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BI-CROSS-VALIDATION OF THE SVD AND THE
NONNEGATIVE MATRIX FACTORIZATION!
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This article presents a form of bi-cross-validation (BCV) for choosing
the rank in outer product models, especially the singular value decomposition
(SVD) and the nonnegative matrix factorization (NMF). Instead of leaving
out a set of rows of the data matrix, we leave out a set of rows and a set of
columns, and then predict the left out entries by low rank operations on the
retained data. We prove a self-consistency result expressing the prediction
error as a residual from a low rank approximation. Random matrix theory
and some empirical results suggest that smaller hold-out sets lead to more
over-fitting, while larger ones are more prone to under-fitting. In simulated
examples we find that a method leaving out half the rows and half the columns
performs well.

1. Introduction. Many useful methods for handling large data sets begin
by approximating a matrix X € R™*” by a product LR, where L € R”** and
R € R¥*" both have rank k < min(m, n). Such outer product models are widely
used to get simpler representations of large data matrices, either for regularization
or for interpretation. The best known example is the truncated singular value de-
composition (SVD) [Eckart and Young (1936); Hansen (1987)]. Other examples
arise by placing constraints on the factors L and R. For instance, the nonnegative
matrix factorization (NMF) [see Lee and Seung (1999)] requires L and R to have
elements in [0, co) and the familiar k-means clustering of rows of X imposes a
binary structure on L. These and some other examples are described in Lazzeroni
and Owen (2002).

For all of these methods, the choice of k is problematic. Consider the SVD. The
best rank k approximation to X, judging by squared error, is obtained by truncating
the SVD to & terms yielding X, Larger values of k provide a better fit to the
original X and for kK = min(m, n) we get X® = X This clearly raises some risk
of overfitting. If X is generated from a noisy process, then that noise is reasonably
expected to affect X® more strongly when £ is large.

We would like to cross-validate the rank selection in order to counter such over-
fitting. Hoff (2007) states that the usual practice for choosing k is to look for where
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the last large gap or elbow appears in a plot of singular values. Wold (1978) men-
tions a strategy of adding terms until the residual standard error matches the noise
level, when the latter is known. Cross-validation (CV) is operationally simpler. We
do not need to know the noise level, and instead of judging which bend in the curve
is the most suitable knee, we select k to minimize a numerical criterion.

Several methods have been proposed for cross-validating the SVD. Of particular
interest is the approach taken by Gabriel (2002). Writing X as

X:( X1,1 X12:n )
X2:m,1 X2:m,2:n ’

Gabriel fits a truncated SVD of k terms to X2. 2., yielding X ékz)m’Z; ,» and then
scores the error in predicting X; by Z?\Yi) =X — X1,2:n(2§k:)m’2;n)+x2:m,],
where ZT denotes the Moore—Penrose pseudo-inverse of the matrix Z. Leaving

out every point in turn, the cross-validated squared error is } 7, Z'}:l@g))z,

where ’e\l(f) is defined analogously to Eﬁ) Gabriel’s approach is a kind of bi-cross-

validation (BCV), as it leaves out a row and column simultaneously.

Our main goal in this paper is to develop BCV into a tool that is generally
applicable to outer product approximations, just as CV is for i.i.d. sampling. We
generalize the BCV to r x s holdouts because in large problems 1 x 1 holdouts
are unworkable. As a result, there is an (h x £)-fold BCV that is a direct analogue
of k-fold CV. An advantage of CV is that it applies easily for different methods
and error criteria. We show here how BCV can be extended to more general outer
product models. We use the NMF to show how that works in detail.

The NMF is often thought of as a bi-clustering of rows and columns, and of
course k-means is clearly a clustering method. The BCV we present thus provides
a form of cross-validation for unsupervised learning.

Our second goal is to understand BCV. Gabriel (2002) focuses on the bi-plot and
does not explain or motivate BCV. We show a self-consistency property for BCV
whereby the residual £%) vanishes for some matrices X of rank k. This residual
can be explained in terms of principal-components regressions, and it can be gen-
eralized in several ways.

The outline of this paper is as follows. Section 2 provides some background
on MacDuffee’s theorem and the SVD. Section 3 describes how the rank of an
SVD is chosen in the crop science literature and explains why the solutions prior
to Gabriel (2002) are unsatisfactory. Then it presents the self-consistency lemma
mentioned above. Section 4 looks at rank k& matrices that fail to satisfy an assump-
tion of the self-consistency lemma. These involve a kind of degeneracy in which
the entire signal we seek to detect has been held out. Section 5 shows how to ex-
tend BCV from the SVD to the NMF and similar methods. Section 6 applies some
recent results from random matrix theory to BCV of the SVD with Gaussian noise.
From this analysis, we expect small holdouts to be more prone to overfitting and
large holdouts more prone to underfitting. Section 7 has some numerical examples
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for BCV of the SVD. Section 8 has examples of BCV for the NMF. Section 9
summarizes the results.

1.1. Related methods. Many alternatives to cross-validatory choice are based
on attempts to count the number of parameters in a rank k model. Some of these
methods and their difficulties are mentioned in Section 3.

There are a great many classical methods for choosing & in the context of prin-
cipal components analysis. There one usually has a number m — oo of i.i.d. rows
(with variance ¥) while the number of columns # is fixed. Mardia, Kent and Bibby
(1979), Chapter 9.5, presents a likelihood ratio test for whether the last n — k eigen-
values of ¥ are identical for Gaussian data. Holmes-Junca (1985) compares cross-
validation and the bootstrap. Jolliffe (2002), Chapter 6, surveys many methods
including techniques based on scree plots, broken stick models and the bootstrap.
Scree plots can be quite unreliable. It has long been known that even when all n
eigenvalues of X are identical, there will be some slope in the scree plot, and nu-
merical work in Jackson (1993) finds that a method based on scree plots gives poor
performance in some numerical examples motivated by ecology. His simulations
also included broken stick models, some bootstraps, some likelihood ratio tests and
the Kaiser—Guttman rule that retains any principal component whose eigenvalue is
above average. Some broken stick models worked best.

Minka (2000) takes a Bayesian model selection approach. He obtains a poste-
rior distribution on the data matrix under a Gaussian model, with the choice of k
corresponding to an assumption that the smallest n — k eigenvalues of ¥ are equal.
The chosen k is the one that maximizes a Laplace approximation to the posterior
probability density of the data set. The Laplace method gave the best results in
simulations. It beat a cross-validatory method based on holding out rows of the
data matrix.

Our setting is different from the ones for principal components. We will have m
and n both tending to infinity together and neither rows nor columns need to be
ii.d.

Hoff (2007) treats the SVD under a model where X is a random isotropic low
rank matrix plus i.i.d. Gaussian noise. He presents a Gibbs sampling approach for
that setting.

The microarray literature has some similar methods for imputing missing val-
ues. Troyanskaya et al. (2001) fit an SVD model to the nonmissing values, using
an EM style iteration, and then the low rank fitted values are used for imputation.
Oba et al. (2003) present a Bayesian version of SVD imputation, using an EM
iteration.

The present setting is different from the imputation problems. We have all the
values of X and we want to smooth some noise out of it via low rank approxima-
tion. The retained data set will consist of rectangular submatrices of X so that the
SVD or NMF or other algorithms can be applied to it without requiring missing
data methods.
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S. Wold (1978) cross-validates the rank of an SVD model by leaving out a scat-
tered set of matrix elements. He advocates splitting the data set into 4 to 7 groups.
In his Figure 1, each such group corresponds to one or more pseudo-diagonals of
the data matrix, containing elements X;;, where j =i + r, for some r. Having
left out scattered data, Wold has to solve an imputation problem in order to de-
fine residuals. He does this via the NIPALS algorithm, a form of alternating least
squares due to H. Wold (1966).

2. Background matrix algebra. This section records some facts about ma-
trix algebra for later use.

The Moore—Penrose inverse of a matrix X € R"*" is denoted by X € R"*"™,
The monograph of Ben-Israel and Greville (2003) provides a detailed presentation
of the Moore—Penrose inverse and other generalized inverses. We will also treat
scalars as 1 x 1 matrices, so that x™ for x € Ris 1/x when x # 0 and is 0 when
x =0.

