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To address an important risk classification issue that arises in clinical
practice, we propose a new mixture model via latent cure rate markers for
survival data with a cure fraction. In the proposed model, the latent cure rate
markers are modeled via a multinomial logistic regression and patients who
share the same cure rate are classified into the same risk group. Compared
to available cure rate models, the proposed model fits better to data from a
prostate cancer clinical trial. In addition, the proposed model can be used to
determine the number of risk groups and to develop a predictive classification
algorithm.

1. Introduction. In cure rate modeling of event-time data, a fraction of the
population is considered to have zero hazard. The model is often suitable for sur-
vival data from cancer clinical trials owing to advances in medical treatment and
health care. For example, treatment of prostate cancer routinely cures the patient
in the sense of completely eradicating the disease. Existing cure rate models are
able to accommodate a fraction of the population being cured [Berkson and Gage
(1952) and Maller and Zhou (1996)] and characteristics of tumor growth [Chen,
Ibrahim and Sinha (1999), Tsodikov, Ibrahim and Yakovlev (2003) and Cooner et
al. (2007)]. However, risk-group information is not easily incorporated. Prostate
cancer patients can be classified into low, intermediate and high-risk groups on the
basis of pre-treatment characteristics, such as the level of prostate-specific antigen
(PSA), biopsy Gleason scores or clinical tumor categories [D’Amico et al. (1998,
2002)]. A failure to incorporate risk stratification into the cure rate model can lead
to poorly fitting statistical models and poorly estimated cure rates and predictive
probabilities of risk groups. We address this problem via a latent class analysis of
the cure rate model.

We consider data from a retrospective cohort study of n = 1235 men treated
with radical prostatectomy (RP) at Brigham and Women’s Hospital between 1988–
2001, which is a subset of the data published in D’Amico et al. (2002). The pri-
mary endpoint is the time to prostate-specific antigen (PSA) recurrence or to the
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last follow-up, whichever came first. There were 261 patients who had PSA recur-
rence after the radical prostatectomy. We consider four prognostic factors: natural
logarithm of prostate specific antigen (LogPSA) prior to RP, biopsy Gleason score,
the 1992 American Joint Commission on Cancer (AJCC) clinical tumor category
and the year of radical prostatectomy (Year). D’Amico et al. (2002) considered
three risk groups based on PSA, biopsy Gleason score and clinical tumor category
and reported the estimates of 8-year PSA recurrence free survival for the three risk
groups based on the Kaplan–Mier (KM) method [Kaplan and Meier (1958)]. For
the subset of the data considered here, the KM estimates of 8-year PSA recurrence
free survival are 88.7%, 57.4% and 23.4% for low-risk patients (T1c, T2a, a PSA
level ≤ 10 ng/mL), intermediate-risk patients (T2b or Gleason score 7 or a PSA
level > 10 and ≤ 20 ng/mL) and high-risk patients (T2c or PSA level > 20 ng/mL
or Gleason score ≥ 8), respectively. This risk classification does capture that the
low-risk patients have the highest PSA recurrence free survival and the high-risk
patients have the lowest PSA recurrence free survival. However, there are some
limitations of this risk classification. First, this risk classification is deterministic.
In other words, it is not associated with predictive probabilities of risk groups.
Second, it may be problematic, especially for those patients whose clinical charac-
teristics fall within the boundary between two risk groups. Third, this risk classifi-
cation is not flexible enough to incorporate other potentially important risk factors.
For example, the year of diagnosis or treatment may have a significant effect on the
“cure rate” and, thus, it may be an important factor for risk classification. To over-
come these limitations, we develop a predictive classification algorithm based on
the latent cure rate marker model. This algorithm first computes the probabilities
of risk groups for a patient based on his clinical characteristics and then classifies
him to a particular risk group with the largest predictive probability. As shown in
Table 4 in Section 5, for a patient who had PSA of 5, and Gleason score ≤ 6, clin-
ical stage T1 and surgery in 2001, the predictive probabilities for three risk groups
are 0.745, 0.241 and 0.014 and, thus, this patient will be classified into the “low
risk” group.

Overdiagnosis of clinically insignificant prostate cancer was considered a major
issue of prostate-specific antigen (PSA) screening since the U.S. Food and Drug
Administration approved PSA testing in 1986 as a way to monitor prostate can-
cer progression [Wang and Arnold (2002)]. Etzioni et al. (2002) estimated rates
of prostate cancer overdiagnosis due to PSA testing among men who were 60 to
84 years old in 1988. Overdiagnosis may occur when older men or men with co-
morbid illness who have very low risk disease are treated. However, overdiagnosis
is usually not the case for men treated with surgery because they are healthy but
they can have very low risk disease. Since the data we analyze in this paper were
from those men who went to surgery, it may be appropriate to fit a cure rate model
to this particular prostate cancer data set. We include the year of RP in the analysis,
as it may have a significant effect on the “cure rate.” There are two reasons for this.
With time people are diagnosed after several PSA tests and serial screened men are
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diagnosed earlier with more favorable disease [e.g., Martin et al. (2008)] and with
increased medical experience. Over time, the techniques of treatment also improve,
which can improve outcome due to a learning curve, especially when new surgery
(e.g., robotic RP) or radiation therapy (e.g., seed therapy) techniques are used. We
fit both the Cox proportional hazards regression model [Cox (1972)] and the pro-
posed latent cure rate marker model with a piecewise exponential baseline hazard
function to this prostate cancer data. We then computed the logarithm of pseudo-
marginal likelihood (LPML) [Ibrahim, Chen and Sinha (2001), Chapter 6] and the
Deviance Information Criterion (DIC) proposed by Spiegelhalter et al. (2002) for
each model. From Table 2 in Section 5, we see that the best LPML and DIC values
are −821.5 and 1640.8 for the Cox model and −816.0 and 1613.7 for the latent
cure rate marker model. These results indicate that the cure rate model fit the data
much better than the noncure rate model. Thus, a cure rate model is indeed needed
for this data set.

Section 2 provides the detailed development of the proposed latent cure rate
model. The prior and posterior are discussed in Section 3. The posterior predictive
classification algorithm is developed in Section 4. Section 5 presents an analysis
of the prostate cancer data. We conclude the paper with brief discussions in Sec-
tion 6.

