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BAYESBALL: A BAYESIAN HIERARCHICAL MODEL FOR
EVALUATING FIELDING IN MAJOR LEAGUE BASEBALL

BY SHANE T. JENSEN, KENNETH E. SHIRLEY AND ABRAHAM J. WYNER

University of Pennsylvania

The use of statistical modeling in baseball has received substantial at-
tention recently in both the media and academic community. We focus on a
relatively under-explored topic: the use of statistical models for the analy-
sis of fielding based on high-resolution data consisting of on-field location of
batted balls. We combine spatial modeling with a hierarchical Bayesian struc-
ture in order to evaluate the performance of individual fielders while sharing
information between fielders at each position. We present results across four
seasons of MLB data (2002–2005) and compare our approach to other field-
ing evaluation procedures.

1. Introduction. Many aspects of major league baseball are relatively easy to
evaluate because of the mostly discrete nature of the game: there are a relatively
small number of possible outcomes for each hitting or pitching event. In addition, it
is easy to determine which player is responsible for these outcomes. Complicating
and confounding factors exist—like ball parks and league—but these differences
are either small or averaged out over the course of a season.

A player’s fielding ability is more difficult to evaluate, because fielding is a
nondiscrete aspect of the game, with players fielding balls-in-play (BIPs) across
the continuous playing surface. Each ball-in-play is either successfully fielded by
a defensive player, leading to an out (or multiple outs) on the play, or the ball-
in-play is not successfully fielded, resulting in a hit. An inherently complicated
aspect of fielding analysis is assessing the blame for an unsuccessful fielding play.
Specific unsuccessful fielding plays can be deemed to be an “error” by the official
scorer at each game. These assigned errors are easy to tabulate and can be used
as a rudimentary measure for comparing players. However, errors are a subjective
measure [Kalist and Spurr (2006)] that only tell part of the story. Additionally, er-
rors are only reserved for plays where a ball-in-play is obviously mishandled, with
no corresponding measure for rewarding players for a particularly well-handled
fielding play. Most analysts agree that a more objective measure of fielding ability
is the range of the fielder, though this quality is hard to measure. If a batted ball
sneaks through the left side of the infield, for example, it is very difficult to know
if a faster or better positioned shortstop could have reasonably made the play. Con-
founding factors such as the speed and trajectory of the batted ball and the quality
and range of adjacent fielders abound.
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Furthermore, because of the large and continuous playing surface, the evalua-
tion of fielding in major league baseball presents a greater modeling challenge than
the evaluation of offensive contributions. Previous approaches have addressed this
problem by avoiding continuous models and instead discretizing the playing sur-
face. The Ultimate Zone Rating (UZR) is based on a division of the playing field
into 64 large zones, with fielders evaluated by tabulating their successful plays
within each zone [Lichtman (2003)]. The Probabilistic Model of Range (PMR)
divides the field into 18 pie slices (every 5 degrees) on either side of second
base, with fielders evaluated by tabulating their successful plays within each slice
[Pinto (2006)]. Another similar method is the recently published Plus-Minus sys-
tem [Dewan (2006)]. The weakness of these methods is that each zone or slice
is quite large, which limits the extent to which differences between fielders are
detectable, since every ball hit into a zone is treated equally.

Our methodology addresses the continuous playing surface by modeling the
success of a fielder on a given BIP as a function of the location of that BIP,
where location is measured as a continuous variable. We fit a hierarchical Bayesian
model to evaluate the success of each individual fielder, while sharing informa-
tion between fielders at the same position. Hierarchical Bayesian models have also
recently been used by Reich et al. (2006) to estimate the spatial distribution of
basketball shot chart data. Our ultimate goal is to produce an evaluation by esti-
mating the number of runs that a given fielder saves or costs his team during the
season compared to the average fielder at his position. Since this quantity is not
directly observed, it cannot be used as the outcome variable in a statistical model.
Therefore, our evaluation requires two steps. First, we model the binary variable
of whether a player successfully fields a given BIP (an outcome we can observe)
as a function of the BIP location. Then, we integrate over the estimated distribu-
tion of BIP locations and multiply by the estimated consequence of a successful or
unsuccessful play, measured in runs, to arrive at our final estimate of the number
of runs saved or cost by a given fielder in a season.

We present our Bayesian hierarchical model implemented on high-resolution
data in Section 2. In Section 3 we illustrate our method using one particular po-
sition and BIP type as an example. In Section 4 we describe the calculations we
make to convert the parameter estimates from the Bayesian hierarchical model to
an estimate of the runs saved or cost. In Section 5 we present our integrated results,
and we compare our results to those from a representative previous method, UZR,
in Section 6. We conclude with a discussion in Section 7.

2. Bayesian hierarchical model for individual players.

2.1. The data. Our fielding evaluation is based upon high-resolution data col-
lected by Baseball Info Solutions [BIS (2007)]. Every ball put into play in a major
league baseball game is mapped to an (x, y) coordinate on the playing field, up
to a resolution of approximately 4 × 4 feet. Our research team collected samples
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FIG. 1. Contour plots of estimated 2-dimensional densities of the 3 BIP types, using all data from
2002–2005. Note that the origin is located at home plate, and the four bases are drawn into the plots
as black dots, where the diagonal lines are the left and right foul lines. The outfield fence is not drawn
into the plot, because the data come from multiple ballparks, each with its outfield fence in a different
place. The units of measurement for both axes are feet.

from several companies that provide high-resolution data and after watching re-
plays of several games, we decided to use the BIS data since it appeared to be the
most accurate. We have four seasons of data (2002–2005), with around 120,000
balls-in-play (BIP) per year. These BIPs are classified into three distinct types: fly-
balls (33% of BIP), liners (25% of BIP) and grounders (42% of BIP). The flyballs
category also includes infield and outfield pop-ups. Figure 1 displays the estimated
2-dimensional density of each of the three BIP types, plotted on the 2-dimensional
playing surface. The areas of the field with the highest density of balls-in-play
are indicated by the contour lines which are in closest proximity to each other.
Not surprisingly, the high-density BIP areas are quite different between the three
BIP types. For flyballs and liners, the location of each BIP is the (x, y)-coordinate
where the ball was either caught (if it was caught) or where the ball landed (if it
was not caught). For grounders, the (x, y)-location of the BIP is set to the location
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TABLE 1
Summary of models

BIP-type Flyballs Liners Grounders

Position 1B 1B 1B
2B 2B 2B
3B 3B 3B
SS SS SS
LF LF
CF CF
RF RF

where the grounder was fielded, either by an infielder or an outfielder (if the ball
made it through the infield for a hit).

2.2. Overview of our models. The first goal of our analysis is to probabilisti-
cally model the binary outcome of whether a fielder made a “successful play” on
a ball batted into fair territory. We fit a separate model for each combination of
year (2002–2005), BIP type (flyball, liner, grounder) and position. Table 1 con-
tains a listing of the models we fit classified by position and BIP type. Pitchers and
catchers were excluded due to a lack of data. Also note that fly balls and liners are
modeled for all seven remaining positions, whereas grounders are only modeled
for the infield positions. This gives us eighteen models to be fit within each of the
four years, giving us 18 × 4 = 72 total model fits. The inputs available for model-
ing include the identity of the fielder playing the given position, the location of the
batted ball, and the approximate velocity of the batted ball, measured as an ordinal
variable with three levels (the velocity variable is estimated by human observation
of video, not using any machinery). For flyballs and liners, a successful play is
defined to be a play in which the fielder catches the ball in the air before it hits
the ground. For grounders, a successful play is defined to be a play in which the
fielder fields the grounder and records at least one out on the play. Grounders and
Flyballs/Liner BIPs are fundamentally different in the way their location data is
recorded, as outlined below, which affects our modeling approach.

