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This paper proposes an information theory approach to estimate the num-
ber of changepoints and their locations in a climatic time series. A model
is introduced that has an unknown number of changepoints and allows for
series autocorrelations, periodic dynamics, and a mean shift at each change-
point time. An objective function gauging the number of changepoints and
their locations, based on a minimum description length (MDL) information
criterion, is derived. A genetic algorithm is then developed to optimize the
objective function. The methods are applied in the analysis of a century of
monthly temperatures from Tuscaloosa, Alabama.

1. Introduction. Changes in station instrumentation, location, or observer
can often induce artificial discontinuities into climatic time series. For example,
United States temperature recording stations average about six station relocation
and instrumentation changes over a century of operation [Mitchell (1953)]. Many
of these changepoint times are documented in station histories; however, other
changepoint times are unknown for a variety of reasons. Even when a changepoint
time is known, one may still question whether the change instills a mean shift
in series observations. This paper proposes an information based approach to the
multiple changepoint identification (segmentation) problem.

Our methods are specifically tailored to climatic time series in that they al-
low for periodicities and autocorrelations. Multiple changepoint detection proce-
dures have been studied under the assumption that the series is driven by indepen-
dent and identically distributed errors [Braun and Miiller (1998), Caussinus and
Mestre (2004), Menne and Williams (2005)]. This is unrealistic in climate settings
where observations display moderate to strong serial autocorrelation. Ignoring au-
tocorrelations can drastically alter changepoint inferences, as positive autocorre-
lation can be easily mistaken for mean shifts [see Berkes et al. (2006) and Lund
et al. (2007)]. Multiple changepoint methods for time series data represent a very
active area of current research [Davis, Lee, and Rodriguez-Yam (2006), Fearn-
head (2006)]. Series recorded daily or monthly also display periodic dynamics.
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Our methods allow for seasonality by employing a time series regression model
with periodic features. In short, this paper develops a multiple changepoint seg-
menter that applies to a variety of realistic climate series.

The rest of this paper is organized as follows. Section 2 introduces the time
series regression model that underlies our work. Section 3 develops an objective
function for the model. The objective function is a penalized likelihood whose
penalty is based on the minimum description length (MDL) principle. This mod-
ifies Caussinus’ and Mestre’s (2004) model to allow for autocorrelation, seasonal
effects, and also changes their likelihood penalty to an MDL-based penalty. Each
segment of our model is allowed to have a distinct mean, but the autocovari-
ance structure of each segment is constrained to be the same. Section 4 presents
a genetic-type algorithm capable of optimizing the objective function to obtain
estimates of the changepoint numbers, locations, and the time series regression
parameters. Section 5 presents a short simulation study for feel. Section 6 applies
the methods to a century of monthly temperatures from Tuscaloosa, Alabama and
Section 7 concludes with comments.

2. Model description. The object under study is a time series {X;} governed
by periodic errors and multiple level shifts. The period of the series is 7" and is
assumed known. The series observation during season v, 1 <v < T, of the (n +
1)st cycle is denoted by X,74,. The time-homogeneous and periodic notation
{X:} and {X,,7+,} are used interchangeably, the latter to emphasize seasonality.
We index the first data cycle with n = 0 so that the first observation is indexed
by unity. For simplicity, we take d complete cycles of observations; specifically,
the observed data are ordered as X{,..., Xy and d = N/T is assumed a natural
number.

The model driving our work is a simple linear regression in a periodic environ-
ment:

(2.1) Xnr+v =y +a(mT +v) +Spr+v + EnT+v-

In (2.1) « is a linear trend parameter that is assumed time homogeneous for sim-
plicity; u, is the season v location parameter (a detrended mean in the absence
of changepoints). The errors {e;} have zero mean and are a periodically stationary
series with period 7 in that

(2.2) Cov(er, &5) = Cov(eryT, Es54T)

for all integers ¢ and s. Many climatic series have periodic second moments in the
sense of (2.2). For a sample of size N with m < N changepoints, the ordered times
of the changepoints are denoted by 1 < 1) < 1) < -+ < 7, < N. The number of
changepoints and the changepoint times are considered unknown. There are m + 1
different segments (regimes) during the observation record. At each changepoint
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time, our model allows for a mean shift in the observations. Such a structure is
described by

A1, 1<t<r1,

Aj, T <1 <71,
8[ = .

A+, T <t <N-+1.

For parameter identifiability, we take A; = 0; otherwise, the A;’s and p,’s would
become confounded. For a fixed N, the mean component E[X,74,] in (2.1) de-
pends on the T + 1 + m parameters iy, ..., ur, &, and A, ..., Ayy1. General-
izations of (2.1) are mentioned in Section 3 when we derive MDL codelengths.

