inappropriately, for both tracking and boundary estimation problems.

2. Smoothing and identification of arrests.

2.1. Noise in the tracking system. Let (X0
i , Y

0
i ) be the actual time series of

locations, and (Xi, Yi) the recorded time series, for i = 1,2, . . . . We assume Xi =
X0

i + εi and Yi = Y 0
i + δi . The velocities in the two directions are V 0

X,i and V 0
Y,i ,

and the speed is V 0
i =

√
(V 0

X,i)
2 + (V 0

Y,i)
2.

There are (at least) three sources for ε, δ, the first two are due to the recording
noise:

1. The digital recording of location in systems such as Etho-Vision® [Noldus,
Spink and Tegelenbosch (2001)] together with the limited resolution implies
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FIG. 1. A typical 6 seconds of the recorded Y coordinates of an anesthetized mouse.

that the arena is practically paved with “tiles” (in our case they are of size 0.5–
2 cm square). In each frame the system computes the geometrical center of the
mouse, and the recorded location is the center of the tile on which the geomet-
rical center is found. Since a mouse is larger than one “tile,” recordings might
vacillate between neighboring tiles. We call this the precision noise. Figure 1
illustrates vacillations between two neighboring pixels of the Y -location of an
anesthetized mouse, over a few seconds. Naive computation of the distance
traveled by this mouse during a 15 minute session gives 94 meters.

2. The erratic behavior of the tracking system when it loses track of the animal in-
serts outliers that may be large. To assess the extent of the problem, 30 minute
sessions of mice from three strains were analyzed. We considered an observa-
tion to be an outlier if the residual between recorded and smoothed location
was larger than 6 times the median of the absolute values of the residuals in the
window. Slightly more than 4% of all observations were outliers.

3. Body wobble consists of movements of the animal which are not part of its
whole-body progression, for example, head scanning or incipient sideways
shifts of weight while running. Although they are real movements, for the pur-
pose of studying path and velocity they are unwanted side effects and should
be treated as another source of noise. Their magnitude is different for each ani-
mal type, for example, its magnitude for a turtle is larger than that for a mouse.
Hence, heavier smoothing is needed for a turtle.
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Precision noise and body wobble are the main sources of recording noise during
lingering and arrest, while outliers are the main source of recording noise during
progression.

The above examples, as well as the examples presented elsewhere in this paper,
are based on a setup where the arena was circular with radius 125 cm, tracking
was performed with the Ehto-Vision® tracking system [Noldus, Spink and Tege-
lenbosch (2001); Spink et al. (2001)] and recording was at a rate of 25 or 30 frames
per second, for 30 minutes.

2.2. Smoothing locations and estimating velocities and speed. Clearly, a ro-
bust smoothing method with smooth derivatives and an automatic detection of
outliers is needed. LOWESS [Cleveland (1979)] is a natural candidate for this
purpose. Using a second-degree polynomial, the locations, velocities and acceler-
ations are estimated for each direction, as a function of time. We assume that the
path, at a small time window, can be approximated by

Xi+t = ai + bit + cit
2 + εi, t = −h,−h + 1, . . . ,0, . . . , h.

The parameters ai , bi , ci are estimated using LOWESS to produce âi , b̂i , ĉi . In
common applications of LOWESS interest lies only in the estimation of ai which
is the expectation of Xi . Here, we are also interested in the velocity and the accel-
eration and we make use of all 3 estimated parameters:

X̂i = âi , V̂ X
i = b̂i , ÂX

i = 2ĉi .

The three quantities, in the Y -direction, are found similarly. We combine the
two estimated series of velocities to obtain the time series of speeds: V̂i =√

(V̂ X
i )2 + (V̂ Y

i )2.
The data is equally spaced over time, hence, the width of the window is fixed.

We choose a half-window of 10 frames (0.4 seconds), which amounts to 0.02%
of the data. This is much smaller than the default of Splus or R, for example. The
choice was made by the statisticians and the biologists involved who compared
the smoothed path with the actual sessions on video, and checked for agreement
between them. We also address this issue in the discussion.

2.3. Identifying arrests. Define an arrest as a period of time, T , for which
Xt = x, Yt = y or, equivalently, Vt = 0 for t ∈ T . Identifying arrests by means
of zero speed is problematic, as the errors in speeds (compared to a zero speed)
are all positive. Identifying arrests using LOWESS or any other averaging-based
method is problematic since the smoothed locations are rarely constant due to the
averaging nature of these techniques.

