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The last two decades have seen intense scientific and regulatory interest
in the health effects of particulate matter (PM). Influential epidemiological
studies that characterize chronic exposure of individuals rely on monitoring
data that are sparse in space and time, so they often assign the same expo-
sure to participants in large geographic areas and across time. We estimate
monthly PM during 1988–2002 in a large spatial domain for use in studying
health effects in the Nurses’ Health Study. We develop a conceptually simple
spatio-temporal model that uses a rich set of covariates. The model is used
to estimate concentrations of PM10 for the full time period and PM2.5 for a
subset of the period. For the earlier part of the period, 1988–1998, few PM2.5
monitors were operating, so we develop a simple extension to the model that
represents PM2.5 conditionally on PM10 model predictions. In the epidemi-
ological analysis, model predictions of PM10 are more strongly associated
with health effects than when using simpler approaches to estimate exposure.

Our modeling approach supports the application in estimating both fine-
scale and large-scale spatial heterogeneity and capturing space–time interac-
tion through the use of monthly-varying spatial surfaces. At the same time,
the model is computationally feasible, implementable with standard software,
and readily understandable to the scientific audience. Despite simplifying as-
sumptions, the model has good predictive performance and uncertainty char-
acterization.

1. Introduction. A growing body of evidence documents chronic health ef-
fects of air pollution. Two prospective studies of mortality have been particularly
influential in demonstrating these effects, significantly affecting environmental
policy: the Harvard Six Cities Study [Dockery et al. (1993)] and the American
Cancer Society (ACS) Study [Pope et al. (1995, 2002)]. These studies showed
heightened individual risk of mortality in more polluted metropolitan areas based
on associations with time-invariant estimates of fine particulate matter, PM2.5 (PM
less than 2.5 μm in aerodynamic diameter), which varied at the city level. The
ACS study averaged over all monitors in each metropolitan area to estimate expo-
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sure, while the Six Cities study focused on smaller cities and used a central site
monitor, recruiting participants living near the site. More recently, spatial models
that account for fine-scale heterogeneity have been used to estimate variability in
exposure within metropolitan areas to link to health effects [Jerrett et al. (2005),
Künzili et al. (2005)].

Atmospheric particulate matter (PM) originates from a variety of stationary and
mobile sources and may be directly emitted (primary emissions) or formed in the
atmosphere by transformation of gaseous emissions (secondary emissions). Most
monitoring in the US concerns PM2.5 and PM10 (PM less than 10 μm in aero-
dynamic diameter), with coarse PM, PM10−2.5, generally measured by difference.
While combustion sources, which account for the bulk of anthropogenic PM emis-
sions to the atmosphere, typically lead to the formation of PM2.5 through primary
and secondary emissions, mechanical grinding and crushing activities typically
lead to primary emissions of coarse mode particles. The kinetics of the atmospheric
transformation of precursor gases play a key role in determining the spatial distri-
bution of the components of fine mode PM, with more reactive species exhibiting
greater spatial heterogeneity than more stable species. For example, sulfur dioxide
emissions are oxidized slowly relative to many other compounds and, as a result,
secondary ammonium sulfate particles are spatially homogenous across large dis-
tances. In contrast, coarse mode particles are removed from the atmosphere more
quickly, by gravitational settling and other processes, and are therefore typically
more spatially heterogenous than fine mode particles [Burton et al. (1996)].

Our work is part of a larger project analyzing the associations between health
outcomes and PM exposure in a large cohort study, the Nurses’ Health Study
(NHS) [Colditz and Hankinson (2005)], in which we aim to use more precise ex-
posure estimates than have been used in previous studies to increase power and
reduce potential bias from measurement error. The NHS was established in 1976
as a cohort of 121,700 female registered nurses between the ages of 30 and 55,
living initially in 11 large states, primarily in the northeast US. For the health
analyses, interest lies in estimating concentrations every month for 1988–2002
for the northeast US, with extension to much of the rest of the country ongoing.
The size of the domain is particularly salient; our goal is to build a model that
captures spatio-temporal patterns and can be feasibly fit over the entire northeast
US domain, making monthly predictions at approximately 70,000 locations over
15 years based on monitoring data at over 900 locations. Two particular aspects of
the space–time structure motivate our model choice. First, within the context of the
large spatial domain, we seek to estimate fine-scale spatial heterogeneity to more
precisely estimate potential exposure to PM than from central site proxies. Second,
we seek to estimate space–time interaction: monthly heterogeneity is of interest
because the health modeling attempts to understand the relevant time window of
exposure to PM associated with health outcomes, using moving averages to esti-
mate exposure in the previous X months, where X varies between analyses. Purely
temporal heterogeneity is of less interest (and is, in any event, well-characterized
with hundreds of monitors at each point in time) because such variability is likely
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to be confounded with other time-varying factors that affect health outcomes and is
generally conditioned out of the epidemiological model. Puett et al. (2008) present
initial health analyses using the exposure estimates from our modeling.

Statistical space–time modeling holds promise for better resolving spatial and
temporal heterogeneity in concentrations, both to estimate exposure for health
studies and to characterize patterns of PM for understanding variability and attain-
ment of environmental standards. The inclusion of covariates in the mean structure
may help to resolve spatial heterogeneity at a resolution not possible from purely
spatial or spatio-temporal smoothing of data. We make use of the recent statistical
and computational innovation in additive modeling with smooth terms [Kammann
and Wand (2003), Ruppert et al. (2003), Wood (2006)]. There has been much re-
cent statistical work to model spatio-temporal heterogeneity in PM [e.g., Kibria
et al. (2002), Daniels et al. (2006)]. Calder (2008) jointly models daily PM10 and
PM2.5 for one year in Ohio using a process convolution approach for the spatial
structure and a dynamic linear modeling approach to capture temporal evolution.
Sahu et al. (2006) model weekly PM in the midwest US using land use covariates in
the mean with separate separable space–time covariances for a rural, background
process and an urban process. Smith et al. (2003) took an approach most similar
to that used here, modeling weekly PM in the southeast US based on a temporal
term, a spatial term modeled using a thin plate spline and a land use covariate, and
spatio-temporal residuals modeled independently by kriging each week separately.
Such methods have not yet made their way into the environmental science litera-
ture, but so-called land use regression is very popular, generally taking the form of
linear regression of a pollutant on spatially-varying covariates reflecting land use
and emissions [Briggs et al. (2000), Brauer et al. (2003)].

While the statistical efforts described above demonstrate the wide array of po-
tential model structures, most of the work focuses on domains of limited size,
whereas chronic epidemiological studies often require estimation in large domains
for adequate statistical power to estimate small risks. Complicated models that
more fully account for the rich space–time structure of the data can be difficult to
specify and fit. When the goal is prediction, one might consider simpler specifi-
cations that adequately predict the exposure of interest, potentially with little loss
of predictive power so long as key aspects of the data structure are represented.
Here we present a computationally-tractable space–time model for PM over a large
space–time domain, serving as the core exposure estimation used in an extensive
epidemiological analysis. Companion papers [Yanosky et al. (2008a, 2008b)] fo-
cus on the scientific results for PM10 and PM2.5 respectively; here we focus on the
statistical issues. The model accounts for important factors that improve prediction
and uncertainty characterization of PM, while retaining computational feasibility,
interpretability, and reliance on standard software for applied use.