If matrices A and B are invertible, then (AB) ™' = B~ A~! when the products
are well defined. Such a reverse-order law does not necessarily hold when the
inverse is replaced by a generalized inverse.

There is a special case where a reverse order law holds. Ben-Israel and Greville
(2003), Chapter 1.6, credit a private communication of C. C. MacDuffee for it.
Tian (2004) describes further sufficient conditions for a reverse order law.

THEOREM 1 (MacDuffee’s theorem). Suppose that X = LR, where L €
R™** and R € R**" both have rank k. Then

2.1 XT=R'LT=R'®RR)Y ''L)"'L.

PROOF. We find directly from the properties of a Moore—Penrose inverse that
LT =(L'L)"'L’ and RT = R’(RR’)~!. Finally, the RHS of (2.1) satisfies the four
defining properties of the Moore—Penrose inverse of LR. [

The SVD is discussed in detail by Golub and Van Loan (1996). Let X € R™*"
and set p = min(m, n). The SVD of X is, in it’s “skinny” version, X = UX V',
where U € R"*P and V € R"*? with U'U = V'V =1, and ¥ € RP*P =
diag(o1,02,...,0p) with 0y > 02 > --- > 0}, > 0. The SVD provides an explicit
formula Xt =VXItU = Zle o*i+ v;u; for the Moore—Penrose inverse of X.

In applications the SVD is very useful because it can be used to construct an

optimal low rank approximation to X. For X € R™*" we use || X| r to denote

Vic 2 X l.zj, its Frobenius norm. The approximation theorem of Eckart and
Young (1936) shows that the rank k& matrix closest to X in Frobenius norm is

k
X0 = Zoiuivf.
i=1
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3. Cross-validating the SVD. The idea behind cross-validating the SVD is
to hold out some elements of a matrix, fit an SVD to some or all of the rest of that
matrix, and then predict the held out portion.

Several strategies have been pursued in the crop science literature. There i typi-
cally indexes the genotype of a plant and j the environment in which it was grown,
and then Y;; is the yield of food or fiber from plant type i in environment j. The
value X;; is commonly a residual of Y;; after taking account of some covariates.
A low rank approximation to X;; can be used to understand the interactions in
yield.

We will ignore the regression models for now and focus on choosing k for the
SVD. What makes model selection hard for the SVD is that methods based on
counting the number of parameters used in an SVD model do not give reliable F
tests for testing whether a setting known to have at least rank k actually has rank
k + 1 or larger. dos S. Dias and Krzanowski (2003) describe some F tests for dis-
cerning between ranks £k = 0 and 1 that reject 66% of the time when the nominal
rate should be 5%. Some other tests remedy that problem but become too conser-
vative for k£ > 0.

3.1. Leaving out a matrix element. Suppose that we wish to hold out the entry
X;j and predict it by some X ij computed from the other elements. The best known
method is due to Eastment and Krzanowski (1982). They fit an SVD ignoring
row i and another one ignoring column j. They use the left singular vectors from
the SVD that ignored column j and the right singular vectors from the SVD that
ignored row i. Therefore, X;; is not used in either of those SVDs. From two SVDs
they get two sets of singular values. They retain the first k < min(m — 1,n — 1) of
them and combine them via geometric means. Louwerse, Smilde and Kiers (1999)
generalize this cross-validation method [as well as that of Wold (1978)] to choose
the rank of models fit to m x n x k arrays of data.

Unfortunately, separate row and column deletion typically yields cross-validated
squared errors that decrease monotonically with k£ [dos S. Dias and Krzanowski
(2003)]. Besse and Ferré (1993) present an explanation of this phenomenon using
perturbation theory. As a result, some awkward adjustments based on estimated
degrees of freedom are used in practice.

A second difficulty with this kind of cross-validation is that the sign for each
term in the combined SVD is not well determined. Eastment and Krzanowski
(1982) chose the sign of the kth outer product so that its upper left element has
the same sign as that from a full SVD fit to the original data. As such, the method
does not completely hold out X;.

The approach of Gabriel (2002) described in Section 1 does not require look-
ing at X1, and its cross-validated squared errors seem to give reasonable non-
monotonic answers in the crop science applications. Accordingly, this is the cross-
validation method that we choose to generalize.
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3.2. Leaving out an r by s submatrix. Suppose that we leave out an r by s
submatrix of the m by n matrix X. For notational convenience, we suppose that it
is the upper left submatrix. Then we partition X as follows

A B
3.1 X=<C D)’

where A e R"*S, B e R"*(=9) € ¢ Rm=1)%5 and D ¢ Rm—r)x(n—s)

LEMMA 1 (Self consistency). Suppose that X € R™*" having rank k is parti-
tioned as in equation (3.1) and that the matrix D € RU"="X"=9) gppearing there
also has rank k. Then

(3.2) A=BD*C=B(DW)"C.

PROOF. Because D has rank k, we find that D = D® and so we only need
to prove the first equality. If k = 0, then A = BDTC = 0 holds trivially, so we
suppose that k£ > 0.

We write the SVD of X as X = Y¥_, oyu;v, = USV/, for T = diag(o7, ..., o)
witho; > 07 > ---> 03 > 0,U € R"*K and V e R"*k Let U; € R"** contain the
first » rows of U and U, € R™ =%k contain the last m — r rows. Similarly, let V|
contain the first s rows of V and V, contain the last n — s rows of V. Then

A=UXV{, B=UZV}, C=U,=V] and D=U,%Vj.

Let D = LR, where L = U>S and R = SV;, for § = diag(,/o7, ..., \/ok). Then
by MacDuffee’s theorem,

DY =RYLT =R'(RR)"VL'L)"'L' = V2 S(SV3V».8) " (SU5U»8) "L SU;

=V (V3 ' = U s
Substituting this formula for DT into BD™C and simplifying gives
BDTC = (U1 ZVy)Va(Va Vo) 'L U U) U (UL 2 V)
=U TV =A. 0

Lemma 1 would have been quite a bit simpler had we been able to write D™
as Vo2~ Uj. But D need not take that simple form, because the decomposition
D = U, X V; is not in general an SVD. The matrices U, and V> are not necessarily
orthogonal.

We use Lemma 1 to interpret A — B(ﬁ(k))+C as a matrix of residuals for the
upper left corner of X with respect to a model in which X follows an SVD of
rank k. To do (& x £)-fold BCV of the SVD, we may partition the rows of X into &
subsets, partition the columns of X into £ subsets, and write

h ¢
BCV(K) =YY JAG, ) — BG, H(DG, Hh®) T, H3
i=1j=1
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where A(i, j) represents the held out entries in bi-fold (i, j) and similarly for
B(, j), C(, j)and D, j).

There are other ways to define residual quantities. When both X and D have
rank k, then A — BDTC = 0. We could replace any or all of A, B, C and D by a
rank k approximation and still get a matrix of Os for X and D of rank k. Assuming
that we always choose to use (D®)* there are still eight different choices for
residuals. The simulations in Section 7 consider residuals of the following two

types:
(3.3) @ A-B(DM)'c,
(3.4) I A—-B®D®)C®,

In the next section we show how residuals of the first type above correspond to a
cross-validation of principal components regression (PCR).

3.3. Cross-validation of regression. In multivariate multiple regression we
have a design matrix Z € R”*" and a response matrix ¥ € R"** to be predicted
by a regression model of the form ¥ = Zg, where 8 € R"**. The case of ordinary
multiple regression corresponds to s = 1. In either case the least squares coeffi-
cient estimates are given by B = (Z'Z)~'Z'Y, assuming that Z has full rank, and
by B = ZY more generally.

If we leave out the first » rows of Z and Y and then predict the left out rows
of Y, we get a residual

Yiris — Zl:r,l:nE: A— BD+C,

in the decomposition

Yl:r,l:s Zl:r,l:n _ A B
(35) ¥ z)= (Y(r+l):m,1:s Z(r—l—l):m,l:n) - <C D) '

From this example, we see that BCV changes regression cross-validation in two
ways. It varies the set of columns that are held out, and it changes the rank of
the linear model from the number of columns of Z to some other value k. The
regression setting is much simpler statistically, because then the matrix D to be
inverted is not random.