To describe the time series component {e,74,}, we use a causal periodic au-
toregression of order p [PAR(p)]. Such errors are the unique (in mean square)
solution to the periodic linear difference equation

p
(2.3) EnT+v = Z Gr(W)enT4v—k + ZnT40-
k=1

Here, {Z;} is zero mean periodic white noise with variance a2(v) during season v.
Solutions to (2.3) are indeed periodic with period 7 in the sense of (2.2). PAR mod-
els are dense in the set of short memory periodic time series and parsimoniously
describe many such series; explicit expressions for many time series quantities are
available for PARs.

In many applications, reference series are available. A reference series is a se-
ries of the same genre as the series to be studied (the target series) that serves to aid
changepoint identification. For example, with the Tuscaloosa temperatures exam-
ined later, series from nearby Greensboro AL, Selma AL, and Aberdeen MS are
available over the same period of record. By constructing a target minus reference
difference series, mean shifts induced by changepoints are sometimes illuminated.
When the reference series is highly positively correlated with the target series, the
target minus reference series will have smaller autocorrelations than the target se-
ries at all lags (this happens when the target and reference series have the same
periodic autocovariance structure and the correlation between these two series ex-
ceeds 1/2 at all times). Also, the linear trend assumption is typically more plau-
sible for target minus reference differences than the target series, as long-memory
and other nonlinear features can be eliminated in the subtraction. Moreover, the
seasonal mean cycle is frequently reduced or altogether eliminated in target mi-
nus reference series. Drawbacks with reference series lie with additional undocu-
mented changepoints that the reference series may introduce. Algorithms aimed at
resolving which series among target and multiple references is responsible for any
found changepoints are now available [see Menne and Williams (2005, 2009)], but
these works do not consider seasonal features or autocorrelated errors.
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Note that the difference of two series governed by (2.1) again lies in (2.1).
Hence, in the next three sections we simply consider a single series satisfying (2.1).
Reference series will return in Section 6.

The parameters in the model will become important later. The PAR(p) model,
including the T white noise variance parameters, has (p + 1)T autocovariance pa-
rameters. For a fixed m, there are also the changepoint times 71, ..., 7, and the
mean shifts A, ..., Ay 1. Finally, a trend component « and the seasonal means
Ui, ..., are present. Hence, given p and m, there are 2m + 1+ (p +2)T model
parameters. Given p and m, we will need to estimate ty, ..., Ty, A2, ..., Aptl,
Ui, ..., Ut o, and all PAR(p) parameters. Developing and optimizing an objec-
tive function for this purpose will be the subject of our next two sections.

Before leaving the model description, we make a comment. The model studied
here allows for process changes at the changepoint times in the form of level shifts.
This is reasonable in climate cases [Vincent (1998), Menne and Williams (2005),
Lund et al. (2007)]. In other applications such as speech recognition and finance, it
may be more realistic to keep mean process levels fixed and allow the time series
parameters to change at each changepoint time [see Inclan and Tiao (1994), Chen
and Gupta (1997), Davis, Lee, and Rodriguez-Yam (2006)].

3. An MDL objective function. To fit the above model, estimates of the
changepoint numbers and locations, as well as the model parameters, are needed.
Since different changepoint numbers refer to models with a different number of
parameters, the model dimension will also need to be estimated. This is a model
selection problem. Popular approaches to model selection problems include AIC
(Akaike Information Criterion), BIC (Bayesian Information Criterion), cross-
validation type methods, and MDL methods. For problems that involve the de-
tection of regime changes, MDL methods often provide superior empirical results
[e.g., Lee (2000, 2002), Davis, Lee, and Rodriguez-Yam (2006)]. This superior-
ity is likely due to the fact that both AIC and BIC place the same penalty on all
parameters, regardless of the nature of the parameter (e.g., mean shift magnitudes
and changepoint times receive the same penalty). On the other hand, MDL meth-
ods can situationally tailor penalties for parameters of different natures, thereby
accounting for whether the parameter is real or integer-valued.

The MDL principle was developed by Rissanen (1989, 2007) as a general
method for solving model selection problems. It has roots in coding and infor-
mation theories. In brief, MDL defines the best fitting model as the one that
enables the best compression of the data; for the current problem, the data are
the observed {X;}. There exist several versions of MDL; the so-called two-part
MDL is used here. For introductory MDL material, see Hansen and Yu (2001) and
Lee (2001).

The rest of this section develops a two-part MDL objective function for fitting
a good model. The main idea behind the two-part MDL is described as follows.
First, the data {X,} is decomposed into two parts, the fitted candidate model and
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its corresponding residuals. MDL methods then calculate the total codelength (i.e.,
the amount of computer memory) required for storing both parts as a sum of the
codelength of the two parts. Finally, MDL methods define the best fitting model as
one that produces a minimal codelength. Intuition behind MDL methods lies with
why minimum codelength models are also good statistical models. Essentially, it
is that both good compression and good statistical models are capable of capturing
regularities in the data.

To proceed, let CL(z) denote the codelength of the object z. Also write a can-
didate fitted model as M and its residuals as {¢/}. The codelength is additive in
that

(3.1) CL({X,}) = CL(M) + CL({&,}).

