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INFERENCE ON LOW-RANK DATA MATRICES WITH
APPLICATIONS TO MICROARRAY DATA1

BY XINGDONG FENG AND XUMING HE

University of Illinois at Urbana-Champaign

Probe-level microarray data are usually stored in matrices, where the row
and column correspond to array and probe, respectively. Scientists routinely
summarize each array by a single index as the expression level of each probe
set (gene). We examine the adequacy of a unidimensional summary for char-
acterizing the data matrix of each probe set. To do so, we propose a low-rank
matrix model for the probe-level intensities, and develop a useful framework
for testing the adequacy of unidimensionality against targeted alternatives.
This is an interesting statistical problem where inference has to be made based
on one data matrix whose entries are not i.i.d. We analyze the asymptotic
properties of the proposed test statistics, and use Monte Carlo simulations to
assess their small sample performance. Applications of the proposed tests to
GeneChip data show that evidence against a unidimensional model is often
indicative of practically relevant features of a probe set.

1. Introduction. Oligonucleotide expression array technology is popular in
many fields of biomedical research. The technology makes it possible to measure
the abundance of messenger ribonucleic acid (mRNA) transcripts for a large num-
ber of genes simultaneously. One of them is the Genechip microarray technology,
which is commercially developed by Affymetrix to measure gene expression by
hybridizing the sample mRNA on a probe set, typically composed of 11–20 pairs
of probes, in a specially designed chip that is called a “microarray” [Parmigiani et
al. (2003)].

Two types of probes are used in the Genechip microarray technology, the perfect
match (PM), which is taken from a gene sequence for specific binding of mRNA
for the gene, and the mismatch (MM), which is artificially created by changing one
nucleotide of the PM sequence to control nonspecific binding of mRNA from the
other genes or noncoding sequences of DNA. The probe pairs are immobilized into
an array, where each spot of the array contains a probe. An RNA sample labeled
with a fluorescent dye is hybridized to a microarray, and the array are then scanned.
The expression levels of different genes can be measured by the intensities of the
spots. We use PM or PM–MM as the intensity data for our statistical analysis.
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Extensive studies have been carried out on how to summarize the gene expression
levels based on the probe level data. Li and Wong (2001) proposed a multiplicative
model:

yij = θiφj + εij , i = 1, . . . , n, j = 1, . . . ,m,(1)

where y is the observed intensity of each spot, θ is the array effect, φ is the probe
effect, ε is the random error, i indicates the ith array and j refers to the j th probe.
This model, along with some of its variations, has been routinely used in microar-
ray data analysis. In the present paper we focus on one natural question: how well
can we use one quantity θi to adequately summarize the expression level for each
probe set in the ith array? Hu, Wright and Zou (2006) show that the least squares
estimate (LSE) of the parameters in the model can be obtained as the first compo-
nent of the singular value decomposition (SVD) of the intensity matrix Y, where

Y =
⎛
⎜⎝

y11 · · · y1m
...

...
...

yn1 · · · ynm

⎞
⎟⎠ .

Motivated by their work, we aim to develop useful methods to test if additional
parameters are needed to characterize the expression data of each probe set in each
array based on the SVD.

When we applied the SVD to the 20 GeneChip microarrays produced in a re-
cent MicroArray Quality Control (MAQC) project [Shi et al. (2006)] for contrast-
ing colorectal adenocarcinomas and matched normal colonic tissues, we found a
number of probe sets (including Probe set “214974_x_at” designed to measure the
gene expression for Gene “CXCL5”) with a significant 2-dimensional structure.
The first two singular vectors for Probe set “214974_x_at” are displayed graphi-
cally in Figure 1, indicating that the usual unidimensional summary of gene ex-
pression (corresponding to the first right singular vector) would mask the differen-
tial expression of Gene “CXCL5” in the tumor tissues. Recent studies, such as that
reported in Dimberg et al. (2007), show that this gene indeed plays an important
role in colorectal cancer. More detailed findings about this probe set can be found
in Section 5 together with additional examples.

In Section 2 we propose a 2-dimensional model to take into account both the
mean structure and the variance structure of the data matrix. We use a multiplica-
tive model extended from Model (1), but the array effects are assumed to be ran-
dom, in consistency with the fact that the arrays are typically drawn from a larger
population. The LSE of the parameters in the model can be efficiently estimated
via SVD. We are interested in the dimensionality of the mean of this data matrix,
but first we need to define it in a precise way.

DEFINITION 1.1. Given an n × m random matrix Y, we define the mean ma-
trix as E(Y). If the rank of E(Y) is k, then the dimensionality of Y is defined as
k, where k ∈ {1,2, . . . ,min(n,m)}.
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FIG. 1. Scatterplot of singular vectors for the probe set “214974_x_at.” The probe numbers are
shown in the lower plot, and the dotted line is given by the least trimmed squares estimate. The circles
in the upper plot represent the arrays hybridized by the samples from the colorectal adenocarcino-
mas, while the solid points represent the arrays hybridized by the samples from the normal colonic
tissues. Sections 1 and 5 refer to this figure.

If the rank of E(Y) is k, it is well known that the SVD of E(Y) has k nonzero
singular values, and E(Y) can be decomposed as

∑k
i=1 λiuiv

T
i , where λ1 ≥ λ2 ≥

· · · ≥ λk are the singular values, ui ∈ R
n is the ith left vector and vi ∈ R

m is the
ith right vector, for i = 1,2, . . . , k. Moreover,

uT
i uj = vT

i vj =
{

1, i = j ,
0, i �= j .