2. The models.

2.1. Preliminary. Let yi denote the observed survival time and let νi be the
censoring indicator that equals 1 if yi is a failure time and 0 if it is right censored
for the ith subject. Also, let Ni denote the number of metastatic-competent tu-
mor cells and assume that the Ni ’s are independent Poisson random variables with
mean θi . Suppose further that Wij denotes the random time for the j th carcino-
genic cell to produce a detectable cancer mass (incubation time for the j th car-
cinogenic cell) for the ith subject. We assume that the variables Wij , i = 1,2, . . . ,

are independent and distributed with a common distribution function F(y), and
are independent of Ni . The time to relapse of cancer can be defined by the random
variable Yi = min{Wij ,0 ≤ j ≤ Ni}, where P(Wi0 = ∞) = 1. Then, the survival
function for the cure rate model for the ith subject is given by

Si(y) = P(Yi ≥ y) = exp{−θiF (y)}.(1)

Using (1), the cure rate is given by Si(∞) = exp(−θi), which is also equal to
P(Ni = 0). Other properties of the cure rate model (1) can be found in Yakovlev
et al. (1993), Yakovlev and Tsodikov (1996) and Chen, Ibrahim and Sinha (1999).
To build a regression model, Chen, Ibrahim and Sinha (1999) introduced covariates
through θi via θi ≡ θ(x′

iβ) = exp(x′
iβ), where xi = (xi1, xi2, . . . , xip)′ denotes the

p × 1 vector of covariates for the ith subject and β = (β1, β2, . . . , βp)′ is the cor-
responding vector of regression coefficients, i = 1,2, . . . , n. Let S(y) = 1 − F(y)
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and f (y) = d
dy

F (y). Then the resulting survival function is given by

Si(y|xi ,β) = exp{− exp(x′
iβ)F (y)}.(2)

We refer to (2) as the CIS model.
A natural extension of the CIS model is the cure rate double regression model.

Let β1 = (β11, β12, . . . , β1p)′ and β2 = (β21, β22, . . . , β2p)′. We assume θi =
exp(x′

iβ1). A proportional hazards model is assumed for the distribution function
F(y) of the incubation time for noncured subjects. Specifically, let the cumulative
hazard function H(y) = exp(x′

iβ2)H0(y), where H0(y) is the baseline cumulative
hazard function. Then, F(y) = 1 − exp{−H(y)} = 1 − exp{− exp(x′

iβ2)H0(y)}.
Under this assumption for F(y), we have

Si(y|xi ,β) = exp
(− exp(x′

iβ1)[1 − exp{− exp(x′
iβ2)H0(y)}]),(3)

where β = (β ′
1,β

′
2)

′. Yakovlev and Tsodikov (1996) used parametric accelerated
failure time effects on the cumulative hazards with a similar idea. Model (3) in
its semiparametric form has appeared in Broet et al. (2001), where they tended
to use a generalized Gompertz name for the model. We see, from (3), that the
model in (3) incorporates the covariates into both the cure rate and the hazard
function with double proportional hazards structures. Thus, we refer to this model
as the PHPH model. The name “PHPH” was also introduced by Tsodikov (2002)
for the semiparametric version of the model. Recently, Liu, Lu and Shao (2006)
developed the PHPH version of the standard cure rate model of Berkson and Gage
(1952).

Another extension of the CIS model is the latent activation cure rate (LACR)
model proposed by Cooner et al. (2007). Given Ni ≥ 1, let Wi(1) ≤ Wi(2) ≤ · · · ≤
Wi(Ni) denote the ordered values of the Wij ’s. The time to relapse of cancer is
defined by Yi = Wi(Ri) for 1 ≤ Ri ≤ Ni and Wi0 if Ni = 0, where Ri is an inte-
ger valued variable. Cooner et al. (2007) specified a conditional distribution for Ri

given Ni , denoted by [Ri |Ni]. When Ni follows a Poisson distribution with mean
θi = exp(xiβ) and [Ri |Ni] is a discrete uniform on {1,2, . . . ,Ni} with probabil-
ity 1

Ni
, the survival function under the LACR model is given by

Si(y|xi ,β) = exp{− exp(xiβ)} + [1 − exp{− exp(xiβ)}]S(y).(4)

Other distributions for Ni and [Ri |Ni] are also considered in Cooner et al. (2007).

2.2. A new latent cure rate marker model. The latent cure rate marker
(LCRM) model assumes that the Ni ’s are independent Poisson random variables
with mean θgi

, where gi is a (unknown) group indicator, and exp(−θgi
) is the

cure rate marker. Let G denote the number of distinct values of θgi
. Further,

gi (1 ≤ gi ≤ G) indicates the group membership. Without loss of generality, we
assume θ1 < θ2 < · · · < θG. Under these constraints, the group membership gi is
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uniquely defined. Similar to the PHPH model, we assume the proportional haz-
ards model for cumulative hazard function H(y), that is, H(y) = exp(x′

iβ)H0(y),
where H0(y) is the baseline cumulative hazard function. Then, under the LCRM
model, the conditional survival function of yi given θgi

is of the form

Si(y|xi ,β, θgi
) = exp

(−θgi
[1 − exp{− exp(x′

iβ)H0(y)}]).(5)

We assume a multinomial logistic regression model for the latent group member-
ship gi . To this end, let z′

i = (zi0, zi1, zi2, . . . , ziq) denote a (q + 1) × 1 vector
of covariates for the ith subject, which includes an intercept (i.e., zi0 = 1) for
i = 1,2, . . . , n. Also let φj = (φj0, φj1, φj2, . . . , φjq)

′ denote the corresponding
vectors of regression coefficients for j = 1,2, . . . ,G and φ′ = (φ′

1,φ
′
2, . . . ,φ

′
G−1).

Then the density of the group membership gi is given by

f (gi |zi ,φ) = exp(z′
iφgi

)∑G
l=1 exp(z′

iφl)
.(6)

For notational convenience, we let φG = (0,0, . . . ,0)′. Write θ ′ = (θ1, θ2, . . . , θG).
Using (5), the unconditional survival function of yi is given by

Si(y|xi , zi ,β, θ,φ)
(7)

=
G∑

k=1

exp
(−θk[1 − exp{− exp(x′

iβ)H0(y)}]) exp(z′
iφk)∑G

l=1 exp(z′
iφl)

.

Unlike the CIS model, the LCRM model does not directly link the covariates to
the cure fractions and instead it assumes that the population is characterized by an
unobserved cure rate marker, namely, exp(−θgi

), where the latent group member-
ship gi is described according to covariates via a multinomial logistic regression
model. We note that the monotonic constraints on the cure rates θk’s not only de-
fine the group membership gi but also ensure identifiability of the multinomial
logistic regression model. We also see, from (7), that the LCRM model is indeed
a finite mixture of cure rate models. If θk → θ for k = 1,2, . . . ,G, (7) reduces
to

Si(y|xi ,β, θ) = exp
(−θ [1 − exp{− exp(x′

iβ)H0(y)}]),
which is a special case of the PHPH model.

