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This study proposes a nonhomogeneous birth—death model which cap-
tures the dynamics of a directly transmitted infectious disease. Our model ac-
counts for an important aspect of observed epidemic data in which only symp-
tomatic infecteds are observed. The nonhomogeneous birth—death process de-
pends on survival distributions of reproduction and removal, which jointly
yield an estimate of the effective reproduction number R(¢) as a function
of epidemic time. We employ the Burr distribution family for the survival
functions and, as special cases, proportional rate and accelerated event-time
models are also employed for the parameter estimation procedure. As an ex-
ample, our model is applied to an outbreak of avian influenza (H7N7) in the
Netherlands, 2003, confirming that the conditional estimate of R(¢) declined
below unity for the first time on day 23 since the detection of the index case.

1. Introduction. The data-generating process of an epidemic has special
characteristics to which one wants to pay particular attention when modeling these
data. First, the observed data of an infectious disease outbreak are limited in the
sense that the incidence—expressed as the number of newly infected individuals
as a function of time—is usually measured by symptom onset of disease, which
is sometimes further accompanied by reporting delay. Thus, all of the observed
cases in the reported data represent those who experienced infection at some point
in time in the past. Second, epidemic data sets do not usually include informa-
tion on the number of susceptible individuals as a function of time, but solely
records infected (interpreted as symptomatic) individuals. It is therefore unknown
if susceptible individuals in the past are still susceptible at a point of time. Third,
the susceptible population is usually not well defined at the beginning of an out-
break, and its size may vary with time due to time-dependency in contact behavior
and public health countermeasures during the outbreak. In a veterinary context,
the countermeasures might include a transportation ban during an infectious dis-
ease outbreak on animal farms. Control measures are taken not only to reduce the
number of contacts, but also to limit the ability of infected individuals to gener-
ate secondary cases. For instance, one may think of preemptive culling in the case
of an infectious disease outbreak on animal farms. Fourth, since the infection is
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transmitted from individual to individual, observation of an infected individual is
not independent of observing other individuals.

These characteristics lead us to consider developing a method which appropri-
ately captures the dynamics of a directly transmitted infectious disease by mod-
eling the number of infected-and-detected individuals, preferably in discrete time,
in order to quantify the reproduction of infected individuals in a nonhomogeneous
manner. This contrasts with other statistical models which measure the population
of susceptibles and model the force of infection at which these susceptibles get
infected.

As is usually assumed, one can think of a population in which an epidemic of
an infectious disease occurs as consisting of three groups (or sub-populations) of
individuals. The first is the susceptible population which represents individuals
who have not been infected yet but may experience infection in the future. The
second is a population of infectious individuals which consists of those who have
been infected and are infectious to others. The last group consists of removed or
recovered individuals who are no longer infectious and may be immune or are
removed from the population. The simplest type of the model which describes the
transmission dynamics over time is referred to as an SIR (Susceptible-Infected-
Recovered) model [Diekmann and Heesterbeek (2000)]. Since the present study
will concentrate on the number of infected, here we consider their dynamics alone.
Letting x(¢) and y(¢) be the susceptible and infectious fractions of the population
at time ¢, respectively, the derivative of y(¢) is expressed as

d
(1.1) Ey(t)zﬂ(t)y(t)x(t) — u(@®)y ().

Note that the transmission rate () and the removal rate ©(f) may depend on time.
If one rewrites the product of the transmission rate () and susceptibles x(¢) as
A(t) (= B(t)x (1)), then the equation is rewritten as

d
(1.2) 5y(t) =A0)y@) — pn@)y(),

which is the equation of the deterministic nonhomogeneous birth—death process.
The function A(#) has been referred to as the reproductive power and can be inter-
preted as the rate at which a single infected individual is able to generate secondary
cases [Kendall (1948)]. In other words, A(¢) is the rate at which an infected indi-
vidual is able to reproduce itself. The so-called death rate w(¢) in a birth—death
process is interpreted as the rate at which an infected individual is removed from
the sub-population of infected individuals. It should be noted that equation (1.2)
relaxed the definition of y(#) compared to that in (1.1). Namely, whereas y(¢) in
(1.1) has to be infectious to others, we can instead regard y(¢) in (1.2) as infected-
and-detected individuals (i.e., regardless of infectiousness).