We describe the PM data and covariates in Section 2. In Section 3 we describe
our two-stage spatio-temporal model for dense data fit via backfitting with gam
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in R. We then report the predictive performance of the model for PM10 for 1988–
2002 and PM2.5 and coarse PM for 1999–2002 and discuss residual and prediction
error diagnostics. Finally, we use the predictions and simpler alternatives in an
epidemiological analysis. In Section 4 we develop a simple conditional model,
built on the core model, to predict PM2.5 from PM10 when PM2.5 data are sparse,
which we apply to PM2.5 for the years 1988–1998. For this, we discuss techniques
for using airport visibility information as a proxy for PM2.5, using a stochastic EM
algorithm to deal with interval censoring.

2. Data. We provide a synopsis of the data used; see Yanosky et al. (2008a,
2008b) for a more extended description. The spatial domain is the northeastern
United States, but we include monitors from neighboring states to avoid boundary
effects (Figure 1). We model monthly concentrations for the years 1988–2002.
The data are available in the supplemental material [Paciorek et al. (2009)].

2.1. Monitoring data. PM10 and PM2.5 mass concentrations, measured using
US Environmental Protection Agency (EPA)-approved Federal Reference Method
or equivalent methods, were obtained from the EPA Air Quality System (AQS)
database (Figure 1). We also obtained PM10 and PM2.5 mass concentrations from
the IMPROVE (Interagency Monitoring of PROtected Visual Environments) net-
work, whose sites are located in national parks and wilderness areas, and additional
data from the Stacked Filter Unit network (a predecessor to IMPROVE), the Clean
Air Status and Trends (CASTNet) network, and Harvard research studies. There
are 922 PM10 and 498 PM2.5 sites in the domain, with the sites providing either
24-hour average or hourly average PM concentrations, with most PM10 (PM2.5)
monitors operating one in six (three) days, but some operating every day. No sites
report for the entire time period (the range of number of observations per month is
135–475 for PM10 and 8–446 for PM2.5 with 8–25 before 1999 and 107–446 after

FIG. 1. Map of PM10 (left) and PM2.5 (right) monitoring locations in the study region and adjacent
states. For PM2.5, monitors are grouped by availability before 1999.
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1998). Missing daily observations within a period in which the site is operating
generally occur for reasons unrelated to the levels of pollution, mainly equipment
problems, maintenance, and addition or removal of a site, and there is no evidence
of any patterns of missingness, so the missing values can be considered missing
completely at random (MCAR). From the available daily averages, we calculated
monthly averages, excluding site-month pairs with fewer than four daily values or
with more than one-third of scheduled observations missing, to avoid data that may
be unrepresentative of the pollution at the site in a given month. As a sample of the
spatial domain, we assume that pollution levels at locations without monitors are
missing at random (MAR) and therefore ignorable, conditional on the covariates
we include in the model to represent local conditions (see Section 5 for additional
consideration of this assumption).

2.2. GIS and meteorological covariate data. We used a Geographical Infor-
mation System (GIS) to generate many potential predictors, based on government
and other databases. The non-time-varying covariates were as follows: distances
to the nearest road within four road size classes; particulate point source emissions
within 1 and 10 km buffers; the proportion of urban land use within 1 km; ele-
vation; and block group, tract, and county population density from the 1990 US
Census.

Meteorological variables at WBAN (Weather Bureau Army Navy) and other
weather stations were obtained from the National Climatic Data Center. The vari-
ables considered were temperature, precipitation, barometric pressure, and wind
speed, with hourly values averaged to the month at each station. We spa-
tially smoothed the meteorological variables using a simple GAM with a two-
dimensional penalized spline smooth term for the geographic locations to provide
estimated values at all locations in the study region for each month. County area
source emissions for each year were also considered as time-varying covariates.

More details on the covariates and the covariate selection process are available
in Yanosky et al. (2008a, 2008b). Here we take the set of covariates to be fixed and
focus on the core model and results, as well as alternative model specifications.

3. An additive space–time model for PM using dense monitors.

3.1. Core spatio-temporal model. We first present the core model, which is
applied separately to PM10 for 1988–2002 and PM2.5 for 1999–2002. We chose to
fit separate models for PM10 and PM2.5 rather than model jointly because PM2.5
and PM10 monitors are relatively dense, often (about half the monitors) co-located
at the same site, and have similar siting patterns, with more monitors in more
densely-populated areas. As a result, we assume that measurements of one provide
limited information about the other, once we condition on the data available for the
pollutant of interest and on the covariates. We feel that the computational expense
and increase in model complexity of a bivariate outcome model do not justify a
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joint model. However, there are many locations with only one type of monitor and
no nearby monitors. For 1999–2002 this occurs primarily as sites with only a PM2.5
monitor (except for Ohio and northern Maine) [Paciorek et al. (2009), Figure S1],
so a joint model might provide some improvement in predictive performance for
PM10.

3.1.1. Model structure. We propose the following two-stage model. The first
stage models log PM at site i and month t ,

log PMit = yit ∼ N

(
μi + ∑

k

hk(xkit ) + gt (s(i)), σ
2
t

)
,(3.1)

using fixed effects for each site, μi , to account for space-only variation while ac-
counting for space–time interaction based on smooth regression functions, hk(·),
of time-varying covariates and a time-varying residual spatial surface, gt (·), for
each month, t ∈ {1, . . . , T }, independent between months, where s(i) is the spa-
tial location of the ith site. σ 2

t is the homoscedastic (in space), monthly-varying
residual variance. A more sophisticated model that is part of our ongoing work
decomposes this residual variance into several variance components, representing
fine-scale heterogeneity, instrument error, and (heteroscedastic) variability from
not having everyday measurements to estimate monthly average PM.

The second stage models the predictable component of the fitted site-specific
terms, μ̂i , using smooth regression functions of time-invariant covariates, fj (·),
and a spatial surface, gμ(·),

μ̂i = gμ(s(i)) + ∑
j

fj (zji) + bi,(3.2)

where the residuals, bi , which are taken to be normal with variance σ 2
μ, represent

unexplained site-specific (fine-scale) variability. An alternative to our two-stage
model would be a true generalized additive mixed model (GAMM) resulting from
substituting (3.2) into (3.1), but the time-varying spatial surfaces make this difficult
to fit.

