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Spatially explicit data layers of tree species assemblages, referred to as
forest types or forest type groups, are a key component in large-scale assess-
ments of forest sustainability, biodiversity, timber biomass, carbon sinks and
forest health monitoring. This paper explores the utility of coupling georef-
erenced national forest inventory (NFI) data with readily available and spa-
tially complete environmental predictor variables through spatially-varying
multinomial logistic regression models to predict forest type groups across
large forested landscapes. These models exploit underlying spatial associa-
tions within the NFI plot array and the spatially-varying impact of predictor
variables to improve the accuracy of forest type group predictions. The rich-
ness of these models incurs onerous computational burdens and we discuss
dimension reducing spatial processes that retain the richness in modeling. We
illustrate using NFI data from Michigan, USA, where we provide a compre-
hensive analysis of this large study area and demonstrate improved prediction
with associated measures of uncertainty.

1. Introduction. Forest type is a classification of forestland based on the plu-
rality of species of all live trees that contribute to stocking. Stocking, in turn, is a
measure of actual forest stand density relative to the density considered optimal for
a desired purpose, such as site occupancy or volume growth [Stage (1969)]. A for-
est type group (FTG) is an assemblage of forest cover types that share closely
associated forest species or site requirements.

Forest area by tree species composition classes, such as forest types and FTGs,
has received increased attention in recent years as an indicator of forest sustain-
ability and biodiversity. The Ministerial Conference on the Protection of Forests
in Europe (MCPFE 2008: http://www.mcpfe.org) includes area by forest type as
an indicator for a criterion related to maintaining forest resources, and the Mon-
tréal Process (Montréal Process 2005: www.rinya.maff.go.jp/mpci) includes the
same indicator for criterion related to maintaining ecosystem biodiversity and for-
est productivity. Action E43 (Harmonization of the national forest inventories of
Europe) (COST E43 2007: www.metla.fi/eu/cost/e43) of the European program
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of Cooperation in the field of Scientific and Technical Research has selected for-
est type as a core variable for biodiversity assessments. Commercial enterprises in
North American, Mediterranean, central European and Nordic countries also rely
on spatially explicit regional and national forest assessments by type to support de-
cisions regarding establishment or expansion of facilities (e.g., paper mills) and for
long-term forecasts of wood fiber supplies for burgeoning energy bioeconomies.

National forest inventories (NFI) conducted in North America, Europe and else-
where are the most important sources of comprehensive information for assessing
FTGs for large geographic domains. Because complete enumerative inventories
are prohibitively expensive, NFIs sample populations of interest and report plot-
based estimates of forest resources. For valid sampling designs and correspond-
ing estimators, these plot-based approaches produce asymptotically unbiased esti-
mates of area by forest types and FTGs. However, these approaches are unable to
depict spatial distributions of forest attributes and do not easily incorporate ancil-
lary variables or complex spatial dependence structures to improve the accuracy
and precision of parameter estimates and/or prediction. Therefore, model-based
approaches to mapping are attracting greater interest. Natural resource mapping
initiatives typically entail constructing statistical models of relationships between
land cover attributes and variables including soil, climatic, topographic and satel-
lite image spectral variables. These models are then used to produce digital data
layers of small-area spatially explicit prediction across large domains, which ulti-
mately support the end-user analyses described above.

Spatial process models [e.g., Cressie (1993); Stein (1999)] to analyze NFI data
have, hitherto, focused largely upon continuous outcomes such as prediction of
biomass [e.g., Finley et al. (2008a)]. A classic paper by Diggle, Tawn and Moyeed
(1998) discussed the use of spatial process models for non-Gaussian data within
the framework of generalized linear models. Heagerty and Lele (1998) consid-
ered a composite likelihood approach to binary spatial regression. Recently, Fin-
ley, Banerjee and McRoberts (2008b) explored a spatial logistic regression model
to predict forested areas. Our data here concerns categorical (seven FTG’s) rather
than binary outcomes. Furthermore, realizations of a given FTG will exhibit dif-
ferent composition and proportion of species. For instance, two oak dominated
plots assigned to the oak/hickory FTG might have different water or temperature
requirements due to the type of oak species present and proximity along envi-
ronmental gradients (e.g., springtime water availability or minimum annual tem-
perature). We, therefore, find it attractive to allow the regression coefficients to
vary by location, envisioning a spatial surface associated with each coefficient. For
instance, we could model the spatial surface for the coefficient parametrically—
using perhaps a polynomial surface function. Such specifications are often too
arbitrary and may lead to a range of surfaces too inflexible for our purposes. In
related work, Fahrmeir and Lang (2001) and Kneib and Fahrmeir (2006) consider
semiparametric regression with splines and Markov random fields to model spa-
tial effects. Modeling multiple regression coefficient processes jointly, however,
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would require multivariate specifications of splines that may be awkward. Instead,
we treat each regression coefficient surface as a realization from a continuous spa-
tial process. A multivariate spatial process is arguably more natural and at least as
flexible here.

We use spatially-varying multinomial logistic regression models to exploit,
more fully, the spatial proximity of the NFI plot array and the potentially spatially-
varying impact of the predictor variables on the response to improve the accu-
racy and precision of FTG prediction at locations where we have observed pre-
dictors but not inventory plots. We also encounter a large number of locations
that make full inference computationally onerous. Modeling large spatial datasets
has received much recent attention (see Section 4), but many of the existing ap-
proaches are unsuitable for our coefficient processes. We discuss how a low-rank
spatial process can be adapted to model the regression coefficients and achieve
computational feasibility.

While most of the models we formulate can possibly be estimated using maxi-
mum likelihood or variants thereof, we adopt a Bayesian approach [e.g., Gelfand
et al. (2003)]. This is attractive, as it offers exact inference for the random spatial
coefficients, and that too with non-Gaussian data, by delivering an entire poste-
rior distribution at both observed and unobserved locations. Spatial interpolation
for processes that are neither observed nor arise as residuals appears inaccessi-
ble with classical likelihood-based methods. On the other hand, Bayesian model
fitting involves rather specialized Markov chain Monte Carlo (MCMC) methods
[see, e.g., Robert and Casella (2005)] that raise concerns about computational ex-
pense and reproducibility of inference. These concerns have, however, started to
wane with the delivery of relatively simpler R packages (www.r-project.org), in-
cluding mcmc, MCMCpack, geoRglm and spBayes, that help automate such
methods and diagnose convergence.

While our primary contribution here lies in the novel application, we also offer
several methodological advancements. As mentioned earlier, we extend existing
spatial logistic models to spatially-varying multinomial regression models. This
involves multivariate spatial processes (one for each regression coefficient) that
we wish to model jointly. This approach is similar to Gelfand et al. (2003), but,
unlike there, we allow each coefficient process to have its own spatial correlation
structure. We achieve this using linear transformations of independent processes.
This idea has been used elsewhere [e.g., Finley et al. (2008a)] to model multivariate
continuous outcomes, but not completely unobserved coefficient processes as we
attempt here.