The term CL(M) in (3.1) can be viewed as a model complexity term, while
CL({&,}) can be viewed as a data fidelity term. Our next task is to obtain a com-
putable expression for CL({X,}) that can be minimized. We begin with the calcu-
lation of CL(M).

An important result of Rissanen (1989) is that the maximum likelihood estimate
of a real-valued parameter computed from a series of N observations (N is large)
can be effectively encoded with log,(N)/2 bits. The trend parameter o hence re-
quires log, (V) /2 bits to encode. The seasonal mean parameters i, are effectively
estimated via seasonal sample means, each of which contributes log,(d)/2 bits to
the codelength. Given values of the changepoint times 7, ..., 7,,, the mean shift
parameter A ; can be estimated with data from the jth segment only. Hence, A ; re-
quires log,(t; — 7j—1)/2 bits to encode for 2 < j <m +1 (1,41 = N + 1 is taken
as a convention). Hence, the portion of the codelength from mean parameters in
the time series regression (i.e., o, {uv}‘{:l, and {Aj}’}lizl) is

log,(N)  Tlogy(d) 1™+
(3.2) 22 + 22 +5 > logy(tj — Tj-1).
j=2

The PAR(p) time series parameters [¢x(v) for 1 <k < p;1 <v <T and a2(v)
for 1 <v < T] are also real valued. Because {&;} is a zero mean process, we need
only consider the zero mean version of this model. In this case, the PAR parameters
can be estimated in an efficient manner via seasonal versions of the Yule—Walker
equations [see Pagano (1978)]. The necessary equations for this task are presented
in Shao and Lund (2004). Yule-Walker PAR parameter estimators are asymptot-
ically most efficient [Pagano (1978)]; in fact, these estimators are the likelihood
estimators except for the edge-effects (i.e., the likelihood is conditional on the first
p observations). The Yule—Walker estimators can be computed from the sample
autocovariances y,,(h) over the lags h =0, ..., p. The lag & sample autocovari-
ance at season v is defined as y,(h) =d -1 Zﬂ;(l) EnT+vEnT+v—h, Where &; is taken
as zero should a ¢ < 0 be encountered in the summation. Observe that 7, (0) is
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a function of d series observations for each fixed v. Moreover, p,(h) is essen-
tially computed from 2d observations. Hence, the total codelength from PAR(p)
parameters is

T'logy(d) | pTlog,(2d)
2 + 2 '

The parameters 71, ..., T, are integers and must be treated as such. Arguing
as in Davis, Lee, and Rodriguez-Yam (2006), an integer parameter bounded by Q
takes log, (Q) bits to encode. Since the 7;’s are ordered, we have 7; < 7;41. This
differs from Davis, Lee, and Rodriguez-Yam (2006) in that we do not loosely
bound 7; — ;1 by N for each j. In short, the codelength induced by the change-
point times that we use is

(3.3)

(3.4) > logy(t)) +logy (N).
j=2

Finally, the model orders p and m contribute

(3.5) log, (p) +1og, (m)

bits to the codelength. While m is bounded by N, typical values of m are sig-
nificantly smaller than N and a penalty of log,(N) would be too much for m
changepoints.

Adding (3.2)—(3.5) gives

R 3 m+1
CLM) = Jloga(N) + Tlogy(d) + 5 ) loga(tj = 7j-1)
j=2
(3.6) o
pT log,(2d)
+ + + ZlogQ(rj) + log, (m) 4 log, (p).
j=2

Moving to CL({£;}), a fundamental result of Rissanen (1989) is that this quan-
tity equals the negative logarithm (base 2) of the likelihood of the fitted model M.
For the present problem, this conditional likelihood can be calculated as follows.
A Gaussian joint density of observations from the model, denoted by L, takes the

classical innovations form modified to allow for series periodicities and level shifts
at the changepoint times:

N\ N oy 5
(3.7) L= (27T)_N/2<1_[ Ut) exp|:—% Z u]

=1 =1 Ut

Here, X ¢+ = P(X¢| X1, ..., Xs—1, 1) is the best one-step-ahead predictor of ){ ; from
linear combinations of a constant and X1, ..., X;_1. Also, v, = E[(X; — X,)Z] is
the mean squared error (unconditional) of the one-step-ahead predictor.
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The one-step-ahead prediction equations and mean squared errors for the
PAR(p) setup are easily expressed:

p
Xor4v = E[Xur 0]+ Y o) (XnT 40—k — E[Xar v,  nT+v>p,
k=1

where E[X,74v] =ty +a(nT +v) + 8,7+, is the mean function. Computing )A(t
and v, for ¢ < p is done as in Shao and Lund (2004). Taking a negative logarithm
in (3.7) gives

1 X, — X,)?
(3.8) CL({&}) = — 10g2(271) + = Zlogz(v,) + = logz(e) Z u

zl =1 Ut

Substituting (3.6) and (3.8) into (3.1), we arrive at the following approximation:

m+1
CL({X,})_logz(e)[ In(N) + T In(d) + - LS i — oo+ PTl;(2d)
j =2

+ Z In(z;) + In(m) + In(p) + ﬁ In(27)
j=2

1 X, — X
52n<vz>+ Z(t t)}

Because N, d, and T are constant, our objective function for the model M, de-
noted by MDL (M), can be taken as

17 T In(2d
MDL(M) = Zln(tj—rj D+ Y “( )

Z In(t)

(X; — X;)?