The running median, an old yet rarely used method, is appropriate for the pur-
pose of identifying the time segment of an arrest. In the repeated running median
[RRM; Tukey (1977)], the running median is applied iteratively, until convergence,
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to the sequence obtained in the previous step. Tukey proposed to perform splitting
after convergence. For computational efficiency we use a variation on that in which
we apply the running median 4 times, iteratively, with half-window sizes of 3, 2, 1
and 1 frames. This is done, separately, for each direction and an arrest is declared
when there is no change in the smoothed locations, in both directions, for at least
0.2 seconds.

The choice of parameters was tested by comparing arrests found by the above
method with arrests detected by an experienced biologist, watching videotaped
sessions. A 5 minutes session of a mouse of the strain FVB was taken. The num-
ber of arrests found by the moving average, LOWESS and local polynomial were
40, 25 and 29, respectively, while our method found 97 arrests. An experienced
biologist, blinded by these results, was asked to count manually the number of ar-
rests she sees. In the course of 3 repetitions, she got 89, 96 and 102 arrests. The
result of our algorithm is well in the range of arrests counted, while other methods
missed many arrests. Note that even an experienced biologist may face difficulties
in counting arrests (as some are very brief). The variability would likely be higher
if the task was performed by several biologists. This demonstrates the need for an
automated method for identifying arrests.

2.4. The combined path smoother. The dual task is smoothing location and
identifying arrests, when the two modes of behavior have different characteristics
and they interchange.

LOWESS is not appropriate for identifying arrests due to its averaging nature.
On the other hand, neither the running median nor the RRM is appropriate for
smoothing locations and obtaining velocities and accelerations, since the result-
ing path is too rough to represent an actual movement, and both do not provide
(smooth) estimates of derivatives. Even hanning, which creates a visually more
appealing smooth function, does not help here. See Section 2.5 for demonstration
of these points.

We are not aware of a single method which addresses both the challenges of
smoothing locations while preserving even short true bursts of arrests. We find the
following combination of LOWESS and RRM to be a good solution:

1. Apply LOWESS for each direction to estimate locations and velocities.
2. Apply the variation of RRM on the raw data for each direction to identify time

segments of arrests.
3. When an arrest is found, the velocities in the corresponding time segments are

set to 0.
4. The smoothed locations corresponding to an arrest are linearly interpolated be-

tween the first and last frames of the arrest.

Some samples of the results obtained using the combined procedure can be
viewed in Hen et al. (2004).
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Biologically, arrests and local movements (e.g., head shifts) are similar, but the
latter might look like progression due to the sensitivity of the tracking system.
Once arrests are found, small local movements should be merged with arrests
to create lingering segments. For that purpose, the maximal speed in all nonar-
rests segments is computed and the classification as lingering or progression is
described in Drai, Benjamini and Golani (2000).

2.5. Evaluation of the combined path smoother. To evaluate the performance
of the combined path smoother, we apply the method to location data of an anes-
thetized mouse and to simulated paths. In all cases considered the true location is
known. Therefore, the properties of the smoothed paths can be compared with the
properties of the actual paths.

In the case of the anesthetized mouse, noise comes from the tracking system
itself, and in the simulated paths noise and outliers were built into the simulation,
as described below.

We compare several smoothing approaches on location data of an anesthetized
mouse (that did not move at all) which was tracked for 15 minutes. Using the
recorded locations, the distance “traveled” is almost 94 m. Using the moving av-
erage, local polynomials and LOWESS, prior to computing distance, produce dis-
tances of about 8 m, 13 m and 13 meters, respectively. Using the combined method,
the distance is reduced to about 3 m, much closer to the true distance which is 0.
Moreover, the difference between the methods is even more pronounced when it
comes to estimating the average velocity: 0.01 cm/s with the combined method
in comparison to 0.59 cm/s with local polynomials—next best of the smoothing
methods.

To generate simulated paths, the following steps are taken:

1. A pool of velocity profiles of different lengths and shapes is generated.
2. At each step, a velocity profile is chosen at random from the pool, and the

length of the arrest following the progression is chosen at random. The two are
chained to the velocity profile. The total length is larger than 30,000 records.

3. The true location is computed using the time series of velocities (location at
time 0 is at 0).

4. Independent N(0, σ 2) noise is added to the location data.
5. 4% of the nonarrests locations are chosen at random, and their locations are

shifted by 5, 10 or 15 cm (with equal probability) to create outliers.
6. All locations are rounded to the nearest integer to reflect the grid structure of

the data.