1. Flyballs and liners: For flyballs and liners, the (x, y)-location of the BIP is
set to the location where the ball was either caught (if it was caught) or where
the ball landed (if it was not caught). We model the probability of a catch as
a function of the distance a player had to travel to reach the BIP location, the
direction he had to travel (forward or backward) and the velocity of the BIP. Our
flyball/liner distances must incorporate two dimensions since a fielder travels
across a two-dimensional plane (the playing field) to catch the BIP.

2. Grounders: For grounders, the (x, y)-location of the BIP is set to the loca-
tion where the grounder was fielded, either by an infielder or an outfielder (if
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FIG. 2. Two-dimensional representation for flyballs and liners versus one-dimensional representa-
tion for grounders.

the ball made it through the infield for a hit). As we did with flyballs/liners,
we model the probability of an infielder successfully fielding a grounder as a
function of the distance, direction and velocity of the grounder. For grounders,
however, distance is measured as the angle, in degrees, between the trajectory
of the groundball from home plate and the (imaginary) line drawn between the
infielder’s starting location and home plate, with direction being factored in by
allowing different probabilities for fielders moving the same number of degrees
to the left or the right. The grounder distance only must incorporate one dimen-
sion since the infielder travels along a one-dimensional path (arc) in order to
field a grounder BIP.

Figure 2 gives a graphical representation of the difference in our approach be-
tween grounders and flys/liners. It is worth noting, however, that the distance (for
flyballs/liners) or angle (for grounders) that a fielder must travel in order to reach
a BIP is actually an estimated value, since the actual starting location of the fielder
for any particular play is not included in the data. Instead, the starting location for
each position is estimated as the location in the field where each position has the
highest overall proportion of successful plays. The distance/angle traveled for each
BIP is then calculated relative to this estimated starting position for each player.

2.3. Model for flyballs/liners using a two-dimensional spatial representation.
We present our model below in the context of flyballs (which also include infield
pop-ups), but the same methodology is used for liners as well. For a particular
fielder i, we denote the number of BIPs hit while that player was playing de-
fense ni . The outcome of each play is either a success or failure:

Sij =
{

1, if the j th flyball hit to the ith player is caught,
0, if the j th flyball hit to the ith player is not caught.
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These observed successes and failures are modeled as Bernoulli realizations from
an underlying event-specific probability:

Sij ∼ Bernoulli(pij ).(1)

As mentioned above, the available covariates are the (x, y) location and the veloc-
ity Vij of the BIP. Although the velocity is an ordinal variable Vij = {1,2,3}, we
treat velocity as a continuous variable in our model in order to reduce the number
of coefficients included. The Bernoulli probabilities pij are modeled as a function
of distance Dij traveled to the BIP, velocity Vij and an indicator for the direction
Fij the fielder has to move toward the BIP (Fij = 1 for moving forward, Fij = 0
for moving backward):

pij = �(βi0 + βi1Dij + βi2DijFij + βi3DijVij + βi4DijVijFij )
(2)

= �(Xij · β i ),

where �(·) is the cumulative distribution function for the Normal distribution and
Xij is a vector of the covariate terms in equation (2). Note that the covariates Dij

and Fij are themselves functions of the (x, y) coordinates for that particular BIP.
This model is recognizable as a probit regression model with interactions between
covariates that allow for different probabilities for moving the same distance in the
forward direction versus the backward direction. We can give natural interpreta-
tions to the parameters of this fly/liner probit model. The βi0 parameter controls
the probability of a catch on a fly/liner hit directly at a fielder (Dij = 0). The βi1
and βi2 parameters control the range of the fielder, moving either backward (βi1)
or forward (βi2) toward a fly/liner. The parameters βi3 and βi4 adjust the probabil-
ity of success as a function of velocity.

2.4. Model for grounders using a one-dimensional spatial representation.
The outcome of each grounder BIP is either a success or failure:

Sij =
{

1, if the j th grounder hit to the ith player is fielded successfully,
0, if the j th grounder hit to the ith player is not fielded successfully.

Grounders have a similar observed data level to their model,

Sij ∼ Bernoulli(pij ),(3)

except that the underlying probabilities pij are modeled as a function of angle
θij between the fielder and the BIP location, the velocity Vij of the BIP, and an
indicator for the direction Lij the fielder has to move toward the BIP (Lij = 1 for
moving to the left, Lij = 0 for moving to the right):

pij = �(βi0 + βi1θij + βi2θijLij + βi3θijVij + βi4θijVijLij )
(4)

= �(Xij · β i ).
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Again �(·) represents the cumulative distribution function for the Normal distrib-
ution and Xij is a vector of the covariate terms in equation (4). We can also give
natural interpretations of the parameters in this grounder probit model. The βi0 pa-
rameter controls the probability of a catch on a grounder hit directly at the fielder
(Dij = 0). The βi1 and βi2 parameters control the range of the fielder, moving ei-
ther to the right (βi1) or to the left (βi2) toward a grounder. The parameters βi3 and
βi4 adjust the probability of success as a function of velocity.

2.5. Sharing information between players. We can calculate parameter esti-
mates βi for each player i separately using standard probit regression software.
However, we will see in Section 3.2 below that these parameter estimates β i can
be highly variable for players with small sample sizes (i.e., those players who faced
a small number of BIPs in a given year). This problem can be addressed by using
a hierarchical model where each set of player-specific coefficients β i are mod-
eled as sharing a common prior distribution. This hierarchical structure allows for
information to be shared between all players at a position, which is especially im-
portant for players with smaller numbers of opportunities. Specifically, we model
each player-specific coefficient as a draw from a common distribution shared by
all players at a position:

βi ∼ Normal(μ,�),(5)

where μ is the 5 × 1 vector of means and � is the 5 × 5 prior covariance ma-
trix shared across all players. We assume a priori independence of the components
of βi , so that � has off-diagonal elements of zero, and diagonal elements of σ 2

k

(k = 0, . . . ,4). Although the components of β i are assumed to be independent a
priori, there will be posterior dependence between these components induced by
the data. The functional form of this posterior dependence is given in our supple-
mentary materials section on model implementation [Jensen, Shirley and Wyner
(2009)]. Finally, we must also specify a prior distribution for the shared player pa-
rameters (μk, σk :k = 0, . . . ,4), which we choose to be noninformative following
the recommendation of Gelman (2006),

p(μk, σk) ∝ 1, k = 0, . . . ,4.(6)

We also explored the use of alternative prior specifications, including a proper
inverse-Gamma prior distribution for σ 2

k : (σ 2
k )−1 ∼ Gamma(a, b), where a and

b are small values (a = b = 0.0001). We observed very little difference in our
posterior estimates using this alternative prior distribution.

For each position and BIP type, our full set of unknown parameters are β , the
N × 5 matrix containing the coefficients of each player at a particular position
(N = number of players at that position), as well as μ, the 5 × 1 vector of co-
efficient means, and σ 2, the 5 × 1 vector of coefficient variances shared by all
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players at that position. For each position and BIP-type, we separately estimate
the posterior distribution of our parameters β , μ and σ 2,

p(β,μ,σ 2|S,X) ∝ p(S|β,X) · p(β|μ,σ 2) · p(μ,σ 2),(7)

where S is the collection of all outcomes Sij and X is a collection of all location
and velocity covariates Xij . We estimate the posterior distribution of all unknown
parameters at each position and BIP-type using MCMC methods. Specifically, we
employ a Gibbs sampling strategy [Geman and Geman (1984)] that builds upon
standard hierarchical regression methodology [Gelman et al. (2003)] and data aug-
mentation for probit models [Albert and Chib (1993)]. Additional details are pro-
vided in our supplementary materials [Jensen, Shirley and Wyner (2009)]. Our
estimation procedure is repeated for each of the eighteen combinations of position
and BIP type listed in Table 1, and for each of the 4 years from 2002–2005, for a
grand total of 18 × 4 = 72 fitted models. In the next section we provide a detailed
examination of our model fit for a particular position, BIP-type and year: flyballs
fielded by centerfielders in 2005.