(3.9
+ In(m) 4+ In(p) + < Zln(v;) + = 2 Z

=1 Ut

MDLs for variants of the model in (2.1) are worth mentioning. Should one also
allow the trend to change with each regime, the codelength becomes, after appro-
priate modification of (3.2),

m+1
MDL(M) = Z ln(-[j — Tj—l) _ ln(fl _ 1)/2 4 pred) pTln(Zd)

j=1

+ Zln(t]

2
+1In(m) 4+ In(p) + = Zln(v,) + = Z u,

Uy
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where 7o = 1 is taken as a convention. If the seasonal location parameters ., are
consolidated to a single u, then an appropriate MDL (this assumes a single trend
parameter) is

1 ] T In(2d
MDL(M) = - Zln(r,—rj 1)+p n( )

_] 1
(3.10)

+§)(,)

v \2
Ingm) +In(p) + = Zln<v1>+ Zu,

Uy

which is (3.9) expect for the 2 'n(z; — 1) term added in the first summation.
MDLs for models where the structural form of the regression changes segment
by segment are harder to quantify, but also have climate ramifications and are
currently being investigated.

By an MDL model, we refer to a model M that minimizes a MDL score over
the class of models being considered. Practical minimization of MDL (M) over all
admissible models is not a trivial task, which brings us to our next section.

4. Optimizing the objective function. First, suppose that we know p and m
and the changepoint times 71, ..., T;. Then computation of MDL(M) proceeds as
follows. Computation of the model codelength given the parameters is straightfor-
ward. For computation of the likelihood contribution to the codelength, write (2.1)
in the general linear models form

4.1) X =DB +&.

In (41)a EZ (/’Lb---vl'LT?a, AZ’---,Am-‘y—l)/a )—é = (Xls“-vXN)/’ g = (81"--a
en)’,and D isthe N x (T + 1 + m) design matrix

=[SICIR],

where S is an N x T dimensional seasonal indicator matrix (all entries are zero
except S;, =1if t =£T + v for some £ €{0,...,d —1}), C isan N x 1 vector
with C; = ¢, and R is an N x m dimensional matrix with all zero entries except
R; j=1whentimet, 1 <t < N, is observed during regime j for2 < j <m + 1.

We first estimate E with ordinary least squares methods. From the estimated ,g ,
residuals of this model fit are next computed. From these residuals and a PAR
order parameter p, estimates of ¢y (v) for | <v <7 and 1 <k < p and o>(v) for
1 <v < T are constructed via seasonal Yule-Walker moment estimation methods.
With estimates of the ¢ (v)’s and o2(v)’s, one can return to (4.1) and compute
generalized weighted least squares estimators of 8. New residuals are computed
and the process is iterated in a Cochrane—Orcutt fashion [see Cochrane and Orcutt
(1949)] until convergence is achieved. The process gives jointly optimal estimators
of /3 and the ¢ (v)’s and a2(v)’s. Typically, only several iterations are needed.
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The above enables us to quickly compute a codelength for fixed values of p, m,
and 7y, ..., T,. However, not counting different values of p, there are 2N differ-
ent configurations of m and 71, ..., T, that must be considered. In other words,
the parameter space has a huge cardinality. To optimize the codelength over this
parameter space, we now introduce a genetic algorithm.

A genetic algorithm (GA) is a stochastic search that can be applied to a va-
riety of combinatorial optimization problems [Goldberg (1989), Davis (1991),
Reeves (1993)]. The basic principles of GAs were first developed by Hol-
land (1975) and are designed to mimic the genetic process of natural selection
and evolution. GAs start with an initial population of individuals, each represent-
ing a possible solution to the given problem. Each individual or chromosome in
the population is evaluated to determine how well it scores with respect to the ob-
jective function. Highly fit individuals are more likely to be selected as parents for
reproduction. In a crossover procedure, the offspring (children) share some char-
acteristics of the parents. Mutation is often applied after crossover to introduce
random changes to the current population with a small probability. Mutation in-
creases population diversity. The offspring are used to construct a new generation
by either a generational approach (replacing the whole population) or a steady-
state approach (replacing a few of the less fit individuals). This process is repeated
until an individual is found that roughly optimizes the objective function.

The GA used in this study is described as follows.