The remainder of the article proceeds as follows. Section 2 provides an overview
of the NFI data and study area used to illustrate our proposed methods. These
descriptions are followed by a brief preliminary analysis, the results of which help
motivate the models and methods presented in Sections 3 and 4. The full analysis
of these NFI data using the proposed models is detailed in Section 5. In Section 6
we present and discuss the results of this analysis. Finally, Section 7 concludes the
paper with a brief summary and description of future direction and work.

http://www.r-project.org
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2. Data. The Forest Inventory and Analysis (FIA) program of the U.S. For-
est Service conducts the NFI of the USA. The program has established field plot
centers in permanent locations using a sampling design that produces an equal
probability sample [Bechtold and Patterson (2005)]. The sampling design is based
on a tessellation of the USA into approximately 2400 ha hexagons and features a
permanent plot at a randomly selected location within each hexagon. The State of
Michigan in which the study area is located provided additional funding to triple
the sampling intensity to approximately one plot per 800 ha. Each plot consists of
four 7.32 m radius circular subplots for a total area of 672 m2. The subplots are
configured as a central subplot and three peripheral subplots with centers located
at 36.58 m and azimuths of 0◦, 120◦ and 240◦ from the center of the central sub-
plot. In general, locations of forested or previously forested plots are determined
using global positioning system receivers, whereas locations of nonforested plots
are verified using aerial imagery and digitization methods.

Field crews observe species and measure diameter at-breast-height (dbh)
(1.37 m) and height for all trees with dbh of 12.7 cm or greater and assign forested
portions of subplots to forest types based on visual assessments. Forest types are
also assigned to forest portions of subplots using algorithms based on measures
of density and stocking calculated from species observations and diameter and
height measurements of all plot trees. To mitigate the effects of plot location er-
rors and eliminate the difficulties associated with plots to which multiple FTGs
were assigned, we use only the central subplot to which a single FTG had been
assigned.

2.1. Study area. The study area is the 79,094.17 km2 forested land of Michi-
gan. Due to proximity to the Great Lakes and numerous episodes of glaciation,
this region exhibits a host of climate and soil characteristics that have produced di-
verse forest communities. Precipitation and temperature extremes are well-known
factors in determining spatial patterns of forest species composition in the Great
Lakes states [Albert (1995)]. Therefore, the predictor variables we consider in-
clude a set of long-term climate data and a soil drainage index. We obtained raster
data layers of mean annual precipitation (PRECIP), temperature minimum (TMIN)
and temperature maximum (TMAX) over the period 1971–2000, and average an-
nual snowfall (SNOW) over the period of 1961–1990. These data were generated
by the PRISM climate mapping project [Daly et al. (2000)]. Recently, Henne, Hu
and Cleland (2007) showed that from a suite of long-term monthly climate and
soil composition variables, lake-effect snowfall abundance contributes the most to
explaining spatial variation in mesic tree species (i.e., species such as sugar maple
or beech that are found on sites with moderate soil moisture) within the Lake State
region. These authors also suggest that spring lake-effect snow provides moisture
to course-textured xeric soil, allowing mesic forest types to become established on
these otherwise droughty soils. The long-term climate patterns and soil character-
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istics affect tree species survival and influence the assemblage of species found on
a given site [Host et al. (1988)].

The soil drainage index (DI) raster data layer was formulated to mimic the quan-
tity of water present in a soil and is available to plants under normal, long-term
climatic conditions, including water under saturated and unsaturated conditions
[Schaetzl (1986)]. The DI variable ranges from 0 for the driest soils to 99 for open
water. The PRISM data layers were originally generated at ∼0.8×0.8 km pixel
resolution, but were resampled to match the 30×30 m resolution of the DI data
layer. We make this simplifying assumption because the disparity between the data
layer resolution is small compared to the distance between FIA plot observations.
Finally, all predictor data layers were reprojected to share the projection of the geo-
referenced forest inventory plots (Figure 1). Here we see strong spatial dependence
among the predictor variables, for instance, north to south gradients in precipita-
tion and temperature extremes and gradients in mean temperature minimum and
mean snow depth that are perpendicular to the shorelines.

Figure 2(a) illustrates the georeferenced forest inventory data consisting of 5180
forested FIA plots measured between 1999 and 2006 that meet our inclusion
criterion. For this analysis, the FTGs of interest and associated relative percent
observed across the inventory plots are white/red/jack pine (10.89%), spruce/fir
(14.56%), oak/pine (2.86%), oak/hickory (12.92%), elm/ash/cottonwood (6.60)%,
aspen/birch (16.99%), and maple/beech/birch (35.19%). The left column in Fig-
ures 3 and 4 offers interpolated surfaces of the FTGs. Note that interpolation is over
binary values that indicate the presence and absence of the given FTG. The sur-
faces show strong spatial patterns in FTG range and extent.

2.2. Preliminary analyses. We index the georeferenced FIA plots as S =
{s1, . . . , sn}, where s is a coordinate vector (e.g., longitude and latitude), and use a
binary outcome Y(si ) = 1 or 0 to indicate the presence or absence of a given FTG
for each location in S which depends, in part, upon predictors/regressors x(s) for a
generic plot s. Given this setting, a logistic regression model is the natural choice
for relating the outcome to its predictors. It is, however, unrealistic to assume that
the model parameter values associated with the predictor variables are constant
across the study area. As noted in Section 1, FTGs are not true categorical variables
because they are based on somewhat artificial levels of continuous variables, such
as stocking and proportions of species. For instance, plots labeled aspen/birch will
exhibit a continuum of aspen and birch tree species composition (e.g., from pure
aspen to pure birch). Although we expect the assemblage of tree species within a
given FTG to generally occur together due to shared environmental requirements,
the observed realization of the FTG across the landscape will exhibit some level of
heterogeneity in species composition. As described above, this is a large domain
that contains several broad climate, soil origin and topographic gradients. There-
fore, within a given FTG, we expect regionalized inter-species and intra-species
(e.g., genetic adaptation) response to predictor variables.
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(a) Mean annual precipitation (b) Mean annual temperature max

(c) Mean annual temperature min

(d) Soil drainage index (e) Mean annual snow depth

FIG. 1. Surfaces of the mean zero and unit variance standardized predictor variables resampled to
a 30×30 meter resolution across the domain. Lighter colors correspond to higher values.

We pose a simple-minded analysis to explore variation or, more specifi-
cally, the nonstationarity of predictor variables’ parameter estimates for the pres-
ence/absence of a single FTG. We tessellate the domain such that each tessera
holds some minimum number of FIA plots, say, 10, then include a tessera random
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(a) FIA plots (b) Maple/beech/birch FTG plots

(c) Predictive process knots

FIG. 2. Forest inventory plot locations, plots locations belonging to the maple/beech/birch FTG,
and candidate predictive process knot configuration.

effect on each predictor variable. For this analysis the domain was covered with
68 hexagon tessera indexed by k = 1, . . . ,68. For a given generic location s the
logistic regression model is given by

p(s) = exp(x(s)′β̂(s))

1 + exp(x(s)′β̂(s))
,(2.1)

where p(s) is the probability that location, or inventory plot, s belongs to the
given FTG, x(s) is a p × 1 vector that holds an intercept and our set of regres-
sors/predictors which include long-term climate and soil variables (detailed in Sec-
tion 2.1), and β̂(s) are tessera varying coefficients. We can decompose the adap-
tive β̂(s) = β + uk , where uk is the kth tessera’s vector of random effects (i.e.,

the tessera within which the given s falls). We assume that uk
ind∼ MVN(0,�) is a

multivariate normal distribution and, for simplicity, � = diag[τ 2
i ]p1=i . This model

was fit for each FTG. We assume that the β’s have flat prior distributions and the
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(a) Observed white/red/jack pine (b) Fitted white/red/jack pine

(c) Observed spruce/fir (d) Fitted spruce/fir

(e) Observed oak/pine (f) Fitted oak/pine

FIG. 3. Interpolated surfaces of the observed and 200 knot spatially-varying coefficients model’s
fitted FTGs. For the observed surfaces the interpolation is over the 0 or 1 binary variable of FTG
presence/absence and the fitted surfaces are over the probability of FTG occurrence. Lighter colors
correspond to higher values. The remaining FTG and associated fitted values are offered in Figure 4.