The above is repeated 50 times to generate replications of the paths for each set
of parameters. The following properties were computed for each path:

1. The actual distance traveled using the sequence obtained at stage 3 above. We
denote the distance of the ith repetition by θi .
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TABLE 1
Average and SD of distance traveled over 100 simulated paths of an anesthetized mouse

Raw LOWESS RRM Combined

Ave 113.9 10.1 24.2 0.96
SD 0.97 0.12 0.41 0.04

2. The estimated distance traveled using no smoothing.
3. The estimated distance traveled after smoothing using either LOWESS, RRM

or the combined method. The bandwidths used are the same as used for real
tracked data. We denote the estimated distances by θ̂i .

4. The true proportion of arrest time (0 velocity) is computed from the velocity
profile and denoted by pi .

5. The estimated proportion of arrests is computed with no smoothing and with
each of the 3 smoothing methods to obtain p̂i .

We first simulated 100 paths of anesthetized mice, where the velocity profile
was a time sequence of 0, and no outliers were added (since outliers occur mostly
during progression). Table 1 summarizes the average and SD of distance traveled
for these 100 simulated paths. The averages are of the same order of magnitude as
exhibited for the tracked (real) anesthetized mouse.

When choosing at random a velocity profile, the 50 repetitions have a different
underlying velocity profile and hence different distance travel and proportion of
arrest time. We define the following MSE as our measure of performance:

MSE(θ) =
∑

(θi − θ̂i )
2

50
, MSE(p) =

∑
(pi − p̂i)

2

50
.

Table 2 summarizes the results of the true and estimated distanced traveled as
well as the MSE for the simulated paths with a velocity profile that is not identi-
cally 0.

Clearly, the combined method performs better than LOWESS and the RRM
separately. Although LOWESS is second to the combined method in estimating
the distance traveled, it fails to estimate the proportion of arrest time, as is evident
from Table 3, which shows the proportion of arrest using each method and the
corresponding MSE.

To summarize, the combined method is best in both aspects of estimating dis-
tance traveled and proportion of arrest time. Using only LOWESS or the repeated
running median might be sufficient for one task but not for both.

3. Boundary and center estimation of an almost circular arena. The wall
of the arena is of major importance to the mouse, affecting its behavior, in par-
ticular, the distance from the wall which is believed to be related to anxiety [Hall
(1936); Archer (1973); Walsh and Cummins (1976); Finn, Rutledge-Gorman and
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TABLE 2
True (simulated) distance traveled vs. estimated distance traveled using raw data, LOWESS, RRM

and the combined method

σ : 0.6 1 0.4

p̄: 0.36 0.74 0.64 0.36 0.34

θi Ave 732 299 416 712 745
SD 92 69 83 84 82

Raw ¯̂
θi 967 609 704 1019 948
MSE 55,487 95,924 83,566 94,511 41,548

LOWESS ¯̂
θi 737 311 426 721 749
MSE 31 139 100 77 15

RRM ¯̂
θi 741 320 433 728 751
MSE 89 419 294 263 34

Combined ¯̂
θi 732 301 417 714 744
MSE 0.07 3.1 1.6 5.5 0.4

Crabbe (2003)]. In a perfect circular arena with known radius and center, the dis-
tance is directly computed from the distance to the center. In practice, an arena
might have some deviations from a perfect circle (sometimes hardly noticeable to
the eye). The effect of such deviations on distance from wall, if computed under
the assumed perfect circle, might be devastating. Figure 2 demonstrates the prob-
lem: the distance from wall versus the angle throughout a session is plotted for
four mice: two from each strain (DBA and C57), two from each of two labora-
tories. In the top plots the arena was indeed a circle, and the large concentration

TABLE 3
True (simulated) proportion of arrests vs. estimated proportion using raw data, LOWESS, RRM and

the combined method

σ : 0.6 1 0.4

p̄: 0.36 0.74 0.64 0.36 0.34

Raw ¯̂pi 0.20 0.33 0.29 0.16 0.23
MSE 0.03 0.17 0.12 0.04 0.01

LOWESS ¯̂pi 0 0 0 0 0
MSE 0.13 0.55 0.41 0.13 0.12

RRM ¯̂pi 0.41 0.72 0.64 0.41 0.39
MSE 0.0026 0.0006 0.0001 0.0027 0.0022

Combined ¯̂pi 0.33 0.68 0.58 0.31 0.33
MSE 0.0006 0.004 0.0027 0.0032 0.0001
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FIG. 2. Distance from a perfect circular wall versus angle for two mice in the circular arena (top).
The middle plots are the same but for the distorted arena. The bottom plot show the distances from
the wall versus angle after boundary estimation.

