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A LATENT FACTOR MODEL FOR SPATIAL DATA
WITH INFORMATIVE MISSINGNESS1
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A large amount of data is typically collected during a periodontal exam.
Analyzing these data poses several challenges. Several types of measure-
ments are taken at many locations throughout the mouth. These spatially-
referenced data are a mix of binary and continuous responses, making joint
modeling difficult. Also, most patients have missing teeth. Periodontal dis-
ease is a leading cause of tooth loss, so it is likely that the number and loca-
tion of missing teeth informs about the patient’s periodontal health. In this pa-
per we develop a multivariate spatial framework for these data which jointly
models the binary and continuous responses as a function of a single latent
spatial process representing general periodontal health. We also use the latent
spatial process to model the location of missing teeth. We show using sim-
ulated and real data that exploiting spatial associations and jointly modeling
the responses and locations of missing teeth mitigates the problems presented
by these data.

1. Introduction. Periodontal disease or periodontitis is an inflammatory dis-
ease affecting periodontium, the tissues that support and maintain teeth. Periodon-
titis causes progressive bone loss around the tooth which can lead to tooth loosen-
ing and eventually tooth loss. It has been estimated that about 50% of US adults
over the age of 35 experience early stages of periodontal disease [Oliver, Brown
and Loe (1998)], making periodontitis the primary cause of adult tooth loss. To
measure periodontal status, dental hygienists often use a periodontal probe to
measure several disease markers throughout the mouth. Three of the most pop-
ular markers are (a) clinical attachment loss (CAL), (b) periodontal pocket depth
(PPD) and (c) bleeding on probing (BOP). PPD and CAL are continuous variables,
usually rounded to the nearest millimeter. CAL is the distance down a tooth’s root
that is no longer attached to the surrounding bone by the periodontal ligament, and
PPD is the distance from the gingival margin to the base of the pocket. BOP is a
binary response and is indicative of whether a particular site bled with the applica-
tion of a dental probe. During a full periodontal exam, all three markers are usually
measured at six pre-specified sites [Darby and Walsh (1995)] for each tooth (ex-
cluding the third molars, i.e., the wisdom teeth). So for a patient with no missing
teeth, there are S = 168 measurements for each marker (Figure 1).
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FIG. 1. Observed CAL for a typical patient. The shaded boxes represent teeth, the circles represent
measurement sites, and the gray lines represent neighbor pairs connecting adjacent sites on the same
tooth and sites that share a gap between teeth. “Maxillary” and “Mandibular” refer to upper and
lower jaws respectively. The small numbers beside each tooth are the “tooth numbers.” The maxilla’s
second tooth on the left is missing; third molars (“wisdom teeth”) are excluded.

The motivating example is a clinical study conducted at the Medical University
of South Carolina (MUSC) to determine the periodontal disease status for Type-2
diabetic Gullah-speaking African-Americans, originally presented in Fernandez et
al. (2009). The objective of this analysis is to quantify the disease status of this
population, and to study the associations between disease status and patient-level
covariates such as age, BMI, gender, HbA1C and smoking status.

Quantifying a patient’s disease status from the extensive data collected during a
periodontal exam is difficult. For example, it is common to summarize disease sta-
tus using the whole-mouth average CAL or the number of teeth with CAL above
a certain threshold. Using the whole-mouth average CAL as the response in a
regression with patient-level covariates is reasonable when the patients’ residual
distributions are identical. However, this assumption is often violated in practice,
as different patients have different error variances, spatial covariances and miss-
ing data patterns. In this paper we present a multivariate spatial model to jointly
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analyze periodontal data from multiple markers and multiple measurement loca-
tions to improve estimation of disease status, and hence develop a more powerful
method for studying the association between patient-level covariates and periodon-
tal disease.

We use spatial factor analysis [Wang and Wall (2003), Hogan and Tchernis
(2004), Lopes, Salazar and Gamerman (2008)] to model these multivariate spatial
data. We postulate that the three markers are all related to a single latent spatial
process (factor) measuring periodontal health. The latent periodontal health factor
varies from site to site and is smoothed spatially using a conditionally autoregres-
sive prior [Besag, York and Mollié (1991), Banerjee, Carlin and Gelfand (2004)].
The data collected for this study provide interesting challenges that require exten-
sions of the spatial factor model. First, the data are a mix of continuous and binary
responses. To jointly model these data types, we develop a spatial probit model
for binary responses, which has the advantage of being fully-conjugate and leads
to rapid MCMC sampling and convergence. Also, we have data from multiple pa-
tients, and exploratory analysis suggests that the covariance of the latent spatial
factor varies by patient. Therefore, we develop a hierarchial model which allows
the covariance to vary between patients, but pools information across patients to
estimate the covariance parameters. We show in a simple case that in terms of esti-
mating the effect of patient-level covariates, this model is equivalent to a weighted
multiple regression, where the patient’s scalar response is a linear combination of
all data across location and marker, and the patient’s weight decreases with the
spatial correlation and variability.

Another challenging aspect of analyzing periodontal data is the considerable
number of missing teeth (around 20% for these data). The assumption that teeth
are missing completely at random is not valid because periodontal disease is the
leading cause of adult tooth loss, so patients with several missing teeth likely have
poor periodontal health. For nonspatial data a common method to handle so-called
“informative cluster size” is to include the number of observations as a covariate,
or in the weights of a weighted regression [Hoffman, Sen and Weinberg (2001),
Williamson, Datta and Satten (2003), Follman, Proschan and Leifer (2003), Lu
(2005), Benhin, Rao and Scott (2005), Panageas et al. (2007), Cong, Yin and Shen
(2007), Williamson et al. (2008)]. Dunson, Chen and Harry (2003) take a different
approach. They propose a joint model for clustered mixed (continuous and binary)
data and the number of responses in each cluster, using a continuation ratio pro-
bit model for cluster size. Another approach is the shared parameter model [e.g.,
Wu and Carroll (1988), Follman and Wu (1995)]. The shared parameter model ac-
counts for informative missingness by introducing random effects that are shared
between the missing data process and the measurement process. Conditioned on
the random effects, the missing data and measurement processes are assumed to
be independent.