The model allows us to estimate spatial patterns for individual months, while
borrowing strength across months to estimate time-invariant regression effects.
The smooth regression terms flexibly account for possible nonlinearities; interpre-
tation of individual terms needs to recognize the possibility of concurvity. More
details on covariate selection are given in Yanosky et al. (2008a, 2008b). By fit-
ting an effect for each site, μi , we account for correlation across time at each
site, thereby limiting overfitting of the time-invariant covariates and spatial effects.
However, our model takes each replicate at a site as a separate observation for the
time-varying terms, hk(·), rather than acknowledging the repeated sampling. To
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avoid estimating these terms to be less smooth than scientifically plausible, we
enforced additional smoothness using the ‘sp’ argument in gam.

We specify stationary spatial structures for gμ(·) and gt (·) through the use of
penalized thin plate splines. Note that the presence of the covariates, in particu-
lar, a variety of land use covariates that distinguish urban and rural areas, helps
justify the stationarity assumption, but we explore the presence of additional non-
stationarity in the supplementary material [Paciorek et al. (2009), Section S1]. Our
assumption seems particularly defensible for PM2.5, whose sources are more re-
gional in nature.

One important simplification in the model that eases fitting is the assumption
of independence between the residual spatial surfaces, gt (·), for each month. In
Section 3.2.3 we show that while there is some residual temporal autocorrelation,
there is no apparent residual spatial autocorrelation. This indicates that the system-
atic variation not captured in the model is variation in time and not in space. Since
our predictive modeling is for unobserved locations in space and not new points
in time, modeling the temporal structure would be very unlikely to improve our
predictions. We justify this theoretically as follows. Assume the following condi-
tions: (1) a space–time covariance model with separable structure, (2) normality,
(3) the same locations sampled at every time point, and (4) all error (the nugget)
assumed to be local heterogeneity rather than instrument error. The space–time
kriging prediction under these assumptions, assuming mean zero for simplicity, is
(Ct ⊗C21)(Ct ⊗C11)

−1Y = (CtC
−1
t )⊗(C21C

−1
11 )Y = IT ⊗(C21C

−1
11 )Y . This does

not involve the temporal covariance, Ct , but only the spatial covariance between
prediction and observed sites, C21, and the spatial covariance among observed
sites, C11. Thus, the best prediction for a new set of locations at a given time is
based only on measurements from that same time, with the predictions condition-
ally independent of data at other times given the data at the time of interest. Sim-
ilar calculations demonstrate that the kriging variances (but not the covariances)
are based only on the spatial covariance structure. Although our model (3.1)–(3.2)
is not a kriging model, the monthly averages still contain some instrument error,
and there are some missing observations, this reasoning suggests that we might ex-
clude temporal correlation from the model without drastic consequences. The true
covariance is presumably not separable, but at the scale of the month, for which
atmospheric transport and dynamics can reasonably be ignored, this assumption
seems more reasonable than it would be for data at a finer time scale, such as daily
data.

3.1.2. Model fitting. The gam function in the mgcv package in R is a con-
venient tool for additive modeling that performs multiple penalty optimization for
multiple smooth terms without the need for backfitting [Wood (2003, 2004, 2006)].
However, in (3.1)–(3.2), the presence of spatial terms specific to monthly sub-
sets of the data, gt (·), prevents us from fitting the model all at once. We fit the
first stage by calling gam in a backfitting procedure. We start by calling gam to
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fit the regression portion of the model with fixed effects for site and regression
smooths of the time-varying effects. We then iterate between the following steps:
(1) separately fit the spatial terms for each month to the regression model residuals,
yi,t − μ̂i −∑

k ĥk(xkit ), and (2) fit the regression portion of the model to the spatial
residuals, yit − ĝt (s(i)), iterating until convergence. We then fit the second stage
model using a single call to gam with the estimated site-specific fixed effects, μ̂i ,
as the outcome.

The basic code used in fitting the model is available in the online supplementary
material [Paciorek et al. (2009)].

With approximately equal sample sizes at each site, which is generally true for
our data, assuming homoscedasticity in the second stage model seems reasonable.
However, with varying sample sizes (and we did have a few sites with few sam-
ples), one would want to use a heteroscedastic second-stage model with variance,
σ 2

μ(1 + κV̂ar(μ̂i)), where the first component accounts for the variance present
from unexplainable site-specific heterogeneity and the second for uncertainty in
the site-specific estimates, μ̂i , from finite sampling. As a sensitivity analysis, we
used the gamm function [Wood (2006)], which combines the functionality of gam
and lme, to fit a weighted second-stage model with variances proportional to
(1 + κV̂ar(μ̂i)), defining our own variance function and estimating σ 2

μ and κ . For
PM10, predictive accuracy decreased slightly, while for PM2.5 it increased slightly
compared to the homoscedastic model. In both cases the spatial term, gμ(·), was
estimated to be less wiggly under the heteroscedastic model that discounts those μ̂i

that are less certain. Coverage of prediction intervals, for reasons that are unclear,
was lower under the heteroscedastic model.

3.1.3. Prediction and uncertainty estimation. Prediction is straightforward,
requiring only the covariate values at the prediction locations and times of in-
terest. To predict on the original scale, one can simply exponentiate the predicted
value, which while not unbiased, is ‘median-unbiased,’ or one could use a bias-
corrected prediction, P̂Mit = exp(Ŷit + 1

2V̂ar(Ŷit )) [Schabenberger and Gotway
(2005), pages 268–269].

We estimate prediction uncertainty by summing across the uncertainty of the
components in (3.1)–(3.2),

V̂ar(Ŷit ) ≈ V̂ar

[
ĝμ(s(i)) + ∑

j

f̂j (zji)

]
+ σ̂ 2

μ

(3.3)
+ ∑

k

V̂ar(ĥk(xkit )) + V̂ar[ĝt (s(i))] + σ̂ 2
t .

While gam accounts for dependence in the uncertainty of multiple additive func-
tion components within any given model fit, indicated by the first term in (3.3),
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our uncertainty estimate does assume independence between the time-invariant
and time-varying parts of the model and between the monthly spatial surfaces and
the time-varying covariate smooth terms. This was necessary because these stan-
dard errors were obtained from separate model fits in the backfitting approach.
Also, because the first stage model is fit with monitor-specific intercepts, to esti-
mate the uncertainty associated with the time-varying smooth terms, ĥk(xkit ), we
needed to extract the individual variances for each of these smooth terms. Ignoring
the dependence between the various components of uncertainty is a simplification,
but given that our coverage results show only slight undercoverage and that the
majority of the uncertainty is contributed by σ̂ 2

μ and σ̂ 2
t , we feel this is reasonable.

To roughly estimate uncertainty in long-term averages, we assume independent
contributions from the time-varying components at different times, which is likely
to underestimate uncertainty [Stein and Fang (1997)]. This is partially mitigated
by inclusion of the time-invariant terms that account for common components of
uncertainty that do not decrease with temporal averaging.

Our inclusion of the variance components, σ 2
μ and σ 2

t , makes the assumption
that the residual variability is fine-scale heterogeneity and not instrument error [as
defined in Cressie (1993), page 59], because monitoring is quite accurate. These
variance components account for prediction uncertainty at new locations on top
of the contributions from functional uncertainty. The assumption of limited in-
strument error seems particularly justifiable for σ 2

μ, which is based on repeated
measurements at locations. In ongoing work we are exploring models that more
carefully decompose the variance, making use of co-located monitors to estimate
an instrument error variance component.