of points near 0 was due to motion along the wall. In the middle plots the arena
was of a slightly distorted circular shape. Watching the corresponding videotapes
shows that these mice tended to run along the wall in the same manner as the mice
in the circular arena. However, distance computations produced a wavy line since
distances were computed assuming a perfect circle. To correct this, the distance
between current location and actual boundary should be measured. Unfortunately,
such information is not available from the tracking system.

One solution would be to rebuild the arena and rerun the experiment. However,
assuring perfect circularity is difficult and, furthermore, it would not solve imper-
fect circularity in other laboratories running the experiment. We were looking for
a statistical solution that would enhance the replicability of results across labora-
tories in future studies.

Our solution is to estimate the actual boundary from the smoothed location data
of the mice. A key fact to the solution is that when a mouse progresses along the
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wall it typically touches it. Hence, the boundary can be inferred, indirectly, from
the mouse’s extreme locations, as described below. The bottom two plots in Fig-
ure 2 show the distance from the boundary in the distorted arena, after estimation.

In our situation, using a behavioral data form within the arena to estimate its
boundary is a necessity since data on actual boundary locations is not available.
However, even if measurements on the boundary are available, obviously with
noise, using the data from within the arena might have statistical advantages when
the latter is larger in sample size (see Section 3.5).

3.1. Estimation of the boundary of the arena. Let us first assume that the lo-
cation of the center of the arena is known, so let it be at the origin. Let (x̃i , ỹi)

be the smoothed location at time i, and let Ri =
√

x̃2
i + ỹ2

i and θi be its polar rep-
resentation. In the case of a perfect circular arena with unknown radius, a natural
estimate of the radius would be the maximum observed distance.

When the circle is not perfect the distance between the wall and the center is
not constant, but may be assumed to change smoothly with the angle. This moti-
vates estimating the boundary using regression of maximum distance on the angle.
Some strains of mice tend to jump on the wall (in particular, during lingering, but
not only), and the location of a jump is translated into locations outside the arena,
hence, it is better to use some high quantile of distance, rather than the maximum.
Thus, our problem can be phrased as that of a regression quantile of Ri on θi ,
for a high quantile, and, in particular, its nonparametric version to allow for local
changes in the shape. The resultant R̂p(θ) for 0 ≤ θ ≤ 2π is the estimated bound-
ary. The regression quantile was first introduced in Koenker and Bassett (1978),
and later extended to allow for a nonparametric regression quantile [e.g., Koenker
(2005)].

In principle, the quantile, p, might be different for different strains. Currently,
the maximum or high quantile can be used and the results are almost identical.
We used the 95th quantile for the results presented here, but no visual differences
were noticeable when using the 99th quantile or even a higher one. An algorithm
to choose the quantile can be added for a fully automated procedure, but until now
there was no need for it.

The algorithm is limited to estimating only portions of the boundary where
behavioral data exist. In our case, this was not a problem. However, two possi-
ble solutions are interpolation (since the boundary is almost a circle) or using the
boundary estimated from another mouse that was recorded in the same arena.

3.2. Quick and easy nonparametric regression quantile. Implementation of
a nonparametric regression quantile is involved and requires sophisticated algo-
rithms [Koenker (2005)]. Two different approaches were taken by Koenker (and
implemented in R in the package “quantreg”) and by Yu and Jones (1998). Us-
ing “quantreg,” we faced several difficulties: convergence problems (not solved by
perturbations), slow execution time and problem with large data sets (with 30,000
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locations the function did not run at all). We believe that nonstatisticians, who
are the target users of the proposed approach, would be intimidated by such dif-
ficulties. We have therefore developed an alternative, fast algorithm that uses the
existing LOWESS algorithm.

The input is in polar representation of all smoothed locations during progres-
sions:

1. Divide the circle into S sectors of angle �, and let αs be the mid-angle of each
sector for s = 1,2, . . . , S.

2. Let Ss = {(Rk, θk)|αs − �/2 ≤ θk ≤ αs + �/2} be the collection of all polar
representation of locations within a sector.