The generalized Gabriel bi-cross-validation we present can now be described
in terms of ordinary cross-validation of PCR. Suppose that we hold out the first r
cases and fit a regression of Y(,41).m,1.5 on the first k principal components of
Z(r+1):m,1:n- The regression coefficients we get take the form (ﬁ(k))+C . Then
the predictions for the held out entries are A=B (ﬁ(k))+C. Thus, conditionally
on the set of columns held out, BCV is doing a CV of PCR.
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3.4. Separate row and column deletion. The method in Eastment and
Krzanowski (1982) does not generally have the self-consistency property. Con-

sider the rank 1 matrix
/
X=cuv' =o ("0 (™
- uj v1 /)’

where 0 > 0, ug € R, u; € R" !, vp € R and v; € R" ! with w'u =v'v=1.
Leaving out column 1 of X and taking the SVD yields o (£u)(Fv;) = (o |v1])
(fu)(£v1/|lv1]])’. The signs in these two factors must match but can be either
positive or negative. Similarly, leaving out row 1 of X and taking the SVD yields
(o llur 1D (Fur /fur ) (Fv)'.

Combining these two parts yields

1
Ja—da -

The sign is arbitrary because the choices from the two SVDs being combined
might not match. Even with the correct sign, the estimate is slightly too small in
magnitude.

+lur |72 o |7V 20w’ = four’

4. Exceptions. Lemma 1 has a clause that requires the submatrix D to have
rank & just like the full matrix X. This clause is necessary. For example, the “spike
matrix”

4.1) X =
000 0 0

clearly has rank 1, but any submatrix that excludes the upper left entry has rank 0.
Thus, A # BDTC for this matrix whenever A contains the upper left entry.
Clearly, BD"C equals zero for this matrix. The squared error from fitting the
true rank k = 1 is the same as that from fitting k = 0.

One could not reasonably expect to predict the 1 in the upper left corner of
the spike matrix in (4.1) from its other entries that are all Os. In this instance, the
exception seems to provide a desirable robustness property.

Another exception arises for a “stripe matrix” such as

1
0

=[ofr 1 1 D
0

In this case, predicting a 1 for the upper left entry from the rest of the data seems
slightly more reasonable, because that is what a continuation of the top row would
give. Of course, a continuation of the left most column would give a prediction

1 1 1 1
0 0 0 O
4.2) X = 00 0 0
0 0 0 O
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of 0. For this case it is not so clear whether the upper left value should be predicted

to be a 0 or a 1 from the other entries. In crop science applications, the row might

correspond to a specific genotype or phenotpye and then it would have been caught

by an additive or regression part of the model. Put another way, the residual matri-

ces that arise in crop science do not generally contain additive main effects of the

type shown above. However, in other applications, this sort of pattern is plausible.
Yet another exception arises for an “arrow matrix” such as

1 1 1 1
1 0
1 0 0 O 1 1 1 1
e T B ) [
1 0 0O

This matrix has rank 2, but the upper left entry will not be correctly predicted by
the formula BD*C. In this case a value of 1 seems like a plausible prediction
for the upper left element based on all the others. It fits a multiplicative model for
elements of X. But it is not the only plausible prediction because an additive model
would predict a 2 for the upper left entry.

It is clear that if the formula BD™C is to match A, that the singular value de-
composition of X when restricted to the lower right m — r by n — s submatrix
must not become degenerate. The columns of Us € R~k from the proof of
Lemma 1 must not be linearly dependent, nor can those of V5 € R*~9)*k be lin-
early dependent.

If we hold out r rows and s columns, then some outer product feature, which
affects fewer than » + 1 rows or s + 1 columns, can similarly be missed. There-
fore, features of the low rank approximation to X that are not sufficiently broadly
based are not faithfully represented in bi-cross-validation. In the case of spikes and
stripes, this seems to be a desirable noise suppression property. If the data set fea-
tures a large number of very small tight clusters, such as near duplicates of some
rows, then bi-cross-validation might underestimate k.

This property of bi-cross-validation is not a surprise. A similar phenomenon
happens in ordinary cross-validation. If leaving out a subset of the predictors
causes the design matrix to become singular, then cross-validating a correct model
with no noise will not give a zero residual.

If one is willing to forgo the robustness of ignoring spikes and is concerned
about missing large but very sparse components in the SVD, then there is a remedy.
Let Or and Og be uniform random orthogonal matrices of dimensions m x m
and n x n respectively. Then X = Oy X O = OLUX V'O has the same singular
values as X but has no tendency to concentrate the singular vectors into a small
number of rows or columns. The BCV of X is equally sensitive to outer products
ouv’ with sparse u and v as with nonsparse u and v.

5. Cross-validating the NMF and other outer product decompositions.
In the nonnegative matrix factorization of Juvela, Lehtinen and Paatero (1994)
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and Lee and Seung (1999), X is approximated by a product W H, where W ¢
[0, 00)"*kK and H € [0, 00)**". That is, the matrices W and H are constrained to
have nonnegative entries. Ordinarily, both factors of X have rank k. We will sup-
pose that W and H are chosen to minimize || X — W H ||%, although other objective
functions are also used and can be bi-cross-validated. The estimated NMF often
has many zero entries in it. Then the rows of H can be interpreted as sparsely
supported prototypes for those of X, yielding a decomposition of these rows into
distinct parts [Lee and Seung (1999)].

There are several algorithms for computing the NMF. We use alternating con-
strained least squares. Given W, we choose H to minimize | X — WH ||%r over
[0, 00)%*" and given H, we choose W to minimize || X — WH||%F over [0, co)" k.
Unlike the SVD, there is no certainty of attaining the desired global optimum.

5.1. Residuals for the NMF. To bi-cross-validate the NMF, we proceed as for
the SVD. Let X be decomposed into parts A, B, C and D as before, and suppose
that X = WH, where W € [0, 00)”"*k and H € [0, 00)k*" both have rank k. Then
if the retained submatrix D also has rank k, we once again find A = BD™ C by ap-
plying the self-consistency Lemma 1, followed by MacDuffee’s theorem. Indeed,

(5.1) A=B(DW)*C=BWpHp)*C = (BH})(WSC),

where D = Wp Hp is the NMF for X restricted to the submatrix D. This process
leads to the residual matrix

(5.2) A-WPHED,

where W = B(HS) T and AP = (W)t C, and D = WX HY is an NMF fit
to D. We refer to (5.2) as the “simple” residual below. It vanishes when a k-term
NMF holds for both X and D.

In general, the left and right factors WX{) and Iil\lgk) in (5.2) need not have
nonnegative elements, especially when the rank of X is not equal to k. It seems
preferable, at least aesthetically, to require both factors to have nonnegative en-
tries. There is a natural way to impose constraints on these factors. The product
(/Wg( ))+C has a least squares derivation which we can change to constrained least
squares, replacing

ﬁf‘k) = argmin|C — Wl()k)HHi by

HeRkxs
I-Nllgk) = argmin |C — Wgc)HHi.
He[0,00)kxs

We similarly replace w® by

WX() = argmin |B— Wﬁg) ||§
Wel0,00)"*k
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Given:

A matrix X € [0,00)™*", row and column holdout subsets Z, C {1,...,m},
JeCA{l,...,n}for £=1,..., M, and a list of ranks K C {1,..., min(m,n)}.

Do:

1) For ke K: BCV(k) <0

2) For ¢ e{1,...,L} and k € K:

3) Z—Zyand J — To

) Fit NMF: X_z_;=w% __ 0%

) WI(k} — argminyy ¢ ooyrxn—s [ Xz,-7 — WH(sz),fjHQF

k
X 75-W% _ H|}

-

U >

D

k .

) Hé} — argmin g e(g soym-—rxs
(k) (k k

) XLJ — WI,}H%} ~

8)  BCV(k) — BCV(k) + | Xz — X773

~J

Return:

BCV(k) for k € K.