To estimate standard errors on the original scale, one can use the delta method,
V̂ar(exp(Ŷit )) ≈ V̂ar(Ŷit ) exp(Ŷit )

2, but use of confidence intervals would avoid
the need for this approximation.

3.1.4. Assessing generalizability using cross-validation. To assess the accu-
racy of the point predictions and our quantification of uncertainty, we take a three-
way cross-validation approach [Draper and Krnjacic (2006)] that accounts for our
extensive model selection efforts [see Yanosky et al. (2008a, 2008b)]. We divide
the monitors in the core states (excluding the boundary states) at random into ten
groups of approximately equal size, following Hastie et al. (2001). One group is
held out as a test set and is not used at all for model selection to assess whether
the selection process itself has resulted in overfitting. The remaining nine groups
are used in nine-fold cross-validation to compare models. For each set, a given
model is fit using the remaining eight (training) sets combined with the boundary
state monitors. Aggregating across the nine sets gives us a ‘validation’ dataset,
with validation predictions for each observation based on a fitted model that did
not include the observations from that monitor. Finally, fitting the model to all the
data except the tenth test set, we have a training dataset with nine-tenths of the data
and a test set.
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We consider predictive performance based on cross-validation to be the best
approach for comparing and evaluating models, as accurate predictions are the
goal for input into the health analysis. Furthermore, given the difficulties in defin-
ing good model selection criteria for nonparametric smoothing models, cross-
validation has the benefit of clear interpretation and transparency for communi-
cation with nonstatisticians.

By including all observations for a given monitor in the same cross-validation
set, our cross-validation assesses the ability of the model to predict at new loca-
tions. For the application, predictions are made at the residences of nurses. This
introduces bias into our cross-validation results because of differences in the spa-
tial distributions of the monitoring sites and residences. Indeed, particularly for
PM10, some monitors are located to measure areas with high pollution rather than
for population exposure, but Yanosky et al. (2008a) report that prediction accuracy
is better for the population exposure monitors than for monitors sited at hot spots or
those with unknown siting purpose, suggesting our predictions are reasonable for
locations where people live. A validation substudy with measured gold-standard
exposures at the residences of a subset of nurses would be invaluable for assessing
our predictions, but such data are not available and are generally difficult to ob-
tain. Also note that we do not account for the additional uncertainty in going from
a monthly average based on subsampled days to the true monthly average from
all days in the month, as most of the monitoring sites do not report every day. Fi-
nally, our predictions and uncertainties do not account for the difference between
ambient concentrations and true personal exposure.

3.2. Results.

3.2.1. Overview. Figure 2 shows long-term average predictions on the orig-
inal scale for both PM10 and PM2.5 for the northeast US, while Figure 3 shows

FIG. 2. Maps of predicted PM10 (left) and PM2.5 (right) from the core model over the study region,
averaged across all month-specific predictions from 1988–2002 for PM10 and 1999–2002 for PM2.5.
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FIG. 3. Map of predicted PM10 (left) and PM2.5 (right) in March 2000 for greater Boston, showing
local heterogeneity. The dark area in the upper right of the plots is downtown Boston, while the two
lines ringing the city reflect high predicted concentrations along the interstate beltways.

predictions within a metropolitan area. These figures highlight the local spatial
heterogeneity introduced by the covariates in the model, which is somewhat more
pronounced for PM10 than for PM2.5. The models estimate 205 and 80 degrees
of freedom (df) for gμ(·) for PM10 and PM2.5 respectively, and an average of 83
and 72 df over time for gt (·) for PM10 and PM2.5, indicating that, particularly
for the non-time-varying component, the model captures more spatial heterogene-
ity (after accounting for covariates) for PM10. The residual variance for PM10 is
larger, as we would expect since PM10 is more heterogeneous and by definition
has higher concentrations, with time-invariant residual variance, σ̂ 2

μ, of 0.021 for
PM10 and 0.0074 for PM2.5, while the time-varying variances, σ̂ 2

t , are, on average
over time, 0.023 for PM10 and 0.013 for PM2.5. The residual variance is gener-
ally larger in the winter than in the summer, with fall and spring intermediate,
indicating more unmodeled heterogeneity in the winter. The regression terms are
generally smooth, using fewer than 8 df, and most are close to linear.

3.2.2. Prediction accuracy and coverage.

Monthly predictions. Table 1 reports prediction accuracy on the training, valida-
tion, and test sets, based on the prediction R2, 1 − ∑

(yit − ŷit )
2/

∑
(yit − ȳ)2 and

mean squared prediction error (MSPE),
∑

(yit − ŷit )
2/n. Note that for PM10, we

exclude from the validation set an outlying site in Philadelphia with anomalously
high concentrations and from the test set an anomalous site in northern Maine at
the Canadian border for which the model predictions are based on spatial extrapo-
lation from the training set and are much lower than the observations.

The models give reasonably high R2, with the PM2.5 model explaining more
of the variability in the observations than the PM10 model, in concordance with
more spatial smoothness in PM2.5. The use of the unbiased estimator generally
has little effect on accuracy. The model overfits to some degree, which we suspect
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TABLE 1
Prediction accuracy and coverage of 95% prediction intervals for PM10 and PM2.5 for various

subsets of the data. For PM10 the validation and test sets exclude one site

Prediction accuracy: R2(MSPE)

Original Original scale,
scale: unbiased:

Data subset log scale: Ŷit exp(Ŷit) exp(Ŷit + 1
2

̂Var(Ŷit)) Coverage

PM10 Training set 0.815 (0.034) 0.716 (32.5) 0.721 (31.9) 0.979
Validation set 0.668 (0.061) 0.618 (40.7) 0.616 (40.9) 0.943
Test set 0.665 (0.059) 0.615 (47.8) 0.626 (46.4) 0.940
Validation set (pop’n exp.) 0.646 (0.050) 0.625 (31.7) 0.607 (33.3) 0.958

PM2.5 Training set 0.872 (0.018) 0.858 (3.0) 0.860 (2.9) 0.971
Validation set 0.770 (0.032) 0.771 (5.0) 0.771 (5.0) 0.928
Test set 0.766 (0.033) 0.742 (6.0) 0.742 (6.0) 0.914
Validation set (pop’n exp.) 0.731 (0.030) 0.762 (4.5) 0.760 (4.6) 0.936

is associated primarily with the spatial surfaces, in particular, the monthly spatial
surfaces, which we attempt to fit based on relatively sparse and noisy data. One
avenue for further exploration would be to force more smoothness in the spatial
terms to limit overfitting. Reassuringly, there is only a small difference between
the validation results and the results on the test data, the gold standard as these data
were held out of the entire modeling process. This suggests that the model selection
process itself has not resulted in overfitting and that prediction results from the
validation set, which is much larger than the test set, reflect generalizability to new
locations. We also note that results for the monitors sited for population exposure
are reasonably similar to those for all monitors, suggesting that our results can be
generalized to the residential locations. The lower R2 values seen in some cases for
the population exposure monitors occur despite corresponding decreases in MSPE
because of reduced PM variability at the population exposure monitors. The lack
of everyday monitoring hinders our predictive modeling and assessment of the
predictions; some of our inability to predict relates to the held-out observations
being a subsample of days in the month.