We assume the piecewise exponential model for the baseline hazard function
h0(y), which is constructed as follows. We first partition the time axis into J in-
tervals: (s0, s1], (s1, s2], . . . , (sJ−1, sJ ], where s0 = 0 < s1 < s2 < · · · < sJ = ∞.
We then assume a constant hazard λj over the j th interval Ij = (sj−1, sj ]. That
is, h0(y) = λj if y ∈ Ij for j = 1,2, . . . , J . Then the corresponding cumulative
distribution function (c.d.f.), F0(y|λ), is given by

F0(y|λ) = 1 − exp

{
−λj (y − sj−1) −

j−1∑
g=1

λg(sg − sg−1)

}
(8)
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for sj−1 ≤ y < sj , where λ = (λ1, . . . , λJ )′. We note that when J = 1, F0(y|λ)

reduces to the parametric exponential model.
Let D = (n,y,X,Z, ν,N,g) denote the complete data, where y = (y1, . . . , yn)

′,
ν = (ν1, ν2, . . . , νn)

′, X is the n×p matrix of covariates with ith row x′
i , Z, which

may share common components with X, is a q-vector of covariates with ith row
z′
i , N′ = (N1,N2, . . . ,Nn), and g′ = (g1, g2, . . . , gn). Then, the complete data like-

lihood under the LCRM model is given by

L(β, θ,φ,λ|D)

=
n∏

i=1

[
J∏

j=1

(Niλj )
νiδij

× exp

{
νiδij x′

iβ − exp(x′
iβ)Niδij(9)

×
(
λj (yi − sj−1) +

j−1∑
k=1

λk(sk − sk−1)

)}]

× exp

[
n∑

i=1

{
Ni log θgi

− log(Ni !) − θgi
+ z′

iφgi
− log

[
G∑

l=1

exp(z′
iφl)

]}]
,

where δij = 1 if the ith subject failed or was censored in the j th interval Ij , and 0
otherwise. Since N and g are not observed, by summing (9) over N and g, we
obtain the likelihood function based on the observed data Dobs = (n,y,X,Z, ν)

given by

L(β, θ,φ,λ|Dobs)

=
n∏

i=1

G∑
k=1

(
exp

[
νi

{
log θk + x′

iβ +
J∑

j=1

δij logλj − exp(x′
iβ)H ∗

0 (yi)

}

(10)

− θk

(
1 − exp{− exp(x′

iβ)H ∗
0 (yi)})

]

× exp

{
z′
iφk − log

(
G∑

l=1

exp(z′
iφl)

)})
,

where H ∗
0 (yi) = ∑J

j=1 δij [λj (yi − sj−1) + ∑j−1
l=1 λl(sl − sl−1)].

3. The prior and posterior distributions under the LCRM model. We con-
sider a joint prior distribution for (β, θ,φ,λ). Suppose that J and sj , j = 1, . . . , J ,
are fixed. First we consider a fixed G. We assume that β , θ , φ and λ are indepen-
dent a priori. Thus, the joint prior for (β, θ,φ,λ) is of the form π(β, θ,φ,λ) =
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π(β)π(θ)π(φ)π(λ). We further assume that

β ∼ Np(0, c01Ip), φk ∼ Nq(0, c02Iq), k = 1,2, . . . ,G − 1,(11)

π(λ) ∝
J∏

j=1

λ
a0−1
j exp(−b0λj ),(12)

and

π(θ) ∝
G∏

k=1

θ
ak−1
k exp(−bkθk), 0 < θ1 < θ2 < · · · < θG,(13)

where c01, c02, a0, b0, ak and bk , k = 1,2, . . . ,G, are the prespecified hyper-
parameters. Due to the monotonic constraints, θ1 < θ2 < · · · < θG, eliciting the
hyper-parameters ak and bk becomes more crucial than other hyperparameters. To
this end, we first specify θ0 = (θ01, θ02, . . . , θ0G)′ such that θ01 < θ02 < · · · < θ0G.
Equivalently, we specify a set of prior cure rates exp(−θ0k), k = 1,2, . . . ,G. Then,
we set ak = 1

c2
0

and bk = 1
c2

0θ0k
, where c0 is a known constant. This essentially im-

plies that we specify the prior mean and the prior standard deviation of θk to be
θ0k and c0θ0k . Thus, c0 quantifies the prior uncertainty in θ0k . A large value of c0

reflects a vague prior belief in θ0k and a small value of c0 yields a strong prior
belief in θ0k . In Section 5 we use the LPML and DIC measures to guide the choice
of c0 and θ0 and we then conduct a sensitivity analysis on various choices of c0

and θ0.
Based on the prior distributions specified above, the joint posterior distribution

of β , θ , φ, λ, N and g based on the complete data D is thus given by

π(β, θ,φ,λ,N,g|Dobs) ∝ L(β, θ,φ,λ|D)π(β)π(θ)π(φ)π(λ),(14)

where L(β, θ,φ,λ|D) is defined in (9). We note that when the priors π(β), π(θ),
π(φ) and π(λ) are proper, the resulting posterior is proper. However, even when
we take an improper prior for θ , an improper uniform prior for β and an improper
Jeffreys-type prior for λ, that is, c01 → ∞ and a0 = b0 = 0 in (12), the posterior
is still proper under some mild conditions. We formally state this result in the
following theorem.

THEOREM 1. Suppose that π(β) ∝ 1 and π(λ) ∝ ∏J
j=1 λ−1

j . Let Xj be an n×
(p + 1) matrix with its ith row equal to νiδij (1, x′

i ), where p is the dimension of β .
Assume that (i) when νi = 1, yi > 0, (ii) dj ≡ ∑n

i=1 νiδij ≥ 1 for j = 1, . . . , J ,
(iii) there exists a j∗ such that Xj∗ is of full rank, and (iv) c02 > 0, ak > 0 and
bk ≥ 0 for k = 1,2, . . . ,G − 1, d + ∑G−1

k=1 ak + aG > 0, where d = ∑J
j=1 dj , and

bG > 0. Then, the resulting posterior in (14) is proper.
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The proof of the theorem is given in the Appendix. The conditions (i)–(iii)
are indeed quite mild and essentially require that all event times are strictly posi-
tive, at least one event occurs in each chosen interval (sj−1, sj ], and the covariate
matrix is of full rank for at least one interval. These conditions are easily sat-
isfied in most applications and are quite easy-to-check. We note that the condi-
tion (iv) does not require aG > 0. Thus, π(θ) can be improper. We also note that
the latent structure of the LCRM model leads to the development of a Markov
chain Monte Carlo (MCMC) algorithm for sampling from posterior distribution
in (14). When G is not specified, we assume a truncated Poisson distribution
with mean μG on {1,2, . . . ,Gmax} for G, where μG and Gmax are prespecified.
Then, we develop a reversible jump algorithm for carrying out posterior compu-
tation. The description of the MCMC algorithm for a fixed G and the detailed
development of the reversible jump MCMC based on Lopes and West (2004)
and Green (1995) are given in online supplementary material [Kim, Xi and Chen
(2009)].