F1G. 1. This algorithm describes bi-cross-validation of the nonnegative matrix factorization. It uses
a squared error criterion and conforming residuals (5.3). To use the simple residuals (5.2), replace

lines 5 through 7 by X%, < X7 _ 7 (%) _ v _ H*x_7 7.

The residual we use is then
o7 (k) 73 (k)
(5.3) A—W,"H," .

We call (5.3) the “conforming” residual. Unlike simple residuals, the conforming
residuals can depend on which factorization of D is used. If X has a k term NMF
and the submatrix D has an NMF unique up to permutation and scaling, then
the conforming residual is zero. When D has a k-term but inherently nonunique
NMF, then it may be possible to get a nonzero conforming residual. Laurberg et
al. (2008) give necessary and sufficient conditions for the NMF to be unique up to
permutation and scaling.

Figure 1 illustrates the BCV process for the NMF. Ordinarily there are 4 distinct
row holdout sets and ¢ distinct column sets and then there are M = h{ holdout
operations to evaluate, but the algorithm is more general. For example, one could
choose M random r x s submatrices of X to hold out.

Requiring nonnegative factors in the estimate of A is not analogous to replacing
the type I residuals (3.3) by type II residuals (3.4). The analogous modification
would be to replace the submatrices B and C by their rank k NMF fits. We do not
investigate this option.

The examples from Section 4 have implications for bi-cross-validation of the
NMEIf X=WH = Zle wihg and one of the vectors w; or k; is almost entirely
zeros, then that factor will be harder to resolve.
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5.2. Other outer product models. Other models of outer product type are com-
monly used on matrix data. Lee and Seung (1999) point out that the model un-
derlying k-means clustering of rows has the outer product form X = LR, where
L € {0, 1}"** with each row summing to 1 while R € R**”_ It may thus be bi-
cross-validated in a manner analogous to the NMF, respecting the binary con-
straints for L. It may seem odd to leave out some variables in a cluster analysis, but
Hartigan (1975) has advocated leaving out variables in order to study stability of
clustering, so bi-cross-validation of k-means may be useful. Clusters that involve
fewer rows than the number being held out could be missed.

The semi-discrete decomposition of Kolda and O’Leary (1998) approximates X
by a matrix of the form UX V', where U € {—1, 0, 1)<k v e {—1,0, 1} and
¥ is a nonnegative k by k diagonal matrix. MacDuffee’s theorem applies to this
decomposition because we can absorb ¥ into one of the other factors. Thus, a
residual like the one based on (5.2) can be constructed for the SDD.

6. Random matrix distribution theory. We suppose here that X is a rank O
or 1 matrix plus i.i.d. Gaussian noise. While we expect BCV to be useful more
generally, this special case has a richly developed (and still growing) theory that we
can draw on to investigate BCV theoretically. The Gaussian setting allows special
methods to be used. Some of the random matrix theory results have been extended
to more general distributions, usually requiring finite fourth moments. See Baik
and Silverstein (2004) and Soshnikov (2001) for some generalizations.

Section 6.1 considers the case where the true k = 0 and we fit a model of either
rank O or 1. Results on sample covariances of large random matrices are enough to
give insight into the hold-out squared error. The case where the data are generated
as rank 1 plus noise is more complicated, because it cannot be handled through
the sample covariance matrix of i.i.d. random vectors. Section 6.2 reviews some
recent results of Onatski (2007) which apply to this case. Then Section 6.3 applies
these results to our partitioned matrix. Section 6.4 organizes the findingsina 2 x 2
table with true and fitted ranks both in {0, 1}.

For simplicity, we look at the differences between E(BCV (k)) for the correct
and incorrect k. When these are well separated, then we expect the method to more
easily select the correct rank. For this analysis, we neglect the possibility that in
some settings using the correct rank may give a greater squared error.

6.1. Pure noise. Throughout this section X;; are independent & (0, 1) random
variables. There is no loss of generality in taking unit variance. We partition X into
A, B, C and D as before, leaving out the  x s submatrix A and fitting an SVD of
rank k to D. The true £ is 0 and we will compare fits with £ = O to fits with k = 1.

For this pure noise setting we will assume that m > n. This can be arranged by
transposing X and simultaneously interchanging r and s.

For k = 0, we trivially find that D© =0 and so the error from a rank 0 fit is
29 = A — B(D©)*C = A. For k = 1, the residual is ) = A — B(DW)*C.
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Because A is independent of B, C and D, we easily find that
B[ F) = EQIAIR) +E(B(DV)*Cl7) = ElAIR) =E([E]7)-

The true model has an advantage. Its expected cross-validated error is no larger
than that of the model with k = 1.

The rank 1 approximation of X is comparatively simple in this case. We may
write itas XD = oq1uv’. Then, from Muirhead (1982) we know that u, v and oy are
independent with u uniformly distributed on the sphere §" ! = {x e R" | x'x =
1}, and v uniformly distributed on S"~.

Let o1 be the largest singular value of X. Then 012 is the largest eigenvalue of
X'X. Such extreme eigenvalues have been the subject of much recent work. The
largest has approximately a (scaled) Tracy—Widom distribution Wj. Specifically,
let

Wmp=(Vm—1+ ﬁ)z and

Omn = (MJM/E)( ml_ -+ %)1/3'

Then from Theorem 1 of Johnstone (2001),

012 — Mm,n _d) e
Om,n
as m and n go to infinity in such a way that m/n — ¢ > 1. For our purposes it
will be accurate enough to replace the (m — 1)’s above by m. While u,, , grows
proportionally to m, o, , grows only like m'/3, so 012 is relatively close to its
mean.
Putting this together, B(ﬁ(l))+C = (Bu)al_l(v’C), where Bu € R™*! and

v'C € RS both have i.i.d. N (0, 1) entries, independent of o1, and so
E(|B(DV) C7) = rsEio ).

The random variable 012 is stochastically larger than a X(Zm) random variable

and so E(ofz) does exist. Also, 0.,/ m.n becomes negligible as m,n — oo.
Therefore, E(o; %) & ntrn_s = (/m =7 + /n —5)72, recalling that the SVD
is applied to D which has dimensions (m —r) x (n — s).

When we partition the rows of X into m/r subsets and the columns into n/s
subsets and then average the expected errors, we get

LE(BCV(O)) =1 and
6.1) mn

iE(BCV(l)) ~14+(Wm—r+vn—s) "
mn
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The bi-cross-validated squared error is, on average, slightly larger for k = 1 than
for k = 0. As equation (6.1) shows, the expected difference between BCV (1) and
BCV(0) grows if r/m and s/n are taken larger. Thus, we expect larger holdouts to
be better for avoiding overfitting.

6.2. Rank 1 plus noise. Now we suppose that
(6.2) X=xuv'+Z

for unit vectors u € R™ and v € R”, and a constant x > 0. Here xuv’ is a rank 1
signal obscured by the noise, Z. The elements Z;; of Z are i.i.d. N (0, 1) ran-
dom variables. If we fit a rank 0 model, then the expected mean squared error
is E(BCV(0)) = k% + mn. The root mean square of the elements in the signal is
i (mn)~Y?% and so it is reasonable to consider increasing with m and n.

When exactly one of u and v is fixed and the other is random, then model
(6.2) is a special case of the spiked covariance model of Johnstone (2001). The
spiked covariance model has either independent rows and correlated columns or
vice versa. If columns are independent, then X X’ is a spiked covariance, and theo-
retical results on its first eigenvalue apply directly to the left singular vector of X.
Conversely, independent rows let us approach the left singular vector of X via
X'X. But we need both left and right singular vectors of X and we cannot assume
that both rows and columns are independent.

Some recent results due to Onatski (2007) allow us to investigate model (6.2)
where both # and v are fixed. Either or both could be random as well.

We specialize the results of Onatski (2007) to the case of kK = 1 deterministic
factor with noise level o = 1 and deterministic loadings. His deterministic factor F
is our vector v4/n. His loadings L then correspond to our xu/+/n. Onatski (2007)
studies a “weak factor model” whose small loadings are such that L'L = «?/n
approaches a constant d;. The weak factor model has « growing slowly with n.
Earlier work of Bai (2003) used “‘strong factors” with much larger loadings, in
which L’L/n approaches a constant.