τ 2’s follow an inverse-Gamma (IG) with hyperparameters IG(2,1). Note, with a
shape value of 2, the IG distribution has infinite variance and is centered on the
scale value, which in this case is 1. We experimented with a range of scale values
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(a) Observed oak/hickory (b) Fitted oak/hickory

(c) Observed elm/ash/cottonwood (d) Fitted elm/ash/cottonwood

(e) Observed aspen/birch (f) Fitted aspen/birch

FIG. 4. Interpolated surfaces of the observed and 200 knot spatially-varying coefficients model’s
fitted FTGs. For the observed surfaces the interpolation is over the 0 or 1 binary variable of FTG
presence/absence and the fitted surfaces are over the probability of FTG occurrence. Lighter colors
correspond to higher values.

but saw negligible change in the final parameter estimates. Three MCMC chains
of 75,000 iterations were run for each model. Then posterior inference was based
on 3 × 50,000 = 150,000 post burn-in samples.
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TABLE 1
Parameter credible intervals for the red/white/jack pine (RWJ) and spruce/fir (SF) FTGs for the

hexagon specific random effects models

Parameter 2.5% 50% 97.5% Parameter 2.5% 50% 97.5%

βRWJ; 0 −2.06 −1.76 −1.50 τ2
RWJ; 0 0.27 0.46 0.75

βRWJ; PRECIP −0.55 −0.19 0.18 τ2
RWJ; PRECIP 0.24 0.41 0.68

βRWJ; TMAX −0.19 0.12 0.44 τ2
RWJ; TMAX 0.32 0.52 0.94

βRWJ; TMIN −0.75 −0.43 0.03 τ2
RWJ; TMIN 0.14 0.34 0.86

βRWJ; SDI −1.02 −0.76 −0.47 τ2
RWJ; SDI 0.45 0.66 0.98

βRWJ; SNOW −0.69 −0.40 −0.02 τ2
RWJ; SNOW 0.17 0.26 0.42

βSF; 0 −2.47 −2.15 −1.89 τ2
SF; 0 0.22 0.41 0.63

βSF; PRECIP −0.88 −0.53 −0.23 τ2
SF; PRECIP 0.19 0.31 0.50

βSF; TMAX −1.27 −0.85 −0.45 τ2
SF; TMAX 0.22 0.41 0.74

βSF; TMIN −1.31 −0.84 −0.49 τ2
SF; TMIN 0.19 0.33 0.60

βSF; SDI 1.57 1.79 2.10 τ2
SF; SDI 0.16 0.30 0.56

βSF; SNOW −0.74 −0.40 −0.02 τ2
SF; SNOW 0.15 0.26 0.42

For brevity, Table 1 shows only parameter estimates for white/red/jack pine
and spruce/fir FTGs. Several predictor variables’ parameter estimates for these
and the other FTGs are significant at the 0.05 level. Also, the relative magni-
tude of the variance terms suggests that we should consider models that explicitly
accommodate spatial nonstationarity of β . This idea is further supported by the
presence of clustering seen in maps of β specific random effects; see, for exam-
ple, maps for red/white/jack pine FTG in Figure 5. Similar clustering patterns are
seen when mapping the u for the other FTGs as well. Given dependence struc-
tures capable of modeling this potential spatial nonstationarity, we will improve
model fit and predict FTG with greater accuracy and precision across the study
area.

3. Models.

3.1. Spatially-varying multinomial logistic regression models. As described
in Section 1, using the tree species composition and relative stocking, FTGs are
assigned to inventory plots. Our initial interest lies in modeling the probability of a
given plot belonging to a specific FTG. We can obtain these probabilities by using
J − 1 baseline-category logistic regressions models [e.g., Agresti (2002), Chap-
ter 7]. For a generic location s, we consider J − 1 binary outcome variables such
that Yj (s) = 1 if the given plot belongs to the j th FTG, j = 1, . . . , J − 1, and 0
if it belongs to the J th (baseline) FTG. The spatially-varying baseline-category
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(a) uRWJ; 0 (b) uRWJ; PRECIP

(c) uRWJ; TMAX (d) uRWJ; TMIN

(e) uRWJ; SDI (f) uRWJ; SNOW

FIG. 5. Hexagon specific intercept and predictor variable random effects for the red/white/jack
pine (RWJ) FTG (values scaled by 100).

logistic regressions yield

πj (s) = exp(xj (s)′β̃j (s))

1 + ∑J−1
k=1 exp(xk(s)′β̃k(s))

,(3.1)
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where πj (s) is the probability that location s belongs to the j th FTG, xj (s) was
defined previously, and β̃(s) denotes spatially-varying coefficients. Then, given the
J − 1 models, the set of probabilities for s are completed by calculating πJ (s) =
1 − ∑J−1

j=1 πj (s). The baseline category is customarily set to the most commonly
occurring and spatially pervasive FTG.

We decompose the coefficients as β̃j (s) = βj + wj (s), where βj ’s represent
the nonspatial regression coefficients, as in customary logistic regression, while
wj (s) is a multivariate spatial process. More generally, we can write the regression
component as xj (s)′β + zj (s)′wj (s), where zj (s) = xj (s) for a fully spatially-
varying coefficients candidate model, or could be a subvector of xj (s) representing
those predictors whose impact is posited to vary spatially; for instance, a spatially
varying intercept model will correspond to zj (s) being equal to 1. In principle,
we could further hypothesize dependence across the j categories. This, however,
is not intuitive in our context and further complicates the modeling without clear
gains. Hence, we assume wj (s)’s are independent across j , but each wj (s) is a
vector of correlated processes.

3.2. Multivariate process models. Multivariate spatial processes, such as each
wj (s), are completely characterized by their mean and a cross-covariance (matrix)
function (suppressing the suffix on categories), Cw(s1, s2; θ) = cov{w(s1),w(s2)}.
Valid constructions using convolutions of kernels or correlation functions are pos-
sible [Ver Hoef and Barry (1998); Gaspari and Cohn (1999)]. An attractive, easily
interpretable and flexible approach develops versions of the linear model of core-
gionalization (LMC) as in, for example, Grzebyk and Wackernagel (1994), Wack-
ernagel (2006), Schmidt and Gelfand (2003) or Gelfand et al. (2004). See, also,
Reich and Fuentes (2007) for a Bayesian nonparametric adaptation.