One of the advantages of using this simple equation is that the population of
susceptibles is allowed to vary over time. Therefore, the reproductive power varies
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over time due to two different reasons: (1) the population of susceptibles x(¢)
varies as a function of time and (2) the transmission rate §(¢) is nonhomogeneous
over time. In addition, the removal rate w(t) is allowed to vary with time.

It can be an advantage to model infection process stochastically, because one
can explicitly define the probability of transmission, rather than deterministically
stating if the transmission happens [Andersson and Britton (2000)]. A stochastic
model can describe not only the quantitative patterns of observation with time-
dependent expected values, but also offer standard errors of the parameters with-
out making adhoc distributional assumptions. More importantly, the likelihood
function can be explicitly derived, which will be useful for statistical inference
of parameters and critical assessments of the modeling method. Moreover, such a
stochastic process can model the number of infected over time as being dependent.

The present study aims to develop a stochastic model which is based on a non-
homogeneous birth—death process. The model is applied to an observed data set
of infected-and-detected (but not yet removed) cases, permitting reasonable as-
sessment of the time course of an epidemic. In Section 2 the stochastic version
of the nonhomogeneous birth—death model is comprehensively described. A novel
analytical solution of the model is obtained with the use of a general Lagrange
transformation derivation of which has not been explicitly discussed to date. In
Section 3 we discuss a conditional discrete-time fitting method. Although a sim-
ilar conditional fitting procedure was employed in a recent study [van den Broek
and Heesterbeek (2007)], the present study is the first to apply the technique to a
model where both birth and death rates are nonhomogeneous. Depending on the
model and the data given, the number of parameters to be estimated can be large
and it might be difficult to get stable estimates. Besides, a relationship between the
reproductive power and the removal rate might exist. Therefore, more restricted
models which employ this relationship are discussed in Section 4. In Section 5 our
model is applied to an observed epidemic data set of avian influenza A (H7N7) in
the Netherlands, 2003.

2. The nonhomogeneous birth—death model. The stochastic differential
equations for a nonhomogeneous birth—death process, with Y (¢) and yg being the
number of infected-and-detected at time ¢ and the initial number of infected-and-
detected at time 0, respectively, are as follows:

d
apy(t) =10 —Dpy_10) +n@)(y+ Dpyp1(t) — (1) + 1(0) ypy (1),

d
apo(t) = u®)p1(1),

where A(#) denotes the reproductive power, 1 (¢) the death rate and Pr(Y (1) = y) =
py(t) the probability that the number of infected-and-detected individuals at time
t is y. It should be noted that here we consider Y (¢) as the number of infected-
and-detected individuals which represents the observed elements of the data and
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is irrelevant to infectiousness. If we take the probability generating function of
the probabilities p, we can derive a partial differential equation for this fraction
by multiplying the above differential equations with z¥, summing the result, and
taking the derivative. The analytical solution of the partial differential equation is
[Kendall (1948)]

0—(1—m—0)ul
O =| ]
—TTu
If we write p(1) = [g[1(v) — 4(v)]dr = log[ ] and
' tdS, (1)
_ p(T) __ A
2.1 y(t)—/o ePN(t)dr = b S, (D) ,
we get
—p(1)
2.2) ho1-— " . Su®
1+ y(t)er® S +y ®)Su (@)
(2.3) el — L 51.0) .
1+y(t)er® Si() +y ()8, (1)

It should be noted that S, (r) = e~ J0+(®d7 ig the reproduction survival function

and S, (1) = e~ Jo (AT i the removal survival function.

