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Congratulations to Professors Székely and Rizzo for such an exciting and en-
joyable contribution. It is not often that one of our most basic techniques is
given so fundamental, and so successful, a rethinking. Although using distance
covariance requires giving up some useful properties associated with linearity—
directionality/sign, exact expressions for the variance and covariance of sums, di-
rect connection to the multivariate normal distribution—it offers useful proper-
ties in exchange. Distance covariance gives a true indicator of independence even
for non-normal distributions, applies directly in multivariate settings (even when
“p � n”), is the basis for general and powerful tests, can be adapted to use ranks,
provides conditions for central limit theorems, and is straightforward to compute.
That seems to be a favorable trade. In this discussion I will focus on the meaning
of Brownian covariance, but first I want to raise a few questions to the authors (and
the field).

The paper adapts the statistic in examples to derive resampling techniques and
tests for nonlinearity and extends the covariance definition in several ways. Per-
haps the authors can comment on how general these derived techniques are. For
instance, what additional conditions, if any, are required for the test of nonlinear-
ity in Example 6 (based on dCov(X, (I − X(XT X)−1XT )Y )) to be consistent?
Also, the computations would appear to be O(n2), which can be burdensome for
very large n. Are there speed-ups or approximations that yield comparable results
more quickly? And are rates of convergence available for the empirical statistics,
perhaps under stronger moment conditions?

But these are details. Even though the Pearson correlation is entrenched in the
practice of several fields, including our own, what reason do we have not to ag-
gressively introduce distance covariance and correlation into our practice and our
teaching, even at the introductory level? It is rare in practice that we want a mea-
sure of linear association per se, more typically we use Pearson correlation as a
proxy. Distance covariance provides most of what we do want in these cases with
attendant theory and convenience that is hard to beat. And teaching about the dif-
ference between “uncorrelated” and “independent” is a thorn in the side of anyone
who has had to do so. Distance covariance would require no more sophisticated
ideas than what we already use in teaching correlation, without that complication.
The statistic is expressed in terms of distances which are easy to understand, and
it would free us from undue emphasis on Normal examples. It is interesting to
ponder what it would take to change practice at this level.
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However, what principally distinguishes this paper from Székely, Rizzo and
Bakirov (2007) is the introduction of Brownian covariance. Because of the “supris-
ing coincidence” that Brownian covariance equals distance covariance, though un-
der slightly more restrictive conditions, Brownian covariance may appear to be
merely an interesting, if abstract, representation. But Brownian covariance can
help us understand how and why distance covariance works and how it can be
generalized to obtain measures with other desirable properties. As the authors
write, Brownian covariance “measures the degree of all kinds of possible rela-
tionships between two real-valued random variables.” Because it may not be obvi-
ous why this statement is true, my goal here is to explain it in a different way
and to offer insight into what the Brownian covariance means and how it can
be usefully generalized. I will do this by studying the (U,V )-covariance (Defi-
nition 5 in the paper) for a special class of stochastic processes. To keep the focus
on the ideas rather than details, I will consider only a simple case here, and I
will play somewhat loose with regularity conditions (e.g., limit interchanges), but
all of this can be made rigorous and general without excessive effort or condi-
tions.

Let X and Y be scalar random variables with finite second moments. Denote
their joint density by gX,Y and marginal densities by gX and gY . For simplicity,
assume that these densities are square integrable and have support on [0,1]2 and
[0,1] respectively, although these restrictions can easily be weakened. Let (φi) and
(ψj ) be two sequences of deterministic functions. They may be finite or infinite
collections and need not be orthogonal. Define

Aij =
∫ ∫

(φi ⊗ ψj) (gX,Y − gX ⊗ gY )(1)

=
∫ ∫

(φi ⊗ ψj)gX,Y −
∫

φi gX

∫
ψj gY(2)

= Cov(φi(X),ψj (Y ))(3)

= EXφi
Yψj

.(4)

Now consider stochastic processes U and V that can be written as series expan-
sions with Normal coefficients. Specifically, given suitable positive values σi and
τj , define

U(s) = ∑
i

σiZiφi(s),(5)

V (t) = ∑
j

τjZ
′
jψj (t),(6)

where the Zi’s and Z′
j ’s are independent standard Normal random variables.
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Using the notation of the paper and interchanging expectation and sums in the
definitions of XU = U(X) − E(U(X) | U) and related random variables, we have

XU = ∑
i

σiZi

(
φi(X) − Eφi(X)

)
,

X′
U = ∑

i

σiZi

(
φi(X

′) − Eφi(X
′)

)
,

YV = ∑
j

τjZ
′
j

(
ψj(Y ) − Eψj(Y )

)
,

Y ′
V = ∑

j

τjZ
′
j

(
ψj(Y

′) − Eψj(Y
′)

)
.

It follows from Definition 5 in the paper that

Cov2
U,V (X,Y ) = E(XUX′

UYV Y ′
V )

= ∑
i,j,k,�

E(ZiZk)E(Z′
jZ

′
�)E(Xφi

Yψj
)E(Xφk

Yψ�
)(7)

= ∑
i,j

σ 2
i τ 2

j A2
ij .

Equation (7) shows that CovU,V (X,Y ) = 0 if and only if every Aij = 0. For this
covariance to determine independence, we must have that all Aij = 0 if and only
if X and Y are independent. A sufficient condition for this is that the functions
φi ⊗ψj form a (Schauder) basis for a class of functions containing gX,Y −gX ⊗gY

(e.g., L2). Note that in this case

(fX,Y − fX ⊗ fY )(s, t) =
∫ ∫

ei(sx+ty)(gX,Y − gX ⊗ gY )(x, y)dx dy(8)

=
∫ ∫

ei(sx+ty)
∑
i,j

Aijφi(x)ψj (y)dx dy(9)

= ∑
ij

Aij φ̃i(s)ψ̃j (t),(10)

where the f ’s are the characteristic functions of the g’s as in the paper and the φ̃’s
and ψ̃’s are the corresponding Fourier transforms. This shows that the covariance
is related to a “norm” of fX,Y − fX ⊗ fY and thus highlights the connection to the
distance covariance as defined in the paper.

Now it is well known (the Lévy–Ciesielski construction) that Brownian motion
can be written as

Wt = ∑
i≥0

ZiSi(t),(11)
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where Si is the ith Schauder function obtained by Si(t) = ∫ t
0 Hi for the correspond-

ing function Hi in the Haar system.1 The expansion (11) corresponds to U = W

and V = W ′ with σk = τk = 1 and φk = ψk equal to corresponding Schauder func-
tions for all k. Hence,

CovW(X,Y ) =
√∑

i,j

A2
ij ,(12)

the Frobenius norm of the infinite-order matrix A. Because the Schauder functions
form a (nonorthogonal) basis for the set of continuous functions on an interval (in
sup-norm) and for the Lp spaces for 1 < p < ∞, we can see that a zero Brownian
covariance is equivalent to independence of X and Y . Because the Schauder func-
tions have support in nested (and shrinking) dyadic intervals, A2

ij measures the
dependence in gXY over a small dyadic rectangle. The Brownian covariance thus
combines measures of dependence across all scales in a multi-resolution hierarchy,
and this is the sense in which it captures all kinds of dependence. This derivation
also clarifies how changing the stochastic processes U and V can give covariance
measures that emphasize different features of X and Y ’s joint distribution.
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i≥0 Z′′
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