In the LMC approach we let w(s) = A(s)v(s) be a spatial linear transfor-
mation, where v(s) = (v1(s), . . . , vp(s))′ and each vi(s) is an independent spa-
tial process with unit variance and correlation function ρi(s1, s2; θ i ). Thus, v(s)
has a diagonal cross-covariance matrix Cv(s1, s2) with ith diagonal element
as ρi(s1, s2; θ i ) yielding a valid nonstationary cross-covariance Cw(s1, s2) =
A(s1)Cv(s1, s2)A(s2)

′ for w(s). A flexible choice for each ρi(s1, s2; θ i ) is the
Matérn correlation function, which allows control of spatial range, φ, and smooth-
ness, ν [Stein (1999)] and is given by

ρ(s, s′;φ, ν) = 1

2ν−1	(ν)
(‖s − s′‖φ)νKν(‖s − s′‖;φ);(3.2)

φ > 0, ν > 0.

In general, w(s) is nonstationary even when v(s) is stationary. When A(s) =
A, w(s) inherits stationarity from v(s): Cw(s1 − s2) = ACv(s1 − s2)A′. Since
Cw(s1, s2) = A(s1)A(s2)

′, one can assume that A(s) = C1/2
w (s, s) is a lower-

triangular square-root; the one-to-one correspondence between the elements of
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A(s) and Cw(s, s) is well known [e.g., Harville (1997), page 229]. Stationarity
implies A(s) = A and that Cw(0) = AA′. Here we could either assign a prior, for
example, inverse Wishart, to AA′ or could further parameterize it in terms of eigen-
values and the Givens angles which are themselves assigned hyperpriors [Daniels
and Kass (1999)].

Once a valid cross-covariance function is specified for a multivariate Gaussian
process, the realizations of w(s) over the set of observed locations S is given by
N(0,
w(θ)), where 
w(θ) is an np × np block matrix whose (i, j)th block is
the p × p cross-covariance Cw(si , sj ; θ), i, j = 1, . . . , n. Without further specifi-
cations, estimating (3.1) will involve computing the inverse and determinant of the
dense matrix 
w(θ). Such computations invoke solvers or factorizations of com-
plexity O(n3p3), not once but iteratively, to produce estimates of θ . With large n,
this is computationally infeasible.

4. Multivariate process models for large datasets. Modeling large spatial
datasets observed over irregular locations has received much attention in the re-
cent past. One approach employs spectral approximations to the likelihood [e.g.,
Stein (1999) and references therein; Fuentes (2002)], thereby avoiding large matrix
computations [Paciorek (2007); Fuentes (2007)]. This works best assuming some
form of stationarity and does not easily adapt to multivariate coefficient processes.
Stein, Chi and Welty (2004) improve upon an idea of Vecchia (1988) [also, see
Jones and Zhang (1997)] that approximates the likelihood with a product of appro-
priate conditional distributions. This yields a joint distribution, but not a process;
hence, spatial interpolation is somewhat cumbersome. While promising, it is yet
to be methodically explored for non-Gaussian and multivariate likelihoods such
as ours. Yet another approach, known as “covariance tapering,” considers com-
pactly supported correlation functions [Furrer, Genton and Nychka (2006); Gneit-
ing (2002)] that yield sparse correlation matrices. Efficient sparse solvers can then
be devised for kriging and variance estimation, but these tapered functions may
limit the scope of the models; also, full likelihood-based inference still requires
determinant computations that may not be easily available. Recently Rue, Mar-
tino and Chopin (2009) propose a promising INLA (Integrated Nested Laplace
Approximation) algorithm as an alternative to MCMC that delivers fast posterior
approximations. The method’s efficiency depends upon a Gaussian Markov ran-
dom field approximation and may not be ideal with several hyperparameters (e.g.,
the matrix A) such as ours.

4.1. Predictive process models. In principle, we might have adapted any of
the above approaches to reduce the dimensionality of our model. Seeking a more
seamless transition to multivariate processes, however, we opt for a class of mod-
els that emerges from representations of the spatial process in a lower-dimensional
subspace and easily adapt to multivariate processes. These are often referred to as
“low-rank” or “reduced-rank” spatial models and have been explored in different
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contexts [Lin et al. (2000); Stein (2007, 2008); Cressie and Johannesson (2008);
Banerjee et al. (2008); Crainiceanu, Diggle and Rowlingson (2008)]. Many of
these methods are variants of the so-called “subset of regressors” methods used in
Gaussian process regressions for large data sets in machine learning [e.g., Wahba
(1990); Rasmussen and Williams (2006) and references therein]. The idea here
is to consider a set of locations, or “knots,” say, S ∗ = {s∗

1, . . . , s∗
n∗}, where the

number of knots is much smaller than the number of observed locations, and
to represent the spatial process realizations over S in terms of the realizations
over the smaller set of knots. Specifically, we define w̃(s) = C(s; θ)′
∗

w(θ)−1w∗,
where C(s; θ)′ is the p × n∗p block matrix with Cw(s, s∗

j ) being the j th block,

∗

w(θ) is the n∗p × n∗p block matrix whose (i, j)th block is Cw(s∗
i , s∗

j ) and
w∗ = (w(s∗

1)
′, . . . ,w(s∗

n)
′)′ denotes a realization of the process w(s) over S ∗.

Banerjee et al. (2008) call w̃(s) the predictive process derived from the parent
process w(s). The appeal behind this formulation is that every spatial process (par-
ent) model produces a corresponding predictive process model. In our subsequent
models, we will assume a stationary cross-covariance for the parent process, that
is, Cw(s1 − s2) = ACv(s1 − s2)A′ and, in particular, Cw(s, s) = Cw(0) = AA′; the
predictive process will still be nonstationary.

The dimension reduction is seen immediately. In fitting the predictive process
counterparts of (3.1), the np × 1 vector w = (w(s1)

′, . . . ,w(sn)
′)′ is replaced by

Z(θ)w∗, where Z(θ) = C(θ)′
∗(θ)−1 with C(θ)′ being an np × n∗p block matrix
with Cw(si , s∗

j ) as its (i, j)th block. Therefore, Z(θ) is np×n∗p and we work with
an n∗p-dimensional joint distribution only. Evidently, the parent model in (3.1) is
different from its predictive process counterpart. Hence, though we introduce the
same set of parameters in both models, they will not be identical. This approach
leads to a different parameterization from that of low-rank smoothing splines [e.g.,
Lin et al. (2000); Kamman and Wand (2003); Crainiceanu, Diggle and Rowlingson
(2008)], but yields the same joint marginal distribution for process realizations.