Our primary question is whether the dimensionality (rank) of the matrix E(Y) is
one or two. For this purpose, we formulate our hypothesis as H0 :E(Y) = λ1u1v

T
1

versus H1 :E(Y) = λ1u1v
T
1 +λ2u2v

T
2 . It is possible to consider higher ranks of the

mean matrix, but our approach is best illustrated with the rank 2 alternative, which
is also the most relevant scenario in many applications. In Section 3 three test
statistics are proposed for this problem and their asymptotic results are given. The
asymptotic analysis based on the SVD of Y differs from the classical literature on
the eigenvalues and eigenvectors of a sample covariance matrix, because the latter
works on a data matrix with its mean removed, but our focus is directly on the
mean of the data matrix.
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When the number of microarrays in an experiment is small due to the cost con-
cerns, the asymptotic distributions of the statistics proposed in Section 3 may not
be sufficiently close to their exact distributions. Hence, we apply the bootstrap
techniques to calibrate the first two tests discussed in Section 3. In Section 4 we
assess the finite sample performance of the tests proposed in Section 3 by Monte
Carlo simulations. Finally, in Section 5 we apply the proposed tests to real data
sets from two studies. Our analysis shows that the second dimension of the probe-
level data is often indicative of interesting features of a probe set. A number of
scenarios for the inadequacy of a uni-dimensional summary are discussed through
the case studies and in the concluding Section 6. For example, we point out how
our approach relates to and differs from probe remapping, and show that a high
percentage of probes of poor binding strengths in a probe set can mask gene ex-
pression profiles through a unidimensional model. All the proofs of lemmas and
theorems given in the paper can be found in the supplemental article Feng and He
(2009).

2. Model and estimation. In this section we propose a multiplicative model
extended from Model (1) to account for a possible second dimension in the data
matrices. Furthermore, the asymptotic properties of the LSE of the parameters in
the model are discussed.

2.1. A Multiplicative model with random effects. Our proposed model takes
the form

y
i
= θ

(0)
1i φ(0)

1
+ θ

(0)
2i φ(0)

2
+ εi, i = 1,2, . . . , n,(2)

where y
i
= (yi1, yi2, . . . , yim)T is the ith observed vector, θ

(0)
1 = (θ

(0)
11 , . . . , θ

(0)
1n )T

and θ
(0)
2 = (θ

(0)
21 , . . . , θ

(0)
2n )T are used to explain the row effects, and φ

(0)
1 =

(φ
(0)
11 , . . . , φ

(0)
1m)T and φ

(0)
2 = (φ

(0)
21 , . . . , φ

(0)
2m)T are used to explain the column ef-

fects in the data matrix. When applied to the probe level microarray data, θ stands
for the array effect and φ represents the probe effect. Using ‖ · ‖2 to denote the L2
norm for vectors, and a ⊥ b for orthogonality of a and b, we make the following
assumptions:

(M1) φ
(0)
1 and φ

(0)
2 are two m-dimensional unit vectors with φ

(0)
1 ⊥ φ

(0)
2 .

(M2) θ
(0)
j are independently distributed with mean μ

j
= (μj1, . . . ,μjn)

T and

variance σ 2
j In, for j = 1,2, and all the components in each vector are in-

dependent. The third and fourth central moments of θ
(0)
j i are γ 3

j and τ 4
j ,

respectively, for j = 1,2. Moreover, μ
1
⊥ μ

2
.

(M3) The error variables εi = (εi1, . . . , εim)T are identically and independently
distributed with mean zero and variance-covariance matrix σ 2Im, and the
third and fourth central moments of εij are γ 3 and τ 4, respectively.
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(M4) {θ(0)
1i }, {θ(0)

2i } and {εi} are mutually independent.
(M5) n−1‖μ

1
‖2 → μ2

1 and n−1‖μ
2
‖2 → μ2

2 as n → ∞ for some finite constants

μ1 and μ2. We assume that μ2
1 + σ 2

1 > μ2
2 + σ 2

2 , which is necessary for the
identifiability of the model parameters.

(M6) ‖μ
j

	 μ
j
‖2 = O(n), j = 1,2, where 	 indicates the pointwise product of

two vectors.

2.2. Least squares estimate of column effect parameters. In this section we
discuss the properties of the LSE of the column effect parameters. Let θ1 =
(θ11, . . . , θ1n)

T , θ2 = (θ21, . . . , θ2n)
T , ϕ = (φT

1
, φT

2
)T and ϑ = (θT

1 , θT
2 , ϕT )T .

With the objective function

dn(ϑ) =
n∑

i=1

‖y
i
− θ1iφ1

− θ2iφ2
‖2,(3)

the least squares estimate of ϑ can be found by minimizing dn(ϑ). In the present
framework, the total number of parameters increases with the number of observa-
tions. To facilitate the analysis, it helps to view θ

(0)
1 and θ

(0)
2 as nuisance parame-

ters. If (3) is minimized at ϑ̂ , then θ̂1i and θ̂2i minimize

‖y
i
− θ1i φ̂1

− θ2i φ̂2
‖2

with respect to θ1i and θ2i given φ̂
1

and φ̂
2
. Furthermore,

θ̂1 = (φ̂
T

1
φ̂

1
)−1Yφ̂

1
,(4)

and

θ̂2 = (φ̂
T

2
φ̂

2
)−1Yφ̂

2
.(5)

Therefore, ϕ̂ minimizes the following objective function:

d∗
n(ϕ) =

n∑
i=1

‖y
i
− [(φT

1
φ

1
)−1φT

1
y

i
]φ

1
− [(φT

2
φ

2
)−1φT

2
y

i
]φ

2
‖2.(6)

2.2.1. Consistency and asymptotic representation. We consider the asymp-
totic properties of ϕ̂ assuming that the number of probes m is fixed but the number
of arrays n → ∞. As shown in the preceding subsection, ϕ̂ is a constrained M esti-
mator that minimizes (6) subject to ‖φ

1
‖ = ‖φ

2
‖ = 1 and φ

1
⊥ φ

2
. The derivations

in the Appendix lead to the following results.