There was little obvious spatial pattern in MSPE by monitor, although for PM2.5
some monitors in northern New England showed less accuracy (see explanation
below). Not surprisingly, MSPE on the original PM scale was much higher for
data points showing the highest observed concentrations, particularly for PM10,
as both the log transformation and the model smoothing cause predictions to be
attenuated relative to the largest observations. However, MSPE was not noticeably
lower for the lowest observed concentrations, and did not vary systematically with
population density, suggesting predictive accuracy is similar between rural, subur-
ban, and urban sites on an absolute basis, although the very rural IMPROVE sites
did show lower MSPE than the AQS sites.
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There was little evidence of systematic bias, except that predictions at the IM-
PROVE sites, which are in wilderness and park areas, had a bias of 1.73 and 0.52
for PM10 and PM2.5 respectively for IMPROVE, compared to −0.58 and −0.20
for AQS.

Coverage of 95% prediction intervals (calculated on the log scale and trans-
formed as necessary) is good for PM10 and slightly low for PM2.5 (Table 1).
This undercoverage presumably reflects several factors in such a complicated
dataset and analysis, including non-normal error structure, heterogeneous data that
are not fully characterized by the model, and estimates of standard errors that do
not fully take dependence between the model components in (3.3) into account.
Most sites had good coverage but a small number had very poor coverage (4 of
408 and 3 of 219 sites had coverage less than 50% for PM10 and PM2.5, resp.),
with poor coverage occurring preferentially in northern New England and during
cold months, suggesting the model has difficulty in capturing spatial variability in
PM caused by wood stove smoke.

Long-term predictions. We consider the accuracy of long-term predictions, in
particular, the average over 1988–2002 for PM10 and 1999–2002 for PM2.5, to as-
sess the ability of the model to estimate cross-sectional heterogeneity (Table 2).
Performance is even better than the monthly predictions, which is of particular in-
terest for epidemiological studies assessing long-term health effects. The small
number of test sites (35) may explain the poorer performance on the test set
for PM2.5. Prediction accuracy when exponentiating before averaging was very
similar, albeit slightly lower. Coverage is reasonable, with overcoverage for PM10,
suggesting that the time-invariant uncertainty terms are able to capture the uncer-
tainty common to all predictions over time at a given site. Finally, we considered

TABLE 2
Prediction accuracy and coverage of 95% prediction intervals for long-term averages of PM10

(1988–2002; at least 150 months with observations) and PM2.5 (1999–2002; at least 39 months) for
various subsets of the data. For PM10 the validation and test sets exclude one site

Prediction accuracy: R2(MSPE)

Data subset log scale: ¯̂Yi Original scale: exp(
¯̂Yi ) Coverage

PM10 Training set 0.846 (0.014) 0.786 (10.16) 0.982
Validation set 0.799 (0.021) 0.722 (15.1) 0.971
Test set 0.763 (0.022) 0.718 (16.68) 0.978
Validation set (pop’n exp.) 0.695 (0.018) 0.681 (9.81) 0.982

PM2.5 Training set 0.914 (0.0056) 0.879 (1.09) 0.977
Validation set 0.830 (0.011) 0.804 (1.76) 0.923
Test set 0.844 (0.015) 0.764 (2.95) 0.824
Validation set (pop’n exp.) 0.723 (0.012) 0.763 (1.54) 0.932
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the ability of the model to predict differences in long-term average PM between
different locations, as the differences in exposure are what allow one to estimate
health effects in epidemiological application. The model predicts differences in
PM between monitoring sites very well. Differences of held-out observations plot-
ted against differences of predictions follow the 1 :1 line, with a cross-validation
R2 for the differences of 0.72 for PM10 and 0.81 for PM2.5. Note that all the long-
term average results are for monitors reporting at least 150 out of 180 possible
monthly values for PM10 and 39 out of 48 for PM2.5, so a small amount of tempo-
ral variability induced by the missing months is reflected in the results. However,
the results were largely insensitive to the cutoff used, indicating that they primarily
reflect spatial heterogeneity.

Simplified and other alternative models. Yanosky et al. (2008a, 2008b) compare
the core model (3.1)–(3.2) with models that do not include covariates, models with
more coarse time resolution in place of the monthly-varying surfaces, gt (·), and
simpler approaches to capturing the spatial structure, including inverse-distance-
weighted interpolation and nearest neighbor methods. The core model substan-
tially outperforms simpler models in terms of prediction accuracy, demonstrating
the usefulness of including spatial, spatio-temporal, and regression structure in the
model. Important covariates in the models include distance to the largest roads,
elevation, wind speed, land use, and emissions.

Within the context of the models discussed here, we compared the core model
with models with only linear terms in place of the smooth terms, hk(·) and fj (·),
in (3.1)–(3.2) and without the covariates entirely, leaving only the spatial terms.
Using linear terms in place of smooth regression terms led to minor decreases in
predictive ability, with the cross-validation R2 decreasing by less than 0.01 on the
original and transformed scales for both PM10 and PM2.5, with the exception of
long-term predictions of PM10, for which the R2 decreased from 0.799 to 0.780
and 0.722 to 0.694 on the log scale and original scales respectively. This suggests
that with our rich set of covariates, smoothing may not be necessary, perhaps be-
cause the number of covariates provides a great deal of model flexibility simply
from linear combinations of the covariates. In contrast, omitting the covariates en-
tirely and relying purely on spatial smoothing greatly decreased predictive power,
particularly for long-term averages. On the original scale, the cross-validation R2

decreased from 0.618 to 0.558 for monthly PM10, 0.722 to 0.559 for long-term
PM10, 0.771 to 0.717 for monthly PM2.5, and 0.804 to 0.609 for long-term PM2.5.
This decrease in predictive ability suggests that the full model is using the co-
variates to capture substantial local heterogeneity that cannot be captured purely
by spatial smoothing. Use of the covariates can also help to reduce the effective
dimensionality of the model by attributing more variation to the low-dimensional
covariate smooths and less to the spatial terms, with fewer resulting effective df
used in the spatial smooths.

Our use of the penalized thin plate spline representation of the spatial surfaces
was one of several possibilities to represent the spatial structure in the data. This
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choice allows us to fit the model with gam and to fit the second stage model in
one step. In the supplementary material [Paciorek et al. (2009), Section S1], we
consider alternative statistical specifications for the spatial and regression terms in
the model, including kriging, reporting that none of the alternatives improved upon
the predictive performance of our core model.