To obtain the probability distribution from ®(y, u), the general Lagrange trans-
formation is useful (the details of which can be found elsewhere [Consul and
Famoye (2006)]). First, let & (y, u) = [0 + (1 —6) 122410 = [0+ (1 —0) ¢ (w) 0,
where 1 (u) is the probability generating function (pgf) of the geometric dis-
tribution. Second, let g(z) = 1 — m + 7wz, the pgf of a Bernoulli distribution.
Numerically, the smallest root of the transformation z = ug(z) defines a pgf
z=v%u) = % [Consul and Famoye (2006)]. Third, additionally considering
f(@) =0+ (1 —06)z)°, the pgf of the discrete general Lagrange probability dis-
tribution under the Lagrange transform z = ug(z) is given by f(z) = f(¥(u)) =
[0 + (1 — 0)%]y0 and, moreover, the probability mass function is a special
case of the double-binomial distribution [Consul and Famoye (2006), pages 22—
27], which can be referred to as the Bernoulli-binomial Lagrangian distribution in
the terminology of [Johnson, Kemp and Kotz (2005)]

P(Y (1) =0) =6,

Yo min(y—1,yo—1) o — 1 y
—_ ) — 2Ypgvo vy
== 2" () ()

k=0
(2.4)

Fl—nxl—eqk“
X|— S
7o

y>1,



JOINTLY ESTIMATE REPRODUCTION AND REMOVAL 1509

where 6 and  are defined in equations (2.2) and (2.3). It should be noted that g(z)
and f(z) are pgf’s and, thus, the necessary conditions for Lagrange transformation
are satisfied. To the best of our knowledge, detailed derivation of equation (2.4) has
never been discussed in the context of the nonhomogeneous birth—death model (see
Section 6).
The expectation and the variance of (2.4) are
1-06
l1—m
. Syu(t)
S.1)’
(1-0)[0+n(1—-60—m)]
(1 —-m)3
Su(t) Su ()
=yt 1+ 2y - D]
S.(t) S1.(t)
= yoR(O[1 + 2y — DHR(1)]

E(y)=yo

=)

var(y) = yo

by using (2.2) and (2.3).

The expected value has two interpretations. The first part is the predicted num-
ber of infected individuals at time #) who survived removal [i.e., yoS, (¢)]. The
second part, ﬁ, measures the rate at which a nonremoved infected individual
reproduces itself. This is similar to an interpretation of a nonhomogeneous birth
process [van den Broek and Heesterbeek (2007)]; the difference of the present
study from the previous nonhomogeneous birth process is that in the present setup
only the predicted nonremoved infected-and-detected individuals reproduce. Sec-
ond, the ratio of the rates ‘;’; ((zl; is the net reproduction ratio with which an infected
individual reproduces itself, which is interpreted as the effective reproduction num-
ber R(t) as a function of epidemic time ¢. R(¢) in the present study can be regarded
as the average number of secondary cases generated by a single primary case at
time ¢. That is, our R(?) is an instantaneous measure of secondary transmissions
occurring at time ¢, whose definition is equivalent to the period total fertility rate in
mathematical demography [Nishiura and Chowell (2009)]. If R(¢) < 1, it suggests
that the epidemic is in decline and may be regarded as being “under control” at
time ¢ [vice versa, if R(t) > 1]. It should be noted that the expected value of (2.4)
is equivalent to an analytical solution of the deterministic version of a nonhomo-
geneous birth—death process (1.2).

The term y (¢) in the formula for the variance represents the dependence be-
tween the birth and death rate as can be seen from (2.1). As it is clear from the
analytical expression for the variance, the variance becomes large if the proba-
bility of nonremoval is large for an infected individual, if the probability of re-
production is large, or both. This matches intuitive sense. In addition, the vari-
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ance can be regarded as a type of negative binomial variance, if we rewrite it as
2y—1
var(y) = E)[1 + Z=LE(y)).