Chromosome representation: The first step in designing a GA is to create a suit-
able chromosome representation for the problem. Here, any individual (model) can
be described as a set of parameters: the number of changepoints m, the order of the
PAR model p, and the changepoint locations 71, . .., 7,. Once these parameters are
fixed, the regression parameters in the model (2.1) can be estimated using the meth-
ods described above. Hence, the chromosome, denoted by u = (m, p, 71, ..., Tn),
is an integer vector of length m + 2. The lengths of the chromosomes in the popula-
tion depend on the number of changepoints. A minimum number of observations
in each regime is set to my7T to ensure that reasonable mean shift estimates are
obtained in all segments. Here, m is the minimum number of cycles between ad-
jacent changepoints. Our work will take m, = 1 (no changepoints within a year for
monthly data). Also, we impose the upper bound pmax for the order of the PAR(p)
model; pmax = 3 is used in the forthcoming simulation study and examples.

Initial population generation: For each individual, the PAR order p is first
randomly selected with equal probabilities from the set {0, 1, 2, 3}. The change-
point numbers m and locations are then independently simulated as follows. There
is a probability pp, essentially representing the probability that any admissible
time is selected as a changepoint. Since there can be no changepoint before time
t =14+m,T, we first examine time t = 1 +m, T, flipping a coin with heads prob-
ability p,. If the flip is heads, t =1 4+ m,T is declared to be the first changepoint
(71 = 14+m,T) and attention shifts to the next possible changepoint time, which is
time 1+ 2m,T. But if the flip is tails, r = 1 +m,T is not chosen as a changepoint
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and we move to the next location at t = 1 + m,T + 1, independently flipping the
coin again. The process is continued in a similar manner until the last admissible
changepoint time at t = N — mT is exceeded. The population size n, = 30 is
used in this study and pj is set to be 0.06d (six changepoints over a century).

Crossover: Pairs of parent chromosomes, representing mother and father, are
randomly selected from the initial population or current population by a linear
ranking/selection method. That is, a selection probability is assigned to an individ-
ual that is proportional to the individual’s rank in optimizing the objective function.
The least fit individual is assigned the rank 0 and the most fit individual is assigned
the rank n, — 1. A crossover procedure, as explained in the paragraph below, is
then applied to the parents to produce offspring for the next generation. The prob-
ability that any two parents have children, denoted by p., is setto p. =1 —my/d.

In our GA implementation, only one pair of parent chromosomes is chosen
from the current generation and one child is produced by “mixing” two par-
ent chromosomes with a uniform crossover. This works as follows. The child’s
PAR order p is either the mother’s or the father’s PAR order, with both being
equally likely. The child’s changepoint locations are randomly selected using all
admissible changepoint locations from both mother and father. For example, for
N =1200, T =12, and my = 1, suppose the mother’s chromosome has 3 change-
points at the times ¢ = 200, 320, 600 and the father’s chromosome has 4 change-
points at the times ¢t = 205, 300, 710, 850. First, all changepoints from mother and
father are mixed together and sorted from smallest to largest, yielding the string
(200, 205, 300, 320, 600, 710, 850). We select the first changepoint of the child at
t =200 with probability 0.5. If t = 200 is selected as a changepoint, then we dis-
card the changepoint r = 205 (it would violate segmentation spacing requirements)
and move to the next candidate changepoint at ¢+ = 300, again doing a fifty-fifty
selection/inclusion randomization. If # = 200 is not chosen as one of the child’s
changepoints, we move to the next changepoint at t = 205 with the same fifty-fifty
selection criterion. The child’s m is simply the number of retained changepoints.

Mutation: Mutation is applied to the child after crossover with a constant prob-
ability p,,. The probability p,, is typically low; we use p,,, = 0.05 in the following
examples. The PAR order p for the new chromosome produced by mutation is
equal to the child’s p with a probability of 0.5. Then changepoint locations can
either take on the corresponding changepoints from the child’s or be a new set ran-
domly selected from the parameter space. Mutation ensures that no solution in the
admissible parameter space has a zero probability of being examined.

New generation: The steady-state replacement method with a duplication check
as suggested by Davis (1991) is applied here to form a new generation. One advan-
tage of the steady-state approach over the generational approach is that it typically
finds better solutions faster. In our implementation of the steady-state approach,
only one individual is replaced in the current generation by a child after crossover
and/or mutation. This allows parents and offsprings to live concurrently, which is
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true for long-lived species [Beasley, Bull, and Martin (1993)]. If the child is al-
ready present in the current generation, this child will be discarded and another
child must be produced by the selection-crossover-mutation process. The duplica-
tion check is applied to all new children until a child is found that is not present in
the current generation. In this way, duplicate solutions and premature convergence
are significantly avoided.