We propose a shared variable model to jointly model missing teeth with the
other markers of periodontal disease. However, in our spatial setting both the num-
ber and location of missing teeth are informative. For example, a missing tooth in
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the front of the mouth surrounded by teeth with low CAL may not be informative;
in contrast, a missing tooth in the back of the mouth (where periodontal disease is
often the most advanced) surrounded by teeth with high CAL is indicative of poor
periodontal health in that region of the mouth. Therefore, we model the number
and spatial distribution of missing teeth using our latent spatial factor model. In
this model, CAL, PPD, BOP and the location of missing teeth are all modeled si-
multaneously in terms of a latent periodontal health factor; this approach uses all
available information to estimate periodontal disease status.

The paper proceeds as follows. Section 2 presents our unified approach to mod-
eling multivariate spatially-referenced periodontal data, as well as our model for
informatively missing teeth. Section 3 offers some influence diagnostics to deter-
mine which patients and response types are the most informative about the patient-
level covariates. Computing details are given in Section 4. Section 5’s simulation
study shows that accounting for spatial association and informative observation
location can lead to a substantial improvement in estimating the patient-level co-
variate effects. We analyze the periodontal data in Section 6. Section 7 concludes.

2. Latent spatial factor model for periodontal data. In this section we de-
scribe our approach for spatially-referenced mixed periodontal data with infor-
mative missingness. We begin in Section 2.1 by specifying a latent spatial factor
model assuming no missing teeth. Section 2.2 introduces the spatial probit model
for missing teeth and Section 2.3 specifies priors and discusses identifiability of
the latent variable model.

2.1. Complete data model. We assume our multivariate spatial data has J

types of responses (for the periodontal data the J = 3 responses are CAL, PPD
and BOP) at each spatial location for each patient. If the j th type of response is
continuous (CAL and PPD), let yij (s) be the response at spatial location s for pa-
tient i, s = 1, . . . , S and i = 1, . . . ,N . Our data also has binary responses (BOP).
If the j th type of response is binary, let y∗

ij (s) be the response at spatial loca-
tion s for patient i. We model binary responses using probit regression, that is,
y∗
ij (s) = I (yij (s) > 0), where I (·) is the binary indicator function and yij (s) is a

Gaussian latent variable.
All J responses are modeled as functions of the latent spatial disease status,

μi(s), which represents the overall periodontal health of patient i at location s. Let

yij (s) = aj + bjμi(s) + εij (s),(1)

where aj is the intercept for response j , bj relates the latent factor to response
type j , and εij (s) ∼ N(0, σ 2

ij ) is error. As is customary for probit regression, we

assume σ 2
ij = 1 for binary responses for identification. Since all J responses de-

pend on the common latent factor, they are correlated with

Cor(yij (s), yil(s)) = bjbl Var[μi(s)]√
b2
j Var[μi(s)] + σ 2

ij

√
b2
l Var[μi(s)] + σ 2

il

.(2)
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The slopes bj and bl determine the sign and magnitude of the correlation; if either
bj or bl is zero, then yij (s) and yil(s) are uncorrelated, and if bj and bl share
(do not share) the same sign, then yij (s) and yil(s) are positively (negatively)
correlated.

The latent vector μi = (μi(1), . . . ,μi(S))′ has a multivariate normal prior with
conditionally autoregressive covariance [“CAR,” Besag, York and Mollié (1991)].
The mean of μi is

E(μi ) = Wα + �iβ,

where W is an S × q matrix of spatial covariates (e.g., tooth number) that do not
vary across patient, Xi is the p-vector of patient-level covariates (e.g., age) that
do not vary across space within patient, �i = X′

i ⊗ 1S , 1S is the S-vector of ones,
and α and β are the corresponding regression parameters. The covariance of μi is
τ 2
i Q(ρi)

−1, where Q(ρi) = M −ρiD, Dss′ is one if locations s and s′ are adjacent
and zero otherwise, M is diagonal with diagonal elements Mss = ∑

s′ Dss′ . In this
spatial model, ρi ∈ [0,1] controls the degree of spatial association and τ 2

i > 0
controls the magnitude of variation. Let ri(s) = μi(s) − E(μi(s)). A convenient
interpretation of the CAR prior is that the conditional distribution of ri(s) given
ri(s

′) for all s′ �= s is normal with mean ρi r̄i(s) and variance τ 2
i /m(s), where r̄i (s)

is the average of ri(s) at location s’s m(s) neighbors.
The degree of spatial variation is allowed to differ between patients by means

of σ 2
ij , τ 2

i and ρi . To pool information across patients, we use models

σ−2
ij |cj , dj ∼ Gamma(cj , dj ),

τ−2
i |e, f ∼ Gamma(e, f ),(3)

ρi |g,h ∼ Beta(g,h),

where {cj }, {dj }, e, f , g and h are hyperparameters.

2.2. Model for the location of missing teeth. For our data described in Sec-
tion 1, roughly 20% of the teeth are missing. The locations of the missing teeth are
not random, but rather related to the periodontal health in that region of the mouth.
Therefore, we propose a model for the location of missing teeth as a function of
the underlying latent factor μi(s).