THEOREM 2.1. When Model (2) and assumptions (M1)–(M6) hold, ϕ̂
a.s.−→

ϕ(0), where ϕ̂ is the least squares estimate of ϕ(0), that is, ϕ̂ minimizes
∑n

i=1 ρ(y
i
;

ϕ) subject to ‖φ
1
‖ = ‖φ

2
‖ = 1 and φ

1
⊥ φ

2
, where

ρ(y
i
;ϕ) = ‖y

i
− (φT

1
y

i
)φ

1
− (φT

2
y

i
)φ

2
‖2.(7)



INFERENCE ON LOW-RANK DATA MATRICES 1639

Theorem 2.1 makes it possible for us to give the Bahadur representation for
φ̂

1
and φ̂

2
from the results of He and Shao (1996). We now consider the limiting

distribution of
√

n(ϕ̂ − ϕ(0)), which is critical for us to discuss the asymptotic
properties of the test statistics proposed in Section 3. Let

�n = (n−1‖μ
1
‖2 + σ 2

1 )φ(0)

1
φ(0)T

1
+ (n−1‖μ

2
‖2 + σ 2

2 )φ(0)

2
φ(0)T

2
+ σ 2Im,(8)

where Im is an m × m identity matrix. Then we have the following theorem.

THEOREM 2.2. When Model (2) and Assumptions (M1)–(M6) hold, we have,
for j = 1,2,

φ̂
j
− φ(0)

j
= −n−1D−1

jn

n∑
i=1

[
2y

i
yT

i
φ(0)

j
− 2

(
φ(0)T

j
y

i
yT

i
φ(0)

j

)
φ(0)

j

]
(9)

+ o(n−1+ε),

where ε is any positive number, and

Djn = −2�n + 2φ(0)T

j
�nφ

(0)

j
Im + 4φ(0)

j
φ(0)T

j
�n.(10)

Thus, both
√

n(φ̂
1
− φ

(0)
1 ) and

√
n(φ̂

2
− φ

(0)
2 ) are asymptotically normally dis-

tributed with mean 0 and variance-covariance matrix, say, C1 and C2, respectively,
where C1 and C2 are determined by ϕ(0) and the first four moments of y

i
.

2.3. Least squares prediction of row effects. We now discuss the asymptotic
properties of the least squares prediction of the row effects based on (4) and (5).
The result is summarized in the following theorem.

THEOREM 2.3. When Model (2) and assumptions (M1)–(M6) hold, we have

θ̂1i = φ̂
T

1
y

i

L−→ θ
(0)
1i + εT

i φ
(0)
1 and θ̂2i = φ̂

T

2
y

i

L−→ θ
(0)
2i + εT

i φ
(0)
2 , where

L−→ de-
notes convergence in distribution.

Let

� = (μ2
1 + σ 2

1 )φ(0)

1
φ(0)T

1
+ (μ2

2 + σ 2
2 )φ(0)

2
φ(0)T

2
+ σ 2Im.(11)

The first two eigenvalues of this matrix are μ2
1 + σ 2

1 + σ 2 and μ2
2 + σ 2

2 + σ 2, with
the remaining eigenvalues σ 2. Let

Sn = n−1YT Y − n−1‖Yφ̂
1
‖2 − n−1‖Yφ̂

2
‖2.(12)

Then, from (4), (5) and Theorem 2.2, we have

n−1‖θ̂ j‖2 a.s.−→ μ2
j + σ 2

j + σ 2 (j = 1,2),
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and

(m − 2)−1Sn
a.s.−→ σ 2,

based on the strong law of large numbers. These consistent estimators for all the
eigenvalues of the matrix � will be used when we construct the tests in the follow-
ing section. On the other hand, we note that θ

(0)
1i and θ

(0)
2i may have their individual

means μ1i and μ2i , respectively, and, thus, it is impossible to consistently estimate
the individual parameters μ1i , μ2i , σ 2

1 and σ 2
2 without any further information.

3. Hypothesis testing. In this section we consider testing the null hypothesis
that H0 :μ

2
= 0. The second dimension θ

(0)
2 φ

(0)T
2 in Model (2) does not provide

meaningful information on the mean structure of the data matrix under this null
hypothesis. We expect θ̂2 to have zero mean under the null hypothesis and nonzero

mean under the alternative hypothesis, because θ̂2i
L→ θ

(0)
2i + εT

i φ
(0)
2 as n → ∞.

Motivated by this, we construct test statistics based on {θ̂2i , i = 1,2, . . . , n}. We
consider three specific test statistics in the following sub-sections.

3.1. Test on a target direction. Consider

Ta = n−1aT θ̂2,(13)

for any a = (a1, . . . , an)
T ∈ R

n such that aT μ
1
= 0, ‖a‖2 = n and max1≤j≤n a2

j /

n → 0. We choose a vector a such that a ⊥ μ
1

because μ
1

is orthogonal to μ
2

and we want to test the null hypothesis that μ
2

= 0. We use 1n to indicate the
n-dimensional vector with all the components equal to 1. From the asymptotic
properties discussed in Section 2, we have the following theorem.