3. Fitting the model. We have shown how the epidemic data can be gener-
ated by a stochastic nonhomogeneous birth—death process. Nevertheless, the ob-
served data are, in reality, just one sample path of all the possible sample paths
that can arise from such an epidemic process. Considering further that the num-
ber of infected-and-detected and individuals at a certain point in time ¢ depends
on the number of infected-and-detected individuals at some time point before
t, our model is fitted to the data by conditioning on the transmission dynamics
which happened before ¢ [Becker (1989), Becker and Yip (1989)]. Moreover, as
we briefly discussed in the Introduction, another important point in practice is the
discrete nature of the time points of observation, that is, say, 7;, j =0,1,...,n,
where the time unit might typically be days or weeks. Therefore, the number of
infecteds at time 7; is modeled conditionally on the number of infecteds by time
fji—1.

Since the probability mass function (2.4) is a conditional probability mass func-
tion, conditioning being on the number of infecteds at 7y, this can be effectively
used as the conditional model for the number of infecteds at time 7;, given the
number of infecteds at time 7;_1. For this reason, the survival distributions Sy (1)
and S, () and, of course, y (1), are also conditioned on the past. Let 7; and T}, be
the stochastic variables that measure the reproduction time and the removal time,
respectively. The conditional survival probability for the reproduction time is

S3(t))
P(T) > lj|T)\ > tj—l) =7
Sitj-1)
S = Su@))
Si(tj-1)
=1- P(Tk € (tj—1,t;]|Th > tj_l)
=1—hy(tj-1),

where h, (t;—1) is interpreted as the discrete reproductive power. Similarly, the
conditional survival probability for the removal time is given by

P(Tu > tj|TM > tj—l) =1 _hu(tj—l),

=1

where h,(tj 1) is the discrete removal hazard.
The discrete conditional version of (2.1) in the time interval (z;_1, ;] is
P(Ty € (tj—1,t;1Th > tj—1)  hp(tj—1)
P(TM>Z‘J'|TM>Z‘]'_1) l—hu(l‘j_l)'

When these conditional discrete measurements are considered, 6 and & correspond
to hy,(tj—1) and h; (¢; 1), respectively. Using these, the conditional probability for
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(2.4) is expressed as
P(Y(tj) =0Y(tj—1) = y1;_,) = hu(tj-1)*°,

P(Y(t)) =y, |Y (tj—1) = y;;_,)

_ ytj,1

Ry (tj—1) "V (=)

yt]

miﬂ(}’tj_letj,I—l) 1
Yej 1 — Yt
<z (M6 )

k=0
[(1 — ha(tj—)) (1 — hm,-_l))]k“ .

hy(tj—1)hu(tj—1) ’ -
l_hu(tj—l)

1=h;(tj-1)°
sample path profile [Lindsey (2001)]. The corresporiding conditional measurement

1—h,(tj—1) .
#@j—l)’ with l’lﬂ(l‘j_l) =

The expected value of this probability is yr; , which is referred to as the

of the effective reproduction number is R(z;_1) =

o Su@)) ) _ 1 S
1 S ) and hy(tj—1) =1 S
Let A be the vector of parameters from the survival distributions (see Section 4).

The log-likelihood function is then

I(A) =) log[P(Y (1) = yi, 1Y (1j-1) = yi;_,, A)].
i=1

Note that the likelihood is evaluated only for y;; > 0, because zero prevalence is
the absorbing state of the process and this state is not observable in reality.

The log-likelihood can be maximized using an optimization procedure, such
as the Nelder—-Mead method to find the maximum likelihood estimates. In our
exercise, the software system R [R Development Core Team (2008)] is used. The
information matrix is used to find the standard errors of the parameters, and we
use Akaike’s information criterion (AIC) to compare model fits.