For our data either the six observations on a tooth for all J responses are all
observed or all unobserved. That is, if a tooth is missing, we have no data for
the tooth, and if a tooth is not missing, we have complete data. Let y∗

i0(t) be an
indicator of whether tooth t = 1, . . . , T is missing for patient i. As with the binary
data in Section 2, we model y∗

i0(t) using probit regression. Let y∗
i0(t) = I (yi0(t) >

0), where yi0(t) is a latent continuous variable. Then

yi0(t) = a0 + b0Z
′
tμi + εi0(t),(4)
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where Zt is such that Z′
tμi is the mean of μi at the six observations on tooth t and

εi0(t)
i.i.d.∼ N(0,1). a0 and b0 relate the latent process to the missing tooth indica-

tor. Note that since μi(s) is included in both the model for presence of and value
of the responses, both presence and value of the data contribute to the posterior of
μi(s), and thus the posterior of β . Also note that bi0 = 0 corresponds to indepen-
dence between the latent factor and the location of missing teeth, in which case the
location of missing teeth does not contribute to estimating β .

2.3. Identifiability and prior choice. Identifiability is a key issue in latent vari-
able modeling. To see this, we inspect the first two moments of the multivariate
response at location s for patient i after integrating over the latent factor μi ,

E(yij (s)) = aj + bj [W(s)α + X′
iβ],

(5)
Cov(yij (s), yil(s)) = bjblτ

2
i q(s) + I (j = l)σ 2

ij ,

where W(s) is the row of W corresponding to location s and q(s) is the (s, s)

diagonal element of Q(ρi)
−1. Identifiability concerns arise in both moment ex-

pressions, as multiplying all of the slopes bj by scalar c and dividing α, β and τ 2
i

by c gives identical moments. Although there are other ways to address this issue,
we fix b1 ≡ 1. This identifies both the regression coefficients α and β via the mean
of the first response and the CAR variance τ 2

i via the variance of the first response.
In our analysis of periodontal data of Section 6 we take the first response with
fixed slope to be clinical attachment loss, the most commonly used measure of pe-
riodontal disease. We also compare these results with other baseline assignments
and discuss sensitivity to this assumption.

The regression coefficients {aj }, {bj } (j �= 1), α and β have independent
N(0,w2) priors. The hyperparameters {cj }, {dj }, e, f , g and h have indepen-
dent Gamma(u, v) priors. In the simulation study (Section 5) and data analysis
(Section 6) we take u = v = 0.1 and w = 10 to give vague yet proper priors. We
conduct a sensitivity analysis in Section 6 which shows that the results are not
sensitive to these priors for this large periodontal data set.

3. Influence diagnostics. Our primary interest is in the patient-level parame-
ters β . In this complicated hierarchical Bayesian model, we would like to identify
the sources of data that are most informative about β . In this section we develop
diagnostics to determine which patients, spatial locations and response types are
the most influential. We assume no missing teeth, that all responses are Gaussian,
and that no covariates depend on space (W is null). In this case the regression co-
efficients only affect the overall average response for each patient, and a tempting
simplification is to collapse data over space and use each patient’s overall average
as a scalar response. We show that even in this case different areas of the mouth
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are more than less informative, and that patients are weighted differently depend-
ing on their spatial covariance parameters. This motivates the hierarchical spatial
model even in this simple case.

Integrating over latent effect μi , but conditioning on σ 2
ij , τ 2

i , ρi , aj and bj , the
posterior for β is Gaussian with

COV(β) =
(

N∑
i=1

wixix′
i

)−1

,

(6)

E(β) =
(

N∑
i=1

wixix′
i

)−1 N∑
i=1

wix′
izi,

where

wi = τ−2
i 1′[Q(ρi) − Q(ρi)

(
δiIS + Q(ρi)

)−1
Q(ρi)

]
1,(7)

δi = τ 2
i

∑J
j=1 b2

j /σ
2
ij , and

zi = 1

wi

1′Q(ρi)
(
δiIs + Q(ρi)

)−1
J∑

j=1

bjσ
−2
ij (yij − aj ).

The posterior in (6) is equivalent to a weighted linear regression where each pa-
tient contributes the scalar response zi and is weighted according to wi . Analyzing
zi and wi shows which sites, patients and outcomes contribute the most to β’s
posterior.

First we consider zi :

zi = 1

wi

1′[Q(ρi)
(
δiIs + Q(ρi)

)−1] J∑
j=1

bj

σ 2
ij

(yij − aj )

(8)

=
J∑

j=1

bj

σ 2
ij

[
S∑

s=1

ki(s)
(
yij (s) − aj

)]
,

where the vector ki = 1′[Q(ρi)(δiIs +Q(ρi))
−1]/wi . Therefore, zi is a linear com-

bination of all the observations for patient i, with k(s) controlling the relative
weight of observations at location s and bj/σ

2
ij controlling the relative weight of

response type j . Figure 2(a) plots k(s) (scaled to sum to S) for four combinations
of ρi and δi . Observations in the gaps between teeth have the highest weight; these
sites have the most neighbors and thus the smallest prior variance. Observations in
the back of the mouth and on the sides of teeth get less weight.

The patient weights wi are plotted as a function of ρi , δi and τi in Figure 2(b).
The weight decreases with ρi and τ 2

i , and increases with δi (inversely related to
error variances σ 2

ij ). That is, patients with little spatial association and small vari-
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FIG. 2. Panel (a) plots the spatial weights k(s) for various δ and ρ. “Maxillary” and “Mandibu-
lar” refer to upper and lower jaws respectively, while “buccal” and “lingual” refer to the cheek and
the tongue sides of the teeth, respectively. The thin lines have ρ = 0.1, the wide lines have ρ = 0.99;
the solid lines have δ = 0.2, the dashed lines have δ = 5. Panel (b) plots the patient weights wi for
various δi , τi and ρi .

ances τ 2
i and σ 2

ij (and thus large δi) have the most influence on β’s posterior. To
search for overly-influential patients, we compute the weights by evaluating (7)
using posterior means ρ̂i , τ̂ 2

i and σ̂ 2
i1. However, the marginal posterior for β is

not available in closed-form for Section 6’s data with informative missing teeth
and binary responses. Therefore, we use only the CAL error variance σ̂ 2

i1, that is,
δi = τ̂ 2

i /σ̂ 2
i1 (b1 = 1, Section 2.3), as an approximation. This approximation is not

meant to be definitive, but rather a useful heuristic device.