4. Posterior predictive classification under the LCRM model. In this sec-
tion we consider classification via the posterior predictive probability. The latent
cure rate markers under the LCRM model can be naturally used for the predictive
classification. Let xnew and znew denote the future values of the vectors of base-
line covariates. Also let gnew denote the future group indicator. Suppose that gnew

takes a value between 1 and G, where G is fixed. Then, the conditional posterior
probability for gnew given φ and znew is given by

P(gnew = k|φ, znew,G) = exp(z′
newφk)∑G

l=1 exp(z′
newφl)

, k = 1,2, . . . ,G.(15)

The posterior estimate of this predictive probability for gnew is the posterior expec-
tation of P(gnew = k|φ, znew) given by

p̂(k|znew,G) = E[P(gnew = k|φ, znew,G)|Dobs](16)

for k = 1,2, . . . ,G, where the expectation is taken with respect to the posterior
distribution of φ based on the observed data Dobs. The clinical interpretation of
(16) is that, given the patient’s characteristic znew, p̂(k|znew) is the probability that
the patient is in the kth risk group.

Next, we consider the conditional predictive probability for gnew = k given the
survival time Y ≥ t , xnew and znew. This conditional predictive probability can be
calculated as follows:

P(gnew = k|β, θ,φ,λ, t,xnew, znew,G)
(17)

= exp(z′
newφk − θk[1 − exp{− exp(x′

newβ)H ∗
0 (t)}])∑G

l=1 exp(z′
newφl − θl[1 − exp{− exp(x′

newβ)H ∗
0 (t)}]) ,



1132 S. KIM, Y. XI AND M.-H. CHEN

where H ∗
0 (t) is given in (10). The posterior estimate of (17) for gnew is

p̂(k|t,xnew, znew,G) = E[P(gnew = k|β, θ,φ,λ, t,xnew, znew)|Dobs].(18)

From (16) and (18), it is easy to see that

p̂(k|znew,G) = p̂(k|t = 0,xnew, znew,G)

for k = 1,2, . . . ,G. Since limt→∞ H ∗
0 (t) = ∞, we also have

lim
t→∞ p̂(k|t,xnew, znew,G) = E

[
exp(z′

newφk − θk)∑G
l=1 exp(z′

newφl − θl)

]
,

(19)
k = 1,2, . . . ,G.

Using the posterior predictive probability in (18), we classify a new patient with
characteristic (xnew, znew) into risk group k∗ if

k∗ = arg max
1≤k≤G

p̂(k|t,xnew, znew,G).(20)

An attractive property of the posterior predictive probability in (18) is presented
in the following theorem.

THEOREM 2. The posterior predictive probability for the lowest risk group
(k = 1), p̂(1|t,xnew, znew,G), increases in t , while for the highest risk group
(k = G), p̂(G|t,xnew, znew,G) decreases in t .

The proof of Theorem 2 is given in the Appendix. Based on (19) and Theorem 2,
we have that, for t ≥ 0,

P̂ (gnew = 1|t,xnew, znew,G) ≤ E

[
exp(z′

newφ1 − θ1)∑G
k=1 exp(z′

newφk − θk)

]
,(21)

which is the largest probability that P̂ (gnew = 1|t,xnew, znew,G) may achieve for
t > 0 given the patient’s characteristic (xnew, znew). Similarly, we have

P̂ (gnew = G|t,xnew, znew,G) ≥ E

[
exp(z′

newφG − θG)∑G
k=1 exp(z′

newφk − θk)

]
,(22)

which is the smallest probability that P̂ (gnew = G|t,xnew, znew,G) can get for
t > 0. The quantity P̂ (gnew = k|t,xnew, znew,G) is clinically important as this
gives the patient an idea how well he can do prospectively given his baseline char-
acteristic.

Finally, we note that when G is not specified, a similar posterior predictive
classification algorithm can be established. For example, instead of (15), we com-
pute

P(gnew = k|φ, znew) =
Gmax∑
G=1

π(G)
exp(z′

newφk)∑G
l=1 exp(z′

newφl)
, k = 1,2, . . . ,Gmax,
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where π(G) denotes the prior distribution for G and Gmax is the largest value
of G.

5. Analysis of the prostate cancer data. We revisit the prostate cancer data
discussed in Section 1. The response variable y is the time to prostate-specific
antigen (PSA) recurrence. Covariates x1, x2, x3, x4 and x5 correspond to LogPSA,
biopsy Gleason score, clinical tumor category and the year of radical prostatec-
tomy (Year). A summary of covariates is given in Table 1. The covariates LogPSA
(x1) and Year (x5) are continuous, while x2, x3 and x4 are binary. The mean and
the standard deviation for LogPSA were 1.95 and 0.72. We also set zj = xj for
j = 1, . . . ,5. In all computations we standardized all covariates by subtracting
their respective sample means and then being divided by their respective sample
standard deviations.

The hyper-parameters of the prior distribution in Section 4 are specified as fol-
lows. In (11), (12) and (13), we take c01 = 1000, c02 = 3, a0 = 1, b0 = 0.01
and c0 = 2.5. We choose c01 to be much larger than c02 as the posterior is
proper even when π(β) ∝ 1 according to Theorem 1. Also, a0 = 1 and b0 = 0.01
are specified so that the prior for λ is relatively noninformative. We further
specify θ01 = − log(0.5) for G = 1; θ01 = − log(0.9) and θ02 = − log(0.3) for
G = 2; θ01 = − log(0.9), θ02 = − log(0.5) and θ03 = − log(0.1) for G = 3;
θ01 = − log(0.9), θ02 = − log(0.6), θ03 = − log(0.3) and θ04 = − log(0.1) for
G = 4; and θ01 = − log(0.9), θ02 = − log(0.7), θ03 = − log(0.5), θ04 = − log(0.3)

and θ05 = − log(0.1) for G = 5. We note that (0.9,0.5,0.1) for G = 3 were deter-
mined by the KM estimates of cure rates based on the three risk groups defined in
D’Amico et al. (1998, 2002).