4. The Burr distribution and its special cases. To choose a particular form
for the survival functions, one might take the early phase of the outbreak into
account. The mean of the probability mass function (2.4) depends on these sur-
vival functions and is the same as the solution of (1.2). Since (1.2) can be derived
from the SIR model, one might look at the deterministic SIR-model to decide the
parametric form of the survival function. In the early phase of the outbreak a deter-
ministic SIR-model can be well approximated by a deterministic SI-model since
in that phase the number of removals is limited. The dynamic equations for this
SI-model hold for the fraction of susceptibles and for the fraction of infected and
since the fraction of susceptibles at a point of time is the same as the fraction of



1512 J. VAN DEN BROEK AND H. NISHIURA

individuals with infection time larger than that time point, the dynamic equations
should also hold for the survival function. The Burr family of distribution functions
has this precise property [van den Broek and Heesterbeek (2007)].

When detection of a symptomatic infected individual occurs, he/she usually will
be removed immediately. Thus, it is reasonable to assume that the reproductive
power and the removal rate have a similar structure, and follow a similar survival
function.

The most well-known and useful distribution from the Burr family is the Burr
XII, or Singh—Maddala distribution, which in the literature is sometimes referred
to simply as the Burr distribution. The survival function is given by

1\
S(t):[l—i—(z)} , t>0,a,b,q > 0.

The right tail is governed by the parameters a and ¢, the left tail by a, and b is
the scale parameter [Kleiber and Kotz (2003), page 198]. To reduce the number
of parameters to be estimated, one can consider three special cases of the Burr
distribution [Kleiber and Kotz (2003)]:

1. The logistic form is obtained for ¢ = 1, giving the log-logistic or the Fisk dis-
tribution.

2. For a =1, the Burr distribution is reduced to the Lomax (Pareto type II) distri-
bution.

3. The case a = ¢ is also known as the para-logistic distribution.

The Weibull distribution and the Pareto distribution are limiting cases of the Burr
distribution [Shao (2004)]. An interesting way to arrive at the Burr distribution is
to assume that the times follow a Weibull distribution, the scale parameter of which
follows an inverse generalized gamma distribution [Kleiber and Kotz (2003)].

As another way to reduce the number of model parameters, and to find a further
relationship between the reproductive power and the removal rate, one may rewrite
the Burr distribution as a proportional rate or an accelerated event-time distribution
(just as in the case of the more famous Weibull distribution). Suppose that the
survival function for the reproduction time is a Burr distribution with parameters
a, by and ¢ and suppose that the survival function of the removal time is also a
Burr distribution with parameters a, by and g. If we replace b, by db; (where d is
a constant), we get

o= (][ G = ()] =

Therefore, the survival distribution for the removal times is exactly the same as that
for the reproduction time, except that the removal time is interpreted as accelerated
reproduction time.

To employ the proportional rate model, let the survival distribution for the re-
production time be a Burr distribution with parameters a, b and g1, and suppose
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that the survival distribution of the removal times is also a Burr distribution with
parameters a, b and g;. If we replace g, by cq; (where c is a constant), we get

o[ (] = (= [+ )T -

indicating that the rates are proportional; that is, the rate at which an infected-and-
detected is removed is proportional to the rate at which an infected-and-detected
individual reproduces. Of course, the Burr distribution can also be written as both
an accelerated event-time distribution and as a proportional rate distribution, that
is, S (1) = [S.(t)]°.

All the distributions described above can be written in accelerated event-time
form and in proportional hazard form, except for log-logistic distribution which
has only an accelerated event-time form. In the next section we fit all of those
models to epidemic data of avian influenza A (H7N7) in the Netherlands, 2003.

5. Dutch avian influenza A (H7N7) epidemic in 2003. Here we show an
example of our model application to an observed data set. An epidemic of avian
influenza A (H7N7) virus started on February 28, 2003, in the Gelderse Vallei in
the Netherlands. In total, 239 flocks experienced infection with known detection
date. Control measures taken include movement restrictions, stamping out of in-
fected flocks, and preemptive culling of flocks in the neighborhood of infected
flocks. As a result, 1255 commercial flocks and 17,421 flocks of smallholders had
to be depopulated, and approximately 25.6 million animals were killed. The virus
was also transmitted to humans who had been in close contact with the infected
chickens, resulting in one human death. Further details can be found elsewhere
[Stegeman et al. (2003)].