Migration: Migrations act to speed up convergence of the GA and can be imple-
mented via a parallel scheme [Davis (1991), Alba and Troya (1999)]. Migration
also reduces the probability of premature convergence. The population is divided
into several different sub-populations (islands). Highly fit individuals periodically
migrate between the islands. The island model GA is controlled by several parame-
ters, such as the number of islands Ny, the frequency of migration M;, the number
of migrants M,,, and the method used to select which individuals migrate. The
migration policy used here is as follow. After every M; generations, the least fit in-
dividual on island j, j =1, ..., Ny, is replaced by the best individual on island i,
which is randomly selected among all other islands (j £ i). Therefore, each island
sends and receives individuals from different islands throughout the duration of
the search process. Here, we set Ny =40, M; =5, and M,, = 1.

Convergence and stopping criteria: We follow the criterion of Davis, Lee, and
Rodriguez-Yam (2006) to declare convergence and terminate the GA. If the overall
best individual at the end of each migration does not change for M, consecutive
migrations, then the GA is deemed to have converged to this best individual. Addi-
tionally, if the total number of migrations exceeds a predetermined maximum num-
ber M*, then the search process is terminated and the best individual in the M*th
migration is taken as the optimal solution to the given problem. The parameters M,
and M™* are taken as 10 and 25 in the study, respectively.

5. A simulation study. This section investigates the accuracy of the above
methods via simulation. This study is designed to correspond to the simulation
study in Caussinus and Mestre (2004). Elaborating, we will simulate a thou-
sand series and apply our methods to each series. Each series contains a century
(d = 100) of monthly data (T = 12) with six (m = 6) changepoints. This cor-
responds to the average number of changepoints over a century of operation re-
ported in Mitchell (1953). The changepoint mean shifts in every series occur at the
times 71 = 240, 1p =480, 13 = 600, 74 = 840, 15 = 900, and 76 = 1020. The error
terms {e,} are simulated as a Gaussian first order periodic autoregression (p = 1)
with parameters ¢ (v) and o2(v) as specified in Table 1; the seasonal means .,
are also listed in Table 1 and are in degrees Celsius. These values are those that
were estimated for 50 years of monthly temperatures from Longmire, Washington,
which was studied in Lund et al. (2007). The trend parameter o was set to zero in
all simulations.

The magnitude of the mean shifts A;, ..., A7 are critical. Big mean shifts make
changepoints easier to detect. To facilitate interpretability, we use a common mean
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TABLE 1
Simulation parameters

v Hy ¢1(v) a2(v)
1 —-0.61 0.272 2.713
2 0.99 0.284 2.748
3 2.35 0.478 1.871
4 491 0.286 1.717
5 8.74 0.335 2.474
6 12.15 0.279 2.403
7 15.51 0.245 2.569
8 15.47 0.137 1.910
9 12.79 —0.127 2.826

10 7.82 0.082 2.488

11 2.32 0.196 2.394

12 —-0.25 0.214 2.256

shift magnitude A > 0 at all changepoint times. For instance, if the current regime
has mean level ¢ (trend and seasonal effects are assumed zero here), the next
regime will have mean ¢ + A or ¢ — A, with a fifty-fifty chance of shifting up or
down at each changepoint time. It follows that A = |[A; — A;_q|for j =2,...,7.

The ability of our model to detect mean shifts can be roughly quantified by the
mean shift magnitude relative to the process standard deviation (the latter averaged
over a complete seasonal cycle). A parameter quantifying such aspects, denoted
by «, is

A
K = .
TS Var(ear 1)

Better quantifiers of changepoint detection power may well exist, but derivation
of such quantities would be difficult and is tangential to our points. Below, we
consider three different « values: 1.0, 1.5, and 2.0. The larger « is, the easier it is
to detect changepoints. A realization of a temperature series with k = 1.5 is plotted
in Figure 1 for feel.

Table 2 and Figure 2 summarize the results of the simulations. Table 2 reports
empirical frequency distributions of the number of estimated changepoints. Ob-
serve that the true value of six changepoints is obtained more frequently as «
increases. When « = 2.0, the percentage of simulations where the correct num-
ber of changepoints is estimated is 58.9%, which is better than the corresponding
43.4% reported in Caussinus and Mestre (2004) that applies to uncorrelated and
time-homogeneous settings (i.e., 100 years of annual data). In fairness, we note
that the equivalent sample size of our simulated series (the number of independent
data points with the same periodic variances) translates to more than the 100 inde-
pendent data points of Caussinus and Mestre (2004) (we will not quantify equiv-
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FI1G. 1. A simulated series with six changepoints.

alent sample sizes further here). The correct number of changepoints is identified
only 0.9% when « = 1.0 [this, however, is also slightly better than the correspond-
ing result in Caussinus and Mestre (2004)]. It is clear that changepoint numbers

TABLE 2
Estimated changepoint numbers and PAR(1)
order when m =6

m k=1.0 k=1.5 k=2.0
0 0.1% 0.0% 0.0%
1 12.2% 2.6% 0.0%
2 30.1% 10.9% 3.7%
3 34.5% 17.5% 5.4%
4 18.3% 23.6% 11.8%
5 3.9% 12.9% 12.5%
6 0.9% 31.9% 58.9%
7 0.0% 0.6% 7.1%
>7 0.0% 0.0% 0.6%
p=1 99.9% 100% 100%
p=0 0.1% 0.0% 0.0%
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FIG. 2. Histograms of estimated changepoint times.