3. Illustration of our model: flyballs to CF in 2005. Of the 38,000 flyballs
that were hit into fair territory in 2005, about 11,000 of them were caught by the
CF. Of the 27,000 that were not caught by the CF, about 22,000 were caught by
one of the other eight fielders and about 5000 were not caught by any fielder. The
22,000 flyballs caught by one of the other eight fielders are not treated as failures
for the CF since it is unknown if the CF would have caught them had the other
fielder not made the catch. These observations are treated as missing data with
respect to modeling the fielding ability of the CF. The “CF-eligible” flyballs in
2005 are all flyballs that were either (1) caught by the CF or (2) not caught by
any other fielder. There were exactly 15,767 CF-eligible flyballs in 2005. Figure 3
contains plots of the CF-eligible flyballs that were caught by the CF (left), and
those that were not caught by the CF (right). In the right plot, data are sparse in
the regions where the left fielder (LF) and right fielder (RF) play, as well as in the
infield. Most of the flyballs hit to these locations were caught by the LF, RF or an
infielder, and are therefore not included as CF-eligible flyballs. Additionally, we
restrict ourselves only to flyballs that landed within 250 feet of the CF location
for our model estimation, since traveling any larger distance to make a catch is
unrealistic.

3.1. Data and model for illustration. For each flyball, the data consist of the
(x, y)-coordinates of the flyball location, the identity of the CF playing defense,
and the velocity of the flyball, which is an ordinal variable with 3 levels, where 3
indicates the hardest-hit ball. In 2005 there were N = 138 unique CFs that played
defense for at least one CF-eligible flyball. The number of flyballs per fielder, ni ,
ranges from 1 to 531, and its distribution is skewed to the right. We denote the
(x, y)-coordinate of the j th flyball hit to the ith CF as (xij , yij ). Based on the
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FIG. 3. Plot of 5062 flyballs caught by center fielder (left), and 10,705 flyballs not caught by CF or
any other fielder (right). Together these 15,767 points comprise the set of CF-eligible flyballs from
2005. However, only flyballs that fall within 250 feet of the CF location are used in our model fit,
though this restriction only excludes a few flyballs located near home plate.

overall distribution of these flyballs, we estimate the ideal starting position of a CF
as the coordinate in the field with the highest catch probability across all CFs. This
coordinate, which we call the CF centroid, was estimated to be (0,324), which is
324 feet into centerfield straight from home plate.

For the j th ball hit to the ith CF, we have the following covariates for
our model fit: the distance from the flyball location to the CF centroid, Dij =√

(xij − 0)2 + (yij − 324)2, and the velocity of the flyball Vij which takes on an
ordinal value from 1 to 3. As mentioned above, our model estimation only consid-
ers flyballs where Dij ≤ 250 feet. We also create an indicator variable for whether
the flyball was hit to a location in front of the CF: Fij = I (yij < 324). Fij = 1
corresponds to flyballs where the CF must move forward, whereas Fij = 0 cor-
responds to flyballs where the CF must move backward. For the purpose of this
illustration only, we consider a simplified version of our model that does not have
interactions between these covariates. Specifically, we fit the following simplified
model:

P(Sij = 1) = �(βi0 + βi1Dij + βi2Vij + βi3Fij )
(8)

= �(Xij · β i ),

where �(·) is the cumulative distribution function for the standard normal distrib-
ution. In our full analysis, we fit the model with interactions from equation (2) in
Section 2.3. For this illustration only, we also rescale the predictors Dij , Vij and
Fij to have a mean of zero and an sd of 0.5, so that the posterior estimates of β are
on roughly the same scale, and to reduce the correlation between the intercept and
the slope coefficients.
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FIG. 4. Posterior means and 95% intervals for the population-level slope coefficients μ.

3.2. Model implementation for illustration. We use the Gibbs sampling ap-
proach outlined in our supplementary materials [Jensen, Shirley and Wyner
(2009)] to fit our simplified model (8) for CF flyballs in 2005. Figure 4 displays
posterior means and 95% posterior intervals for the four elements of the coefficient
mean vector μ shared across all CFs. As expected, the coefficients for distance
and velocity are negative and, not surprisingly, distance is clearly the predictor
that explains the most variation in the outcome. The coefficient for forward is pos-
itive, which means that it is easier for a CF to catch a flyball hit in front of him
than behind him for the same distance and velocity. The intercept is positive, and
is about 0.58. The intercept can be interpreted as the inverse probit probability
[�(0.58) ≈ 72%] of catching a flyball hit to the mean distance from the CF (about
90 feet) at the mean velocity (about 2.2 on the scale 1–3).

Figure 5 displays three different estimates of β:

1. no pooling: β estimates from model with no common distribution between
player coefficients,

2. complete pooling: β estimates from model with all players combined together
for a single set of coefficients,

3. partial pooling: β estimates from our model described above, with separate
player coefficients that share a common distribution.

From Figure 5 it is clear there that there was substantial shrinkage for the Dis-
tance and Forward coefficients, slightly less shrinkage for the Velocity coefficient,
and not much shrinkage for the intercept. The posterior means for σ k were 0.15,
0.28, 0.28 and 0.17 for the Intercept, Distance, Velocity and Forward coefficients,
respectively. The posterior distributions of σ k did not include any mass near zero,
indicating that complete pooling is also not a good model, since these estimates
should approach zero if there is not sufficient evidence of heterogeneity among
individual players.

Figure 6 includes all N = 138 estimates of β i (i = 1, . . . ,N ) with 95% inter-
vals included. The estimates are displayed in decreasing order of ni from left to
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FIG. 5. Three different estimates of β , corresponding to no pooling, partial pooling and complete
pooling. Only the 45 CFs with the largest sample sizes are included in these plots, because the
no-pooling estimates for many of the CFs with little data were undefined, did not converge or were
clearly unrealistic.

right, where the player with the most BIP observations had n1 = 531 observations,
and six players had just 1 observation. The players with fewer observations had
their estimates shrunk much closer to the population means displayed in Figure 4,
which are also drawn as horizontal lines in Figure 6, and they also had larger 95%
intervals, as one would expect with fewer observations. One interesting thing to
note is that a small number of players have estimated velocity coefficients that are
positive, meaning they are relatively better at catching flyballs that are hit faster,
and at least one player has a forward coefficient that is negative, meaning he is
better at catching balls hit behind him.

To check the fit of the model graphically, we examine a number of residual
plots, as shown in Figure 7. Figure 7(a) shows the histogram of the residuals,

rij = yij − �(Xij β̂i ),

for the j th flyball hit to the ith player, where β̂i is the posterior mean vector of the
regression coefficients for player i. The long left tail in the Figure 7(a) histogram
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FIG. 6. Posterior means and 95% posterior intervals for coefficients for all N = 138 individual
players. In each plot, the distribution of βij for each player i is represented by a circle at the posterior
mean and a vertical line for the 95% posterior interval. The players are displayed in decreasing order
of ni from left to right, with the first player having the largest number of BIP observations (n1 = 531)
and the last player having the smallest number of BIP observations n138 = 1.

consists of flyballs that should have been caught (i.e., had a high predicted proba-
bility of being caught) but were not caught. Bins of residuals were constructed by
ordering the residuals rij in terms of the predicted probability of a catch �(Xij β̂i )

and then dividing the ordered residuals into equal sized bins (about 150 residuals
per bin). The average of all residuals within each bin was calculated, which we call
the average binned residuals. These average binned residuals are plotted as a func-
tion of predicted probabilities, which are the black points in Figure 7(b). A good
model would show no obvious pattern in these average binned residuals (black
dots). It appears that our model slightly overestimates the probability of catching
the ball for predicted probabilities between 0% and 20%, and slightly underesti-
mates the probability of catching the ball for predicted probabilities between 30%
and 60%.