THEOREM 3.1. If the observations y
1
, y

2
, . . . , y

n
are drawn from Model (2)

and assumptions (M1)–(M6) hold, and a ∈ R
n is a vector satisfying aT μ

1
= 0,

aT a = n and max1≤j≤n a2
j /n → 0, then

n−1/2aT θ̂2/σ̂
L→ N(0,1)

under the null hypothesis that μ
2
= 0, where

σ̂ 2 = n−1‖θ̂2‖2 − θ̂2
2· and θ̂2· = n−1θ̂

T

2 1n.(14)

The power of the test depends on how far aT μ
2

deviates from zero. As to the
target direction a, it is usually determined by some specific comparison in practice.
We will give examples of choosing a in Section 5.
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3.1.1. A practical solution when μ
1

is unknown. In practice, the true value of
the mean vector μ

1
is unknown, but it can be estimated when extra group informa-

tion is available. Assume that the observations can be divided into p groups such
that μ1i are equal within each group. We assume that μ1,nt−1+1 = · · · = μ1nt , for
t = 1,2, . . . , p, where n0 = 0 < n1 < · · · < np−1 < np = n, and assume that p is
fixed but nt − nt−1 → ∞ when n → ∞. For microarray data, those arrays that
use the same types of tissues may form one group, and specific examples will be
discussed in Section 5.

Suppose that μ̂1nt is a consistent estimator of μ1nt Let

μ̂
1
= (μ̂1n1, . . . , μ̂1n1, μ̂1n2, . . . , μ̂1n2, . . . , μ̂1np, . . . , μ̂1np)T ,

where the number of μ̂1nt in the above vector is nt − nt−1, t = 1,2, . . . , p. Fur-
thermore, when we choose a vector â orthogonal to μ̂

1
, we only consider the can-

didates whose entries can be divided into groups and are equal to each other within
each group in the form of

â ∝ (ân1, . . . , ân1, ân2, . . . , ân2, . . . , ânp , . . . , ânp)T .

With â convergent to a, the statistic Tâ = n−1â
T
θ̂2 has the same Bahadur rep-

resentation as if we chose a vector a orthogonal to μ
1

under the null hypothesis.
Hence, when we construct the tests in Section 3, we can use â that is orthogonal
to μ̂

1
. The choice of â is not unique, and is best chosen in response to specific

alternatives of interest in a given experiment.

3.2. A χ2 test with multiple directions. As shown in Section 3.1, the power
of the test Ta depends on the direction a that we choose. In some cases, we may
consider several directions simultaneously. Let us consider a k×n matrix A, where
k is a fixed integer and k < n. The ith row of the matrix A is denoted as ai and the
j th component of ai is denoted as aij for i = 1, . . . , k and j = 1, . . . , n. Assume
that ai ⊥ aj for i �= j , ai ⊥ μ

1
, aT

i ai = n and max1≤j≤n a2
ij /n → 0 for each i.

Then, we propose the test statistic

TA = n−1‖Aθ̂2‖2/σ̂ 2,

with the following result.

THEOREM 3.2. Under the assumptions of Theorem 3.1, and for the matrix
A described in this subsection, we have TA → χ2

k in distribution under the null
hypothesis that μ

2
= 0, where χ2

k has the chi-square distribution with k degrees of
freedom.

In practice, given observations, we should not choose k that is close to n, be-
cause

‖Aθ̂2‖2 = n2σ̂ 2

when k = n − 1, and the variations accumulated from approximation errors will
ruin the chi-square approximation.
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3.3. Bootstrap calibration. Sometimes, the sample size n is too small for the
asymptotic approximations to perform well. Hence, we propose a finite sample
adjustment to control the type I errors.

A bootstrap method, which avoids resampling from the rows or columns of the
data matrix, to test the null hypothesis that μ

2
= 0 can be described as follows:

(i) Draw n copies {j1, . . . , jn} with replacement from {1,2, . . . , n} and let θ̂∗
2i =

θ̂2ji
− θ̂2· (i = 1,2, . . . , n), where θ̂2· = n−1 ∑n

i=1 θ̂2i , and then evaluate T ∗
a as

T ∗
a = n−1/2aT θ̂

∗
2/(n

−1‖θ̂∗
2‖2 − θ̂∗2

2· )1/2,

where θ̂
∗
2 = (θ̂∗

21, . . . , θ̂
∗
2n)

T and θ̂∗
2· = n−1 ∑n

i=1 θ̂∗
2i ;

(ii) Repeat Step (i) for B times to get the test statistic T ∗
a,b, b = 1,2, . . . ,B . We

estimate the bootstrap p-value by

p = B−1
B∑

b=1

I {|T ∗
a,b| ≥ |Ta|}.

To see this bootstrap method work, we note that

n−1/2aT θ̂2· =
(
n−1/2

n∑
i=1

aiφ
(0)T

2
y

i

)
+ op(1),

n−1/2aT θ̂
∗
2 =

(
n−1/2

n∑
i=1

aiφ
(0)T

2
y∗

i

)
+ op(1),

where y∗
i
= y

ji
, and

n−1‖θ̂2‖2 − θ̂2
2· − (n−1‖θ̂∗

2‖2 − θ̂∗2
2· ) = op(1).

Since(
n−1

n∑
i=1

(
φ(0)T

2
y

i

)2 −
[
n−1

n∑
i=1

φ(0)T

2
y

i

]2)−1/2(
n−1/2

n∑
i=1

aiφ
(0)T

2
y

i

)
L→ N(0,1)

under the null hypothesis, the bootstrap method works by Theorem 1 of Mammen
(1991). Our proposed bootstrap method acts on θ̂2, and avoids repeated computa-
tions of the SVD. The same idea can be used for TA.

3.4. Test based on maximum over directions. If we do not have guided di-
rections to look for patterns in μ

2
, we may wish to search over a larger number

of directions. The chi-square test in Section 3.2 does not apply when k is large.
However, the maximum over k = n − 1 directions,

Mn = max
1≤j≤n−1

n−1/2aT
j θ̂2,(15)
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has a simple limiting distribution when εi and θ
(0)
2 are normally distributed. Let

cn = √
2 ln(n − 1) and bn = cn − 2−1c−1

n ln
(
4π ln(n − 1)

)
.(16)

THEOREM 3.3. Assume the conditions of Theorem 3.1, with the additional as-
sumption that θ

(0)
2 and εi are normally distributed. For any matrix A as described

in Section 3.2 with k = n−1, we have P(cn(Mn/σ̂ −bn) ≤ x) → e−e−x
as n → ∞

under the null hypothesis that μ
2
= 0.