Stein (2007, 2008) undertakes an exploration of a subset of regressors methods,
pointing out its pitfalls for data with fine-scale variation—a consequence, perhaps,
of the fact that information for the covariances tends to concentrate at shorter lags.
Indeed, the predictive process tends to oversmooth and also underestimates the
spatial variance component. For multivariate processes, this follows from the fol-
lowing inequality:

var{w(s)} − var{w̃(s)} = Cw(s, s) − C(s, θ)′
∗(θ)
−1C(s, θ)

= var{w(s)|w∗} � 0,

where var{·} denotes the variance–covariance matrix and � 0 indicates non-
negative definiteness. Equality holds only when the knots coincide with the spa-
tial locations, whence the predictive process realizations coincide with those from
the parent process. The univariate analogue of the above argument shows that
var(w̃k(s)) ≤ var(wk(s)) for each element k = 1, . . . , p.
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A remedy for the bias is to add a spatially-varying noise to form w̃ε̃(s) =
w̃(s)+ ε̃(s), where ε̃(s)

ind∼ N(0,Cw(s, s)− C(s, θ)′
∗(θ)−1C(s, θ)). This “correc-
tion” yields var{w̃ε̃(s)} = var{w(s)} as desired and E{w̃ε̃(s)|w∗} = w̃(s), so w̃ε̃(s)
inherits the attractive approximation properties of w̃(s). Also, no new parameters
are introduced, ensuring identifiability, and the computational benefits are retained
since ε̃ = (ε̃(s1)

′, . . . , ε̃(sn)
′)′ has a block-diagonal variance–covariance matrix.

In typical geostatistical models for continuous outcomes, ε̃(s) is referred to as the
“nugget” and is used to capture measurement error or micro-scale variability. No-
tice that such “nugget” effects do not arise naturally in generalized linear models,
such as ours, and should not be interpreted as such. In fact, we do not introduce any
“new” variance parameter for the nugget. Rather, ε̃(s) has a very special variance
structure that adjusts for the bias in the spatial variance, diminishes the excessive
smoothness of w̃(s) and, in our experience, considerably improves model-fit and
robustness to fine-scale variation.

We conclude this section with some brief remarks on knot selection. With a
fairly even distribution of data locations, one possibility is to select knots on a
uniform grid overlaid on the domain. A design-based approach that minimizes a
spatially averaged predictive variance criterion [e.g., Zhu and Stein (2006); Dig-
gle and Lophaven (2006)] can be used. With irregular locations, however, we may
encounter substantial areas of sparse observations where placing would amount to
“wastage,” possibly leading to inflated variance estimates and slower convergence.
More practical space-covering designs [e.g., Royle and Nychka (1998)] can yield
a representative collection of knots that better cover the domain. We can also ap-
ply other popular clustering algorithms such as k-means or partitioning around
medoids algorithms [e.g., Kaufman and Rousseeuw (1990)]. Implementations of
these algorithms are available in R packages such as fields and cluster and
have been used in spline-based low-rank kriging models [Ruppert, Wand and Car-
roll (2003)].

4.2. Model fitting details. Let w̃ε̃ = (w̃ε̃(s1)
′, . . . , w̃ε̃(sn)

′)′ denote the real-
izations from the noise-added predictive process over the set of observed locations
in S . This follows an np × 1 multivariate normal distribution w̃ε̃ ∼ N(0,
w̃ε̃

(θ)),

w̃ε̃

(θ) = 
ε̃(θ) + C(θ)′
∗(θ)−1C(θ), and 
ε̃(θ) is a block-diagonal matrix
whose ith diagonal is given by Cw(si , si) − C(si; θ)′C∗(θ)−1C(si; θ). Estimation
could proceed with a multinomial likelihood that estimates the πj (si )’s in (3.1)
from the posterior

p({βj , θ j , w̃ε̃j
}|Y) ∝

J−1∏
j=1

{p(βj )p(θ j )p(w̃ε̃j
|θ j )} ×

{
n∏

i=1

J∏
j=1

πj (si)
Yj (si )

}
,

where Y is the vector of observed outcomes. Alternatively, we find it more con-
venient to compute the posterior distributions for J − 1 logistic regression mod-
els [see Agresti (2002), Chapter 7; Begg and Gray (1984)] and use the posterior
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samples to obtain the posterior distribution of the classifiers in (3.1). Now each
posterior distribution is given by

p(�j |Y) ∝ p(βj )p(θ j )p(w̃ε̃j
|θ j )

(4.1)

×
n∏

i=1

pj (si )
Yj (si )

(
1 − pj (si )

)1−Yj (si ),

where �j = {βj , w̃ε̃j
, θ j }, logit{pj (si )} = xj (si )

′βj + zj (si)
′w̃ε̃j

(si ). Poste-
rior estimation will proceed employing MCMC samples that will yield sam-
ples {�(l)

j }Ll=1. This will then involve computing the expression in (4.1) featur-

ing 
w̃ε̃
(θ j )

−1 for j = 1, . . . , J − 1 in each iteration of the MCMC. We benefit
from the Sherman–Woodbury–Morrison (SWM) formula [see, e.g., Henderson and
Searle (1981)] to compute 
w̃ε̃

(θ j )
−1 as


ε̃(θ j )
−1 − 
ε̃(θ j )

−1C(θ j )
′[
∗(θ j ) + C(θ j )
ε̃(θ j )

−1C(θ j )
′]−1

× C(θ j )
ε̃(θ j )
−1.

Here 
ε̃(θ j ) is block-diagonal, {Cw(si , si; θ j ) − C(si; θ j )
′
∗(θ)−1C(si; θ j )} be-

ing the ith block, while the other inversion in the second term is n∗p × n∗p.
Likelihood computations also require the determinant of 
w̃ε̃

(θ j ) given by
|
ε̃(θ j )||
∗(θ j ) + C(θ j )
ε̃(θ j )

−1C(θ j )
′|/|
∗(θ j )|. Computational gains accrue

because |
ε̃(θ j )| is the product of the determinant of its block-diagonal submatri-
ces, while the remaining two determinants are of order n∗p.

Spatial interpolation at a location s0 can be achieved by composition sampling:
for each �

(l)
j drawn from the posterior, we first draw w̃(l)

ε̃j
(s0) ∼ p(w̃ε̃j

(s0)|�(l)
j ),

which is multivariate normal with mean μw̃ε̃j
(s0;�j) = Cw̃ε̃j

(s0; θ j )
′ ×


w̃ε̃j
(θ j )

−1w̃ε̃j
and variance 
w̃ε̃j

(s0; θ j ) = Cw̃ε̃j
(s0, s0; θ j ) − Cw̃ε̃j

(s0; θ j )
′ ×


w̃ε̃j
(θ j )

−1Cw̃ε̃j
(s0; θ j ), where Cw̃ε̃j

(s0; θ j )
′ is the 1 × n block matrix with ith

block given by C(s0, θ j )
′
∗(θ j )

−1C(si; θ j ). The posterior distribution of the pre-
diction probability πj (s0) is then directly obtained from (3.1) using the posterior
samples for the J − 1 models

πj (s0)
(l) =

exp(xj (s0)
′β(l)

j + zj (s0)
′w̃(l)

ε̃j
(s0))

1 + ∑J−1
k=1 exp(xk(s0)′β(l)

k + zk(s0)′w̃(l)
ε̃k

(s0))
.