Table 2 shows the values of LPML and DIC for the Cox, CIS, PHPH, LACR
and LCRM models for various J ’s and G’s. We note that under the Cox model,
the survival function is given by Si(y|xi ,β,λ) = exp{− exp(x′

iβ)H0(y|λ)}, where
H0(y|λ) is the cumulative baseline hazard function corresponding to F0(y|λ)

given in (8). From Table 2, we observe that there is a concave pattern in the LPMLs

TABLE 1
Summary of covariates for prostate cancer data

Covariate Coded variable Value Definition Frequency

x1 LogPSA (−∞,∞) Logarithm of PSA prior to RP –
(x2, x3) (G7, G8H) (0,0) Gleason score 6 or less 866

(1,0) Gleason score 7 303
(0,1) Gleason score 8–10 66

x4 Cstage 0 (T1) Clinical tumor category T1c or T2a 1055
1 (T2) Clinical tumor category T2b or T2c 180

x5 Year >0 Year of RP –
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TABLE 2
LPMLs and DICs of Cox, CIS, PHPH, LACR and LCRM models

J = 1 J = 5 J = 10

Model G LPML DIC LPML DIC LPML DIC

Cox −864.0 1722.3 −822.3 1642.4 −821.5 1640.8
CIS −827.4 1651.6 −821.6 1641.5 −822.4 1643.0
PHPH −831.5 1655.5 −824.2 1642.3 −825.4 1646.9
LACR −841.2 1680.6 −832.2 1662.6 −831.8 1661.6
LCRM 1 −845.8 1686.5 −821.3 1640.6 −823.3 1645.4

2 −823.3 1633.5 −820.8 1628.1 −822.6 1632.3
3 −822.9 1626.3 −816.0 1613.7 −819.5 1624.6
4 −823.9 1628.4 −817.1 1617.3 −820.3 1627.4
5 −824.4 1629.1 −818.0 1620.8 −821.7 1634.9

and there is a convex pattern in the DICs as functions of J for the CIS, PHPH and
LCRM with fixed G. We note that for J = 15, the values of LPML and DIC are
−827.9 and 1648.9 for the Cox model and −838.0 and 1673.5 for the LACR
model. Thus, the concave (convex) pattern in the LPMLs (DICs) as functions of J

still holds for the Cox and LCRM models. Similar patterns are also observed in
the LPMLs and DICs as functions of G for fixed J under the LCRM. Among the
three J ’s shown in Table 2, J = 5 consistently fits the data better for the CIS,
PHPH and LCRM models and J = 10 fits the data better for the Cox and LACR
models. The LCRM model, with J = 5 and G = 3 fits the data best among all
models considered. In particular, LPML = −816.0 and DIC = 1613.7 for the best
LCRM model while LPML = −821.5 and DIC = 1640.8 for the best Cox model.
Except for G = 1, the LCRM model with G ≥ 2 improves the fit compared to the
CIS, PHPH and LACR models.

The posterior estimates of the parameters under the best LCRM model with
J = 5 and G = 3 are given in Table 3. We see from this table that LogPSA is sig-
nificant in the proportional hazards model (5) for the survival function for a “non-
cured” subject and LogPSA, G8H and Year of RP are significant in the multinomial
model (6) for the latent group membership at a significance level of 0.05. In addi-
tion, Year of RP is nearly significant in both models. Although the prior cure rates
for the three risk groups are 0.9, 0.5 and 0.1, respectively, the resulting posterior
estimates of these cure rates are 0.939, 0.347 and 0.092. Under the same model set-
ting for Table 3, the posterior predictive probabilities, p̂(k|t,xnew, znew,G) given
in (19) with znew = xnew, are computed for three sets of baseline covariates xnew’s
for various t’s and the results are given in Table 4. Based on the proposed classifi-
cation criterion given in (20), these probabilities clearly indicate that a patient with
a PSA level of 5, Gleason 6 or less, and tumor stage T1 belongs to risk group 1
(low risk group) and a patient with a PSA level of 30, Gleason 8 to 10, and tumor
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TABLE 3
Posterior estimates based on the best LCRM model

Posterior Posterior 95% HPD
Variable mean SD interval

β1 (LogPSA) 0.349 0.107 (0.136, 0.554)
β2 (G7) 0.117 0.135 (−0.141, 0.395)
β3 (G8H) 0.090 0.085 (−0.071, 0.260)
β4 (Cstage) 0.042 0.095 (−0.138, 0.231)
β5 (Year) −0.269 0.143 (−0.541, 0.016)

θ1 0.069 0.118 (0.000, 0.301)
θ2 1.193 0.582 (0.328, 2.316)
θ3 2.671 1.035 (1.443, 4.490)
exp(−θ1) 0.939 0.095 (0.740, 1.000)
exp(−θ2) 0.347 0.156 (0.059, 0.625)
exp(−θ3) 0.092 0.052 (0.000, 0.181)

φ10 (Intercept) 0.842 0.822 (−0.907, 2.431)
φ11 (LogPSA) −1.841 0.549 (−2.962, −0.963)
φ12 (G7) −1.162 0.924 (−3.349, 0.183)
φ13 (G8H) −1.801 1.068 (−4.128, −0.030)
φ14 (Cstage) −0.694 0.554 (−1.818, 0.181)
φ15 (Year) 0.840 0.373 (0.106, 1.597)

φ20 (Intercept) −0.385 1.152 (−2.670, 1.827)
φ21 (LogPSA) −3.123 0.987 (−5.160, −1.127)
φ22 (G7) 1.118 1.058 (−0.991, 3.163)
φ23 (G8H) −0.178 1.662 (−3.479, 2.878)
φ24 (Cstage) −0.741 1.266 (−3.224, 1.628)
φ25 (Year) 1.144 0.851 (−0.519, 2.884)

stage T2 falls into risk group 3 (high risk group) no matter whether he had surgery
in 1988 or 2001. However, a patient with a PSA level of 5, Gleason 7 and tumor
stage T2 may be classified into risk group 3 (high risk group) if he had surgery
in 1988 while a patient with the same PSA level, Gleason score and tumor stage
will be classified into risk group 2 (intermediate risk group) if he had surgery in
2001. From Table 4, we also see that for each set of baseline covariates, the risk
classification does not change no matter how long the patient will live if he had
surgery in 2001 and this is not the case when he had surgery in 1988. In addition,
the overall cure rates,