We examine transmission and detection events between flocks. We regard the
detection date of a case (i.e., infected individual) as the date at which there were
first signs of infection in a flock. In other words, the detection date of an infected
individual is regarded as the birth date in our model. Therefore, the birth date
is not the date of infection but the date at which an infected farm is detected,
which is used as a surrogate. Moreover, the date of depopulation is regarded as the
death date. Consequently, the Dutch data consist of the prevalence of infected-and-
detected (but not yet removed) flocks on each epidemic date.

Figure 1 shows the temporal distribution of the prevalent cases (representing
those who were born and have not been removed yet). As can be seen, the right
tail contains gaps and the center of the distribution is not well determined. Usually
these make it difficult to fit simple models to the data.

The Burr model with three parameters for birth rate and three for death rate was
fitted to the observed data. We refer to it as the full Burr model. To objectively show
how this model fits to the data better than other types of models, we compared its
likelihood with that of the full inverse Burr (Burr III or Dagum) model. The inverse
Burr model is also known as a flexible distribution from the Burr family and can
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FI1G. 1. Temporal distribution of the prevalent cases of avian influenza A (H7N7) epidemic in the
Netherlands, 2003. The index case was reported on February 28, 2003 (and the date is defined as
day 0). The prevalent cases represent those who have been infected and detected but have not been
depopulated yet at day t, which correspond to the expected value of y; in Section 3. See Stegeman et
al. 2003 for further information.

be viewed as a generalized gamma with a scale parameter that follows an inverse
Weibull distribution [Kleiber and Kotz (2003)]. The inverse Burr yielded an AIC
of 363.7, while the full Burr model yielded 342.4. We thus examined the full Burr
model (and its special cases) for further analyses. The AICs for these different
models are in Table 1. The full Lomax model gave the best fit, although the dif-
ference in AIC with the full Burr distribution was not particularly large. In other
words, the information criterium suggest that both the death rate and the repro-
ductive power may be proportional and that the removal time may be accelerated
reproduction time in the observed data set. Figure 2 visually confirms a good fit of
the full Lomax model to the observed number of infected-and-detected individuals

TABLE 1
Akaike’s information criterion (AIC) for different models

1

Full model Acc. event time Prop. rate2  Both acc. event and prop. rate

Burr 3424 345.90 346.4 342.7
Log-logistic 371.3 369.8 - -

Lomax 341.9 344.8 3449 same as full model
Para-logistic 351.8 354.0 357.5 same as full model

! Accelerated event-time model.

2Proportional rate model.



JOINTLY ESTIMATE REPRODUCTION AND REMOVAL 1515

35

30
1
1>
—
=
]
]

15 20
1 1
|
——
—
=
T

Number of detected prevalent cases and their fitted values
10
E—
—1
1

0 3 6 9 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76

Days

F1G. 2. Comparison of the observed numbers and the predicted values from the conditional model
of prevalent cases of avian influenza A (H7N7) epidemic in the Netherlands, 2003. The index case
was reported on February 28, 2003 (and the date is defined as day 0). Observed data (bars) is
compared with the predicted number of cases (solid line) based on the full Lomax model. It should
be noted that the expectation of prevalence y;; is conditioned on y;_,.

based on the conditional model in discrete time. The model seems to have well
captured the observation, because fitting prevalence yy; to the data is conditioned
on y, . It should be noted that the predicted values in Figure 2 reflect a qualita-
tive pattern of the observed data always one or two steps late, which is a general
tendency of conditional fit.