In order to provide additional context to the observed residuals, we also con-
structed average binned residuals from 500 posterior predictive simulations of new
data. These posterior predictive average binned residuals are shown as gray points
in the background of Figure 7(b). We also constructed 95% posterior intervals for



BAYESIAN MODELING OF FIELDING IN BASEBALL 503

FIG. 7. Plot (a) on the left shows the histogram of the fitted residuals, defined as the difference
between the outcome and the expected outcome as estimated from the model using posterior means.
Plot (b) plots average binned residuals against predicted probabilities, where the average binned
residuals are the average of residuals that were binned after being ordered by the predicted prob-
abilities. Black dots are the actual average binned residuals from our data. The gray points in the
background are average binned residuals from 500 posterior predictive simulations. The black lines
represent the boundaries of 95% intervals for the average binned residuals from our posterior pre-
dictive simulations. The lack of smoothness in the interval boundaries is due to randomness in our
posterior predictive simulations. Plot (c) is constructed the same way as plot (b), except that the
y-axis corresponds to the binned probabilities rather than binned residuals.

the average binned residuals based upon these posterior predictive simulations,
and these intervals are indicated by the black lines in Figure 7(b). We see that the
pattern of our observed average binned residuals is not unusual in the context of
their posterior predictive distribution. In fact, we find that exactly 95 out of 100
of our observed average binned residuals fall within their 95% posterior predictive
intervals, which suggests a reasonable fit. Figure 7(c) provides a different view of
this same goodness-of-fit check by plotting the actual binned probabilities against
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FIG. 8. Plot (a) contains average binned residuals plotted vs. distance. Plot (b) is a boxplot of
individual residuals rij grouped by the three different levels of velocity. Plot (c) is a boxplot of
individual residuals rij grouped by the direction indicator: moving forwards or backward.

the binned probabilities predicted by the model. Just as in Figure 7(b), the black
points indicate the relationship from our actual data, whereas the gray points come
from the same 500 posterior predictive simulations. We see that the actual binned
probabilities lie approximately along the 45-degree line of equality when plotted
against the predicted binned probabilities.

We also examined the association between our residuals and individual covari-
ates: distance, velocity, and direction, as shown in Figure 8. The plots in Figure 8
reveal no obvious patterns in the residuals with respect to the individual covariates,
except possibly a slight overestimation of the probability of a catch for flyballs hit
at a distance of 150–200 feet from the CF. This overestimation, however, appears
to be on the order of 1–2%, which is small relative to the natural variability in
predictions for flyballs hit at shorter distances.

We examined the shrinkage of the entire set of fitted probability curves for the
whole population of CFs, shown in Figure 9. In this figure, we plot the fitted prob-
ability curves for all CFs (with fixed velocity v = 2 and forward = 1) from three
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FIG. 9. The fitted probability curves for each 2005 CF as a function of distance for flyballs hit at
fixed velocity v = 2 in the forward direction. Plot (a) has curves estimated with no pooling. Plot (b)
has the curves estimated by partial pooling via our hierarchical model (using posterior means for
individual players). Plot (c) is the population mean curve, estimated with complete pooling.

different methods. Plot (a) gives the fitted probability curves estimated with no
pooling—they are the curves calculated using the parameter estimates from the
top horizontal line in Figure 5. Several of these curves are extreme in shape, with
the most variable curves coming from players with little observed data. Plot (b)
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gives the curves based on parameter estimates using the probit model with our
hierarchical extension presented in Section 2.5—the estimates from the “partial-
pooling” middle line in Figure 5. We see the stabilizing shrinkage of the partial
pooling curves toward the aggregate model estimated using all data across players,
which is drawn in plot (c) of Figure 9. It should be noted that the partial pooling
curves are estimated using posterior means from the hierarchical model. We also
explored the use of a logit model for this data, and found the model fit was similar
to the probit model, which we preferred because of its computational convenience.

In addition to these overall evaluations, we also performed a range of posterior
predictive checks for the fielding abilities of individual CFs. It is of interest to see if
the model is accurately describing the heterogeneity between CFs, so we examined
the difference in the percentage of flyballs caught between the best CF versus
the worst CF. We simulated 500 posterior predictive datasets from two different
models: (a) our full hierarchical model with partial pooling and (b) the complete
pooling model where a single set of coefficients is fit to the data pooled across
all CFs. For each of our posterior predictive datasets, we calculated the difference
in the percentage of flyballs caught between the best and worst CF among the 15
CFs with the most opportunities. Figure 10 shows the density of the difference

FIG. 10. The posterior predictive density of the difference in the percentage of flyballs caught
between the best CF versus the worst CF for two models. The solid-lined density represents the
partial pooling model and the dotted-lined density represents the complete pooling model. These
densities were estimated using 500 datasets simulated from posterior predictive distribution under
these two models. The vertical line represents the difference between best and worst CF from our
observed data.
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in the percentage of flyballs caught between the best and worst CF for the partial
pooling model (solid density line) and the complete pooling model (dashed density
line). The difference between best and worst CF from our observed data (15.1% =
74.1% for Andruw Jones − 59.0% for Preston Wilson) is shown as a vertical line.
We see that the actual difference from our observed data is much more likely under
the partial pooling model than the complete pooling model. Not surprisingly, the
complete pooling model underestimates the heterogeneity among players. Under
partial pooling, however, additional variability is incorporated via the hierarchical
model, so that the coefficients for each player are different, and greater differences
in ability are allowed.

One additional concern about our model is the potential effect of outliers on the
estimation of fitted probability curves. We explored the effect of a specific type
of outlier: plays that were scored as fielding errors. Fielding errors are failures on
BIPs that should have been fielded successfully, as judged by the official scorer for
the game. Although errors contain defensive information and we prefer their inclu-
sion in our model, the influence of these errors could be substantial since they are,
by definition, unexpected results relative to the fielders’ ability. We evaluated this
influence on our inference for CFs by re-estimating our fitted probability models
on a dataset with all fielding errors removed. These re-estimated probability curves
from our Bayesian hierarchical model were essentially identical to the curves es-
timated with the errors included in our dataset. However, the probability curves
estimated without any pooling of information were much more sensitive to the in-
clusion/exclusion of errors. The sharing of information between players through
our hierarchical model seems to contribute additional robustness toward outlying
values (in the form of errors).

4. Converting model estimates to runs saved or cost. In this section we use
the fitted player-specific probability models from (2) and (4) for each BIP type and
season to estimate the number of runs that each fielder would save or cost his team
over a full season’s worth of BIPs, compared to the average fielder at his position
for that year.

4.1. Comparison to aggregate curve at each position. Our player-specific co-
efficients β i can be used to calculate a fitted probability curve for each individual
player as a function of location and velocity. For flyballs and liners, the individual
fitted probability curve is denoted pi(x, y, v), the estimated probability of catch-
ing a flyball/liner hit to location (x, y) at velocity v. For grounders, the individual
fitted probability curve is denoted pi(θ, v), the probability of successfully fielding
a grounder hit at angle θ at velocity v. Our Gibbs sampling implementation gives
us the full posterior distribution of our player-specific coefficients β i , which we
can use to calculate the full posterior distribution of our fitted probability curves
pi(x, y, v) or pi(θ, v). Alternatively, we can calculate the posterior means β̂i for
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each β i vector, and use β̂i to fit a single probability curve p̂i(x, y, v) or p̂i(θ, v)

for each player and BIP-type. For now, we focus on these single fitted probability
curves, p̂i(x, y, v) or p̂i(θ, v), for each player. In Section 4.2 below, we will return
to an approach based on the full posterior distribution of each βi .