4. MCMC sampling algorithm. MCMC sampling is carried out using the
free software R (http://www.r-project.org/), although it would also be straightfor-
ward to implement the model using WinBUGS (http://www.mrc-bsu.cam.ac.uk/
bugs/). Sample code to analyze a single continuous response is available in the
supplemental article [Reich and Bandyopadhyay (2009)]. We draw 20,000 MCMC
samples and discard the first 5000 as burn-in. Convergence is monitored using trace
plots of the deviance as well as several representative parameters.

The patient-specific parameters are conditionally-conjugate except for the CAR
spatial association parameters ρi , which are updated using Metropolis–Hastings
sampling with a Beta(50ρ∗

i ,50(1 − ρ∗
i )) candidate distribution, where ρ∗

i is the
value at the previous iteration. The remaining parameters are updated using Gibbs
sampling with full conditionals given below. The latent continuous variables cor-
responding to the probit model for binary responses, yij (s), are updated from their

http://www.r-project.org/
http://www.mrc-bsu.cam.ac.uk/bugs/
http://www.mrc-bsu.cam.ac.uk/bugs/
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truncated full conditionals yij (s) ∼ N(aj + bjμi(s),1), restricted to (−∞,0) if
y∗
ij (s) = 0 and (0,∞) if y∗

ij (s) = 1. The vector of latent effects for patient i, μi , is
multivariate normal with

V (μi | rest)−1 = Z′Zb2
0 + Q(ρi)/τ

2
i +

(
J∑

j=1

b2
j /σ

2
ij

)
In,

E(μi | rest) = V (μi | rest)

(
b0Z′(y0i − a0)

+ Q(ρi)(Wα + �iβ)/τ 2
i +

J∑
j=1

bj (yij − aj )/σ
2
ij

)
,

where Z = (Z1, . . . ,ZT ), yij = (yij (1), . . . , yij (S)) and yi0 = (yi0(1), . . . ,

yi0(T )). The measurement error variances for the continuous responses have full
conditional

σ 2
ij | rest ∼ InvGamma

(
S/2 + cj ,

S∑
s=1

(
yij (s) − aj − bjμi(s)

)2
/2 + dj

)
,

(9)
τ 2
j | rest ∼ InvGamma

(
S/2 + e, r′

iQ(ρi)ri/2 + f
)
,

where ri = μi − Wα − �iβ .
The intercept/slope pairs (aj , bj ) have bivariate normal full conditionals with

mean

V ((aj , bj )
′| rest)−1 = w−2I2 +

N∑
i=1

�′
i�i/σ

2
ij ,

E((aj , bj )
′| rest) = V ((aj , bj )

′| rest)

(
N∑

i=1

�′
iyij /σ

2
ij

)
,

where �i = (1,μi ). The regression coefficients α and β have multivariate normal
full conditionals with

V (α| rest)−1 = w−2Ips +
N∑

i=1

W ′Q(ρi)W/τ 2
i ,

E(α| rest) = V (βs | rest)X′
s

N∑
i=1

Q(ρi)(μi − �′
iβ)/τ 2

i

and

V (β| rest)−1 = w−2Ip +
N∑

i=1

�′
iQ(ρi)�i/τ

2
i ,

E(β| rest) = V (β| rest)
N∑

i=1

�′
iQ(ρi)(μi − Wα)/τ 2

i .
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The remaining parameters {cj }, {dj }, e, f and g are updated using Metropolis
sampling with Gaussian candidate distributions tuned to give acceptance ratios
near 0.40.

5. Simulation study. In this section we conduct a simulation study to demon-
strate the effects of spatial correlation and informative missingness on the analy-
sis of patient-level fixed effects. For computational purposes we assume only one
quadrant (i.e., half jaw) for each patient leaving S = 42, that there are no spatial
covariates W , and the same CAR spatial association parameter for each patient,
that is, ρi = ρ. We also assume there is only a single continuous response. Data
are generated from the model

P
(
yi(s) = observed

) = 1 − 	
(
a0 + b0μi(s)

)
,

(10)
yi(s)|yi(s) observed ∼ N

(
a1 + b1μi(s), σ

2
i

)
,

where μi ∼ N([x′
iβ]1S , τ 2

i Q−1(ρ)). Each simulated data set contains data gener-
ated from this model for N = 50 patients. The p = 6 patient-level covariates xi are
generated independently from the standard normal distribution and the regression
coefficients are β = (0,0,0,1,2,3)/20. Finally, a1 = b1 = 1 and a0 = −1.

M = 100 data sets are generated from each of six designs specified by varying
the true value of the covariance parameters σ 2

i , τ 2
i and ρ and the missing data

mechanism b0:

• Design 1: ρ = 0.0, b0 = 0 and σ 2
i = τ 2

i = 1,
• Design 2: ρ = 0.9, b0 = 0 and σ 2

i = τ 2
i = 1,

• Design 3: ρ = 0.9, b0 = 0 and σ 2
i = τ 2

i = 1.5*I(i is odd) + 0.5,
• Design 4: ρ = 0.9, b0 = 1 and σ 2

i = τ 2
i = 1,

• Design 5: ρ = 0.9, b0 = 1 and σ 2
i = τ 2

i = 1.5*I(i is odd) + 0.5,
• Design 6: ρ = 0.5, b0 = 1 and σ 2

i = τ 2
i = 1.5*I(i is odd) + 0.5.

Observations within patients are independent under the first design and spatially
correlated under all other designs. The variances are the same for all patients un-
der Design 2 and vary across patients for Design 3. Designs 4 and 5 are similar
to Designs 2 and 3, except that the locations of missing observations are informa-
tive with b0 = 1. Design 6 is the same as Design 5, except with moderate spatial
association ρ = 0.5.