THEOREM 2. Let X =«xuv’' + Z, where u € R™ and v € R" are unit vectors,
and Z;j are independent N (0, 1) random variables. Suppose that m and n tend
to infinity together with m — cn = o(m~'/?) for some ¢ € (0, 00). Let 51 be the
largest eigenvalue of XX' /n. If di = k%/n > /¢, then /n(€1 —m1) — N (0, Z4)
in distribution, where

d+ 1D 2(d?* —
_ i+ D(di +¢) and T — di —c¢)

dy d?

mi (2d1+c+1).

PROOF. This is from Theorem 5 of Onatski (2007). O

When d; < 4/c there is a negative result that simply says ¢ tends to (1 + Jo)?
regardless of the actual value of d = k2/n.
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The critical threshold is met when d; > \/c. That is, k% /n > \/c = \/m/n, and
so the threshold is met when

(6.3) k2=08ymn  fors > 1.

The critical value for « is unchanged if we transpose X, thereby switching m and n.
We will consider large but finite §.
The top s1ngu1ar value of X is 61 and 6 01 = né;, which grows as m and n grow.

We scale it by k2 which grows at the same rate, and find

E@7) _ nE(f)  nmi _ n(di+ D +0) < 1 )(Hﬁ)

~ 14—
K2 K2 K? diK?

8y/c
after some simplification.
The first singular value 6 then scales as a multiple of x. That multiple does not
tend to one in the weak factor limit. But if § is large, the bias is small.
The variance of 67/«% = (/n/k?) x Jnky is
V(&f) nSq n 2(d?—c)

S Qd) +c+1)
2
Kkt d

2

K

:ﬁ528_1<25+\/'+%>

after some simplification. Treating 61 as an estimate of 2, we find that the ratio
6f /2 has a standard deviation that is asymptotically negligible compared to its
bias.

Onatski (2007) also considers the accuracy with which the vectors # and v in
our notation are estimated.

THEOREM 3. Under the conditions of Theorem 2, let i be the first eigenvector
of XX'/n and ¥ be the first eigenvector of X' X /m. If d| > /c, then

s, 2@ — py) > N©O,1) and ;00— py) > N, D),

d12—c J dlz—c
= _— an. = _—
VSN + 1) BV + o

and as dy becomes large,

where

max(Zy, Ty) = 0(d; ).

PROOF. These results come from Theorems 1 and 2 of Onatski (2007). The
values for uy and py are found by direct substitution. From part ¢ of his Theo-
rem 2 with (i, j) = (¢t,s) = (1, 1) and ¢1111 =0, we find

cdi(di +1)? (1 N <d1 + 1)2) ((di +1)? = (1 —))?c?
c — .
2(d + ¢)(d} — ¢)? dy+c 2dy(d} — ¢)(d) +¢)3

V:
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By inspecting the powers of d; inside this expression for Xy, we may verify that
Yy=0(d, 2) as di — oo. From Onatski’s Theorem 1, part c, we similarly find

(a4 1) dic=1)  [di+1D*=(1=-0d
2d,(d} —¢)? 2} —o)di+ 1) 2d} —o)di +1)3

The expression for Xy can be rewritten as a ratio of two polynomials. At first they

both appear to be of eighth degree. But upon inspection, the coefficients of a’l8 and

d17 vanish from the numerator and the result is asymptotic to 5d; 2 /2 as di grows.
O

U

Onatski’s quantity d; equals k%/n = 8./c. It follows that both sy and py be-
come close to 1 for large 8, as m and n increase. Similarly, ¥ and ¥y have small
limits when § is large.

6.3. Partitioning X. We write X € R™*" in the form

A B ur\ (vi\ , (Zu Zn
X= (C D) - <u2> <v2> * (221 Zzz)’

where A € R"** and the other parts of X of conforming sizes. The entries of Z
are independent Gaussian random variables with mean 0 and variance 1. We will
compare rank 0 and 1 predictions of A, denoted by A© and AD respectively.

These estimates take the form Bg(D)C, where g(D) € R*=)*X("=7) may be
thought of as a regularized generalized inverse. For A© we take g(D) =0, while
for A we take g(D) = (D)t = K Tin 05,

The expected mean square error from the rank 0 model is

E(|Al% | u, v, Zo) = B(| A5 | u, v) = rs + i |up |*v1]*.

Summing this MSE over m/r hold out row sets and n/s hold out columns sets, we
get E(BCV(0)) = mn + k2. For weak factors, the expected cross-validated error
of the null model is mn + 8 /mn.

For the rank 1 model we build some machinery. Lemma 2 below integrates out
the contributions from Zy1, Z1> and Z»; for u, v and Z;, fixed by sampling or by
conditioning. Lemma 2 also applies to functions g corresponding to SVDs of rank
higher than 1 and to the nonnegative matrix factorization, among other methods.

LEMMA 2. Let X be as partitioned above with matrix Z having independent
entries with £(Z;;) =0 and V(Z;;) = 1. Let g(-) be a function from ROn=r)x(n=s)
to RO=IXm=r) and let G = g(D). Then

2
E(IA — BGC|lF | Z22,u,v)
=rs + k2 |u1v] — kuvbGuavi | % + sk |luvb G| 5

2 2 2
+ re”|Guavi |5 + rs|GllE
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<rs +&*(1 — kvbGuo)*|ur [*v1|*

2,2 202, 2 2012
+ NGl slur|“|val” + k77 |uz|*[v1 |~ +7s).

PROOF. Decompose
A— BGC :Kulvi + 711 — (Kulvlz + Z]z)G(KMQUi + Z>1)

=711 — /culv/szzl — KleGuzvi — Z12GZy

2

+ kujv] — Kk uvsGupv)

and sum the squares of the terms to get the equality. Then apply bounds |Xy| <
IX || F|y| for matrix X and vector y. [

Next we look at D = kusv, + Z3> and apply the results from Onatski (2007)
in Section 6.2. Let the first term in the SVD of D be kii205. Then for a rank 1 fit
g(D) =k~ '0,05, and so |G||% = & 2 and kv, Gus = (k/R)Vydaiihutz.

From here we proceed informally in averaging out Z»,.

From Theorem 2 we have k2 > «? with overwhelming probability because
the bias dominates the variance. Therefore, we will suppose that E(||G||%/<2) =
E((k/&)%) < 1. Then

E(|A — BGC|3) < rs +«*Exn((1 — kvhGua)®) |ur | |v1|?
+ slur [Plval® + rlua*|vi [P + rsc 2,
where £y denotes expectation over Zy with # and v fixed. If we sum over m/r
disjoint row blocks, and n/s disjoint columns blocks, then

EBCV(D) <mn+x>Y" > [u1]* o1 Ex((1 — kv5Gua)?) + % + % ':—Z
up v
where the summation is over all (mn)/(rs) ways of picking the rows and columns
to hold out as A. Because u and v are unit vectors, we always have |us|, |va| < 1.
Next we turn to (1 — Kv’ZGuz)Z. Define unit vectors iy = uy/|uz|, and v =
v2/|v2|, and let & = «|ua||va|. Then D = kuv) + Zy = K0 + Z2;. The matrix
D now plays the role of X in Theorems 2 and 3. Let D have the largest singular

value & with corresponding singular vectors i, and 05, so that G = ¢ ~! vzit5. Then

1 kK, .
~UVyV2UrUD.

K , .
(6.4) kVyGuy = —V0pllhuy = ———— —
K lua|lvz| &

Equation (6.4) shows where problems arise if we have held out most of the rows

dominating u. Then |u]| is large and |uz| = /1 — |u1|? is small, and of course a
similar problem arises when v; has most of the structure from v.

From Theorems 2 and 3 we know that (k'//&)v50ubiis will be quite close to 1,
for large §. We do not make a delicate analysis of this because we want to consider
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settings where |u2| and |v2| need not be close to 1. We suppose only that lus|? > n
and |v2|2 > 7 for some 5 > 1/2. For example, if = 3/4, then we never hold out
more than 1/4 of the squared signal in « or v. This is a very conservative condition
when r and s are small such as » = s = 1. Now our conservative estimate for
E22((1 — kvbGuy)?) is simply (1 — 1/n)2.