With these posterior mean fitted curves p̂i(x, y, v) or p̂i(θ, v), we can quan-
tify the difference between players by comparing their individual probabilities of
making an out relative to an average player at that position. The model for the av-
erage player can be calculated in several different ways. A single probit regression
model can be fit to the observed data aggregated across all players at that position
to calculate the maximum likelihood estimates β̂+, or we can use the posterior
mean of the population parameters μ̂. These population parameters β̂+ can be
used to calculate a fitted curve p̂+(x, y, v) or p̂+(θ, v) for the average player (for
flyballs/liners or grounders, respectively). Figure 11 illustrates the comparison on
grounder curves between the average model for the SS position and two individual
fielders.

For each possible angle θ and velocity v, we can calculate the difference
[p̂i(θ, v) − p̂+(θ, v)] between fielder i’s probability of success and the average
probability of success, which is the difference in height between the individual’s
curve and the average curve, given in Figure 11. A positive difference at a partic-
ular angle and velocity means that the individual player is making a higher pro-
portion of successful plays than the average fielder on balls hit to that angle at that
velocity. A negative difference means that the individual player is making a lower
proportion of successful plays than the average fielder on balls hit to that angle

FIG. 11. Comparison of the grounder curves of two individual SSs p̂i (θ, v) to the average SS curve
p̂+(θ, v) for velocity fixed at a moderate value of v = 2.
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FIG. 12. Comparison of CF curve p̂i (x, y, v) for Jeremy Reed with average CF curve p̂+(x, y, v)

for flyballs with velocity v = 2 in 2005. Plot (a) shows the curves p̂i (x, y, v) vs. p̂+(x, y, v) as a
function of distance moving forward from the CF location. Plot (b) shows the curves p̂i (x, y, v)

vs. p̂+(x, y, v) as a function of distance moving backward from the CF location. Plot (c) shows a
2-dimensional contour plot of [p̂i (x, y, v) − p̂+(x, y, v)]. Reed’s probability of catching a ball is
roughly the same as the average player at short distances, but is about 8% larger at a distance of
about 100 feet. Also, the difference in probability for Reed vs. the average CF is slightly larger for
flyballs hit in the backward direction than for those hit in the forward direction.

at that velocity. For our flyballs/liners models, the calculation is similar, except
that we need to calculate these differences for all points around the fielder loca-
tion in two dimensions. Figure 12 illustrates the comparison of probability curves
between individual players and the average curve for the CF position for flyballs.
For each possible location (x, y) and velocity v, we can calculate the difference
[p̂i(x, y, v) − p̂+(x, y, v)] between fielder i’s probability of success and the aver-
age probability of success, which is the difference between the two surfaces shown
in Figure 12.

4.2. Weighted aggregation of individual differences. The fielding curves
p̂i(x, y, v) and p̂i(θ, v) for individual players give us a graphical evaluation of
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their relative fielding quality. For example, it is clear from Figure 11 that Adam
Everett has above average range for a shortstop, whereas Derek Jeter has below
average range for a shortstop. However, we are also interested in an overall numer-
ical evaluation of each fielder which we will call “SAFE” for “Spatial Aggregate
Fielding Evaluation.” For flyballs or liners, one candidate value for each fielder i

could be to aggregate the individual differences [p̂i(x, y, v)− p̂+(x, y, v)] over all
coordinates (x, y) and velocities v. For grounders, the corresponding value would
be the aggregation of individual differences [p̂i(θ, v)− p̂+(θ, v)] over all angles θ

and velocities v. These aggregations could be carried out by numerical integration
over a fine grid of values. However, these simple integrations do not take into ac-
count the fact that some coordinates (x, y) or angles θ have a higher BIP frequency
during the course of a season. As we saw in Figure 1, the spatial distribution of
BIPs over the playing field is extremely nonuniform. Let f̂ (x, y, v) be the kernel
density estimate of the frequency with which flyballs/liners are hit to coordinate
(x, y), which is estimated separately for each velocity v. Let f̂ (θ, v) be the kernel
density estimate of the frequency with which grounders are hit to angle θ , which
is estimated separately for each velocity v. Each fielder’s overall value at a given
coordinate or angle in the field should be weighted by the number of BIPs hit to
that location, so that differences in ability between players in locations where BIPs
are rare have little impact, and differences in ability between players in locations
where BIPs are common have greater impact. Therefore, a more principled overall
fielding value would be an integration weighted by these BIP frequencies,

SAFEfly
i =

∫
f̂ (x, y, v) · [p̂i(x, y, v) − p̂+(x, y, v)]dx dy dv,

SAFEgrd
i =

∫
f̂ (θ, v) · [p̂i(θ, v) − p̂+(θ, v)]dθ dv.

As an illustration, plot (b) of Figure 13 shows the density estimate of the angle of
grounders (averaged over all velocities). However, these values are still unsatisfac-
tory because we are not addressing the fact that each coordinate or angle in the field
also has a different consequence in terms of the run value of an unsuccessful play.
An unsuccessful play on a pop-up to shallow left field will not result in as many
runs being scored, on average, as an unsuccessful play on a fly ball to deep right
field. Likewise, a grounder that goes past the first baseman down the line will re-
sult in more runs scored, on average, than a grounder that rolls past the pitcher into
center field. For flyballs and liners, we estimate the run consequence of an unsuc-
cessful play at each (x, y)-location in the field by first estimating two-dimensional
kernel densities separately for the three different hitting events: singles, doubles
and triples. We can do this using our data, in which the result of each BIP that was
not fielded successfully was recorded in terms of the base that the batter reached
on that BIP, which is either first, second or third base. For each (x, y)-coordinate
in the field and velocity v, we use these kernel densities to calculate the relative
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FIG. 13. Components of our SAFE aggregation, using grounders to the SS position as an example.
Piot (a) gives the individual grounder curve p̂i (θ, v) for Derek Jeter along with the the average
grounder curve p̂+(θ, v) across all SSs for velocity fixed at a moderate value of v = 2. Plot (b)
shows the density estimate of the BIP frequency for all grounders as a function of angle (averaged
over all velocities). Plot (c) gives the run consequence for grounders with velocity v = 2 as a function
of angle. Note the inflated consequence of grounders hit along the first and third base lines. Plot (d)
gives the shared responsibility of the SS on grounders as a function of the angle, with a fixed velocity
v = 2.

frequency of each hitting event to each (x, y)-coordinate in the field with veloc-
ity v. We label these relative frequencies (r̂1(x, y, v), r̂2(x, y, v), r̂3(x, y, v)) for
singles, doubles, and triples, respectively. We then calculate the run consequence
for each coordinate and velocity as a function of these relative frequencies:

r̂tot(x, y, v) = 0.5 · r̂1(x, y, v) + 0.8 · r̂2(x, y, v) + 1.1 · r̂3(x, y, v).(9)

The coefficients in this function come from the classical “linear weights” [Thorn
and Palmer (1993)] that give the run consequence for each type of hit. These lin-
ear weights are calculated by tabulating over many seasons the average number of
runs scored whenever each type of batting event occurs. From the original analysis
by Palmer [Thorn and Palmer (1993)], 0.5 runs scored on average when a single
was hit, 0.8 runs scored on average when a double was hit and 1.1 runs scored on
average when a triple was hit. Weighting by the relative frequencies of these three
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events in equation (9) gives the average number of runs scored for a BIP that is
not caught at every (x, y)-coordinate and velocity v. An analogous procedure pro-
duces a run consequence r̂tot(θ, v) for grounders at each angle θ and velocity v. As
an example, plot (c) of Figure 13 gives the run consequence for grounders hit as a
function of angle at a velocity of v = 2. Most grounders hit toward the middle of
the field that are not fielded successfully result in singles, which have an average
run value of 0.5. Only down the first and third base lines do grounders sometimes
result in doubles or triples, which inflates their average run consequence. We in-
corporate the run consequence for each coordinate/angle as additional weights in
our numerical integration,

SAFEfly
i =

∫
f̂ (x, y, v) · r̂tot(x, y, v) · [p̂i(x, y, v) − p̂+(x, y, v)]dx dy dv,

SAFEgrd
i =

∫
f̂ (θ, v) · r̂tot(θ, v) · [p̂i(θ, v) − p̂+(θ, v)]dθ dv.