Parameter estimates for the best fitting model are shown in Table 2 with their
standard errors. The logarithm of the acceleration factor, d, was estimated at 1.47
with a standard error of 0.369, and the logarithm of the proportionality between
the reproductive power and the removal rate was 1.54 with a standard error of
0.355. The estimates of mean reproduction and removal times for the Lomax dis-

tribution can be calculated from [Kleiber and Kotz (2003)] E(t) = %q(;]_l).
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TABLE 2
Parameter estimates for the Lomax distribution

Parameter Estimate St. error
In(by) 3.235 0.5998
In(q;) 2.712 0.3611
In(by) 4.987 1.0396
In(g2) 3.980 0.8480

The mean reproduction time was estimated as 1.81, indicating that it takes on av-
erage 1.8 days for a detected case to reproduce another detected case. The mean
removal time was estimated as 2.79, indicating that on average it takes 2.8 days
for a detected infected case to be removed.

In Figure 3 the rate at which a single case survives removal, (1 — h,(t;-1)),
is shown as a function of epidemic date. In addition, the rate at which a single

@ (b)
8] o |
« [aV]
0 1/(1=h(t1))
) 0 _|
R(t.1) = ik
2 /(1 =t = hy(teo)
1-h(ta). .
——————— o |
Q] -
o
S 0 _|
° o
T T T T | | | |
0 20 40 60 0 20 . -
days days

FI1G. 3. Time dependency of birth and death rates which jointly yield the effective reproduction
number. (2) (1 — hy(tj1)) indicates the rate at which an infected-and-detected case escapes re-
moval, whereas (1/(1 — h, (tj_1))) denotes the rate at which a single infected-and-detected (but not
yet removed) case reproduces secondary cases. The product (1 —h (tj1)) /(1 — hy(tj_1)) yields
the effective reproduction number R(t) as a function of time, which can be interpreted as the average
number of secondary cases generated by a single primary case at time tj 1. If R(t;_1) <1, it sug-
gests that the epidemic is in decline. In our example, the expected value of R(t;j_1) declined below
unity on day 23 since the detection of index case. (b) The effective reproduction number, R(t;_1),
calculated from sample paths drawn from the underlying estimated process (gray lines) with the
estimated value (black line) and the 95% percentile lines (dashed lines).
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nonremoved case reproduces secondary cases, (1/(1 — h;(zj—1)), is also shown in
the figure. The product of these two functions jointly yields R(z;_1) (also shown
in Figure 3). Compared with other modeling results [e.g., Nishiura and Chow-
ell (2009)], our estimates of R(z;_1) are smoothed as a function of time owing
to our parametric model for the survival functions of reproduction and removal.
Nevertheless, it should be noted that our approach does not have to assume that
the generation time distribution is known [i.e., common assumption in estimating
R(1)], because our approach does not have to translate a growth rate of incidence
to the reproduction number. As we discussed above, R(#;_1) < 1 suggests that the
epidemic is in decline at time 7; _; [vice versa, if R(¢;—1) > 1]. This can be un-
derstood by considering the condition for R(z;_1) = 1; that is, the reproductive
power becomes equivalent to the removal rate at time ¢. In our example, the ex-
pected value of R(z;_1) declined below unity for the first time on day 23 since the
detection of the index case, supporting eventual end of the epidemic in the later
stage. The sawtooth at the end of the lines is considered to have been caused by
zero prevalence during the corresponding time period (i.e., because of our condi-
tional measurement, the survival functions reflect small variations in the observed
data). Figure 3(b) shows the estimated effective reproduction number R(#;_1). To
get an idea of the statistical uncertainty of R(z;_1), 500 sample paths were drawn
from the estimated nonhomogeneous birth—death model and for each sample path
the effective reproduction number was calculated (gray lines). The 95% percentile
lines of R(z;_1) are also shown.

6. Discussion. In the present study we modeled an epidemic based on the
nonhomogeneous birth—death process, addressing some of the critical issues which
are seen in the observation of directly transmitted infectious diseases. First, we
modeled infected-and-detected individuals, which corresponds to observable and
countable information in practice (e.g., our model requires neither susceptibles
nor infectious individuals). Second, for a similar reason, the application of a birth—
death process allowed the population at risk (i.e., the susceptible population) to
vary with time. Third, applying the concepts of a nonhomogeneous birth—death
process to epidemic modeling, dependent events (i.e., dependence of a single
infected individual on other infected individuals) were addressed in the model.
Fourth, our stochastic model offered an explicit likelihood function and yielded
a standard error of parameters. Last, our model allowed estimation of the ef-
fective reproduction number, R(¢). Although a different probability distribution
was given by Bailey (1964), the derivation was not given in the literature, and,
to the best of our knowledge, equation (2.4) is the first to derive the pdf explic-
itly.