Under this very conservative assumption, we get
rm  mn

2 2 2, S
E(|A - BGC|l7) <mn+k“(1—=1/n)"+ — + — 3
r S K

(6.5)

sn rm svmn
=mn + §/mn(1 — l/n)2+7+7+ S

To see why the assumption is conservative, consider a model in which the com-
ponents of # and v were generated by sampling A (0, 1) entries which are then
normalized and fixed by conditioning. Suppose further that r and s are small.
Then |uy| is about /1 — r/m. Similarly, |vy| is about 4/1 — s/n and in combi-
nation with large §, we find the coefficient Eoy ((1 — KU/ZGMQ)Z) of §,/mn in (6.5)
nearly vanishes.

6.4. Summary. We summarize the results of this section in a 2 x 2 layout given
in Table 1. For simplicity, we consider proportional holdouts with r/m =s/n =106.
There is an unavoidable contribution of mn to the squared errors coming from the
noise Zi1 in the held out matrix A. If the true k = 0, and we fit with k = O then
that is all the error there is. Accordingly, we place a O in the upper left entry of the
table.

If the true k = 0 and we fit with k = 1, we get a squared extra error of the form

mn 1 Jmn
(WVm—r+Jn—2s2% 1-0Jc+1/Jc+2’
This provides the lower left entry in Table 1. Larger holdouts, as measured by 9,
increase the separation between rank 0 and rank 1, when the true rank is 0. Simi-
larly, extreme aspect ratios, where c is far from 1, decrease this separation, so we
expect those aspect ratios will lead to more errors in the estimated rank.

TABLE 1
This table summarizes expected cross-validated squared errors from the text. The lower right entry
is conservative as described in the text. The value n € (1/2, 1) represents a lower bound on the
proportion not held out, for each singular vector u and v. The value 6 is an assumed
common value for r/m and s/n and § > 1 is a measure of signal strength

EBCV(k)) —mn True k=0 Truek=1
Fitted k = 0 0 8 /mn
Fitted k = 1 A mn (1 —1/m2 + 32 + 6732 1 1/8)

1=0 Je+1/c+2
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Now suppose that the true model has rank k£ = 1 with a value of « satisfying
2 = §./mn for § > 1. If we fit a rank 0 model, we get an expected summed
squared error of mn + §/mn. This provides the upper right entry of Table 1.
Finally consider the case where we fit a rank 1 model to a rank 1 dataset. For
simplicity, suppose that we never hold out most of # or v. Then the retained portion
of u has uhup > n > 1/2 and, similarly, vjv, > n > 1/2. For r/m = s/n =6,
equation (6.5) simplifies to

mn + 8/mn(1 — 1/n)?* 4+ /mn(c*? 4+ c¢3/%) +

which gives us the lower right entry in Table 1.

We want the lower right entry of Table 1 to be small to raise the chance that a
rank 1 model will be preferred to rank 0. Once again, large aspect ratios, ¢ > 1,
are disadvantageous. The holdout fraction 6 does not appear explicitly in the table.
But a large holdout will tend to require a smaller value for n which will then raise
our bound BCV(1).

In summary, large holdouts make it easier to avoid overfitting but make it harder
to get the rank high enough, and extreme aspect ratios make both problems more
difficult.

A mn
8 ’

7. Examples for the truncated SVD. In this section we consider some simu-
lated examples where X = u + Z for which Z ~ N (0, I, ® I,,) is a matrix of i.i.d.
Gaussian noise and p € R”™*" is a known matrix that we think of as the signal.
The best value of k is k°P' = arg min, ||)? &) — 1|12, and we can determine this in

every sampled realization. For a data determined rank 75, we can compare || X® |
to | X<

We generate the matrix p to have pre-specified singular values 11 > 15 > .-+ >
Tmin(m,n) > 0 as follows. We sample ¥ ~ N (0, ,, ® I,,), fitan SVD Y =UX V’
and then take u = UTV’', where T = diag().

We look at two patterns for the singular values. In the binary pattern, v
1,1,...,1,0,0,...,0) including k nonzero singular values. In the geometric pat-
tern, T o (1,1/2,1/4, ..., 2~ min(m.n)y Here ;1 has full rank, but we expect that
smaller k£ will lead to better recovery of . We make sure that the smallest singu-
lar values of p are quite small so that our identification of w as the signal is well
behaved.

7.1. Small simulated example. We first took m = 50 and n = 40. The singular
values were scaled so that || 12=E(Z|%, making the signal equal in magnitude
to the expected noise. For this small example, it is feasible to do a 1 by 1 holdout.
Gabriel’s method requires 2000 SVDs and the Eastment—Krzanowski method re-
quires 4001 SVDs. The results from 10 simulations are shown in Figure 2. For the
binary pattern, an oracle would have always picked the true rank k = 10. For the
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Mean square error vs rank: binary and geometric cases
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F1G. 2. This figure shows the results of Gabriel and Eastment—Krzanowski 1 x 1 hold out
cross-validation on some 50 by 40 matrix examples described in the text. In the left panel the signal
matrix has 10 positive and equal singular values and 30 zero singular values. The dotted red curves
show the true mean square error per matrix element ||f *) _ p.||2 /(mn) from 10 realizations. The
solid red curve is their average. Similarly, the black curves show the naive error ||5(\(k) — X||2/(mn).
The green curves show the results from Eastment—Krzanowski style cross-validation. The blue curves
show Gabriel style cross-validation. The right panel shows a similar simulation for singular val-
ues that decay geometrically. In both cases the mean square signal was equal to the expected mean
square noise.

geometric pattern, the best rank was always 3 or 4. The Eastment—Krzanowski
method consistently picked a rank near 20, the largest rank investigated. The
Gabriel method tends to pick a rank slightly larger than the oracle would, but not
as large as 20.

We also investigated our generalizations of Gabriel’s method from Section 3.2
for holdouts of shape 2 x 2, 5 x 5, 10 x 10 and 25 x 20. These have residuals
given by equations (3.3) and (3.4). For an r x s holdout, the rows were randomly
grouped into r subsets of m/r rows each and the columns were grouped into s
subsets of n/s columns each.

For comparison, we also generalized the Eastment—Krzanowski method to r
by s holdouts. As for 1 x 1 holdouts, one takes the right singular vectors of an
SVD on X less r of its rows, the left singular vectors of an SVD on X less s of its
columns and assembles them with the geometric means of the two sets of singular
vectors. The only complication is in choosing whether to reverse any of the k signs
for the s1ngu1ar vector pairs. Let My = ukvk be the kth term of the SVD fit to X
and let Mk = Ui} vk be the estimate formed from the two SVDs where part of X
was held out. Let My © M be the componentwise product of these matrices. If the
mean of My ® My over the rs held out elements was negative, then we replaced
Uy Vg by —iiy .
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A 2 x 2 holdout requires roughly one fourth the work of a 1 x 1 holdout. For
comparison we also looked at replicating the 2 x 2 holdout four times. Each repli-
cate had a different random grouping of rows and columns. We also replicated the
5 x5, 10 x 10 and 25 x 20 methods 25 times each.

A final comparison was based on three methods from Bai and Ng (2002) that
resemble the Bayesian Information Criterion (BIC) of Schwarz (1978). In these,
the estimate k is the minimizer of

(7.1) BIC; (k) = log(| X% — X|2) + k""" 10g ",
mn m+n
(7.2) BIC, (k) = log(|X® — x|») + k""" logC? or
mn
“~ log C?
(7.3) BIC; (k) = log(| X® — X|*) + & o

over k, where ¢ = c(m, n) = min(y/m, \/n).

The methods of Bai and Ng (2002) are designed for a setting where there is
a true rank k < min(m, n) to be estimated. The binary pattern conforms to these
expectations but the geometric one does not. In applications, one can seldom be
sure whether the underlying pattern has a finite rank, so it is worth investigating
(7.1) through (7.3) for both settings.

Figure 3 summarizes all of the methods run for this example. BIC methods 1
and 3 always chose rank k = 20, the largest one considered. BIC method 2 always
chose rank 1 for the binary setting, but did much better on the geometric setting,
for which it is not designed. This example is probably too small for the asymptotics
underlying the BIC examples to have taken hold.