S(∞|xnew, znew,β, θ,φ) =
G∑

k=1

exp(−θk)
exp(z′

newφk)∑G
l=1 exp(z′

newφl)
,

are presented in Table 4. It is interesting to see that when (PSA, Gleason, Cstage) =
(5, ≤6, T1), the overall cure rate is much smaller than that given gnew = 1, when
(PSA, Gleason, Cstage) = (5, 7, T2), the overall cure rate is greater than that
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TABLE 4
Posterior predictive probability based on the best LCRM model

Year PSA Gleason Stage t p̂(k = 1|t) p̂(k = 2|t) p̂(k = 3|t) Overall cure rate

1988 5 ≤6 T1 0 0.692 0.099 0.209 0.705
5 0.814 0.085 0.101
∞ 0.910 0.061 0.029

5 7 T2 0 0.057 0.384 0.559 0.234
5 0.132 0.412 0.456
∞ 0.238 0.426 0.336

30 8–10 T2 0 0.001 0.053 0.947 0.098
5 0.005 0.068 0.928
∞ 0.008 0.072 0.920

2001 5 ≤6 T1 0 0.745 0.241 0.014 0.781
5 0.770 0.220 0.010
∞ 0.868 0.130 0.002

5 7 T2 0 0.183 0.657 0.160 0.409
5 0.220 0.653 0.127
∞ 0.327 0.618 0.055

30 8–10 T2 0 0.006 0.143 0.851 0.117
5 0.020 0.166 0.815
∞ 0.042 0.186 0.772

given gnew = 2 if he had surgery in 2001, while the overall cure rate is very simi-
lar to the risk group specific cure rate (gnew = 3) when (PSA, Gleason, Cstage) =
(30, 8–10, T2). Figure 1 shows the estimated risk group specific PSA recurrence
free probabilities corresponding to these three sets of covariates and the estimated
overall PSA recurrence free probability when the year of RP was 2001. From plots
(a), (b) and (c), we see that three risk group specific probability curves are well
separated from each other. These plots also show that a wrong classification may
lead to either over-estimate or under-estimate of the PSA recurrence free proba-
bility. Thus, the posterior predictive classification is quite important, as a correct
classification leads to more accurate estimates of the cure rate as well as the PSA
recurrence free probability.

We further conducted a sensitivity analysis on the choice of c0 and θ0j ’s. Table 5
shows the LPML and DIC values of the LCRM model with G = 3 for various c0
and the prior cure rates exp(θ0) = (0.9,0.5,0.1), (0.8, 0.5, 0.2) and (0.7, 0.5, 0.3).
Both LPML and DIC values are very similar for almost all choices of c0. Among all
values of c0 and exp(θ0), c0 = 2.5 and exp(θ0) = (0.9,0.5,0.1) yield the largest
LPML and the smallest DIC among all choices considered. Although not reported
in Table 5, the posterior estimates of the cure rates were also calculated under those
choices of c0 and the prior cure rates. For example, when c0 = 2.5, the posterior
estimates of the cure rates and the corresponding posterior standard deviations
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FIG. 1. Plots of the estimated risk group specific PSA recurrence free probabilities corresponding
to (PSA, Gleason, Cstage) = (5, ≤6, T1) (a), (5, 7, T2) (b), and (30, 8–10, T2) (c), and the estimated
overall PSA recurrence free probability (d) for year of RP = 2001.

are (0.939, 0.347, 0.092) and (0.095, 0.156, 0.052) for exp(θ0) = (0.9,0.5,0.1),
(0.936, 0.351, 0.091) and (0.097, 0.161, 0.051) for exp(θ0) = (0.8,0.5,0.2), and
(0.936, 0.352, 0.094) and (0.087, 0.163, 0.051) for exp(θ0) = (0.7,0.5,0.3). Sim-
ilar results are obtained for other choices of c0. These results demonstrate that the
proposed LCRM model is quite robust to the specification of c0 and prior cure
rates.

When G is not specified, we used the RJMCMC algorithm given in Kim, Xi
and Chen (2009). In the RJMCMC algorithm, we took a = 3 for θl and dl = 0.5
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TABLE 5
LPMLs and DICs of the LCRM model for various c0 and prior cure rates

Prior cure rates

(0.9, 0.5, 0.1) (0.8, 0.5, 0.2) (0.7, 0.5, 0.3)

c0 LPML DIC LPML DIC LPML DIC

0.5 −816.9 1615.4 −817.7 1616.5 −817.8 1617.2
1.0 −816.6 1614.9 −817.2 1616.0 −817.2 1616.6
1.5 −816.4 1614.3 −816.7 1615.3 −816.7 1616.0
2.0 −816.2 1614.1 −816.4 1615.0 −816.6 1615.5
2.5 −815.9 1613.7 −816.2 1614.6 −816.3 1615.1
3.0 −816.1 1614.0 −816.2 1614.8 −816.4 1615.4
3.5 −816.1 1614.4 −816.3 1615.1 −816.6 1615.8
4.0 −816.4 1614.8 −816.4 1615.5 −817.0 1616.1

10.0 −816.6 1615.4 −816.9 1615.9 −817.3 1616.5

for φl , l = 1,2, . . . ,G − 1. We specified the transition matrix as follows:

TR =

⎛
⎜⎜⎜⎜⎝

0.0 1.0 0.0 0.0 0.0
0.5 0.0 0.5 0.0 0.0
0.0 0.5 0.0 0.5 0.0
0.0 0.0 0.5 0.0 0.5
0.0 0.0 0.0 1.0 0.0

⎞
⎟⎟⎟⎟⎠ .

The dimension of model, G, is assumed to follow a Poisson distribution with
mean μG = 3 and truncated between 1 and 5. Also J is fixed to be 5. Under
the above setting, the posterior probabilities of G are computed and these are
P(G = 1|Dobs) = 0.0, P(G = 2|Dobs) = 0.224, P(G = 3|Dobs) = 0.534, P(G =
4|Dobs) = 0.242, and P(G = 5|Dobs) = 0.0, respectively. Therefore, the model
with G = 3 has the highest posterior model probability. This result is consistent
with the best model identified by the LPML and DIC measures shown in Table 2.
We also conducted a sensitivity analysis on the specification of μG in the prior
distribution for G. Specifically, we obtained that P(G = 1|Dobs) = 0.0, P(G =
2|Dobs) = 0.251, P(G = 3|Dobs) = 0.535, P(G = 4|Dobs) = 0.214, and P(G =
5|Dobs) = 0.0 for μG = 2, and P(G = 1|Dobs) = 0.0, P(G = 2|Dobs) = 0.162,
P(G = 3|Dobs) = 0.536, P(G = 4|Dobs) = 0.302, and P(G = 5|Dobs) = 0.0 for
μG = 4. Thus, the model with G = 3 consistently has the highest posterior model
probability for all three choices of μG.