Coarse PM. To estimate coarse PM, we took the simple approach of differenc-
ing the predictions for PM10 and PM2.5. We carried out a small cross-validation
exercise for 1999–2002 in which we sequentially held out one-tenth of the mon-
itors that report both PM2.5 and PM10. The cross-validation R2 of 0.370 (MSPE
of 32.3) indicates that this approach is less successful in predicting monthly coarse
PM than our models for PM10 and PM2.5. This is not surprising given the physi-
cal reasons for greater heterogeneity in coarse PM than fine PM and the fact that
the differenced observations contain two instrument error components. Training
error (R2 of 0.622 and MSPE of 19.36) is much less than cross-validation error,
suggesting substantial overfitting, while cross-validation error is no better for pop-
ulation exposure monitors. In contrast, the approach does a good job of predicting
long-term (1999–2002 for sites with at least 39 months of data) average coarse
PM, with cross-validation R2 of 0.619 (MSPE of 10.32) after excluding the same
northern Maine site excluded from the PM10 validation.

An alternative to our approach would be to fit a model to differences in the ob-
served PM10 and PM2.5 values, but co-located monitors represent only about half
of the monitors during 1999–2002 [Paciorek et al. (2009), Figure S1]. In contrast,
a joint modeling approach would be able to use all the data and provide a princi-
pled approach to estimate uncertainty, potentially at the daily scale with the goal of
better monthly predictions. However, this would involve the added complexity and
potential biases induced by modeling the relationship between PM10 and PM2.5,
so we have not pursued that approach in this project.

3.2.3. Residual structure.

Normality. Our model (3.1)–(3.2) assumes normal, homoscedastic errors for both
the time-varying first-stage residuals and second-stage site-specific effects. For
PM10, the time-varying residuals from the first stage, standardized by the month-
specific residual variances, are somewhat right-skewed and have a long tail. For
PM2.5, the residuals are reasonably symmetric, but with long tails, approximated
by a t distribution with 5 df. While some sites have residuals with long tails, many
sites have residuals that are well fit by a normal distribution. The residuals in the
second stage model, μ̂i − ĝμ(s(i)) − ∑

j f̂j (zji), also have somewhat long tails.
Smith et al. (2003) found a square root transformation rather than a log transfor-

mation to be better for PM2.5 data in the southeastern US. We fit a model with the
square root transformation for both PM10 and PM2.5 and found that the residual
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structure was similar to that under the log transformation. The validation predic-
tive accuracy on the original scale was slightly better using the square-root trans-
formation, 0.623 and 0.784 for PM10 and PM2.5 respectively, compared to 0.618
and 0.771 for the log transformation.

Residual autocorrelation. Figure 4(a), (b) shows the residual autocorrelation
from the first-stage model. There is some autocorrelation at short lags and some
seasonal structure, which is not surprising given that we have not smoothed in
time, except to the extent accounted for by time-varying covariates, primarily wind
speed. The relatively small magnitude of the autocorrelation is perhaps not surpris-
ing since we have aggregated the data to the monthly level.

To assess whether the systematic temporal pattern in the residuals represents
information that could help to improve our predictions, we examined semivari-
ograms of the model residuals, which showed no evidence of spatial pattern (Fig-
ure 5). Individual locations have correlated residuals over time, but these residuals
are not correlated with the residuals at nearby monitors. We believe this reflects
local spatial heterogeneity that is not useful for predicting PM except in the very
local vicinity of the monitors. Gneiting (2002) refers to this phenomenon of tem-
poral autocorrelation without spatial autocorrelation as a spatial nugget.

Consistent with this, when we included short-term lag structure [Wood (2006),
pages 162–167] and seasonal spatial terms to extend (3.1)–(3.2), we found some
reduction in residual autocorrelation, but little or no improvement in predictive
performance, with a large cost in computational speed. Models using a full space–
time covariance structure would be computationally difficult, particularly since the
set of monitors with data changes over time, obviating the computational advan-
tages of a separable covariance.

FIG. 4. Residual temporal autocorrelation for models of the form (3.1)–(3.2) for (a) PM10 for
1988–2002 and (b) PM2.5 for 1999–2002. Panel (c) shows the residual temporal autocorrelation of
the log ratio model for PM2.5 for 1988–1998 (4.1). Each point in a given boxplot is the average
lag-correlation at one site, using only sites with at least 100 observations in (a) and 30 observations
in (b) and (c).
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FIG. 5. Residual spatial semivariance plots for PM10 (left) and PM2.5 (right) models of the form
(3.1)–(3.2), with each point in a given boxplot the square root of the average squared difference (of
observations co-occurring in time) between two sites. Pairs of sites are binned based on the distance
between them, and we use only pairs with at least 10 co-occurring observations.

3.3. Epidemiological analysis. Puett et al. (2008) report epidemiological re-
sults for PM10 using predictions from the core model (3.1)–(3.2) in a prospec-
tive cohort of 66,250 women from the Nurses’ Health Study in northeastern US
metropolitan areas. Nurses’ addresses and personal information were obtained
by questionnaire starting in 1976 and updated every two years. Addresses were
geocoded to obtain latitude and longitude. Cox models were run at the monthly
level with stratification by age in months. The covariates were year, season, smok-
ing status, pack years of smoking, family history of myocardial infarction, body
mass index, presence of high cholesterol, presence of diabetes, presence of hyper-
tension, median family income in census tract of residence, level of physical activ-
ity, and median house value in census tract of residence (a proxy for wealth). State
of residence was also included as a fixed effect to help control for confounding
by unmeasured variables that may vary spatially, helping to account for regional-
scale variation in health outcomes. Puett et al. (2008) focused on the association
between health outcomes and PM10 exposure when exposure was estimated as the
average over the previous 12 months, so we consider that averaging period here.
The health outcomes most strongly associated with PM10 were all-cause mortal-
ity (excluding accidents) and incident fatal coronary heart disease (CHD). Results
varied somewhat depending on the covariates included in the analysis.