In addition to run consequence, we must take into account that neighboring fielders
should share the credit and blame for successful and unsuccessful plays. As an
example, the difference between the abilities of two center fielders is irrelevant
at a location on the field where the right fielder will always make the play. We
estimate a “shared responsibility” vector for each coordinate and velocity on the
field, labeled as ŝ(x, y, v) for flyballs/liners. At each coordinate (x, y) and velocity
v, we calculate the relative frequency of successful plays made by fielders at each
position, and these relative frequencies are collected in the vector ŝ(x, y, v). The
vector ŝ(x, y, v) has seven elements, which is the number of valid positions for
flys/liners in Table 1. Similarly, we estimate a shared responsibility vector for each
angle and velocity on the field, labeled as ŝ(θ, v) for grounders. At each angle θ

and velocity v, we calculate the relative frequency of successful plays made by
fielders at each position, and these relative frequencies are collected in the vector
ŝ(θ, v). The vector ŝ(θ, v) has four elements, which is the number of valid positions
for grounders in Table 1. Plot (d) of Figure 13 gives an example of the shared
responsibility of the SS position as a function of the angle, for grounders with
velocity v = 2. The shared responsibility at each grid point for a particular player
i with position posi is incorporated into their SAFE value,

SAFEfly
i =

∫
f̂ (x, y, v) · r̂tot(x, y, v) · ŝposi (x, y, v)

(10)
· [p̂i(x, y, v) − p̂+(x, y, v)]dx dy dv,

SAFEgrd
i =

∫
f̂ (θ, v) · r̂tot(θ, v) · ŝposi (θ, v) · [p̂i(θ, v) − p̂+(θ, v)]dθ dv.(11)

Figure 13 gives an illustration of the different components of our SAFE integration,
using SS grounders as an example. The overall SAFEi value for a particular player
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i is the sum of the SAFE values for each BIP type for that player’s position:

SAFEi = SAFEfly
i + SAFEliner

i for outfielders,(12)

SAFEi = SAFEfly
i + SAFEliner

i + SAFEgrd
i for infielders.(13)

However, as noted in Section 4.1, there is no need to focus SAFE integration only
on a single fitted curve p̂+(x, y, v) or p̂+(θ, v) when we have the full posterior
distribution of βi for each player. Indeed, a more principled approach would be
to calculate the integrals (10)–(11) separately for each sampled value of βi from
our Gibbs sampling implementation, which would give us the full posterior distri-
bution of SAFE values for each player. In Section 5 below, we compare different
individual players based upon the posterior distributions of their SAFE values.

5. SAFE results for individual fielders. Using the procedure described in
Section 4, we calculated the full posterior distribution of SAFEi for each fielder
separately for each of the 2002–2005 seasons. We will compare these posterior
distributions by examining both the posterior mean and the 95% posterior interval
of SAFEi for different players. The full set of year-by-year posterior means of
SAFEi for each player are available for download at our project website:

http://stat.wharton.upenn.edu/~stjensen/research/safe.html.

Several fielders can have SAFE values at multiple positions in a particular year,
or may have no SAFE values at all if their play was limited due to injury or re-
tirement. In the remainder of this section we focus our attention on the best and
worst individual player-years of fielding performance at each position. For each
position, we focus only on players who played regularly by restricting our atten-
tion to player-years where the individual player faced more than 500 balls-in-play
at that position. The following results are not sensitive to other reasonable choices
for this BIP threshold.

In Table 2 we give the ten best and worst player-years at each outfield position
in terms of the posterior mean of the SAFEi values. In addition to the posterior
mean of SAFEi , we also give the 95% posterior interval. Since each year is eval-
uated separately for each player, particular players can appear multiple times in
Table 2. Clearly, the best fielders have positive SAFE values, indicating a positive
run contribution relative to the average fielder over the course of an entire season.
The worst fielders have a corresponding negative run contribution relative to the
average fielder over the course of an entire season.

The magnitude of these run contributions in Table 2 are generally lower than the
values obtained by previous fielding methods, such as UZR. One reason for these
smaller magnitudes is the shrinkage toward the population mean imposed by our
hierarchical model (Section 2.5). We also see in Table 2 that the magnitudes of the
CF position are generally higher than the LF or RF positions, due to the increased
number of BIPs hit toward the CF position. Another general observation from the

http://stat.wharton.upenn.edu/~stjensen/research/safe.html
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TABLE 2
Outfielders in 2002–2005 with best and worst individual years of SAFE values. Posterior means and 95% posterior intervals of the SAFE values are
given for each of these player-years. SAFE values can be interpreted as the runs saved or cost by that fielder’s performance across an entire season

Ten best left fielders Ten best center fielders Ten best right fielders

Name and year Post. 95% post. Name and year Post. 95% post. Name and year Post. 95% post.
mean interval mean interval mean interval

C. Crisp, 05 11.2 (4.1, 17.8) A. Jones, 05 11.8 (2.2, 20.7) J. Guillen, 05 6.5 (1.8, 11.8)
C. Crawford, 03 8.5 (1.1, 15.4) J. Edmonds, 05 10.1 (−0.5, 20.5) R. Hidalgo, 02 6.4 (−2.4, 14.1)
S. Stewart, 02 8.1 (0.2, 16.5) D. Erstad, 03 10.0 (−1.2, 20.7) J. D. Drew, 04 6.1 (−0.5, 13.1)
C. Crawford, 02 7.7 (−1.3, 18.6) C. Patterson, 04 9.8 (1.9, 17.9) B. Abreu, 02 5.6 (−1.6, 13.2)
C. Crawford, 04 7.6 (1.7, 13.2) D. Roberts, 03 9.6 (1.2, 18.9) J. Cruz, 03 5.5 (−1.1, 11.2)
B. Wilkerson, 03 7.5 (−3.2, 16.6) A. Rowand, 02 9.2 (−0.6, 20.3) D. Mohr, 02 5.5 (−3.2, 15.5)
P. Burrell, 02 6.8 (−0.2, 14.8) A. Jones, 03 9.1 (3.2, 17.1) S. Sosa, 04 5.1 (−1.6, 14.0)
P. Burrell, 03 6.6 (−0.9, 14.0) M. Cameron, 03 8.9 (0.3, 17.1) A. Kearns, 02 4.7 (−6.8, 16.1)
S. Podsednik, 05 6.3 (0.4, 14.2) A. Jones, 04 8.5 (−1.2, 18.3) J. Guillen, 03 4.6 (−1.6, 11.7)
L. Gonzalez, 02 5.9 (−3.4, 13.5) A. Jones, 02 7.9 (0.6, 15.8) X. Nady, 03 4.6 (−4.5, 13.4)

Ten worst left fielders Ten worst center fielders Ten worst right fielders

Name and year Mean 95% interval Name and year Mean 95% interval Name and year Mean 95% interval