5. Data analysis.

5.1. Model validation and benchmark comparisons. The models detailed in
Sections 3 and 4 were fit to the Michigan FIA data described in Section 2. Because
our primary interest is in prediction of FTG, we compare the candidate models’
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ability to predict FTG for a set of 200 holdout (or validation) plots that were se-
lected at random from the 5180 FIA plots. Prediction for a new (or holdout) plot
is based on the prediction distribution, π(s0) = {π1(s0), . . . , πJ (s0)}. We consider
several different scoring rules to evaluate the predictive performance of the candi-
date models. A scoring rule provides a summary measure for evaluating a proba-
bilistic prediction given the predictive distribution and the observed outcome. In
our setting the scoring rule function is S(π, i), where i is the index of the observed
FTG. Given 200 holdout plots, {s0q}200

q=1, we can calculate summary statistics of

the scores, for example, the mean score is Ŝ = ∑200
q=1

S(πq ,iq )

200 , where πq = π(s0q).
In fact, we can obtain the entire posterior distribution of the scoring rule [i.e.,
S(π (l), i), l = 1, . . . ,L] and report the posterior summaries. Gneiting and Raftery
(2007) offer four scoring rules for prediction of categorical variables:

Zero–one: S(π , i) =
{

1, if πi = max{π1, . . . , πJ },
0, if otherwise,

Quadratic: S(π , i) = 2πi −
J∑

j=1

π2
j − 1,

Spherical: S(π , i) = πi

(
∑J

j=1 π2
j )1/2

,

Logarithmic: S(π , i) = logπi.

Following definitions in Gneiting and Raftery (2007), all the noted scoring rules
are strictly proper but for the zero–one, which is only proper. The zero–one scoring
rule uses only a portion of available information, ignoring variability in the pre-
dictive distribution and returning either a zero or one. Similarly, the logarithmic
scoring rule considers only one of the probabilities in the predictive distribution.

In addition to these four scoring rules, we examine classification confusion ma-
trices, parameter estimates, and the models’ ability to produce spatially consistent
fitted and predicted distributions of FTGs.

We also compare our spatially-varying multinomial logistic regression models
to common benchmark methods. Currently, k-nearest neighbor (k-NN) methods
are among the most frequently applied for forest attribute mapping using NFI data
[McRoberts, Nelson and Wendt (2002); Tomppo and Halme (2004)]. Using this
method, the prediction probability that a new location will belong to the j th FTG
is

πj (s0) = 1

k

∑
l

k∼0

δj,y(sl ),

where we temporarily redefine y(s) as the index (or label) belonging to one of the
J distinct FTG’s and δa,b is the Dirac function (δa,b = 1 if a = b, and 0 other-
wise). The term 1

k

∑
l

k∼0
records the proportion of the j th FTG in the set of k near-

est neighbors, where nearness is defined using a distance metric, d(·, ·), between
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the predictor variables. Here we consider two benchmark models: the first defines
nearness as the Euclidean distance between geographic coordinates, d(s, s′), and
the second calculates Euclidean distance between predictor vectors, d(x(s),x(s′)).
The parameter k is chosen by running the algorithm for a range of values, for ex-
ample, k ∈ 1, . . . ,40, then choosing the value that optimizes the specified objective
function.

5.2. Implementation specifics. As detailed in Section 3, the candidate multino-
mial logistic regressions include nonspatial model, spatially-varying intercept and
spatially-varying coefficients models. Maple/beech/birch is set as the regressions’
baseline category due to its abundance (35.19% of observed plots) and pervasive-
ness [covering the entire domain, see Figure 2(b)].

For estimating predictive process models, we used 154, 200, and 254 knots
over the domain [e.g., Figure 2(c) shows 200 knots]. We experimented with the
clustering algorithms noted at the end of Section 3 and the infill designs suggested
by Diggle and Lophaven (2006). Neither provided substantial changes in model
parameter estimates or improvements in prediction. We note, however, that this
lack of improvement is likely data specific and these knot selection approaches
should be explored for each new analysis.

To complete the Bayesian specification, we assign priors to the models’ para-
meters. As customary, we use a flat prior on all β parameters. For the univariate
spatial process in the spatially-varying intercept model, priors must be specified
for, σ 2, and the Matérn correlation function’s range, φ, and smoothness, ν, para-
meters [i.e., θ = {σ 2, φ, ν}]. For each FTG model, we assume that σ 2 follows an
IG(2,10) and φ follows a Uniform prior with support U(5.22 × 10−6,1), which
is between 1 and 575,000 m when ν = 0.5 (i.e., about 3/4 of the maximum in-
tersite distance of 766.4 km). Again, with a shape value of 2, the IG distribution
has infinite variance and is centered on the scale value, which in this case is 10.
The smoothness parameter was set to follow U(0,2). Then, as described in Sec-
tion 3, the n × 1 w̃ε̃ follows a MVN(0,
w̃ε̃

(θ)).
For the spatially-varying coefficients model, we assumed AA′ follows an

IW(p + 1, Ip) prior. We experimented with different diagonal IW’s scale matri-
ces to assess this prior’s influence on posterior distributions. The spatial range and
smoothness parameter for each β specific process again follow U(5.22 × 10−6,1)

and U(0,2), respectively. The np × 1 w̃ε̃ follows MVN(0,
w̃ε̃
(θ)), with appro-

priate dimension adjustments to the mean vector and dispersion matrix. Details
about the Metropolis sampling algorithm are provided in the Finley, Banerjee and
McRoberts (2009) supplemental article.

For each model, three MCMC chains were run for 75,000 iterations. The sam-
pler was coded in C++ and leveraged Intel’s Math Kernel Library threaded BLAS
and LAPACK routines for matrix computations. The code was run on a Linux
workstation with two Intel Xeon quad core processors. The spatially-varying co-
efficients model was the most computationally challenging, with each chain of
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the 254 knot model taking ∼5 hours to complete. The CODA package in R
(www.r-project.org) was used to diagnose convergence by monitoring mixing
using Gelman–Rubin diagnostics and autocorrelations [see, e.g., Gelman et al.
(2004), Section 11.6]. Acceptable convergence was diagnosed within 25,000 it-
erations and, therefore, 150,000 samples (3 × 50,000) were retained for posterior
analysis.

6. Results and discussion. Table 2 offers parameter estimates for the red/
white/jack pine multinomial logistic regression candidate models [again, due to
space limitations, parameter estimates for the remaining five FTGs are avail-
able in the Finley, Banerjee and McRoberts (2009) supplemental article]. For the
red/white/jack pine FTG, as with the other FTGs, several of the predictors are sig-
nificant at the 0.05 level. For the nonspatial and spatially-varying intercept models
the parameters associated with SDI and SNOW were significant at the 0.05 level
and the signs on these parameter estimates are consistent with the predictor sur-
faces in Figure 1(d, e) and observed red/white/jack plots in Figure 3(a). Specifi-
cally, the concentration of red/white/jack pine in the northcentral lower peninsula
of Michigan correspond to areas of low snow depth and dry soils. The central most
area of high red/white/jack pine in Figure 3(a) is predominantly composed of pure
jack pine and red pine plantations. Recently established jack pine plantations came
about as part of a state incentive program to reestablish habitat for the Kirtland’s
warbler (Dendroica kirtlandii), which is an endangered neotropical migratory bird.
Similar connections between observed probability of FTG and predictor variables
can be made for the other FTGs offered in the Finley, Banerjee and McRoberts
(2009) supplemental article. Interpreting the significance of predictor variables’
parameters for the spatially-varying coefficient models must be done in a spatial
context. Rather than look at the aspatial β slope parameters, which for these mod-
els are simply the mean over the domain, interpretation should be based on β̃ , as
depicted in Figure 6. However, it is important to interpret these parameter esti-
mates with caution, recalling that presence/absence of an FTG is relative to the
baseline category, not all other forested plots. If our focus was to better understand
the relationship between FTGs and the environmental predictor variables, then we
should use (2.1), and associated submodels, with the binary response of 1 if the
FTG of interest is present and 0 otherwise, over all forested plots. Because our
focus is on achieving high prediction accuracy, we do not dwell on interpreting the
β or β̃ and instead consider measures of predictive accuracy, model fit and model
adequacy.