We analyze each simulated data set using five models:

• Model 1: Linear regression, ȳi = ∑
s∈Si

yi(s)/|Si | ∼ N(x′
iβ, σ 2),

• Model 2: Section 2’s spatial model without informative missingness or patient-
specific variances, that is, b0 = 0, σ 2

i = σ 2 and τ 2
i = τ 2,

• Model 3: Section 2’s spatial model with patient-specific variances but without
informative missingness, that is, b0 = 0,
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• Model 4: Section 2’s spatial model with informative missingness but without
patient-specific variances, that is, σ 2

i = σ 2 and τ 2
i = τ 2,

• Model 5: Section 2’s full spatial model,

where Si in Model 1 is the set of locations of observed data for patient i. Model 1
ignores spatial associations and missing teeth, and simply uses each patient’s av-
erage observed response in a multiple regression. Models 2–5 explicitly model
all observations individually and account for spatial associations between nearby
observations.

The results are presented in Table 1. For each model and each design, we calcu-
late the proportion of the 95% posterior intervals for b0 and the regression coeffi-
cients that exclude zero. We also compute the mean squared error and relative bias,
MSE = 1

pM

∑M
m=1

∑p
j=1(β̂

(m)
j − βj )

2 and RelBiasj = 1
M

∑M
m=1(β̂

(m)
j − βj )/βj ,

where β̂
(m)
j is the posterior mean of βj for the mth simulated data set and βj is the

true value. Relative bias is only presented for the largest coefficient, β6.
Data for the first design are generated without spatial association or informative

missingness. In this case all five models give nearly identical results, demonstrat-
ing that the spatial models are able to approximate the simple regression model
if appropriate. The five models are also nearly identical for Design 2 where the
data are generated with spatial correlation and the same variances for each patient.
In this case the patient means ȳi are Gaussian with mean a1 + x′

iβ and the same
variances, satisfying the usual regression assumptions.

The linear regression model does not perform well for Design 3’s spatial model
with patient-dependent variances. In this case the patient means ȳi have different
variances, violating the usual regression assumptions. The spatial models that al-
low for patient-dependent variances (Models 3 and 5) give dramatic improvements
in both power and mean squared error compared to the homoskedastic models.

The locations of missing observations are informative for Designs 4, 5 and 6.
For these two designs the models (Models 1–3) that do not account for informa-
tive missingness are biased for β6. The models that allow for informative location
consistently identify b0 as nonzero (power 1.0 in all three designs), which alle-
viates the bias for the nonnull predictors and improves power. Design 5 has both
informative missingness and patient-dependent variances, common traits of peri-
odontal data. In this case our full model is more than three times more powerful
for β6 (0.26 to 0.94) and has roughly one fourth the mean squared error (0.193 to
0.780) of the usual nonspatial regression approach.

6. Analysis of periodontal data. The motivating data were collected from a
clinical study [Fernandes et al. (2009)] conducted by the Center for Oral Health
Research (COHR) at the Medical University of South Carolina (MUSC). The rela-
tionship between periodontal disease and diabetes level has been previously stud-
ied in the dental literature [Faria-Almeida, Navarro and Bascones (2006), Taylor
and Borgnakke (2008)]. The objective of this study was to explore the relationship
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TABLE 1
Simulation study results. Column labels “b0”–“β6” give the proportion of 95% intervals that
exclude zero. The Monte Carlo standard errors (not shown) are between 0.007 and 0.045 for

100*MSE and between 0.003 and 0.006 for the bias

Design Model b0 β1 β2 β3 β4 β5 β6 100∗MSE RelBias6

1 1 – 0.06 0.05 0.03 0.29 0.85 1.00 0.103 0.022
2 – 0.05 0.07 0.04 0.34 0.86 1.00 0.103 0.021
3 – 0.05 0.06 0.04 0.35 0.86 1.00 0.104 0.022
4 0.10 0.05 0.05 0.03 0.35 0.85 1.00 0.104 −0.001
5 0.12 0.06 0.05 0.04 0.35 0.83 1.00 0.106 0.006

2 1 – 0.03 0.04 0.01 0.13 0.52 0.80 0.289 0.042
2 – 0.03 0.05 0.02 0.15 0.56 0.80 0.287 0.034
3 – 0.03 0.03 0.03 0.17 0.48 0.79 0.298 0.045
4 0.06 0.03 0.06 0.01 0.16 0.52 0.83 0.285 0.037
5 0.06 0.03 0.05 0.01 0.16 0.46 0.81 0.297 0.043

3 1 – 0.03 0.07 0.04 0.12 0.31 0.51 0.657 0.077
2 – 0.04 0.08 0.08 0.13 0.31 0.52 0.655 0.072
3 – 0.09 0.09 0.07 0.36 0.69 0.95 0.181 0.027
4 0.08 0.03 0.08 0.09 0.12 0.31 0.56 0.653 0.077
5 0.08 0.09 0.12 0.08 0.39 0.68 0.96 0.178 0.034

4 1 – 0.04 0.08 0.05 0.14 0.43 0.70 0.266 −0.150
2 – 0.06 0.05 0.07 0.16 0.43 0.76 0.267 −0.146
3 – 0.04 0.06 0.06 0.18 0.42 0.72 0.265 −0.141
4 1.00 0.04 0.10 0.04 0.18 0.58 0.89 0.278 0.048
5 1.00 0.02 0.06 0.05 0.19 0.58 0.86 0.267 0.026

5 1 – 0.05 0.04 0.08 0.07 0.19 0.26 0.780 −0.229
2 – 0.11 0.07 0.12 0.15 0.26 0.34 0.725 −0.217
3 – 0.12 0.11 0.18 0.31 0.67 0.89 0.221 −0.075
4 1.00 0.06 0.10 0.09 0.16 0.46 0.71 0.693 0.187
5 1.00 0.06 0.09 0.08 0.29 0.66 0.94 0.193 0.023

6 1 – 0.06 0.04 0.07 0.10 0.28 0.47 0.409 −0.200
2 – 0.16 0.11 0.12 0.18 0.43 0.66 0.383 −0.191
3 – 0.07 0.09 0.11 0.45 0.89 1.00 0.086 −0.062
4 1.00 0.09 0.07 0.11 0.30 0.76 0.97 0.279 0.130
5 1.00 0.06 0.07 0.08 0.61 0.96 1.00 0.070 0.024

between periodontal disease and diabetes level (determined by the popular marker
HbA1c, or “glycosylated hemoglobin”) in the Type-2 diabetic adult (13 years or
older) Gullah-speaking African-American population residing in the coastal sea-
islands of South Carolina. Since this is part of an ongoing study, we selected 199
patients with complete covariate information and with at least 50% responses avail-
able.