M. Cabrera, 05 −10.1 (−18.0, −0.4) B. Williams, 05 −14.2 (−23.4, −5.3) G. Sheffield, 05 −14.7 (−21.6, −9.5)
M. Ramirez, 05 −9.7 (−18.4, −0.8) B. Williams, 04 −13.2 (−24.5, −3.1) V. Diaz, 05 −6.7 (−14.9, 2.1)
B. Higginson, 02 −7.6 (−14.0, −0.6) K. Griffey Jr., 04 −12.5 (−24.4, −1.3) B. Abreu, 05 −6.7 (−12.3, 0.0)
L. Bigbie, 03 −6.9 (−15.1, 1.5) D. Roberts, 05 −9.8 (−21.0, 2.2) J. Dye, 02 −5.7 (−14.9, 2.4)
R. Ibanez, 03 −6.4 (−12.8, 0.9) C. Beltran, 05 −7.5 (−16.9, 2.8) G. Sheffield, 04 −5.6 (−11.2, 0.0)
A. Dunn, 05 −6.1 (−11.2, 1.1) J. Damon, 04 −7.3 (−14.4, −0.1) B. Trammell, 02 −5.5 (−15.7, 7.6)
H. Matsui, 05 −5.9 (−12.4, −0.2) C. Sullivan, 05 −7.2 (−20.8, 6.5) M. Ordonez, 02 −5.4 (−13.0, 1.0)
M. Ramirez, 04 −5.6 (−14.8, 0.1) B. Williams, 03 −7.0 (−15.5, 1.1) J. Dye, 05 −4.9 (−10.1, 1.0)
H. Matsui, 04 −5.5 (−11.5, −2.0) J. Hammonds, 02 −6.9 (−15.1, 1.9) A. Huff, 03 −4.6 (−14.2, 6.6)
C. Floyd, 04 −4.8 (−11.1, 2.4) G. Anderson, 04 −6.3 (−14.5, 3.4) M. Cabrera, 04 −4.0 (−10.3, 2.6)
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results is the heterogeneity not only in the posterior means of SAFEi but also in
the posterior variance of SAFEi , as indicated by the width of the 95% posterior
intervals. Indeed, even among these best/worst players (in terms of the posterior
mean), we see some posterior intervals that contain zero, whereas other fielders
have SAFEi intervals that are entirely above or below average.

We also examine the ten best and worst infielders at each position, where the val-
ues for corner infielders (1B and 3B) are given in Table 3 and the values for middle
infielders (2B and SS) are given in Table 4. We again see a substantial difference
in the magnitude of the top runs saved/cost by fielders between the different in-
field positions. Shortstops and second baseman have generally larger SAFE values
because of the much greater number of BIPs hit to their position compared to first
and third base. This increased BIP frequency to the middle infield positions seems

TABLE 3
Corner Infielders in 2002–2005 with best and worst individual years of SAFE values. Posterior

means and 95% posterior intervals of the SAFE values are given for each of these
player-years. SAFE values can be interpreted as the runs saved or

cost by that fielder’s performance across an entire season

Ten best 1B player-years Ten best 3B player-years

Name and year Mean 95% interval Name and year Mean 95% interval

Ken Harvey, 2003 5.0 (1.5, 8.0) Hank Blalock, 2003 10.0 (4.2, 16.5)
Doug Mientkiewicz, 2003 3.4 (−1.2, 6.5) Sean Burroughs, 2004 8.9 (3.4, 14.2)
Ben Broussard, 2003 3.2 (1.6, 4.9) David Bell, 2002 7.4 (1.7, 13.3)
Eric Karros, 2002 2.6 (−3.2, 7.5) Scott Rolen, 2004 7.4 (1.9, 12.1)
Darin Erstad, 2005 2.2 (−0.8, 4.9) Damian Rolls, 2003 7.2 (0.1, 13.6)
Todd Helton, 2002 2.2 (−3.6, 7.2) Craig Counsell, 2002 6.9 (0.9 , 12.7)
Mike Sweeney, 2002 2.0 (−2.6, 6.1) Placido Polanco, 2002 5.6 (0.3, 12.1)
Mark Teixeira, 2005 1.7 (−1.0, 4.9) David Bell, 2005 5.6 (−0.2, 9.3)
Scott Spiezio, 2003 1.4 (−1.2, 4.6) Bill Mueller, 2002 5.4 (−3.4, 12.6)
Nick Johnson, 2005 1.2 (−2.0, 4.1) Adrian Beltre, 2002 5.3 (−0.4, 11.2)

Ten worst 1B player-years Ten worst 3B player-years

Name and year Mean 95% interval Name and year Mean 95% interval

Fred McGriff, 2002 −6.4 (−9.4, −2.8) Travis Fryman, 2002 −9.4 (−15.2, −4.4)
Mo Vaughn, 2002 −5.1 (−9.7, −0.3) Fernando Tatis, 2002 −8.1 (−14.2, −2.0)
J. T. Snow, 2002 −4.8 (−10.1, −0.3) Michael Cuddyer, 2005 −7.3 (−11.4, −2.9)
Ryan Klesko, 2003 −4.4 (−8.7, −0.3) Eric Munson, 2003 −7.1 (−12.4, −2.8)
Carlos Delgado, 2005 −4.2 (−7.8, −0.8) Mike Lowell, 2003 −6.8 (−13.6, −1.6)
Steve Cox, 2002 −4.0 (−8.3, −0.3) Wes Helms, 2004 −6.2 (−13.8, 3.4)
Carlos Delgado, 2002 −4.0 (−8.2, 0.1) Tony Batista, 2002 −6.1 (−11.1, −0.9)
Matt Stairs, 2005 −3.9 (−8.3, −0.3) Todd Zeile, 2002 −5.8 (−11.9, −0.7)
Jason Giambi, 2003 −3.8 (−7.4, −0.2) Chris Truby, 2002 −5.2 (−11.7, 1.0)
Jeff Conine, 2003 −3.2 (−6.1, 0.3) Mike Lowell, 2002 −4.8 (−10.1, 0.8)
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TABLE 4
Middle Infielders in 2002–2005 with best and worst individual years of SAFE values. Posterior

means and 95% posterior intervals of the SAFE values are given for each of these
player-years. SAFE values can be interpreted as the runs saved or

cost by that fielder’s performance across an entire season

Ten best 2B player-years Ten best SS player-years

Name and year Mean 95% interval Name and year Mean 95% interval

Junior Spivey, 2005 14.5 (4.7, 27.1) Alex Rodriguez, 2003 13.5 (3.5, 24.4)
Chase Utley, 2005 10.8 (3.1, 17.7) Adam Everett, 2005 11.5 (1.8, 21.7)
Craig Counsell, 2005 10.8 (5.3, 18.0) Clint Barmes, 2005 10.8 (−0.6, 21.5)
Orlando Hudson, 2004 10.8 (4.3, 16.4) Rafael Furcal, 2005 8.8 (−0.5, 18.6)
D’Angelo Jimenez, 2002 10.3 (−4.9, 21.6) Adam Everett, 2003 8.7 (−0.2, 17.7)
Brandon Phillips, 2003 9.2 (−0.7, 19.2) David Eckstein, 2003 8.7 (−4.1, 20.3)
Placido Polanco, 2005 9.0 (2.9, 12.8) Bill Hall, 2005 8.5 (−4.5, 23.7)
Orlando Hudson, 2005 9.0 (2.3, 14.8) Jason Bartlett, 2005 8.3 (−2.8, 20.4)
Mark Ellis, 2003 8.9 (−0.2, 18.5) Jimmy Rollins, 2005 7.8 (−2.6, 16.9)
Brian Roberts, 2003 8.3 (−0.2, 17.3) Alex Rodriguez, 2002 7.6 (−2.1, 16.5)