3. For s = 1,2, . . . , S, let Rs,p be the pth quantile of {Rk|(Rk, θk) ∈ Ss}.
4. Expand the data to produce an overlap at angles 0 and 2π . This is done by

duplicating the beginning of the series at the end, and its end at the beginning.
5. Regress Rs,p on αs on the expanded data, using LOWESS. Use the estimated

curve between 0 and 2π as the boundary estimate.

The algorithm has two smoothing parameters. The size of a sector � is the first
one. We used S = 720 overlapping sectors with � = 2π/360. Experimentation
with other numbers of sectors did not reveal significant changes. Note that the
bandwidth cannot be too small (since it reflects a real boundary) or too large (since
the dents would have been noticeable to the eye). We used linear LOWESS since
in a small sector (1 degree amount to about 2 cm) the changes cannot be too rough.
The 2nd choice of a smoothing parameter is the bandwidth of 0.15 for LOWESS.
This was found in an iterative manner while checking that the resultant curve was
not too rough.

The biological implications of using the algorithm may be found in Lipkind et
al. (2004).

3.3. Estimations of the center of the arena. So far, we have assumed the center
of the arena is known. Now, assume that the center C0 is unknown, yet it is close
to the origin. In this case it can be estimated using the boundary.

See Figure 3 for clarification of notation. Let (x, y) be a point on the boundary,
and denote its distance from C0 by R0. Let (R(θ), θ) be the polar representation
of (x, y) and (r0, ϕ0) be the polar representation of C0. From the cosine theorem
it follows that

R2
0 = R2(θ) + r2

0 − 2R(θ)r0 cos(θ − ϕ0).

Hence,

R(θ) = r0 cos(θ − ϕ0) ± R0

√
1 − (r0/R0)2 sin2(θ − ϕ0).

By assumption, r0 is small, so, using the Taylor approximation,

R(θ) = r0 cos(θ − ϕ0) + R0 + o(r0/R0)

= R0 + r0 cos(ϕ0) cos(θ) + r0 sin(ϕ0) sin(θ) + ε.
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FIG. 3. The relations and angles between a point on the boundary, the origin and the true center
of the circle.

In the last equation, R0, r0, ϕ0 are unknown, while R(θ), θ are known. There are
many points along the boundary, with polar representation: Ri , θi . Using OLS, the
parameters r0, ϕ0 may be estimated from the boundary.

In practice, the estimated boundary is used to estimate the center as follows:

1. Use OLS to estimate R0, β1, β2 in the model Ri = R0 + β1 cos(θi) +
β2 sin(θi) + εi .

2. Let r̂0 =
√

β2
1 + β2

2 and ϕ̂0 = cos−1(β1/r̂0).
3. Let, x̂0 = r̂0 cos(ϕ̂0) and ŷ0 = r̂0 sin(ϕ̂0).

3.4. Advantages and evaluation of the algorithms to estimate boundary and
center. The proposed algorithm to estimate the boundary is simple and, conse-
quently, it runs fast and converges well (which is especially important as part of
a high-throughput environment). Depending on the size of the data, it runs 15–
50 times faster than “quantreg,” and, unlike “quantreg,” we have not encountered
convergence problems. Its disadvantage is the need to provide two bandwidths
while “quantreg” requires only one. Cross-validation may be used to address this,
but, in practice, there was no need to do so.

Figure 4 compares the two methods. The grey points are the distances of
smoothed locations from (0,0). The estimated boundary using our algorithm is
in the solid line and using “quantreg” is in the dashed line. This was repeated
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FIG. 4. Estimated arena wall versus angle using our algorithm (solid) and “quantreg” (dashed).
The grey points are the distances from center for smoothed locations.

for the circular and distorted arenas. Qualitatively, the results are similar; however,
“quantreg” seems too rough for a physical boundary. When using other bandwidths
“quantreg” did not converge.

Figure 5 demonstrates our algorithm with and without center estimation. In the
top left plot, data is from the circular arena and the presumed center is (0,0). The
solid line is the estimated boundary when the center was estimated as well. The
dotted line is the estimated boundary with no center estimation. The difference
between the two is probably because the center is not exactly at (0,0). The top-
right and bottom-left plots are based on the same data, but the center is shifted to
the point mark at the title. The grey points are the distances from (0,0) and not
from the true center. The solid and dashed lines are as before. The bottom-right
plot is the same but for the distorted arena.