In a recent study van den Broek and Heesterbeek (2007) applied a nonhomo-
geneous birth process to epidemic data, in which the survival-time distribution
was modified by a final-size parameter to describe the end of an epidemic (which
was influenced by public health countermeasures). The countermeasures would
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not only reduce the final size of an epidemic but also the reproductive power
as a function of time, because secondary transmissions caused by infected in-
dividuals are restricted under the control measures. The nonhomogeneous birth
process in the previous study permitted an explicit assessment of the time vari-
ations in the number of newly infected individuals (and thus the reproductive
power).

In the present study the proposed nonhomogeneous birth—death process further
improved our understanding of time dependency by explicitly adding the nonho-
mogeneous removal rate. Whereas the reproductive power changes as a function
of time due to variations in susceptible individuals or in the transmission rate,
the removal rate is also nonhomogeneous when infected individuals are likely
to be removed upon detection. Thus, adding nonhomogeneous death to a non-
homogeneous birth process enabled us to separately consider the effectiveness of
countermeasures as a reduction in reproductive power (e.g., reduction in infec-
tious contacts) and an increase in removal rate of infected individuals (e.g., culling
of infected farms). In this way, the fading out of an epidemic was modeled in a
smoother way, as compared to the previous model based on a nonhomogeneous
birth process alone.

Moreover, it should be noted that our model does not necessarily require a ho-
mogeneous mixing assumption to describe contacts, because our assumptions of
the time-dependent rates implicitly include those nonhomogeneities. For exam-
ple, our model allows time variations in susceptible individuals. Nevertheless, our
model only accounts for the nonhomogeneity with respect to time in an explicit
manner, and understanding other heterogeneous aspects of transmission requires
further information.

Of course, there are many possible candidate distributions to model the repro-
duction and the removal times. We have selected the Burr distribution for three
reasons:

1. Asnoted in Section 4, the Burr family coincides with our analytical understand-
ing of the epidemic modeling, especially at the early stage of an epidemic.

2. Essentially, the Burr distribution is flexible and has special and limiting cases.
For instance, the distribution can be regarded as a Weibull distribution with a
random scale parameter.

3. In the context of the present study, the proportional hazard rate and the accel-
erated event time interpretation may be very helpful in model reduction and
further interpretation of the data.

As an example, the nonhomogeneous birth—death model was applied to epi-
demic data of avian influenza A (H7N7) in the Netherlands, 2003, showing that
the model fitted to the data very well. Indeed, since the data set has information on
both birth and death events for each individual case, the Dutch data appeared very
useful for fitting prevalence data and applying our modeling method. Even in the
presence of gaps in the right tail of the epidemic curve, and even though the center



JOINTLY ESTIMATE REPRODUCTION AND REMOVAL 1519

was not well determined, our model reasonably described the time-course of the
observed epidemic. In particular, our model permitted an estimation of the effec-
tive reproduction number R(¢) as a function of time without imposing a specific
distribution of the generation time.

As is often the case with natural outbreaks, a single observation represents just
one sample path from the process for which the above-mentioned model is im-
posed as the generator. There is no random sampling of infectious disease out-
breaks, and a repeated sampling interpretation for the resulting model fit might
be difficult. In other words, the description and conclusions arising from analysis
of a single outbreak data set is valid only for that outbreak. To find some general
disease-specific conclusions from such an exercise, we stress that it is important to
analyze several different outbreaks for the same disease. For such a purpose, one
may use our model to accumulate the experience of applying our method to several
outbreaks.
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