Under the alternative hypothesis, we should observe larger values of Mn. Fur-
thermore, the convergence rate of the extreme statistic is discussed in Section 4.6
of Leadbetter, Lindgren and Rootzen (1983). Based on their arguments, we can
use [�(u)]n−1 to approximate the probability P(Mn/σ̂ ≤ u) in computing the p-
values of the proposed test here.

The normality of θ
(0)
2 and εi is not a necessary condition for the limiting dis-

tribution to hold. Our simulation results not reported in this paper suggest that
Theorem 3.3 may hold in a much broader setting.

4. Simulations. To assess the performance of the proposed tests in the present
paper, we report Monte Carlo simulation results by simulating data from Model
(2), with the following specifications. The size of the parameters are chosen to
mimic some real microarray data:

(i) θ
(0)
1 is generated from the multivariate N(μ

1
,150,000In), where μ

1
=

(4500,4500, . . . ,4500)T ;
(ii) θ

(0)
2 is generated from N(μ

2
,10,000In), where μ

2
is equal to either (0,0, . . . ,

0)T as the null hypothesis or (125,−125, . . . ,125,−125)T as an alternative
hypothesis;

(iii) φ
1

= (2
√

3)−1(1,1, . . . ,1)T and φ
2

= (2
√

3)−1(1,−1, . . . ,1,−1)T are of
dimension 12;

(iv) The errors εij (i = 1,2, . . . , n, j = 1,2, . . . ,12) are drawn from three differ-
ent distributions in different experiments: the normal distribution N(0,5000),
the t-distribution with 5 degrees of freedom multiplied by 10

√
30 and the

centered χ2-distribution 50(Z2 − 1), where Z ∼ N(0,1).

4.1. Test on a target direction. Four different sample sizes are used: n =
8,16,32 and 128. Furthermore, we chose two different a to compare the perfor-
mance of the tests Ta discussed in Section 3.

4.1.1. Case 1. In the first case, we choose a = (1,−1, . . . ,1,−1)T , which is
the ideal choice for detecting the alternative in our settings. We draw 5000 data
sets, and the 5000 p-values are calculated based on the limiting distributions in
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TABLE 1
Type I errors and powers of the target direction test are listed with increasing sample size n.

The errors are generated from three different distributions

Null Alternative

Size Normal t χ2 Normal t χ2

8a 0.0560 0.0510 0.0430 0.6362 0.6088 0.5718
16a 0.0542 0.0492 0.0426 0.9540 0.9308 0.9004
32a 0.0470 0.0500 0.0460 0.9998 0.9974 0.9940

128a 0.0522 0.0508 0.0532 1.0000 1.0000 1.0000

8b 0.0552 0.0568 0.0458 0.4202 0.4104 0.3854

16b 0.0530 0.0500 0.0490 0.8358 0.8190 0.7840

32b 0.0546 0.0494 0.0440 0.9934 0.9890 0.9854

128b 0.0522 0.0514 0.0486 1.0000 0.9998 1.0000

aThe results are from Case 1.
bThe results are from Case 2.

Theorems 3.1. For the test Ta , the type I errors are close to the nominal level of
0.05 when n ≥ 16. Also clear from Table 1 is that the power of the test is decent
even when the sample size is as small as 8.

4.1.2. Case 2. We choose

a = 2−1
√

3(1,−1, . . . ,1,−1)T + 2−1(1, . . . ,1,−1, . . . ,−1)T

to see whether the test has the meaningful power when a is not so well chosen
to target the true pattern in μ

2
. The results are given in the lower half of Table 1.

A comparison with Case 1 shows that the power of the test Ta is sensitive to the
choice of a for small n, so a good target direction based on the nature of the
experiment or the knowledge of the experimenter is very valuable.

4.2. The χ2 test. For the χ2 test of Section 3.2, four sample sizes n =
8,16,32,64 are used with the Monte Carlo sample size of 5000. We generated
k = 4 vectors, which are orthogonal to μ

1
, orthogonal to each other, and are of

length n. The algorithm to generate the vectors can be described as follows:

A =
(

1 1
1 −1

)
⊗ · · · ⊗

(
1 1
1 −1

)
,

where ⊗ is the Kronecker product, and the product is repeated n times. After the
first column of A is deleted, the next k = 4 columns are the vectors we use in the
χ2 test. The estimated type I errors and powers of the test are listed in Table 2. It is
clear that the type I error is not close to 0.05 when n ≤ 16. In fact, we find that the
type I errors in Table 3 from the limiting distributions of Ta and the χ2 tests can
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TABLE 2
Type I errors and powers of the χ2 test are listed with increasing sample size n. The errors are

drawn from three distributions

Null Alternative

Size Normal t χ2 Normal t χ2

8 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
16 0.0296 0.0264 0.0236 0.6406 0.6104 0.5734
32 0.0418 0.0384 0.0394 0.9918 0.9846 0.9822
64 0.0464 0.0504 0.0422 1.0000 0.9990 1.0000

be too high or too low when the sample sizes n are small. The bootstrap method
manages to control the type I errors even at small samples.