We now turn to the results of the 200 plot holdout set analysis. Table 3 dis-
plays scores for the benchmark and candidate models. The mean scores, over the
200 holdout plots, are reported for the benchmark models. For the multinomial
models, fit using MCMC, the median and upper/lower 95% credible intervals for
the scores’ mean posterior distribution are reported. For the scoring rules, higher
scores indicate superior predictive performance. That is, for the zero–one and

http://www.r-project.org
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TABLE 2

Parameter credible intervals, 2.5% 50% 97.5% percentiles, for the red/white/jack pine FTG nonspatial and predictive process candidate model. Note, that
for brevity, only the diagonal elements of C are provided for the space-varying coefficients model. All φ parameter values are scaled by 10.05

Spatial predictive process

Spatially-varying intercept Spatially-varying coefficients

Parameter Nonspatial 200 knots 154 knots 200 knots 254 knots

βRWJ; 0 −1.54 −1.43 −1.31 −1.86 −1.72 −1.57 −1.45 −1.30 −1.15 −1.48 −1.35 −1.23 −1.66 −1.52 −1.35
βRWJ; PRECIP −0.20 −0.08 0.05 −0.34 −0.17 0.01 −0.33 −0.11 0.13 −0.38 −0.13 0.11 0.04 0.25 0.55
βRWJ; TMAX −0.11 0.12 0.33 −0.08 0.24 0.46 −0.26 −0.02 0.22 −0.29 −0.05 0.23 −0.52 −0.28 0.06
βRWJ; TMIN −0.25 −0.07 0.11 −0.37 −0.17 0.02 −0.27 −0.06 0.17 −0.09 0.13 0.33 −0.19 0.10 0.29
βRWJ; SDI −0.97 −0.82 −0.69 −0.99 −0.86 −0.72 −0.93 −0.76 −0.63 −0.95 −0.78 −0.62 −1.12 −0.96 −0.80
βRWJ; SNOW −0.50 −0.34 −0.20 −0.60 −0.39 −0.14 −0.71 −0.45 −0.26 −0.49 −0.23 −0.11 −0.92 −0.68 −0.48
CRWJ; 0 and σ 2 – 3.63 4.46 5.73 4.62 6.04 7.69 3.96 5.14 6.89 5.11 5.86 6.92
CRWJ; PRECIP – – 2.34 2.87 3.54 2.36 2.84 3.12 4.47 6.16 7.58
CRWJ; TMAX – – 4.97 6.70 10.84 3.62 4.31 4.84 4.49 6.11 7.21
CRWJ; TMIN – – 3.23 4.01 5.07 3.48 4.25 5.82 3.95 4.93 5.99
CRWJ; SDI – – 3.65 6.24 7.58 3.31 4.03 5.21 3.57 4.19 4.82
CRWJ; SNOW – – 4.00 4.79 5.55 3.19 3.86 5.06 3.61 4.52 5.85
φRWJ; Intercept – 2.19 3.15 4.18 1.07 1.56 2.06 0.97 1.21 1.93 1.88 2.33 2.91
φRWJ; PRECIP – – 2.34 3.41 5.79 1.59 2.41 3.36 2.27 2.88 3.44
φRWJ; TMAX – – 0.63 0.69 0.82 2.44 3.76 5.27 1.30 2.16 3.18
φRWJ; TMIN – – 1.60 1.91 2.39 1.52 2.63 3.34 2.04 2.96 3.42
φRWJ; SDI – – 0.83 1.14 1.96 1.13 1.67 2.11 1.46 2.05 2.73
φRWJ; SNOW – – 1.94 2.56 3.23 1.96 2.40 2.72 1.43 1.87 3.14
νRWJ; Intercept – 0.46 0.49 0.55 0.48 0.56 0.65 0.45 0.51 0.71 0.59 0.74 0.85
νRWJ; PRECIP – – 0.45 0.61 1.02 0.40 0.53 0.65 0.87 1.02 1.21
νRWJ; TMAX – – 0.38 0.47 0.57 0.77 1.01 1.38 0.52 0.77 0.90
νRWJ; TMIN – – 0.44 0.55 0.62 0.52 0.66 0.81 0.64 0.82 1.06
νRWJ; SDI – – 0.38 0.52 0.63 0.46 0.53 0.65 0.39 0.46 0.59
νRWJ; SNOW – – 0.68 0.81 0.94 0.49 0.55 0.73 0.41 0.60 0.74
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TABLE 3
Model comparisons using scoring rules for prediction of holdout set. Parameter credible intervals expressed as 2.5% 50% 97.5% percentiles

Model Zero–one Quadratic Spherical Logarithmic

Benchmark 1 0.48 −0.68 0.56 −2.43
Benchmark 2 0.53 −0.61 0.62 −1.55
Nonspatial multinomial 0.49 0.51 0.53 −0.64 −0.63 −0.63 0.60 0.60 0.60 −1.30 −1.29 −1.28
Spatially-varying intercept multinomial

154 0.53 0.55 0.56 −0.62 −0.61 −0.59 0.61 0.62 0.63 −1.29 −1.26 −1.23
200 0.54 0.56 0.58 −0.61 −0.60 −0.58 0.62 0.63 0.64 −1.26 −1.22 −1.19
254 0.52 0.55 0.57 −0.62 −0.61 −0.60 0.61 0.62 0.63 −1.28 −1.26 −1.23

Spatially-varying coefficients multinomial
154 0.54 0.56 0.58 −0.58 −0.57 −0.56 0.64 0.65 0.66 −1.14 −1.11 −1.09
200 0.57 0.59 0.61 −0.55 −0.54 −0.53 0.66 0.67 0.68 −1.06 −1.05 −1.03
254 0.57 0.58 0.60 −0.55 −0.54 −0.53 0.66 0.67 0.67 −1.06 −1.04 −1.03
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(a) β̃RWJ; 0 (b) β̃RWJ; PRECIP

(c) β̃RWJ; TMAX (d) β̃RWJ; TMIN

(e) β̃RWJ; SDI (f) β̃RWJ; SNOW

FIG. 6. Interpolated surfaces of β̃ for the red/white/jack pine (RWJ) FTG. Lighter colors corre-
spond to higher values.

spherical scoring rules, scores closer to 1 indicate greater predictive performance,
whereas for the quadratic and logarithmic rules, scores closer to 0 suggest im-
proved performance. The k-NN algorithm which measures nearness in geographic
space, benchmark 1, provided the worst prediction on all scoring rules. Bench-
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mark 2, which calculates nearness in predictor variable space, performed better
than the nonspatial multinomial model (except for the logarithmic rule) and com-
parable to the space-varying intercept multinomial model for the quadratic and
spherical rules. Noting the potential limitation of the zero–one and logarithmic
scoring rules, this suggests that the easily implemented k-NN algorithm is a viable
option for similar analyses, if second order properties of the resulting map prod-
ucts are not needed. Allowing the regression coefficients to vary spatially improved
predictive performance over the single spatial random effect model, as reflected in
the scores for the spatially-varying coefficients models. Increasing knot intensity
beyond 200 did not improve predictive performance for the spatially-varying in-
tercept and coefficients models.