Next we examine the density of distances from the boundary when the algorithm
to estimate the boundary is being used and when it is not. The results are presented
in Figure 6. For both cases, all smoothed locations within progression segments of
a C57 mouse were taken. The left plots correspond to the circular arena and the
right plots to the distorted one. The top plots show all the places in the arena that
the mouse visited at least once. The shape of the arena is not given, but it can be
deduced knowing that the mouse touches the boundary. For the circular arena, five
progression segments along the boundary were chosen, and for the distorted arena
three. These segments are marked in black (with some overlap between them).
The middle plots are the density estimate of distances for all points belonging to
progression segments. The solid line is the distance from the estimated wall, using
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FIG. 5. Estimated arena wall versus angle when the center is shifted. The grey points are as in
Figure 4. The solid line is the boundary estimate using our algorithm with center estimation. The
dashed line is our algorithm with no center estimation and the dotted line is the our algorithm on the
original data (i.e., center not shifted).

our algorithm with center correction, while the dashed line is the density when the
distances are taken from the assumed perfect circle. When the arena is indeed a
circle, the two are similar, but this is not the case for the distorted arena. This effect
is more dramatic when examining only the selected segments that are performed
close to the wall (bottom plot). Here the effect of computing the distance from the
wall, assuming a perfectly circular wall, is evident.

3.5. MSE comparison of boundary estimation. The tracking system does not
provide measurements of the boundary, so we had to estimate it using behavioral
data. Here, we demonstrate that even if measurements along the boundary are
available, obviously with noise, using data within the arena might have statisti-
cal advantages in terms of MSE due to the different sample sizes.

We assume the center is at the origin and the constant radius is unknown, and
compare estimation of the radius using boundary or behavioral data. If the arena
is not a perfect circle, a nonparametric regression may be used to estimate the
boundary (as described in Section 3.1).
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FIG. 6. Typical path plot of a C57 mouse in the circular and distorted arenas. A few segments of
movements along the wall were selected and marked in black. The lower 4 plots show the densities of
distance from the wall for all points in the top path plot (middle) and for the selected segments (bot-
tom) in the two arenas. The solid line is for the case where the distance is computed after boundary
estimation, while the dashed line is for the case where the distance is computed assuming a perfect
circle.

Assume there are n location measurements of the boundary and for each the
distance to the origin is computed so that Ri = R + ε, where ε have 0 mean and
constant variance σ 2. Using the mean to estimate R, the MSE is σ 2/n.

Alternatively, consider the location measurements during a session, and assume
that in each of the n sectors there are N measurements: Zij for 1 ≤ i ≤ n and
1 ≤ j ≤ N , where Zij are the distances from the origin and have some distribution
on a disk whose center is at the origin and its radius is R. The MLE of R is
max(Zij ).
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LEMMA 1. Assume Zij are uniformly distributed on [0,R] and let R̂1 =
max(Zij ) and R̂2 = (nN + 1)R̂1/(nN). Then,

MSE(R̂1) = R2 2

(nN + 1)(nN + 2)
,

MSE(R̂2) = R2 1

nN(nN + 2)
.

PROOF. Calculating the pdf of R̂1 is straightforward and, consequently,

E(R̂1) = nN

nN + 1
R, var(R̂1) = R2 nN

(nN + 1)2(nN + 2)
.

The MSE of R̂1 and R̂2 follows easily. �

In our setup, the mice tend to stay near the boundary for a large proportion of
the time, hence, we consider a skewed distribution.

LEMMA 2. Assume Zij = RUij where f (u) = (p + 1)up for 0 ≤ u ≤ 1 and
p > 1. Let R̃1 = max(Zij ) and R̃2 = R̃1[nN(p + 1) + 1]/[nN(p + 1)]. Then,

MSE(R̃1) = R2 2

[nN(p + 1) + 1][nN(p + 1) + 2] ,

MSE(R̃2) = R2 1

nN(p + 1)[nN(p + 1) + 2] .

PROOF. Calculating the pdf of R̃1 is straightforward and, consequently,

E(R̃1) = R
nN(p + 1)

nN(p + 1) + 1
,

var(R̃1) = R2 nN(p + 1)

[nN(p + 1) + 1]2[nN(p + 1) + 2] .