The original Eastment—Krzanowski method picked ranks near 20 almost all the
time. The generalizations picked ranks near 1 for the binary case but did better on
the geometric case.

The lower left region of Figure 3 holds the methods with good relative per-
formance in both cases. The methods there are all generalized Gabriel holdouts
for r x r holdouts with r € {1, 2,5, 10}. These methods have nearly equivalent
performance. Both types I and II residuals are there but for no holdout size did
type II beat type I, while there were a few cases where the sample mean square
was smaller for type I. The methods using replication got slightly better perfor-
mance on the binary case but somewhat worse performance on the geometric case.
There is a slight tendency for larger holdouts to do better on the geometric case,
and for smaller ones to do better on the binary case. The pattern we see is reason-
able when we notice that the holdout sizes that did poorly for the binary case were
not small compared to the number of nonzero singular values.

The comparisons between I and II at fixed holdout size may not be statistically
significant. While one could possibly find significance by pooling carefully over
holdout sizes, the more important consideration is that type II BCV is more awk-
ward to implement and appears to perform worse. So these results favor type I, as
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Squared error per element
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F1G. 3. This figure shows the mean square error, per element, for all the methods applied to the
50 x 40 example. The case with geometrically decaying singular values is on the horizontal axis, and
the binary case with ten equal nonzero singular values is on the vertical axis. Gabriel’s method and
our generalizations are shown in blue, (generalized) Eastment—Krzanowski is in green, the oracle is
red, and Bai and Ng’s BIC estimators are in black. There are horizontal and vertical reference lines
for methods that always pick k =1 or k = 20. The cluster of blue points in the lower left corner is
discussed in the text.

do further results in the next section. The choice between Gabriel and EK style
cross-validation is important. Similarly, the choice of holdout size is important be-
cause the largest holdout size did not end up among the most competitive methods.

7.2. Larger simulated example. We repeated the simulation described above
for X e R1000x1000 We did not repeat the Eastment-Krzanowski methods because
the sign selection process is awkward and the methods are not competitive. We did
repeat the Bai and Ng methods because they are easy to implement, and are com-
putationally attractive in high dimensions. We considered both residuals I and I1.

For the binary example we used a matrix p of rank 50. The geometric example
was as before. We found that taking || ||> = E(|| Z||?) makes for a very strong sig-
nal when there are 10° matrix elements. So we also considered a low signal setting
with ||||> = 0.01E(|| Z||?) and a medium signal setting with ||| = 0.1E(|| Z|?).
The quantity § takes values 20, 2 and 0.2 in the high, medium and low signal set-
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tings. The low signal setting has § < 1 and so we expect that not even the largest
singular vector should be properly identified.

For the generalized Gabriel BCV we took holdouts of 200 x 200, 500 x 500
and 800 x 800. We used a single random grouping for each holdout.

We looked at approximations of rank £ from 0 to 100 inclusive. This requires
fitting a truncated SVD of an m — r by n — s matrix to k = 100 terms. When k <
min(m — r,n — s) the truncated SVD is much faster than the full one. We noticed
a large difference using svds in Matlab, but no speed-up using svd in R. In some
simulated examples comparable to the present setting, an SVD of X € R™*" to k
terms takes roughly O (mnk) computation, at least for large m < n. The exact cost
depends on how well separated the singular values are, and is not available in
closed form. A sharper empirical estimate, not needed for our application, could
use different powers for m and n.

For large k the approximation (D**1)* can be computed by updating (D¥)*
with an outer product from the SVD of D. For type II residuals similar updates
can be used for the pieces B and C of X. Efficient updating of type II residuals is
more cumbersome than for type L.

The outcomes for type I residuals in the two high signal cases are shown in
Figure 4. The BCV errors for 800 x 800 holdouts were much larger than those for
500 x 500 holdouts, which in turn are larger than those for 200 x 200 holdouts.
The selected rank & only depends on relative comparisons for a given holdout, so

BCV relative errors versus rank
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FI1G. 4. This figure shows the BCV errors for the 1000 x 1000 examples with equal signal and
noise magnitude, as described in the text. The left panel shows the results when there are 50 positive
and equal singular values. The horizontal axis is fitted rank, ranging from 0 to 100. The vertical axis
depicts square errors, in each case relative to the squared error for rank k = 0. There are 10 nearly
identical red curves showing the true error in 10 realizations. The black curves show the naive error.
Blue curves from dark to light show BCV holdouts of 200 x 200, 500 x 500 and 800 x 800. The right

panel shows the results for a geometric pattern in the singular values.
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we have plotted BCV (k; r, s)/ BCV(0; r, s) versus k, in order to compare the min-
ima. A striking feature of the plot is that all 10 random realizations were virtually
identical. The process being simulated is very stable for such large matrices.

Comparing the BCV curves in Figure 4, the one for large holdouts is the steep-
est one at the right end of each panel. Large holdouts do better here at detecting
unnecessarily high rank. For the binary case, the steepest curves just left of opti-
mal rank 50 come from small holdouts. They are best at avoiding too small a rank
choice.

The type II BCV did not lead to very good results. The only time it was better
than type I was for 200 x 200 holdouts. There type II matched the oracle all 10
times for the low geometric signal. They were slightly better than type I BCV 9
times out of 10, for the binary medium signal case.

The ratio ||f ® — )12/ 1X (kP = wl|? (or its logarithm) measures the regret we
might have in choosing the rank k produced by a method. Figure 5 shows these
quantities for 6 of the methods studied here. It is noteworthy that BCV with 500 x
500 holdouts attained the minimum in all 60 simulated cases. Smaller holdouts
had difficulty with medium strength binary singular values and larger holdouts
had difficulty with medium strength geometric singular values.

In the binary high signal case the optimal rank, as measured by ||)A( ® — )2,
was k°P' = 50 in all 10 realizations. The other 5 settings also yielded the same
optimal rank for all 10 of their realizations. Those ranks and their estimates are
summarized in Table 2. When small holdouts go wrong, they choose k too large
and conversely for large holdouts, with a slight exception in the first row.

The 200 x 200 holdouts were the only method to get close to the true rank 50,
in the medium signal binary case. Despite getting nearest the true rank, they had
the worst squared errors of the six methods shown. Ironically the BIC methods are
designed to estimate rank, but always chose k = 0 for this setting and did better
for it.

7.3. Real data examples. The truncated SVD has been recommended for
analysis of microarray data by Alter, Brown and Botstein (2000). We have applied
BCYV to some microarray data reported in Rodwell et al. (2004). The data comprise
a matrix of 133 microarrays on 44,928 probes, from a study of the effects on gene
expression of aging in the human kidney. The 133 arrays vary with respect to age
and sex as well as the tissue type, some being from the kidney cortex while others
are from the medulla.

Figure 6 shows the results from bi-cross-validation of the SVD on this data
using (2 x 2)-fold holdouts. The rank O case has such a large error as to be uninter-
esting and so the errors are shown relative to the rank 1 case. The naive MSE keeps
dropping while the BCV version decreases quickly for small £ before becoming
flat. The minimum BCYV error over 1 < k < 60 takes place at rank k = 41.