The large difference in predictive ability between the nonspatial and spatial
multinomial models reveals a requirement of the forest inventory sampling de-
sign and a limitation of the proposed models. Specifically, the observed locations
must be dense enough to estimate the range of the spatial process associated with
the intercept and, in the case of the spatially-varying regression model, predictor
variables. If the data array is sufficiently sparse, or predictions are made beyond
the range of the spatial influence, the prediction only learns from the predictor
variables and cannot draw information from the proximity of the observed loca-
tions. For the analysis presented here, the FIA plot array is dense and predictions
are made well within the support of the spatial range of the predictor variables.

Table 4 offers the confusion matrices for benchmark 2, nonspatial and 200 knot
spatially-varying intercept and coefficients models. Here, prediction is based on
the maximum FTG in the predictive distribution (equivalent to the zero–one scor-
ing rule). Not surprisingly, these tables suggest substantial confusion within the
conifer and deciduous FTG. For example, due to similar species composition, there
is high misclassification between the maple/beech/birch and aspen/birch FTGs.
Also, the relatively rare oak/pine FTG which exhibits a split of conifer and decid-
uous species was not correctly classified by any of the models. However, moving
from the benchmark and nonspatial to the 200-knot spatially-varying intercept and
then to the spatially-varying coefficients model does substantially improve predic-
tion.

The validation analysis supports the use of the spatially-varying coefficients
model. The use of this model is further corroborated by the presence of spatial de-
pendence across the coefficients, which is summarized by the estimates of Cw(0),
and coefficient specific φ and ν offered in Table 2. The estimated effective spatial
ranges (i.e., the distance at which the spatial correlation drops to 0.05) and asso-
ciated 95% credible intervals in kilometers for the red/white/jack pine FTG are
251 (173, 310), 124 (96, 173), 107 (85, 149), 127 (103, 203), 186 (154, 265), 135
(116, 155), for the intercept, PRECIP, TMAX, TMIN, SDI and SNOW, respec-
tively. These long spatial ranges help support our initial simplifying assumption to
combine the data layers into a common pixel resolution. The associated random
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TABLE 4
Confusion matrices from holdout set analysis for the benchmark 2, nonspatial multinomial, and 200 knot predictive process spatial multinomial models

Predicted FTG

Observed FTG WRJ SF OP OH EAC MBB AB WRJ SF OP OH EAC MBB AB

Benchmark 2 Nonspatial multinomial
WRJ 9 0 0 6 0 7 3 0 1 0 11 0 13 0
SF 0 21 0 0 0 2 3 0 20 0 0 1 5 0
OP 1 0 0 2 1 2 0 1 0 0 2 1 2 0
OH 2 0 0 18 0 4 4 0 0 0 17 0 11 0
EAC 0 3 0 1 6 1 0 0 1 0 0 7 1 2
MBB 0 3 0 12 6 46 4 0 4 0 4 5 54 4
AB 1 4 0 7 2 14 5 0 4 0 4 1 21 3

Spatially-varying intercept multinomial Spatially-varying coefficients multinomial
WRJ 7 1 1 8 0 7 1 7 1 0 8 0 8 1
SF 1 19 0 0 1 0 5 0 23 0 1 1 0 1
OP 0 0 0 3 1 2 0 0 0 0 2 0 3 1
OH 2 0 2 17 0 4 3 0 0 1 21 0 3 3
EAC 0 1 0 2 6 0 2 0 0 0 1 6 2 2
MBB 0 4 0 7 3 54 3 2 2 0 6 4 52 5
AB 1 4 1 5 2 12 8 2 3 0 5 1 12 10
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spatial effect surfaces of β̃ are again illustrated in Figure 6. Similar strong coeffi-
cient spatial dependence is seen in the other FTG models. The responsiveness of
these spatially-varying coefficients to local trends in FTG presence/absence pro-
vides small errors between observed and fitted values as seen when comparing the
left and right columns of Figures 3 and 4.

In practice, we can make a pixel-level prediction of the FTG predictive distri-
bution wherever the predictor variable set is observed. Then, in a subsequent step
using a Geographic Information System (GIS), users can remove or mask those
pixels that were deemed nonforest from a separate prediction/classification exer-
cise.

7. Summary. Analysis of large spatial domains is becoming more common,
due, in part, to increased access to threaded mathematical libraries that can lever-
age the power of multi-processor computers and improvements in dimension re-
duction methods such as low-rank spatial processes. Only through a combination
of these tools was the analysis presented here computationally feasible. With ex-
panding domains of interest comes an increasing propensity for nonstationarity in
the underlying spatial process. From a statistical validity standpoint, it is impor-
tant that we define models that are equipped to deal with nonstationarity. From a
utilitarian perspective, and as seen in our results, addressing nonstationarity can
improve model fit and, more importantly, prediction.

Our central interest was to improve FTG prediction given a relatively dense
array of forest inventory plots and a spatially complete set of environmental pre-
dictor variables. The results suggest that the multinomial logistic regression with
spatially-varying coefficients is well suited to this objective. Further, following a
Bayesian approach to model fitting provided estimates of the spatial parameters
and access to posterior predictive probabilities at each new location. It would be
difficult to estimate the spatial parameters a priori, and even if reasonable esti-
mates could be made, the plug-in approach used in traditional methods can pro-
vide falsely precise estimates of predicted FTG probabilities. This could, in turn,
negatively impact end-users sensitivity analyses.

Finally, while the current approach apparently meets our stated objectives, it
does not account for underlying structured dependence across categories. Inves-
tigating and accounting for such dependence can be crucial in understanding the
relationship between the probability of FTG occurrence and environmental vari-
ables, for example, how the spatial patterns of FTG’s joint probabilities will shift
with changing temperature or water regimes resulting from climate change. One
approach is to consider spatial versions of the multinomial probit models [see, e.g.,
McCulloch, Polson and Rossi (2000)]. This and related issues are of great scien-
tific interest and constructing models to elucidate these relationships will guide our
future research effort.
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SUPPLEMENTARY MATERIAL

Description of MCMC sampling algorithm and supplementary results.
(DOI: 10.1214/09-AOAS250SUPP; .pdf). Here we provide a description of the
Metropolis scheme used to fit the candidate models. Parameter estimates for the
FTGs are also presented.
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