Ten worst 2B player-years Ten worst SS player-years

Name and year Mean 95% interval Name and year Mean 95% interval

Bret Boone, 2005 −15.4 (−22.4, −8.1) Derek Jeter, 2005 −18.5 (−29.1, −9.2)
Luis Rivas, 2002 −13.8 (−20.9, −6.4) Michael Young, 2004 −15.6 (−23.6, −7.2)
Enrique Wilson, 2004 −12.3 (−18.9, −6.2) Derek Jeter, 2003 −15.6 (−24.8, −6.4)
Roberto Alomar, 2003 −12.1 (−19.3, −4.6) Jhonny Peralta, 2005 −11.4 (−18.6, −3.5)
Miguel Cairo, 2004 −10.9 (−17.9, −3.1) Michael Young, 2005 −11.4 (−20.1, −1.9)
Ricky Gutierrez, 2002 −9.1 (−18.8, 2.3) Derek Jeter, 2004 −10.3 (−20.0, −2.1)
Luis Rivas, 2003 −9.0 (−16.0, −0.9) Deivi Cruz, 2003 −10.1 (−17.7, 1.2)
Bret Boone, 2002 −9.0 (−18.2, −1.5) Angel Berroa, 2004 −10.0 (−16.3, −2.4)
Jose Vidro, 2004 −8.8 (−17.7, −2.5) Derek Jeter, 2002 −10.0 (−18.2, −3.6)
Luis Castillo, 2002 −8.7 (−17.1, −0.4) Rich Aurilia, 2002 −8.7 (−16.6, 2.4)

to more than compensate for the lower run consequence of missed catches up the
middle, which are almost always singles, compared to missed catches down the
first or third base line, which can often be doubles or even triples. There are also
substantial differences in the posterior variance of the SAFE values, as indicated
by the width of the 95% posterior intervals. As with outfielders, only a subset of
the best/worst infielders (in terms of the posterior mean) have posterior intervals
that exclude zero, suggesting that they are significantly different than average.

One example of a player that seems to be significantly worse than average is
Derek Jeter, who has some of the worst SAFE values among all shortstops. The
fielding performance of Derek Jeter has always been controversial: he has been
awarded several gold gloves despite being considered to have poor range by most
other fielding methods. Our extremely poor SAFE value for Derek Jeter is espe-
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cially interesting since our results also suggest that Alex Rodriguez has some of
the best SAFE values among shortstops, especially his 2003 season with the Texas
Rangers. Our SAFE results seem to confirm the popular sabrmetric opinion that the
New York Yankees have one of baseball’s best defensive shortstops playing out of
position in deference to one of the game’s worst defensive shortstops. To comple-
ment these anecdotal evaluations of our results, we also compare our results to an
external approach, UZR, in Section 6.

6. Comparison to other approaches. As mentioned in Section 1, a popular
fielding measure is the Ultimate Zone Rating [Lichtman (2003)] which also evalu-
ates fielders on the scale of run saved/cost. In general, the magnitudes of our SAFE
values are generally less than UZR because of the shrinkage imposed by our hi-
erarchical model. In fairness, it should be noted that SAFE measures the expected
number of runs saves/cost, while UZR tabulates the actual observations. However,
we can still examine the correlation between the SAFE and UZR across players,
which is done in Table 5 for the 423 players for which we have both SAFE and
UZR values available. Note that only the 2002–2004 seasons are given because
UZR values were not available for 2005. We see substantial variation between
positions in terms of the correlation between SAFE and UZR. CF is the position
with a high correlation, whereas 3B seems to have generally low correlation. There
is also substantial variation within each position between each year. The consis-
tency across years (or lack thereof) can be used as additional diagnostic measure
for comparing our method to UZR. The problem with our comparison of meth-
ods is the lack of a gold-standard “truth” that can be used for external validation.
However, one potential validation measure would be to examine the consistency
of a player’s SAFE value over time compared to UZR. Under the assumption that
player ability is constant over time, the high consistency of a player’s value over
time would be indicative that our method is capturing true signal within the noise
of player performance. We can measure consistency over time of SAFE with the

TABLE 5
Correlation between SAFE and UZR for each fielding position

POS 2002 2003 2004

1B 0.401 0.608 0.100
2B 0.284 0.238 0.422
3B 0.257 0.180 0.351
CF 0.609 0.546 0.635
LF 0.513 0.608 0.253
RF 0.410 0.469 0.392
SS 0.460 0.177 0.146

Total 0.397 0.440 0.317
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TABLE 6
Between year correlation for SAFE and UZR for each fielding position

POS SAFE UZR DIFF

1B 0.287 0.390 −0.103
2B 0.051 0.111 −0.060
3B 0.503 0.376 0.127
SS −0.030 0.247 −0.277
CF 0.525 0.285 0.240
LF 0.594 0.548 0.045
RF 0.444 0.468 −0.023

Total 0.372 0.369 0.003

correlation of our SAFE measures between years, as well the corresponding cor-
relations between years of the UZR values. In Table 6 we give the correlation
between the 2002 and 2003 seasons for both SAFE and UZR values, as well as
the difference between these correlations. We see that overall our SAFE method
does well compared to UZR, with a slightly higher overall correlation. However,
there is substantial differences in performance between the different positions. The
SAFE method does very well in the outfield positions, especially in CF where the
correlation for our SAFE values is almost twice as high as the UZR values. How-
ever, SAFE does not perform as well in the infield positions, especially the SS
position, where SAFE has a much lower correlation compared to UZR. One ex-
ception to the poor performance among infielders is the 3B position, where our
SAFE values have a substantially higher correlation than UZR. We also examined
the correlation between more distant years (2002 and 2004) and, as expected, the
correlations are not as high for either the SAFE or UZR measures. The general
conclusion from these comparisons is that our SAFE method is competitive with
the popular previous method, UZR, and out-performs UZR for several positions,
especially in the outfield.

An alternate way to handle the longitudinal aspect of the data would be to model
the evolution of a player’s fielding ability from year to year using an additional
parameter or set of parameters. This type of approach has been used previously
by Glickman and Stern (1998) to model longitudinal data in professional football,
and could potentially allow for the modeling of a trend in the fielding ability of a
baseball player across years.

7. Discussion. We have presented a hierarchical Bayesian probit model for
estimation of spatial probability curves for individual fielders as a function of lo-
cation and velocity data. Our analysis is based on data with much higher resolu-
tion of BIP location than the large zones of methods such as UZR. Our approach
is model-based, which means that each player’s performance is represented by
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a probability function with estimated parameters. One benefit of this model-based
approach is that the probability of making an out is a smooth function of location in
the field, which is not true for other methods. This smoothing makes the resulting
estimates of our analysis less variable, since we are essentially sharing information
between all points near to a fielder. Our probit models are nested within a Bayesian
hierarchical structure that allows for sharing of information between fielders at a
position. We have evaluated the shrinkage of curves imposed by our hierarchical
model, which is intended to give improved signal for players with low sample sizes
as well as reduced sensitivity to outliers, as discussed in Section 3.

We aggregate the differences between individual player curves to produce an
overall measure of fielder quality which we call SAFE: spatial aggregate field-
ing evaluation. Our player rankings are reasonable, and when compared to previ-
ous fielding methods, namely, UZR, our SAFE values have superior consistency
across years in several positions. SAFE does perform inconsistently across seasons
for several other positions, especially in the infield, which merits further investiga-
tion and modeling effort. However, we note that by looking at consistency between
years as a validation measure, we are assuming that player ability is actually con-
stant over time, which may not be the case for many players. It is also worth noting
that our current analysis does not take into account differences in the geography of
the playing field for different parks, which could impact our outfielder evaluations.
Our SAFE numerical integrations are made over a grid of points that assume the
maximal park dimensions, but individual park dimensions can be quite different,
with the most dramatic example being the left-field in Fenway Park. Whether or
not these differences in park dimensions have a noticeable effect on our fielding
evaluation will be the subject of future research.
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SUPPLEMENTARY MATERIAL

Gibbs sampling implementation (DOI: 10.1214/08-AOAS228SUPP; .pdf).
We provide details of our Markov chain Monte Carlo implementation, which is
based on the Gibbs sampling [Geman and Geman (1984)] and the data augmenta-
tion approach of Albert and Chib (1993).
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