are underestimated in settings with relatively small «. In fact, the empirical mean
(standard deviation in parentheses) of the distributions in Table 2 are 2.74 (1.07)
for k = 1.0, 4.34 (1.48) for k = 1.5, and 5.413 (1.20) for « = 2.0. Overall, one
sees that changepoint shift sizes are critical in changepoint detection, that the de-
tection situation is difficult when « is small, but that methods work reasonably well
when « is relatively large. Using monthly data (as opposed to annual averages) also
seems to improve changepoint detection power.
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As for where the changepoints are estimated to occur, Figure 2 shows his-
tograms of the estimated changepoint locations, reporting the total number of times
a changepoint is signaled at time ¢ for 1 <¢ < N in the 1000 simulations. Observe
that the histograms have modes around the actual changepoint times. It is also ev-
ident that the changepoints at times 840 and 900 were the most difficult to detect,
a feature attributed to the close proximity of the times of these two changepoints
(with the fifty-fifty up/down mean shift randomization employed, the sign of these
two mean shifts differ with probability 1/2, in which case their detection is rela-
tively more difficult).

Note that the correct autoregressive order p = 1 was obtained virtually all of
the time. Hence, the time series model selection component seems to be working
well. As changing the trend parameter did not appreciably affect results, we will
not report separate tables with nonzero trends.

We now compare the MDL penalty more closely with the Caussinus—Lyazrhi
penalty used in Caussinus and Mestre (2004). The Caussinus—Lyazrhi penalty is
larger than AIC or BIC penalties, but does not penalize parameters in the mean
function or consider autocorrelation aspects. To make this comparison, 1000 series
of length 100 were simulated with six changepoints always occurring at the times
20, 40, 50, 70, 75, and 85. The mean shift size parameter x was changed to the
parameter a in Caussinus and Mestre (2004) to mimic their simulations. The errors
in the model were assumed to be Gaussian and independent. Note that the level of
changepoint activity relative to the sample size has increased 12-fold from the
previous simulations. Table 3 below lists estimates of the relative frequencies of
changepoints found by the genetic algorithm with an MDL penalty when u, is
held constant with v. No trends were considered in this setup nor was tuning of
the genetic algorithm (varying its mutation probabilities, etc.) considered in detail.
The frequency distributions in Table 3 are approximately the same as those in
Caussinus and Mestre (2004), perhaps slightly worse, in all cases. For this sample
size and level of changepoint activity, an MDL penalty seems to perform about the

TABLE 3
Estimated number of changepoints for n = 100

m a=1.0 a=2.0 a=3.0
0 6.2% 0.1% 0.0%
1 29.5% 0.3% 0.0%
2 32.5% 4.2% 0.0%
3 22.8% 5.4% 0.0%
4 7.4% 35.3% 7.7%
5 1.5% 33.0% 4.4%
6 0.1% 20.9% 81.7%
7 0.0% 0.8% 6.1%
>7 0.0% 0.0% 0.1%
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same as the Caussinus—Lyazrhi penalty. Of course, we reiterate that some gains are
made by considering monthly data in lieu of annual averages.

6. The Tuscaloosa data. Figure 3 plots a century of monthly data from
Tuscaloosa, Alabama recorded from January, 1901-December, 2000. A seasonal
mean cycle is visually evident in the data, but trends and mean shifts are not read-
ily apparent. Comparing the year-to-year jaggedness of the seasonal throughs (the
winter minimums) against the year-to-year seasonal peaks (July maximums), it is
discerned that this series has a periodic variance with winter temperatures being
much more variable than summer temperatures. In fact, as we will see, the entire
autocorrelation structure of the series is periodic.

The Tuscaloosa series is one in which the station history is reasonably docu-
mented. In particular, a catalog (called meta-data) exists that notes the circum-
stances under which the data were recorded, including the times of station re-
locations and instrumentation changes. This said, meta-data files are notoriously
incomplete [Menne and Williams (2005)] and “undocumented” changepoints may
lurk. The Tuscaloosa series also has a moderately clean changepoint record with
only four major documented changes over a century of operation; as noted before,
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FI1G. 3. The Tuscaloosa data with changepoint structure imposed.
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the average United States temperature station experiences about six changepoints
per century [Mitchell (1953)]. In short, the Tuscaloosa is a good “proving ground”
series for changepoint methods.

Level shifts in temperature series are arguably the most important factor in as-
sessing temperature trends [see Lu and Lund (2007)]. It has been argued in climate
settings that the manner in which changepoints are handled may be the most crit-
ical factor in the global warming debate. Supporting this, temperature insurance
treaties on Wall Street are based solely on station location and gauge properties,
while ignoring long-term trends altogether.