We have seen similar very flat BCV curves in other microarray data sets. Mi-
croarray data sets tend to have quite extreme aspect ratios. Here the aspect ratio
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Squared error relative to oracle
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F1G. 5. This figure shows squared errors attained by rank selection methods relative to an ora-
cle that knows the optimal rank in each simulated 1000 x 1000 data set. For each method there
are 60 relative errors corresponding to binary vs geometric singular values, high, medium and low
signal strength, each replicated 10 times. The methods shown are BCV with h x h holdouts for
h € {200, 500, 800} and the three BIC methods of Bai and Ng (2002).

c =m/n is over 300. Simulations with Gaussian data, using binary and geomet-
ric singular values and more extreme aspect ratios, behave like the Gaussian data
simulations reported earlier in this section, and not like microarray BCV results.
It is plausible that the biological processes generating the microarray data sets
contain a large number of features compared to the small number of arrays sam-
pled. The singular vectors in the real microarray data examples tend to have high
kurtosis, with values in the tens or hundreds. For the kidney data the 133 singular
vectors of length 44,928 had an average kurtosis of over 180. Such high kurtosis
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TABLE 2
This table shows the average rank k chosen in 10 replications of the 1000 x 1000 matrix
simulations described in the text. There is one row for each singular value pattern. The column
“Opt” shows arg miny, XK — 11||2. The next three columns are for k chosen via h x h holdouts for
h € {200, 500, 800}. The final three columns are for 3 BIC style methods of Bai and Ng (2002). The
integer values arose when the same rank was chosen 10 times out of 10

Opt 200 500 800 BICy BIC, BIC;3

Binary High 50 50 50 50.9 50 50 50
Medium 0 42.6 0 0 0 0 0
Low 0 0 0 0 0 0 0
Geometric High 5 5 5 4 4 4 4
Medium 3 32 3 2 2 2 3
Low 1 2 1 1 0 0 1

could arise from small intense clusters corresponding to features, or from heavy
tailed noise. But heavy tailed noise values would not be predictive of each other in
a holdout, and so we infer that multiple sources of structure are likely to be present.

We also ran BCV to estimate the rank of a truncated SVD for some standard-
ized testing data given to us by Ed Haertel. The data set represented 3778 stu-
dents taking an eleventh grade test with 260 questions. The data are a matrix
X € {0, 1}3778x260 where X; j = L if student i correctly answered question j, and
is 0 otherwise. A rank 1 approximation to this matrix captures roughly 60% of the
mean square. For this data set BCV chooses rank 14. The NMF is more natural for
such data and we discuss this example further in Section 8.

Relative BCV versus rank
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FI1G. 6. This figure compares the naive squared error in black to the (2 x 2)-fold bi-cross-validation,
shown in blue. The ranks investigated vary from 1 to 60. Both error curves are normalized by their
value at rank k = 1. The BCV curve takes it’s minimum at k = 41, which is marked with a reference
point.
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8. NMF examples. We use the CLASSIC3 corpus from ftp://ftp.cs.cornell.
edu/pub/smart/ to build an NMF model where we know what the true best rank
should be. This corpus consists of 3893 abstracts from journals in three differ-
ent topic areas: aeronautical systems, informatics and medicine. The abstracts are
typically 100-200 words, and there are roughly the same number of abstracts
from each topic area. After removing stop words and performing Porter stem-
ming [Porter (1980)], 4463 unique words remain in the corpus. Ignoring all lexical
structure, we can represent the entire corpus as a 3893 x 4463 matrix of word
counts X°2, whose ij elements is the number of times word j appears in docu-
ment i. This matrix is very sparse, with only approximately 1% of the entries being
nonzero.

We construct a simulated data set X from X°"€ as follows. First we split the

original matrix into X°¢ = X|"¥ + X7"¥ + X3¢, with one matrix per topic area.

Then we fit a rank-1 NMF to each topic, X ?ng = W; H;. We combine these models,
yielding W = (W1 W, W3). The columns of W represent 3 topics. We take H €
[0, 00)3*#463 by minimizing || X°"€ — W H ||, representing each document by a
mixture of these topics.

Fori=1,...,3893 and j =1,...,4463, we sample X;; independently from
Poi(u;;) where the matrix p equals ¢ + W H. The scalar ¢ is the average value of
the entries in W H, and its presence adds noise. The signal W H has rank 3, but in
the Poisson context, additive noise raises the rank of u = E(X) to 4.

The true error || X — 7 ||2F /(mn) between p and the k-term NMF approximation
of X is shown in Figure 7. We see that it is minimized at k = 3. BCV curves are
also shown there. With (2 x 2)-fold and (3 x 3)-fold BCV, the minimizer is at
k = 3. For (5 x 5)-fold BCV, the minimizer is at k = 4. While this is the true rank,
it attains a higher MSE by about 50%. Ten independent repetitions of the process
gave nearly identical results. The BIC methods are designed for a Gaussian setting,
but it is interesting to apply them here anyway. All of them chose k = 3.

8.1. Educational testing data. Here we revisit the educational testing example
mentioned for BCV of the SVD. We applied BCV to the NMF model using a
least squares criterion and both the plain residuals (5.2), as well as the ones from
(5.3) where the held out predictions are constrained to be a product of nonnegative
factors.

Figure 8 shows the results. For each method we normalize the BCV squared
error by || X||?, the error for a rank 0 model. Surprisingly, the plain SVD gives a
better hold out error. This suggests that factors not constrained to be nonnegative
predict this data better, despite having the possibility of going out of bounds. The
comparison between the two NMF methods is more subtle. Both attempt to esti-
mate the error made by NMF on the original data. The less constrained method
shows worse performance when the rank is very high. While it is a less realistic
imitator of NMF, that fact may make it less prone to over-fitting.
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BCV relative errors versus rank
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F1G. 7. The red curves in the left panel show the true normalized squared error loss
MSE(k)/MSE(0) for the estimated NMF's of ranks O through 10 fit to the synthetic CLASSIC3 data.
The black curves show the naive estimates of loss. The blue curves, from dark to light, show estimates
based on (5 x 5)-fold, (3 x 3)-fold and (2 x 2)-fold BCV. There were 10 independently generated in-
stances of the problem. The right panel zooms in on the upper portion of the left panel.

9. Discussion. We have generalized the hold-out-one method of Gabriel
(2002) for cross-validating the rank of truncated SVD to r x s hold-outs and then
to other outer product models.

Relative BCV versus rank
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FI1G. 8. This figure plots relative mean squared error under BCV for ranks 1 to 50 on the educa-
tional testing data. The three curves are for truncated SVD, NMF with least squares residuals (5.2),
and NMF with nonlinear least squares residuals (5.3). The minima, marked with solid points, are at
14, 11 and 17 respectively.
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The problem of choosing the holdout size remains. Holdouts that are too small
appear more prone to overfitting, while holdouts that are too large are more prone
to underfitting, especially when the number of important outer product terms is
not small compared to the dimensions of the held in data matrix. Until a better
understanding of the optimal holdout is available, we recommend a (2 x 2)-fold or
(3 x 3)-fold BCV, the latter coming close to the customary 10-fold CV in terms of
the amount of work required. In our examples (2 x 2)-BCV gave the most accurate
recovery of u, except in the small SVD example.

We find that BCV works similarly to CV. In particular, the criterion tends to de-
crease rapidly toward a minimum as model complexity increases and then increase
slowly thereafter. As a model selection method, CV works similarly to Akaike’s
Information Criterion (AIC) [Akaike (1974)], and differently from the Bayesian
Information criterion (BIC) of Schwarz (1978). The BIC is better at finding the
true model, when it is a subset of those considered, while CV and AIC are bet-
ter for picking a model to minimize risk. We expect that BCV will be like CV
in this regard. See Shao (1997) for a survey of model selection methods for i.i.d.
sampling.

Both cross-validation and the bootstrap are sample reuse methods. When there
is a symmetry in how rows and columns are sampled and interpreted, then one
might choose to resample individual matrix elements or resample rows indepen-
dently of columns. Some recent work by McCullagh (2000) has shown that in
crossed random effects settings, resampling matrix elements is seriously incor-
rect, while resampling rows and columns independently is approximately correct.
Owen (2007) generalizes those results to heteroscedastic random effects in a set-
ting where many, even most, of the row column pairs are missing.

In the present setting it does not seem “incorrect” to leave out single matrix
elements, though it may lead to over-fitting. Indeed, the method of Gabriel (2002)
by leaving out a 1 x 1 submatrix does exactly this. Accordingly, a strategy of
leaving out scattered subsets of data values, as, for example, Wold (1978) does,
should also work. There are some advantages to leaving out an r by s submatrix
though. Practically, it allows simpler algorithms to be used on the retained (m —
r) X (n — s) submatrix. In particular, for the SVD there are algorithms guaranteed
to find the global optimizer when blocks are held out. Theoretically, it allows one
to interpret the hold out prediction errors as residuals via MacDuffee’s theorem,
and it allows random matrix theory to be applied.
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