4.3. Test based on maximum over directions. Similar to Table 2, Table 4 shows
the performance of the test Mn of Section 3.4 based on the limiting distributions.
The test is conservative for small n, but remains quite powerful in the study. The
test can be used even when the normality assumption in Theorem 3.3 is violated.
However, our simulation results that are not reported here suggest that if θ

(0)
2 and

εi do not have finite 4th moments, the limiting distribution would not take effect
for realistic sample sizes considered in this paper.

TABLE 3
Type I errors and powers are listed for comparison between the bootstrap and the large-sample

approximation. The errors are generated from three different distributions

Asymptotic approximation Bootstrap

n Normal t χ2 Normal t χ2

Type I error
6a 0.1174 0.1096 0.1004 0.0420 0.0416 0.0350
8a 0.0552 0.0568 0.0458 0.0484 0.0520 0.0440

8b 0.0000 0.0000 0.0000 0.0406 0.0396 0.0256

16b 0.0296 0.0264 0.0236 0.0520 0.0430 0.0420

Estimated power
6a 0.4950 0.4820 0.4646 0.2560 0.2380 0.2194
8a 0.4202 0.4104 0.3854 0.3738 0.3670 0.3480

8b 0.0000 0.0000 0.0000 0.1508 0.1506 0.1338

16b 0.6404 0.6104 0.5734 0.7142 0.6912 0.6746

aThe results are from the test on the target direction 2−1
√

3(1,−1, . . . ,1,−1)T +2−1(1, . . . ,1,−1,

. . . ,−1)T .
bThe results are from the χ2 test based on the four target directions.



1646 X. FENG AND X. HE

TABLE 4
Type I errors and powers of the test based on maximum over directions are listed with increasing

sample size n. The errors are drawn from three distributions

Null Alternative

Size Normal t χ2 Normal t χ2

8 0.0018 0.0012 0.0008 0.0270 0.0268 0.0232
16 0.0306 0.0256 0.0190 0.6992 0.6620 0.6216
32 0.0378 0.0376 0.0264 0.9850 0.9766 0.9666
64 0.0428 0.0404 0.0362 1.0000 0.9988 0.9994

5. Case studies. In this section we analyze two microarray data sets. We ap-
ply our testing methods to search for genes with potentially complicated mean
structure, and further analyze some of those genes to understand the possible
causes. The data are quantile normalized in each case.

5.1. Example 1. We considered the GeneChip data (http://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?acc=GSE5350) obtained from the recent MicroArray Qual-
ity Control (MAQC) project and used in Lin et al. (2006). We have a total of 20
microarrays (HG-U133-Plus-2.0), generated from five colorectal adenocarcinomas
and five matched normal colonic tissues with 1 technical replicate at each of two
laboratories involved in the MAQC project.

In this study we use PM as the intensity measure in Y, and carry out the SVD
to get the two largest singular values λ̂1 > λ̂2. We focus on 350 probe sets with
the highest ratios λ̂2

2/λ̂
2
1 (with all those ratios above 1/10). For each probe set,

the probe-level microarray data are stored in a matrix, where the rows correspond
to the probes and the columns correspond to the arrays. The intensities from the
normal tissues are entered in the column 1–5, 11–15, and those from the tumors
entered in the rest of columns.

We choose a target direction to contrast the two groups in the study. In particular,
we use

a1 ∝ (−μ̂2, . . . ,−μ̂2, μ̂1, . . . , μ̂1,−μ̂2, . . . ,−μ̂2, μ̂1, . . . , μ̂1)
T ,

where μ̂1 is taken to be the median of θ̂1i of the first group (normal tissues), and
μ̂2 the median of θ̂1i of the other group. Hence, we have a1 ⊥ μ̂, where

μ̂ = (μ̂1, . . . , μ̂1, μ̂2, . . . , μ̂2, μ̂1, . . . , μ̂1, μ̂2, . . . , μ̂2)
T .

By the statistical test Ta developed in Section 3.1, we find that 81 out of 350
probe sets are detected as individually significant at the 0.05 level. Out of those,
36 probe sets remain significant after the multiple test adjustment of Benjamini
and Hochberg (1995).

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE5350
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE5350
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We plot (θ̂1i , θ̂2i), i = 1,2, . . . ,20, and (φ̂1j , φ̂2j ), j = 1,2, . . . ,m, for those
probe-sets that are detected as significant; some interesting facts can be observed.
We now zoom in on three of those probe sets.

5.1.1. Probe set “214974_x_at.” In the study the probe set “214974_x_at”
is used to measure the expression level of Gene “CXCL5.” Our test gave the p-
value of 1.11 × 10−3, the adjusted p-value of 2.38 × 10−2 and the q-value, as
proposed in Storey (2003), of 5.77 × 10−4, offering significant evidence against
the unidimensional model. The first four singular values of the data matrix are
(3387, 1388, 361, 168). As mentioned in the Introduction with Figure 1, the arrays
cannot be easily separated by the first right singular vector, but if we use (θ̂1i , θ̂2i)

jointly, the arrays are well separated in the 2-dimensional space. The usual one-
dimensional index of the probe set is insufficient to summarize the gene expression
of “CXCL5.”

Further inspection of the data shows that the intensities from Probe 3 are
much higher than those of the other probes, and Probe 3 dominantly con-
tributes to the values of θ̂1i . By the Basic Local Alignment Search Tool (BLAST,
http://www.ncbi.nlm.nih.gov/blast/Blast.cgi), we found that Probe 3 is represented
in both Gene “CXCL5” and Gene “N-PAC,” but the other probes were confirmed
as specific to Gene “CXCL5.” We further confirmed that the intensities of Probe 3
were highly correlated with the intensities of several probes in the probe set
“208506_x_at” (designed by Affymetrix to measure the expression level of Gene
“N-PAC”), and thus, we need to take Probe 3 with caution. If Probe 3 were re-
moved from the probe set, we would have seen a clear separation of the two groups
from the first singular vector; see Figure 2. In this case, the second singular vec-
tor from the whole probe set appears to be a better summary of Gene “CXCL5.”
We note that Gene “CXCL5” has been indicated as an important gene for colorec-
tal cancer in the literature. For example, Dimberg et al. (2007) observed signifi-
cantly higher expression levels of the protein encoded by “CXCL5” in colorectal
cancer tumors than in normal tissue, so the multidimensionality of the probe set
“214974_x_at” flagged through our statistical work can offer biologically relevant
information.