In all the computations, we first generated 100,000 Gibbs samples with a burn-
in of 4000 iterations, and we then used 20,000 iterations obtained from every 5th
iteration for computing all posterior estimates, including posterior mean, poste-
rior standard deviation, 95% highest posterior density (HPD) intervals and LPML.
The computer codes were written in FORTRAN 95 using IMSL subroutines with
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double precision accuracy. The convergence of the MCMC sampling algorithm
was checked using several diagnostic procedures as recommended by Cowles and
Carlin (1996).

6. Discussions. In Section 5 we used LPML and DIC measures to assess the
goodness of fit of the models for different choices of G and J . LPML is a well-
established Bayesian model comparison criterion based on the conditional pre-
dictive ordinate (CPO) statistics, which is particularly suitable for the cure rate
models. Let CPOi denote the CPO statistic for the ith subject. LPML is defined as

LPML =
n∑

i=1

log(CPOi ).

The larger the LPML, the better the fit of a given model. Letting γ denote the
vector of all model parameters and L(γ |Dobs) the likelihood based on the observed
data Dobs, the DIC is defined as

DIC = Dev(γ̄ ) + 2pD,

where Dev(γ ) = −2 logL(γ |Dobs) is a deviance function, γ̄ is the posterior mean
of γ , pm = Dev(γ ) − Dev(γ̄ ), and Dev(γ ) is the posterior mean of Dev(γ ). For
the LCRM model, γ = (β, θ,φ,λ) and L(γ |Dobs) = L(β, θ,φ,λ|Dobs), which is
given by (10). The DIC is a Bayesian measure of predictive model performance,
which is decomposed into a measure of fit and a measure of model complex-
ity (pD). The smaller the value of DIC, the better the model will predict new
observations generated in the same way as the data. As discussed in Spiegelhal-
ter et al. (2002), DIC is the Bayesian version of the Akaike Information Criterion
(AIC) [Akaike (1973)]. Unlike AIC, the dimensional penalty in DIC is automati-
cally calculated without actually counting the number of parameters. Although the
dimensional penalty is not explicitly shown in LPML, LPML has a dimensional
penalty similar to AIC as derived by Gelfand and Dey (1994) based on the asymp-
totic approximation. Moreover, as discussed in Ibrahim, Chen and Sinha (2001),
the LPML measure is particularly suitable for comparing cure rate models, as the
moments do not exist under these models.

As discussed in Sections 1 and 2, there are several cure rate models for survival
data with a cure fraction recently developed in the literature. There is a distinct
difference between the proposed model and the existing ones. Specifically, the new
model is to no longer explain the cure fractions directly according to covariates
but to divide the population into latent classes characterized by specific cure rates
and being described according to covariates. This nice feature of the proposed
model allows us to develop the predictive classification algorithm for classifying
patients into different risk groups. The proposed mixture model falls within the
latent class modeling framework. The latent class models are commonly used for
analyzing complex sample survey data. For survey data, a latent class model is
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often used to explain unobservable categorical relationships or latent structures
that characterize discrete multivariate data [Dayton (1999), Agresti (2002) and
Patterson, Dayton and Graubard (2002)]. Recently, latent class models have been
developed for survival data. Lin et al. (2002) proposed latent class models for
joint longitudinal and survival data. They assumed a Cox proportional hazards
model with time-varying covariates for the survival endpoint and each latent class
represents certain pattern of longitudinal and event-time responses. Larsen (2004)
extended the Cox model to encompass a latent class variable (an indicator of the
unobserved status of health or functioning) as predictor of time-to-event. However,
the literature on the latent class model for survival data with a cure fraction is still
sparse. Based on the subset of the data published in D’Amico et al. (2002), we
showed in Section 5 that the proposed model with three latent cure rate markers
fits the data best based on LPML, DIC and the reversible jump of Green (1995).
This finding is consistent with the prostate cancer literature, as the three risk groups
are routinely used in the prostate cancer clinical practice.

Although the proportional hazards (PH) assumption is assumed for the cumu-
lative hazard function H(y) for noncured subjects in (5), the resulting survival
function is not PH due to the nature of the mixture model. To examine the PH
assumption, we first considered the generalized odds-rate hazards (GORH) model
discussed in Banerjee et al. (2007). We then compared various GORH models for
H(y) based on the LPML and DIC measures to see whether a PH model for H(y)

is appropriate. The results, which are available in Kim, Xi and Chen (2009), empir-
ically confirm that the PH assumption for H(y) may be appropriate for the prostate
cancer data discussed in Section 1.

In Section 5, the covariates considered include only PSA, biopsy Gleason score,
clinical tumor category and year of RP due to the limitation of the prostate cancer
data we had. However, it will not add much additional computational difficulty
to incorporate more covariates into the proposed model. Unlike D’Amico et al.
(1998, 2002), the proposed model does not require any prespecified cutoff values
of the covariates in classifying patients into different risk groups. The proposed
method is potentially useful in clinical applications as it allows doctors to include
as many important covariates as possible, some of which may be discovered later
on due to medical advances, for obtaining a more accurate risk classification.

In the LCRM model, we assume that there are G unknown latent θgi
’s. Instead

of the latent class model, we may assume a mixture of the Dirichlet Process (MDP)
model discussed in Ibrahim, Chen and Sinha (2001) for the cure rate parameters.
Specifically, we assign an unknown θi to each subject and then assume a Dirichlet
Process prior for θi . In Section 2.2, we assume a piecewise exponential model for
the baseline hazard function h0(y). One possible extension to this is to assume a
gamma process prior for h0(y), which leads to a semiparametric LCRM model.
These two extensions of the LCRM model are currently under investigation.
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APPENDIX: PROOFS OF THEOREMS

PROOF OF THEOREM 1. After summing out N and g, we have

π(β, θ,φ,λ|Dobs) ∝ π∗(β, θ,φ,λ|Dobs)

= L(β, θ,φ,λ|Dobs)

×
[

J∏
j=1

λ−1
j

][
G∏

k=1

θ
ak−1
k exp(−bkθk)

]
π(φ),

where L(β, θ,φ,λ|Dobs) is given by (10). It suffices to show that∫
π∗(β, θ,φ,λ|Dobs) dβ dθ dφ dλ < ∞.(A.1)

It is easy to show that

L(β, θ,φ,λ|Dobs)

≤ ∏
{i : νi=1}

θG exp

{
x′
iβ +

J∑
j=1

δij logλj − exp(x′
iβ)H ∗

0 (yi)

}
.