Our methods were applied to the Tuscaloosa data. A reference series was con-
structed by averaging three neighboring series located at Selma, AL, Greensboro,
AL, and Aberdeen, MS over the century of record. We work with one reference se-
ries that averages three neighboring series to expedite the discourse; methods that
analyze all ( ) pairs of stations are discussed in Menne and Williams (2005, 2009).

First, we examine the Tuscaloosa series without a reference. The fitted MDL
model has two changepoints at times 460 (April, 1939) and 679 (July, 1957). The
mean function induced by these two changepoints, less the seasonal cycle but in-
cluding the trend, is plotted against the data in Figure 3. The mean shift magni-
tudes of the 1939 and 1957 changepoints, in degrees Celsius, are both negative:
Az = —0.94 4+ 0.20 and A3 = —2.33 + 0.30. The estimated trend parameter is
a = 0.00258 £ 0.00039. The standard errors were estimated from the fitted time
series regression model with generalized weighted least squares techniques. The
estimated order of the PAR model is p = 1; a consequence of this is that the auto-
covariance structure in the errors of the fitted models is indeed periodic.

Second, we examine the Tuscaloosa minus the reference series. This season-
ally adjusted difference series is plotted in Figure 4. In this target minus reference,
four changepoints are flagged: March 1909, December 1919, July 1933, and Au-
gust 1990. The estimates of the A;’s are Ay = 0.76 +0.11, A3 = 0.26 + 0.11,
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FI1G. 4. The Tuscaloosa minus the reference data with changepoint structure imposed.
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A4 =0.77£0.13, and As = 1.47 4 0.19. Note that a mean shift with the small
magnitude of 0.26 has been flagged. The trend estimate is & = —0.00066 +
0.00015 and the selected order of the autoregression is p = 1. Observe that the
fitted order of the autoregression did not reduce from that for the raw series; that
is, periodic autocorrelation still exists in the target minus reference series. Also,
the trend for the target minus reference series appears to be significantly nega-
tive. We comment that the two large negative values occurring in the 1940s and
the 1950s appear to be decimal typos in the raw data; that is, the monthly aver-
age temperature for Tuscaloosa was entered as ten degrees too small. We make
this claim after examining additional reference series from various cities close to
Tuscaloosa. Whereas the series in this database have been quality checked to some
degree, errors like this may still exist. We reran the analysis above after replacing
these two values by (1) their estimated seasonal means (i, and (2) what we believe
are the correct values, that is, adding 10 degrees to both outliers. In both cases, four
changepoints with similar magnitudes and times to the ones above are found. The
1957 changepoint flagged in the target series has not been flagged in any version
of the target minus difference series. The 1909 changepoint is possibly attributed
to a changepoint in the reference series: Greensboro reports a time of observation
change in 1906 and Aberdeen reports a station relocation in 1915.

The meta-data show four changepoints in this series: the first was a station re-
location in November of 1921, the second was a station relocation in March of
1939, the third was a station relocation during June of 1956 and an accompany-
ing instrumentation change in November of 1956 (we regard this as one change-
point), and the fourth is a station relocation and instrumentation change in May
of 1987. The reference series analysis seems to have correctly identified three of
these four changepoints (we are liberally including the 1933 flagged changepoint
time as correctly identifying the 1939 changepoint), missing the 1956 changepoint
and adding a 1909 changepoint. The raw target series analysis misses the 1921
and 1987 changepoints, but finds the 1956 changepoint; also, the estimated time
of the 1939 changepoint is much closer to its true value than that for the reference
analysis. Overall, it seems that the reference analysis is superior to simple target
series analysis, but that one can learn something with both analyses.

We caution the reader that trends in some monthly temperature series, espe-
cially when the series is aggregated over a large geographic region, may not be
well described by a linear regression component. As noted by Handcock and Wal-
lis (1994), trends at localized series are more likely to be adequately described with
a simple linear structure. As a final diagnostic check, residuals from the model fits
were computed. Figure 5 shows the sample autocorrelation of the residuals for the
target series over the first 60 lags. The dashed lines are 95% pointwise confidence
bounds for white noise. As only three of the sample autocorrelations lie outside the
bounds (and then only slightly so), the model appears to have fitted the data well.
Figure 6 shows the periodogram of the residuals from the target minus reference
series. A long memory structure is not readily evident in this plot.
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7. Comments. Time series parsimony may be an issue with periodic data.
Specifically, the penalty in (3.3) essentially assumes that the PAR(1) model re-
quires (p + 1)T distinct parameters. In practice, changes in climate processes from
season to season are slow/smooth. Low order Fourier series expansions, such as
those in Lund, Shao, and Basawa (2005), can statistically simplify the model and
serve to lessen the penalty for time series components. This issue is likely to be
paramount should daily data be considered.

Acknowledgments. Comments from two referees and the editor substantially
improved this paper.
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