5.1.2. Probe set “227899_at.” The probe set “227899_at” is designed by
Affymetrix to measure the expression level of Gene “VIT.” Our test gave the p-
value 8.78×10−4, the adjusted p-value 2.38×10−2 and the q-value 5.77×10−4.
The first four singular values are (3178,1011,227,77).

From Figure 3, we note that differential expression can be detected from the
second right singular vector, but not the first. From the probe-level data, we find
that the intensities of Probe 4 and Probe 7 are much higher than those of the other
probes, and these two probes dominate the first two singular vectors. Furthermore,
we confirmed by BLAST both probes as specific for measuring the expression
level of Gene “VIT,” and so did the other probes. As a double check, we applied

http://www.ncbi.nlm.nih.gov/blast/Blast.cgi
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FIG. 2. Scatterplot of singular vectors for the probe set “214974_x_at” after we remove Probe 3.
See Figure 1 for more details about this figure.

the remapping method proposed by Lu et al. (2007) and confirmed all the probes
in this probe set were specified for the three transcript variants for Gene “VIT.”
Therefore, a 2-dimensional summary of the gene appears necessary for this probe
set.

To make the point further, we provide the absolute value of percentages calcu-
lated from M1 and M2 in Table 5, where

M1 =
⎛
⎜⎝

θ̂11φ̂11 · · · θ̂11φ̂1m
...

...
...

θ̂1nφ̂11 · · · θ̂1nφ̂1m

⎞
⎟⎠ ,

and

M2 =
⎛
⎜⎝

θ̂21φ̂21 · · · θ̂21φ̂2m
...

...
...

θ̂2nφ̂21 · · · θ̂2nφ̂2m

⎞
⎟⎠ .

It is clear that the information contained in the second dimension for Probes 4
and 7 is important, because in more than half of the arrays their contributions from
the second dimension are more than 20% of those from the first. The joint use of
θ̂1i and θ̂2i gives a more complete picture about the expression profile of Gene
“VIT.”



INFERENCE ON LOW-RANK DATA MATRICES 1649

FIG. 3. Scatterplot of singular vectors for the probe set “227899_at.” The probe numbers are
shown in the lower plot, and the dotted line is given by the least trimmed squares estimate. The
circles in the upper plot represent the arrays hybridized by the samples from the colorectal adeno-
carcinomas, while the solid points represent the arrays hybridized by the samples from the normal
colonic tissues.

5.1.3. Probe set “1560296_at.” The probe set “1560296_at” is used in the
HG-U133-Plus-2.0 platform to represent Gene “DST.” This probe set is detected

TABLE 5
A summary of the absolute values of θ̂2i φ̂2j /θ̂1i φ̂1j in percentage by probes

227899_at Min. (%) Q1 (%) Med. (%) Q3 (%) Max. (%)

Probe 1 0.06 2.48 5.03 6.56 10.92
Probe 2 0.01 0.32 0.64 0.84 1.39
Probe 3 0.04 2.00 4.04 5.27 8.78
Probe 4 0.39 17.37 35.20 45.88 76.40
Probe 5 0.07 2.97 6.02 7.85 13.06
Probe 6 0.04 1.84 3.72 4.85 8.08
Probe 7 0.22 10.01 20.29 26.44 44.02
Probe 8 0.04 1.77 3.59 4.68 7.79
Probe 9 0.03 1.29 2.62 3.42 5.69
Probe 10 0.11 4.74 9.61 12.52 20.85
Probe 11 0.17 7.69 15.59 20.32 33.83
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FIG. 4. Scatterplot of singular vectors for the probe set “1560296_at.” The probe numbers are
shown in the lower plot, and the dotted line is given by the least trimmed squares estimate. The
circles in the upper plot represent the arrays hybridized by the samples from the colorectal adeno-
carcinomas, while the solid points represent the arrays hybridized by the samples from the normal
colonic tissues.

by our test with a significant 2-dimensional mean structure (p-value 1.88 × 10−3,
adjusted p-value 2.87 × 10−2 and q-value 6.96 × 10−4). The first four singular
values are (5470,1748,504,271).

From Figure 4, we observe that the probes 1 and 2 are dominant probes. Further
inspection shows that the first singular vector is primarily determined by these two
probes. Following the method of Lu et al. (2007), we find that Probes 1, 2 and 3 are
remapped to three transcripts each (“veejee.aApr07-unspliced,” “DST.vlApr07-
unspliced” and “DST.iApr07”), yet the other probes are remapped to two variants
only (“veejee.aApr07-unspliced” and “DST.vlApr07-unspliced”). For this probe
set, the significant 2-dimensional mean structure of the data matrix could be re-
solved by proper remapping of the probes.