Using condition (iv), we can show

∫
θd
G

[
G∏

k=1

θ
ak−1
k exp(−bkθk)

]
π(φ) dθ dφ < ∞

due to the constraints, 0 < θ1 < θ2 < · · · < θG, and the condition, ak > 0 and
bk ≥ 0, for k = 1,2, . . . ,G − 1. Let

π∗(β,λ|Dobs) =
[ ∏

{i:νi=1}
exp

{
x′
iβ +

J∑
j=1

δij logλj − exp(x′
iβ)H ∗

0 (yi)

}]

×
[

J∏
j=1

λ−1
j

]
.

In order to establish (A.1), we only need to prove∫
π∗(β,λ|Dobs) dβ dλ < ∞.(A.2)

Consider the transformation uj = log(λj ), and let u = (u1, . . . , uJ )′. Then, dλj =
λjduj , j = 1,2, . . . , J , and

π∗(β,u|Dobs) = π∗(β,λ|Dobs)

∣∣∣∣∂(λ1, λ2, . . . , λJ )

∂(u1, u2, . . . , uJ )

∣∣∣∣
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=
J∏

j=1

∏
{i : νi=1}

(
{exp(uj + x′

iβ)}δij

× exp

{
−δij exp(x′

iβ)

×
[

exp(uj )(yi − sj−1)

+
j−1∑
l=1

exp(ul)(sl − sl−1)

]})
.

Letting δiji
= 1 and δij = 0 for j �= ji , we have

π∗(β,u|Dobs) ≤ π∗∗(β,u|Dobs)

= ∏
{i : νi=1}

exp(uji
+ x′

iβ) exp{−(yi − sji−1) exp(uji
+ x′

iβ)},

and it suffices to show that
∫

π∗∗(β,u|Dobs) dβ du < ∞. We rewrite π∗∗(β,

u|Dobs) as

π∗∗(β,u|Dobs)

=
J∏

j=1

∏
{i : νi=1,ji=j}

exp(uj + x′
iβ) exp{−(yi − sj−1) exp(uj + x′

iβ)}

= ∏
j �=j∗

∏
{i : νi=1,ji=j}

exp(uj + x′
iβ) exp{−(yi − sj−1) exp(uj + x′

iβ)}

× ∏
{i : νi=1,ji=g∗}

exp(uj + x′
iβ) exp{−(yi − sj−1) exp(uj + x′

iβ)}.

Since dj ≥ 1, there exists sj−1 < yij ≤ sj for j �= j∗. Thus,∏
j �=j∗

∏
{i : νi=1,ji=j}

exp(uj + x′
iβ) exp{−(yi − sj−1) exp(uj + x′

iβ)}

≤ K1
∏

j �=j∗
exp(uj + x′

ij
β) exp{−(yij − sj−1) exp(uj + x′

ij
β)},

where K1 > 0 is a constant, and∫ ∏
j �=j∗

∏
{i : νi=1,ji=j}

exp(uj + x′
iβ) exp{−(yi − sj−1) exp(uj + x′

iβ)}

×
( ∏

j �=j∗
duj

)
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≤ K2
∏

j �=j∗

∫ ∞
−∞

exp(uj + x′
ij
β) exp{−(yij − sj−1) exp(uj + x′

ij
β)}duj

= K2
∏

j �=j∗
(yij − sj−1)

−1,

where K2 > 0 is a constant. For j = j∗, without loss of generality, we as-
sume yi∗1 , . . . , yi∗p+1

∈ (sj∗−1, sj∗], and X∗
j∗ , which has the lth row (1,x′

i∗l
), 
 =

1, . . . , p + 1, is of full rank. Therefore,∏
{i : νi=1,ji=j∗}

exp(uj∗ + x′
iβ) exp{−(yi − sj∗−1) exp(uj∗ + x′

iβ)}

≤ K3

p+1∏
l=1

exp{u∗
j + x′

i∗l
β} exp{−(yi∗l − sj∗−1) exp(u∗

j + x′
i∗l

β)},

where K3 > 0 is a constant. Now consider the transformation w = (w1, . . . ,

wp+1)
′ ≡ X∗

g∗
(uj∗

β

)
, which is a one-to-one transformation. We have

∫
Rp+1

p+1∏
l=1

exp(uj∗ + x′
il∗ β) exp{−(yi∗l − sj∗−1) exp(uj∗ + x′

il∗ β)}duj∗ dβ

∝
∫
Rp+1

p+1∏
l=1

exp(wl) exp{−(yi∗l − sj∗−1) exp(wl)}dwl

=
p+1∏
l=1

(yi∗l − sj∗−1)
−1.

Therefore,

∫
Rp+J

π∗∗(β,u|Dobs) dβ du ≤ K

( ∏
j �=g∗

(yij − sj−1)
−1

)(p+1∏
l=1

(yi∗l − sj∗−1)
−1

)

< ∞,

where K > 0 is a constant. This completes the proof. �

PROOF OF THEOREM 2. It is sufficient to show that P(gnew = k|β, θ,φ,λ, t,

xnew, znew,G) for k = 1 (k = G) increases (decreases) in t . We can rewrite the
conditional predictive probability in (18) as

P(gnew = k|β, θ,φ,λ, t,xnew, znew,G)

= exp(z′
newφk)∑G

l=1 exp(z′
newφl) exp(−(θl − θk)[1 − exp{− exp(x′

newβ)H ∗
0 (t)}]) .
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Since H ∗
0 (t) is an increasing function of t , θl − θ1 > 0 for l > 1, and θl − θG < 0

for l < G. Thus, p̂(k|t,xnew, znew,G) increases in t for k = 1 and decreases in t

for k = G. �
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SUPPLEMENTARY MATERIAL

Checking the proportional hazards assumption and computational devel-
opment (DOI: 10.1214/08-AOAS238SUPP; .pdf). In online supplementary ma-
terial we provide the empirical results for checking the proportional hazards
assumption and the description of the Markov chain Monte Carlo (MCMC) sam-
pling algorithm for a fixed G and the detailed development of the reversible jump
MCMC.
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