For each patient CAL, PPD and BOP are measured at six locations on each
nonmissing tooth, as shown in Figure 1. Additionally, several patient-level co-
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variates were obtained, including age (in years), gender (1 = Female, 0 = Male),
body mass index or BMI (in kg/m2), smoking status (1 = a smoker, 0 = never)
and HbA1c (1 = High, 0 = controlled). We also include spatial covariates for the
site in the gap between teeth (1 = in the gap, 0 = on the side of a tooth), jaw
(1 = maxilla, 0 = mandible) and six tooth number indictors with the first tooth
(front of the mouth, Figure 1) serving as the reference tooth. All covariates are
standardized to have mean zero and variance one. The spatial adjacency structure
is shown in Figure 1; we consider neighboring sites on the same tooth as well as
neighboring sites on the consecutive teeth to be adjacent.

We begin by fitting several models with the same variances for all patients, that
is, σ 2

ij = σ 2
j , τ 2

i = τ 2 and ρ2
i = ρ2. We fit four models by assuming spatial associ-

ation (ρ ∼ Unif[0,1]) and independence (ρ = 0), and assuming missing teeth are
informative (b0 �= 0) and not informative (b0 = 0). Table 2 gives posterior 95%

TABLE 2
Posterior 95% intervals for models assuming variances σ 2

ij and τ2
i are constant across patients.

“Spatial” models take ρ �= 0 and models with informative missing teeth (“Info missing”)
have b0 �= 0

Spatial No No Yes Yes
Info missing No Yes No Yes

Age (−0.002, 0.022) (0.009, 0.033) (0.000, 0.079) (0.036, 0.115)
Female (−0.129, −0.104) (−0.128, −0.103) (−0.181, −0.103) (−0.173, −0.096)
BMI (−0.016, 0.007) (−0.014, 0.011) (−0.048, 0.030) (−0.033, 0.046)
Smoker (0.028, 0.051) (0.028, 0.051) (0.014, 0.091) (0.010, 0.088)
Hba1c (0.114, 0.139) (0.118, 0.143) (0.123, 0.199) (0.128, 0.207)

a0: missing – (−1.390, −1.239) – (−1.349, −1.172)
a1: CAL (1.008, 1.052) (1.021, 1.087) (0.993, 1.112) (1.002, 1.139)
a2: PPD (1.015, 1.055) (1.034, 1.101) (1.092, 1.214) (1.104, 1.139)
a3: BOP (−0.369, −0.323) (−0.359, −0.312) (−0.399, −0.327) (−0.394, −0.309)
b0: missing – (0.432, 0.513) – (0.434, 0.544)
b2: PPD (1.144, 1.178) (1.131, 1.160) (1.021, 1.047) (1.014, 1.043)
b3: BOP (0.473, 0.510) (0.475, 0.510) (0.510, 0.547) (0.434, 0.544)

ρ – – (0.972, 0.978) (0.972, 0.978)
τ (1.454, 1.499) (1.464, 1.508) (0.832, 0.870) (0.838, 0.874)
σ1: CAL (0.942, 0.961) (0.972, 0.978) (0.881, 0.900) (0.935, 0.953)
σ2: PPD (0.106, 0.182) (0.177, 0.219) (0.454, 0.486) (0.464, 0.493)

Tooth 2 (−0.027, 0.038) (−0.038, 0.034) (−0.063, 0.027) (−0.072, 0.022)
Tooth 3 (0.037, 0.101) (0.022, 0.091) (−0.007, 0.106) (−0.025, 0.100)
Tooth 4 (0.174, 0.241) (0.179, 0.253) (0.106, 0.242) (0.138, 0.275)
Tooth 5 (0.237, 0.306) (0.263, 0.339) (0.214, 0.369) (0.296, 0.451)
Tooth 6 (0.751, 0.825) (0.849, 0.932) (0.597, 0.773) (0.853, 1.037)
Tooth 7 (0.866, 0.954) (0.955, 1.048) (0.597, 0.773) (0.986, 1.151)
Gap (0.953, 1.001) (0.938, 0.994) (0.992, 1.030) (0.986, 1.022)
Maxilla (−0.289, −0.246) (−0.293, −0.247) (−0.376, −0.235) (−0.363, −0.211)
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intervals for several parameters. The slopes bj for pocket depth and bleeding on
probing (as described in Section 2.3, slope for attachment loss is fixed at one)
are significantly positive for all models, suggesting strong positive associations
between the three responses. Several covariates are significant for all models, in-
cluding patient effects gender, smoking status and HbA1c status, indicators of a
site in the gap between teeth and a site on the upper jaw, and several tooth number
indictors with sites in the back of the mouth having higher mean responses.

The slope relating the latent spatial process with the probability of a missing
tooth, b0, is also significantly positive. This matches the intuition that patients
with poor periodontal health generally have more missing teeth. Figure 3 plots the
data and fitted values for a typical patient to illustrate the effects of accounting
for informative missing teeth. This plot compares the spatial models with b0 set to
zero (solid lines) and b0 not set to zero (dashed lines). The posterior means [Fig-
ure 3(a)–(c)] and credible sets [3(d)] are nearly identical for observations on non-
missing teeth. However, for missing teeth the fitted values for all three responses
are larger (worse periodontal health) when accounting for informative observation
location.