The MSE of R̃1 and R̃2 follows easily. �

The MSE based on the mean is O(n−1), while the MSE based on the MLE
(or its unbiased version) of the behavioral data is O(n−2N−2). For the case of
behavioral data, using R̂2, for example, is advantageous over the boundary mea-
surements if

R2

σ 2 < N(nN + 2).

Similar comparisons are possible for the other estimators.
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4. Discussion. For the dual purpose of smoothing locations and identifying
arrests, we combine LOWESS and the RRM. Using LOWESS echoes the approach
of Ramsay and Silverman (1997), in which the path is viewed as a smooth location
function of time, and making use of its derivatives. Viewing the resultant smoothed
path as a very long paragraph with no punctuation, the RRM adds the missing
punctuation marks which, in turn, allows for the analysis of each sentence. The
idea of adding the punctuation marks into the studied functional may be viewed as
an extension of the approach of Ramsay and Silverman.

Robustness in its traditional sense is an essential component in the design of an
automated high-throughput data analysis system, because it automatically protects
the analysis from sources of errors that could be identified as gross errors once
looked into by the human observer; alas, this observer is missing from the initial
stages of the high-throughput process. A similar phenomenon happens in any data-
mining operation, at the stage of ware-housing the database, preparing it for further
analysis by sophisticated models and algorithms. The preparatory step is always
essential and automated, and the damage that can be done at this stage is large. The
use of classical robust procedures may need adaptation, and the use of shortcuts
to make the extra computational effort feasible may be needed, as demonstrated
by the examples given. Such an emphasis on robustness when analyzing large data
sets is not usual, as robustness is associated with medium sized samples where the
gain in efficiency from using robust methods may be crucial.

Estimating the boundary provides protection from deviations from the experi-
mental design in our setup. Such deviations may happen, and when the data are
processed automatically, the methods used must be robust to cope with them. This
was achieved using a nonparametric regression quantile. This approach extends
the common practice in image processing in which constant radius is assumed
and estimated. Moreover, it turns out that our solution is more flexible than we
planned: initial experimentation with the same algorithm to estimate the boundary
of a squared arena performed reasonably well, indicating that extending the algo-
rithm to take into account the possibility of corners at the boundary will yield a
good general solution.

Throughout the paper we have mentioned different choices made for smoothing
parameters. In all cases, the choices were made by an iterative work of biolo-
gists and statisticians, and comparison of the results to the video recordings them-
selves. The smoothing parameters are potentially affected by arena size, animal
size, recording rate and height of ceiling, and their values should be fixated in the
study protocol. Alternatively, they can be estimated via some automatic method
such as cross validation based methods [e.g., Silverman (1986)], but the algorithm
should be fixated as well in the protocol and be identical for all animals and groups
involved. It is not clear to us whether the next step should be a development of a
more sophisticated method, driven by data only, to choose the smoothing parame-
ters or modeling the choice made by an expert as a function of the parameters de-
fined in the study protocol (e.g., arena size, etc.). See, for example, the experience
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of Likhvar and Honda (2008), who demonstrated the limitations of generalized
cross validation in analyzing multiple time series, where the chosen smoothing
parameters occasionally missed the known curve shape.

Computation of summaries (e.g., total distance, average speed during progres-
sion) for each mouse is performed on the smoothed data, and is followed by the
assessment of differences between (inbred) strains. In a single laboratory study
this is done using the one-way ANOVA. Crabbe et al. executed their study in 3
laboratories, and analyzed the data using the two-way fixed ANOVA model, with
strain and laboratory being the two factors. They found the interaction to be signif-
icant and their conclusion was the inability to declare replicability. In our view, the
mixed model, with laboratory and interaction being random, is more appropriate
[Kafkafi et al. (2005)]. The mixed model is more conservative than the fixed model,
nevertheless, all 17 measures used in Kafkafi et al. showed significant differences
between strains (after adjusting for multiplicity). We believe that smoothing and
the ability to create homogenous classes of behavior are crucial in achieving this,
and for that purpose the combination of LOWESS and the RRM plays a central
rule.

We hope that publishing this paper in a statistical journal will expose more
statisticians to the challenges in the field. There are open problems both in con-
nection with the current work and more generally in the field of behavior genetics.
Tracking and boundary estimation discussed here are only two of them, and are
encountered as statistical problems in other fields as well.

Acknowledgment. The statistical solutions discussed in the paper are imple-
mented within a free high-throughput software tool called SEE [www.tau.ac.il/~
ilan99, Drai and Golani (2001)]. The authors would like to thank Roger Koenker
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