5.2. Example 2. In this example the data (http://www.ncbi.nlm.nih.gov/
projects/geo/query/acc.cgi?acc=GSE8874) were collected in a recent experiment
with the 2 × 2 × 2 factorial design, the detail of which is discussed in Leung et al.
(2008). The three factors (with two levels each) are as follows:

(i) mutation: mutant or wild type (WT);
(ii) tissue: retinas or whole body;

(iii) time: 36 or 52 hours post-fertilization.

http://www.ncbi.nlm.nih.gov/projects/geo/query/acc.cgi?acc=GSE8874
http://www.ncbi.nlm.nih.gov/projects/geo/query/acc.cgi?acc=GSE8874
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Under each condition, three Affymetrix zebrafish genome arrays are replicated,
so we have 24 arrays in total. The vector μ̂ is computed as in Example 1 by as-
suming that the means in each tissue group are equal. Furthermore, we generate
two directions a1 and a2, used to reflect the possible tissue and mutation effects,
respectively. In the study we still use PM as the intensity measure and carry out the
singular value decomposition to get the two largest singular values as λ̂1 and λ̂2,
where λ̂1 ≥ λ̂2. We focus on 75 probe sets with the highest λ̂2

2/λ̂
2
1 (with all those

ratios above 1/10), and use the χ2 test described in Section 3.2 on each of those
probe sets.

In this example 39 out of 75 probe sets are detected as individually significant,
out of which 39 probe sets remain significant after the multiple test adjustment of
Benjamini and Hochberg (1995). We shall describe one such probe set in detail.

5.2.1. Probe set “Dr.7506.1.A1_at.” In the zebrafish genome array, the probe
set “Dr.7506.1.A1_at” corresponds to gene “tuba8l2.” The χ2 test gave the p-value
of 2.37 × 10−5, the adjusted p-value of 7.52 × 10−5 and the q-value of 4.83 ×
10−6. The first four singular values are (43142, 14839, 2078, 1688). It is clear
from Figure 5 that we cannot distinguish two tissue groups based on θ̂1i , but the

FIG. 5. Scatterplot of singular vectors for the probe set “Dr.7506.1.A1_at.” The probe numbers
are shown in the lower plot and the dotted line is a robust linear fit. The circles in the upper plot
represent the arrays hybridized by the samples from retinas, while the solid points represent the
arrays hybridized by the samples from whole body.
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TABLE 6
A summary of the absolute values of θ̂2i φ̂2j /θ̂1i φ̂1j in percentage by probes

Dr.7506.1.A1_at Min. (%) Q1 (%) Med. (%) Q3 (%) Max. (%)

Probe 1 23.71 40.44 48.73 58.58 81.25
Probe 2 20.13 34.33 41.37 49.73 68.97
Probe 3 7.76 13.23 15.94 19.16 26.58
Probe 4 30.74 52.42 63.16 75.94 105.32
Probe 5 13.20 22.51 27.12 32.60 45.22
Probe 6 7.95 13.56 16.33 19.64 27.23
Probe 7 12.37 21.10 25.42 30.56 42.38
Probe 8 3.08 5.25 6.32 7.60 10.54
Probe 9 18.24 31.10 37.48 45.05 62.48
Probe 10 27.56 47.00 56.63 68.08 94.42
Probe 11 19.89 33.92 40.87 49.13 68.14
Probe 12 26.07 44.47 53.58 64.42 89.34
Probe 13 11.71 19.98 24.07 28.94 40.13
Probe 14 33.25 56.70 68.32 82.14 113.92
Probe 15 38.84 66.24 79.81 95.96 133.08
Probe 16 39.66 67.64 81.50 97.98 135.88

two groups are well separated by θ̂2i . Further inspection of the data shows that the
intensities of Probe 3 are linearly related with θ̂1i , but θ̂2i are linearly related with
the intensities of Probe 15. From Table 6, we see that the information from θ̂2i are
clearly nonnegligible. Furthermore, we used BLAST to verify that all the probes
are appropriate for Gene “tuba8l2,” so there is strong evidence that the expression
profile for Gene “tuba8l2” cannot be summarized by the usual unidimensional
index across experimental conditions. In fact, the commonly used gene expression
index would mask the clear differential expressions of the two tissue types.

6. Conclusions. In this article we have proposed a new framework for test-
ing the unidimensional mean structure of the probe-level data matrix. For most
applications, we can carry out the tests discussed in the article based on large sam-
ple approximations. We also proposed a model-based bootstrap algorithm to better
control type I errors when the sample size is small.

In two case studies, the proposed method detected genes whose expression lev-
els were not well summarized by unidimensional indices. Through detailed inspec-
tion of the probe-level intensities of those genes, we found that the intensities of
different probes can show different profiles across experimental conditions. In our
investigation, we noticed that the following scenarios exist for the violation of a
unidimensional gene expression summary:

(1) A large percentage of probes that have poor binding strengths or low inten-
sity measures in a probe set can mask the gene expression profiles.
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(2) One or more probes should be remapped to different variants of the same
gene.

(3) One or more probes are cross-hybridized.
(4) An outlying and erroneous measurement is present for one of the probes.
(5) The multiplicative model used to summarize gene expression is inadequate

even with all the probes well selected.

It has been observed by Harbig, Sprinkle and Enkemann (2005) that outlier sig-
nals on just one probe can seriously affect the calculations used for the subsequent
analysis. While we do not always have definite answers as to the biological impli-
cations of such structures, our statistical analysis is valuable in both flagging the
potentially interesting and important probes and genes for further scientific investi-
gations. Our approach does not lead directly to probe remapping, but may suggest
candidates for possible alternative mapping [Gautier et al. (2004); Lu et al. (2007)].
The bottom line is clear: if we solely rely on models that assume unidimensional
gene expressions, we might miss some of the complexities in gene expression data
analysis. When a unidimensional model is shown to be inadequate, appropriate ac-
tions, such as probe remapping, an alternative model or a different summarization
method [e.g., Kapur et al. (2007)], are called for.
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SUPPLEMENTARY MATERIAL

Proofs of Main Results (DOI: 10.1214/09-AOAS262SUPP; .pdf). We give a
lemma on consistency, followed by the proofs for the theorems that are described
in Sections 2 and 3.
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