As a sensitivity analysis, we used estimates of exposure from simpler ap-
proaches in place of predictions from the core model. In particular, we compared
the previous results with use of the average 12-month (Jan–Dec) PM concentration
for the year 2000 from the nearest monitor reporting at least 9 of the 12 months,
excluding nurses further than 50 km from the nearest monitor, an approach sim-
ilar to that of Miller et al. (2007). To estimate exposure at a given time based on
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TABLE 3
Hazard ratios (95% confidence intervals) with a 10 μg/m3 change in 12-month average PM10 for
all-cause mortality and fatal CHD using three different sets of exposure predictions. All estimates

are based on Cox models at the monthly level, stratifying by age in months and including a number
of covariates. Results from the core model were reported in Puett et al. (2008)

Exposure predictions used All-cause mortality Fatal CHD

Core model (3.1)–(3.2) 1.07 (0.97, 1.18) 1.30 (1.03, 1.77)
Space–time model without covariates 1.07 (0.97, 1.18) 0.92 (0.69, 1.21)
Nearest monitor 0.98 (0.93, 1.05) 0.90 (0.76, 1.07)

the most recent known address, we used the concentration in the year 2000 from
the nearest monitor to that address. We also used the previous 12-month average
from our two-stage space–time model without the GIS and meteorological covari-
ates, which has the flavor of a simple kriging model, but with the overall spatial
term included as the second stage model (Section 3.2.2). Table 3 shows the re-
sults for mortality and fatal CHD. With the exception of all-cause mortality for the
simple space–time model without covariates, results were quite different from the
core analysis, with attenuated effect estimates consistent with the null hypothesis.
This suggests the importance of improved exposure estimates. The equivalence of
results for all-cause mortality between the core model and the simple space–time
model was surprising given the fine-scale heterogeneity in exposure modeled in the
full model and the reduction in predictive ability of the simple model compared to
our full model (Section 3.2.2). Similar analyses for PM2.5 are in submission in the
applied literature. An important advantage of our modeling approach is the ability
to estimate exposure for any time lag of interest in a simple way that accounts for
residential movement and the actual dates of the health outcomes.

The prediction error in our model becomes measurement error with implica-
tions for bias when using the predictions in a health analysis. In the supplemental
material [Paciorek et al. (2009), Section S2] we argue that the exposure model-
ing takes the form of regression calibration with the implication of limited bias in
health analyses [Gryparis et al. (2009)]. However, the assessment does leave aside
sources of error we cannot quantify that may reflect classical measurement error,
in which the variable as measured is a noisy version of its true value [see Paciorek
et al. (2009), Section S2].

4. Modeling sparse PM2.5 data conditional on PM10 and visibility. For the
period 1988–1998, there were few PM2.5 monitors reporting data, with many of
the monitors located in rural and protected areas (from the IMPROVE network).
Hence, our model for this period relies on proxies for PM2.5, in particular, the
predicted PM10 from our core PM10 model and airport visibility information. Our
basic approach is to model PM2.5 conditionally on PM10, using PM10 as a covari-



388 C. J. PACIOREK ET AL.

ate, rather than in a joint model. Conditional modeling is simpler and allows us to
use gam and follow the same basic approach used in Section 3.1.1. Also, because
PM10 monitors are much more abundant than PM2.5 monitors during this period,
our goal is to leverage the PM10 data to improve PM2.5 predictions, with little gain
seen from a joint model.

4.1. Model. Models for PM2.5 for 1988–1998 were fit using available PM2.5

data from 1988–2002 as well as predictions from the PM10 model for all relevant
locations and months and airport visibility information. The visibility measure,
bext, is constructed and predicted at all locations for all months as described in
Section 4.2.

The final model chosen was a model that fits the ratio of PM2.5 to predicted
PM10, using covariates and borrowing strength across space to estimate the frac-
tion of PM10 that is fine particulate matter, PM2.5. PM2.5 is a subcomponent of
PM10, so knowledge of PM10 provides a great deal of information about PM2.5.
The model takes a similar form to the core two-stage model, but in the first stage,
we model the log of the ratio,

yit = log
PM2.5,it

P̂M10,it

∼ N

(
μi + m(t) + gseason(t)(s(i)) + hPM10(log P̂M10,it )(4.1)

+ hvis(log b̂ext,it ) + ∑
k

hk(xkit ), σ
2
season(t)

)
,

while the second stage is identical to the second stage of the core model (3.2),
but with different covariates. An additional covariate is the visibility information,
b̂ext (see Section 4.2). Note that we also include predicted PM10 as a covariate, as
the PM ratio may vary based on the overall level of PM10. In using the logarithm
of the ratio, we can move log P̂M10,it to the right-hand side, so we see that we
have a model for log PM2.5 that includes a fixed offset for log P̂M10. We fit sepa-
rate spatial surfaces for the four seasons rather than for individual months because
the data cannot inform monthly surfaces for the whole time period. By fitting the
model to PM2.5 data from the entire period, 1988–2002, we rely primarily on the
more numerous 1999–2002 data to model the basic spatial patterns and covariate
effects in the PM ratio, which are then assumed to hold before 1998. We believe
that this assumption of constancy over time is a reasonable assumption for the PM
ratio, particularly for the northeast US. Estimation of the time trend component,
m(t), modeled as a penalized spline term, which relies on data throughout the pe-
riod, allows the model to capture a purely temporal trend in the ratio, although
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there is little evidence of overall trend from the small number of co-located mon-
itors. Yanosky et al. (2008b) describe several alternative models that use different
time resolutions for the spatial surfaces and different definitions of the outcome
variable; the model described here outperformed the alternative approaches.

We can make predictions at arbitrary times and locations using the predicted
log ratio as P̂M2.5,it = exp(ŷit )P̂M10,it , which tells us how to scale the PM10 pre-
diction at each location to predict PM2.5. In some cases we predict PM2.5 to be
larger than predicted PM10. While this is physically impossible, we believe the
model structure is able to give reasonable predictions, despite situations in which
the PM10 and PM2.5 predictions are inconsistent.

PM2.5 monitoring data before 1999 are sparse in space and time, with moni-
tors available at a small set of locations, biased toward rural areas because of the
IMPROVE network (23% of observations, compared to 5% in 1999–2002) and
toward high concentration locations for the available AQS monitors (36% of ob-
servations compared to 11% in 1999–2002) and with each monitor reporting for
haphazard periods of time. Cross-validation is more difficult because the unusual
characteristics of the PM2.5 monitors available before 1999 may introduce bias
into the cross-validation assessment. We take two cross-validation approaches to
assess the model. First we fit the model using 1988–2002 data, holding out and
making predictions for most of the data from 1999. This allows us to see how well
the model does in predicting PM2.5 under cross-validation with a large amount
of held-out data. However, because 1999 is only one year lagged from 2000, this
is an easier task than making predictions for 1988–1998, for which seasonal and
spatial patterns may have changed and with more of an influence of any ongoing
time trend. Therefore, we also divided the 1988–1998 data into five sets and held
out each in turn for cross-validation. However, the limited amount of data makes
it difficult to ensure that results are robust, and the locations of monitors in that
period are not spatially representative (Figure 1b).

4.2. Modeling visibility. Visibility is known to be related to fine PM concen-
trations under clear weather conditions [Ozkaynak et al. (1985)], with PM haze
reducing visibility. Measurements of visible range collected over time at airport
weather stations have been used as a surrogate measure to estimate PM2.5 at var-
ious locations in the United States. However, observations of visual range have
several shortcomings. The visible range measurement is the distance to the most
distant marker that is visible among a set of permanent markers at fixed intervals.
Often this marker is the furthest marker, so the visibility data are interval-censored
and right-truncated. In the mid-1990s, visibility measurements were automated, re-
sulting in a maximum visible range of 10 km, which corresponds to extremely high
PM concentrations, greatly reducing the informativeness of the data as a proxy
for PM. The relationship between visibility and particulates varies by humidity in
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the atmosphere, and any precipitation or fog prevents use of the visibility data. Past
work has involved ad hoc approaches to manipulate the visibility data for use in
estimating PM2.5 [Ozkaynak et al. (1985)].