Accounting for informative observation location also affects the patient effect
for age. The 95% interval ignoring spatial association and informative observations
location is (−0.002, 0.022), compared to (0.036, 0.115) for the full model. The
measures of periodontal disease are cumulative, so it seems reasonable that age
should be an important predictor. Our data show a relationship between age and the
number of missing teeth; patients that are younger than 54 (the mean age) have an
average of 135.8 (sd = 20.1) observations and patients that are older than 54 have
an average of 124.7 (sd = 22.2) observations. By accounting for this relationship,
we identify age as a significant predictor of periodontal health.

Section 5’s simulation study shows that the fixed effects can also be affected
if patients have different spatial covariances. To explore this possibility for our
periodontal data, we apply Section 2’s model with variances σ 2

ij and τ 2
i varying

across patients. Figure 4(a) and (b) summarize the posteriors of the variance para-
meters. Here we see considerable variation across patients; Figure 4(b) shows that
the posterior 95% intervals for τi are nonoverlapping for patients with small and
large τi .

Section 3’s wi diagnostic in (7) indicates which patients are the most influen-
tial on the regression coefficients. The wi (computed using only the CAL error
variance) have median 28.0 and vary greatly across patients with 95% interval
(5.8, 61.7). Figure 4(c) and (d) plot CAL for the patients with the smallest and
largest wi . The responses for the patient with smallest wi vary considerably from
site-to-site within the mouth, with attachment loss ranging from 0 to 11 mm. In-
formation about the patient-level covariates accumulate via the mean of the latent
parameters μi ; due to spatial variability, the mean is quite uncertain for this patient
and, thus, this patient provides little information about β . In contrast, the patient
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FIG. 3. Panels (a)–(c) plot the data (dots) and posterior mean of the expected response (lines) for
a typical patient. Panel (d) plots the posterior mean (bold) and 95% interval (thin) for the latent
spatial process μ(s). All plots include results for both the model with (dashed line) and without
(solid line) informative observation location. “Maxillary” and “Mandibular” refer to upper and
lower jaws respectively, while “buccal” and “lingual” refer to the cheek and the tongue sides of the
teeth, respectively.

with largest wi is stable from site-to-site, providing reliable information the mean
of μi and thus about β .

Table 3 gives the 95% posterior intervals for several parameters from the model
with patient-dependent variances. Comparing the spatial models with informative
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FIG. 4. Panel (a) gives the posterior medians of the patient-specific standard deviations (τi , σij ) for
attachment loss, and panel (b) plots the posterior of the CAR standard deviations τi (the horizontal
lines in the ith column are the posterior 0.025, 0.25, 0.5, 0.75 and 0.975 quantiles for τi ). Panels (c)
and (d) plot the attachment loss for the patients with smallest and largest weights wi , respectively.
“Maxillary” and “Mandibular” refer to upper and lower jaws, respectively, while “buccal” and
“lingual” refer to the cheek and the tongue sides of the teeth, respectively.

missingess, the results for the patient-level covariates are fairly similar for the mod-
els with and without patient-dependent variances (i.e., the final columns of Tables 2
and 3). However, we note that the width of the credible intervals are smaller for
the model with patient-dependent variances.

Finally, we conducted a sensitivity analysis to determine the effect of model-
ing assumptions for the full spatial model with patient-dependent variances and
informative observation location. We modified the analysis by changing the refer-
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TABLE 3
Posterior 95% intervals for models assuming variances σ 2

ij and τ2
i vary across patients. “Spatial”

models take ρ �= 0 and models with informative missing teeth (“Info missing”) have b0 �= 0

Spatial No No Yes Yes
Info missing No Yes No Yes

Age (−0.019, 0.007) (−0.013, 0.013) (−0.002, 0.057) (0.023, 0.086)
Female (−0.114, −0.086) (−0.115, −0.087) (−0.159, −0.096) (−0.168, −0.104)
BMI (−0.008, 0.019) (−0.006, 0.020) (−0.015, 0.040) (−0.009, 0.050)
Smoker (0.038, 0.062) (0.037, 0.061) (0.021, 0.078) (0.019, 0.075)
Hba1c (0.089, 0.114) (0.090, 0.118) (0.095, 0.155) (0.106, 0.171)

a0: missing – (−1.154, −1.004) – (−1.201, −1.040)
a1: CAL (0.859, 0.921) (0.851, 0.930) (0.855, 0.942) (0.892, 0.989)
a2: PPD (0.899, 0.960) (0.889, 0.966) (0.920, 1.012) (0.958, 1.058)
a3: BOP (−0.425, −0.373) (−0.424, −0.370) (−0.482, −0.414) (−0.464, −0.394)
b0: missing – (0.265, 0.378) – (0.294, 0.410)
b2: PPD (1.002, 1.014) (1.001, 1.014) (1.017, 1.036) (1.013, 1.031)
b3: BOP (0.462, 0.499) (0.463, 0.498) (0.518, 0.559) (0.521, 0.560)

ρ – – (0.954, 0.962) (0.958, 0.965)
Tooth 2 (−0.051, 0.010) (−0.050, 0.019) (−0.054, 0.023) (−0.063, 0.016)
Tooth 3 (0.022, 0.081) (0.021, 0.086) (0.007, 0.105) (−0.009, 0.095)
Tooth 4 (0.183, 0.246) (0.190, 0.258) (0.138, 0.251) (0.141, 0.254)
Tooth 5 (0.307, 0.374) (0.318, 0.391) (0.267, 0.385) (0.291, 0.412)
Tooth 6 (0.776, 0.850) (0.825, 0.909) (0.634, 0.763) (0.753, 0.899)
Tooth 7 (0.854, 0.940) (0.902, 0.991) (0.630, 0.769) (0.782, 0.938)
Gap (0.887, 0.929) (0.886, 0.932) (0.894, 0.926) (0.890, 0.922)
Maxilla (−0.280, −0.241) (−0.278, −0.238) (−0.305, −0.208) (−0.301, −0.201)

ence group with slope bj fixed to one from CAL to PPD and BOP, changing the
hyperparameters u = v = 0.1 to u = v = 0.0001, and changing the hyperparame-
ter w = 10 to w = 1000. The posterior 95% intervals are given in Table 4 for the
patient effects, scaled by b1 for comparison across reference group. The modifi-
cation with the largest effect is changing the reference group from CAL to BOP.
The patient level effects are generally closer to zero using BOP as the reference
group. Despite this change in scale, the signs of the coefficients and the subset
of coefficients with intervals that exclude zero remains the same as the original
analysis.

Also, we consider modifying the adjacency structure shown by the gray lines
in Figure 1 (“spatial grid 1”) in two ways: first by not considering sites on the
opposite side of a tooth to be neighbors (“spatial grid 2”) to give independent
AR(1) models to the sites on the buccal and lingual sides of each jaw, and second
by considering all pairs of observations on the same tooth to be neighbors (“spatial
grid 3”). To determine how well each of these spatial grids fit our data, we use
the deviance information criteria (DIC) of Spiegelhalter et al. (2002). To compare
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TABLE 4
Posterior 95% intervals for the patient effects for various modeling/prior choices for the full model

with spatial correlation, patient dependent variance and informative observation location.
“Ref group” refers to the response that has slope bj fixed to one, “u,v” and “w” are the
hyperparameters for the covariance parameters and regression coefficients, respectively,

as described in Section 2.3. To facilitate comparison across reference groups,
the intervals for β/b1 are presented

Ref group CAL PPD BOP CAL
u,v 0.1 0.1 0.1 0.001
w 10 10 10 10
Spatial grid 1 1 1 1

Age (0.023, 0.086) (0.025, 0.088) (0.007, 0.079) (0.039, 0.110)
Female (−0.168, −0.104) (−0.175, −0.108) (−0.052, −0.031) (−0.169, −0.097)
BMI (−0.009, 0.050) (−0.012, 0.052) (−0.003, 0.015) (−0.015, 0.054)
Smoker (0.019, 0.075) (0.020, 0.077) (0.005, 0.023) (0.009, 0.075)
Hba1c (0.106, 0.171) (0.110, 0.174) (0.033, 0.054) (0.122, 0.190)

Ref group CAL CAL CAL
u,v 0.1 0.1 0.1
w 1000 10 10
Spatial grid 1 2 3

Age (0.039, 0.109) (0.023, 0.068) (0.038, 0.105)
Female (−0.174, −0.096) (−0.150, −0.103) (−0.167, −0.097)
BMI (−0.017, 0.050) (−0.009, 0.035) (−0.011, 0.054)
Smoker (0.009, 0.076) (0.024, 0.067) (0.010, 0.074)
Hba1c (0.119, 0.191) (0.117, 0.164) (0.111, 0.176)

spatial structures using DIC, we analyze only a single continuous response, CAL,
and do not consider informative missing teeth. DIC prefers grid 1 (DIC = 66,128)
over grids 2 (DIC = 68,168) and 3 (DIC = 68,562). Table 4 gives the posterior of
the subject-level effects for the full data analysis using the three spatial grids; the
results are not sensitive to the choice of spatial structure.

7. Discussion. In this paper we develop a latent factor model for multivariate
spatial periodontal data with a mix of binary and continuous responses. Our model
allows for a different spatial covariance for each patient and for informative miss-
ing teeth. We show using simulated and real data that accounting for these factors
leads to a substantial improvement for estimating covariate effects compared to
standard regression techniques.

We have assumed throughout that the patient’s periodontal health can be cap-
tured by a single latent factor. It would be straightforward, conceptually if not
computationally, to include more latent factors. However, this leads to the problem
of selecting the appropriate number of latent factors, interpreting the roles of the
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different latent factors, and understanding the effects of the covariates on the differ-
ent latent factors. For these data with three strongly-correlated responses we prefer
the single factor model for computational simplicity and interpretability. If multi-
ple factors are allowed, the number of factors could be chosen using the deviance
information criteria. Another approach would be to allow the number of factors to
be unknown. Lopes, Salazar and Gamerman (2008) and Salazar, Gamerman and
Lopes (2009) use reversible jump MCMC to account for uncertainty in the number
of latent factors. Extending this approach to our setting may be complicated by the
large number of subjects, since the proposal density would have to propose spatial
models that simultaneously fit well for all 199 subjects. Another possibility would
be to extend the parameter expansion method of Ghosh and Dunson (2008) to the
spatial setting.

We have also assumed that the latent spatial process is Gaussian. For nonspa-
tial data several authors have proposed methods that avoid assuming the shared
random effects are Gaussian [Lin et al. (2000), Song, Davidian and Tsiatis (2002),
Beunckens et al. (2008), Tsonaka, Verbeke and Lesaffre (2009)]. These approaches
could be extended to the periodontal setting by replacing the Gaussian spatial
model with a non-Gaussian spatial model [e.g., Gelfand, Kottas and MacEachern
(2005), Griffin and Steel (2006), Reich and Fuentes (2007)].

An area of future work is to apply this method to longitudinal periodontal data.
Periodontal data is often collected repeatedly for a single patient over time to moni-
tor disease progression. Reich and Hodges (2008) propose a spatiotemporal model
for attachment loss. It should be possible to extend this model to accommodate
mixed multivariate responses and informative missing teeth.
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SUPPLEMENTARY MATERIAL

Computer code (spatial factor.R) (DOI: 10.1214/09-AOAS278SUPP; .R). In
the supplemental file, we include R code to analyze a single continuous response
with informative missingness. Use of the code is described in the file and is illus-
trated with an analysis of a simulated data set.
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