We use smoothing and truncation techniques in a statistical model to construct
a visibility proxy for PM2.5 by estimating relative humidity (RH)-adjusted beta
extinction, bext, a measure of light extinction, as a proxy for PM2.5, at all required
spatial locations for use in (4.1). Estimates of beta extinction can be calculated
from visual range data using the Koshmeider formula, bext = K

V
, where K is the

Koshmeider constant (unitless), V is the visual range in kilometers, and bext is
the estimated beta extinction in inverse kilometers. Investigators have compared
estimates of beta extinction derived from visual range in the US and have found a
value, K ≈ 1.9, that results in estimates of beta extinction that are correctly scaled
to observations of PM2.5 [e.g., Ozkaynak et al. (1985)]. Consistent with previous
studies, we discard visibility observations made during periods of precipitation as
recorded at the airport weather stations, as well as those where visibility is very
low (which is indicative of fog or precipitation, rather than extreme pollution) or
where the RH is very high (above 99%; indicative of fog).

4.2.1. Calibration to 60% relative humidity. To adjust for the effect of RH on
the beta extinction estimates, we used all the observations over space and time
to regress against a penalized spline smooth term of RH using gam for each
season (winter, spring, summer, fall). In the regression we used log-transformed
bounds on beta extinction where the bounds were calculated based on the inter-
val censoring-induced bounds on visual range. The log transformation was used
because of the approximately lognormal distribution of daily beta extinction val-
ues. To remove the effect of Raleigh scattering on the beta extinction estimates, a
constant value of 0.10 km−1 was subtracted from the bounds. In the fitting, we ac-
count for the censoring of the beta extinction values using a stochastic expectation-
maximization (EM) algorithm because the penalized spline regression model does
not provide us with a simple closed-form expected likelihood to maximize. We
start by regressing the midpoint of the lower and upper bounds of logbext on RH
using gam. Then, for each observation, taking the expected value of logbext,it from
the model fit, we sample log b

(k)
ext,it from a truncated normal distribution and pro-

ceed by iterating between fitting using gam with the sample values and sampling
the values. We iterate until convergence (200 total iterations, with convergence af-
ter 20–30 iterations), taking the mean of the last 100 iterations on a fine grid of
RH values as our calibration curve for a given season. We correct the lower and
upper bound beta extinction values at each station to 60% RH using an additive
adjustment based on the fitted seasonal calibration models. Note that we assume
that the fitted calibration curve is known, but given the large amount of data, this
assumption seems reasonable. One area of potential concern is that if pollution
levels vary systematically with average RH, we may be calibrating some of the
influence of pollution on beta extinction out of the relationship.
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4.2.2. Spatial smoothing of beta extinction. The above procedure gives us
RH-corrected lower and upper bounds for beta extinction for each day (at mid-
day) at each airport station reporting visibility. We spatially smooth the airport
RH-corrected beta extinction for each day and make predictions at the locations of
interest. We then use the average across the days in each month at each location
for use in (4.1). The spatial smoothing needs to account for the interval-censored
nature of the RH-corrected beta extinction. We again use a stochastic EM approach
in which we iterate between smoothing sampled values and sampling values from
a truncated normal distribution with mean from the current fitted model and trun-
cation limits based on the bounds of the RH-corrected beta extinction values. In
this way, beta extinction is predicted at any location within the spatial domain of
the data using information from nearby locations on a daily basis.

4.3. Results.

4.3.1. Overview. Long-term average predictions for the 1988–1998 period
(not shown) are similar to those in Figure 2b. The model estimates more spatial
variability in the log ratio in the summer and winter, with 303 and 355 estimated
degrees of freedom for the gseason(s) terms in the summer and winter, compared
to 38 and 5 degrees of freedom for spring and fall, respectively. These surfaces
indicate substantial spatial variability in the ratio of PM2.5 to PM10, as does the
time-invariant spatial surface, with 70 estimated degrees of freedom. This spatial
variability and the substantial covariate effects in the log ratio model support the
use of the model rather than just using PM10 as a simple surrogate for PM2.5,
as do results in Yanosky et al. (2008b). There is no apparent trend over time in
the log ratio as indicated by the fitted m(t), but there are clear seasonal patterns,
with peaks during winter. Variograms of the model residuals indicate no evidence
of spatial pattern, providing some support for our assumption of constancy in the
spatial pattern of the ratio over time.

4.3.2. Prediction accuracy and coverage. Table 4 shows prediction accuracy
on the PM2.5 scale, comparing P̂M2.5 with PM2.5 observations. Performance is

TABLE 4
Accuracy and coverage for various subsets of the data from the log ratio model. The 1988–1998

validation set excludes one site

R2(MSPE) Coverage

Training set 0.753 (8.6) 0.953
Validation set (1988–1998) 0.659 (25.2) 0.831
Validation set (1999) 0.641 (8.6) 0.924
Validation set (1999; pop’n exp.) 0.630 (7.4) 0.928
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generally good, although there is overfitting, as in the core model. We have ex-
cluded one site from the pre-1999 validation set, a site reporting high concentra-
tions in the New York City area for which the model substantially underpredicts.
Note that the pre-1999 data have more variability, which helps to enhance pre-
dictability, as seen in the higher R2 accompanied by higher MSPE.

One concern with the validation results is that these include comparisons at
locations with co-located PM10 monitors. We would expect the model to do better
at these locations than elsewhere because the predictions from the PM10 model
are likely to be better where there is a monitor, and these PM10 predictions are
an important part of the log ratio model. Excluding sites with a co-located PM10
monitor, in both time periods our prediction assessments do not appear to be overly
optimistic, with an R2 of 0.636 (MSPE of 11.0) for the 1988–1998 set and 0.652
(MSPE of 7.4) for the 1999 set.

On the scale of PM2.5, bias is positive, but reasonably small, for both the 1988–
1998 validation data, excluding the site mentioned above, at 0.49 relative to the
standard deviation of the observations of 8.61 and on the 1999 validation data,
with bias of 0.37 and a standard deviation of 4.90.

Table 4 indicates that coverage is good for the training set and 1999 validation
set, despite the simplifications used in estimating standard errors (Section 3.1.1).
Coverage on the validation set for 1988–1998 is poor, indicating the model has
some difficulty, strongly underestimating uncertainty, presumably in part because
of unusual characteristics of the pre-1999 monitors.

The residuals were symmetric but long-tailed, as in Section 3.2.3, while the
temporal autocorrelation was minimal (Figure 4c).

5. Discussion. We have described an extensive modeling effort for PM used
to predict concentrations as input for health analysis in a large cohort study. From
a statistical perspective, our model represents a trade-off, incorporating covariate
effects and spatio-temporal structure in a two-stage model but with a somewhat
simplified structure. We believe the model appropriately balances accounting for
key factors affecting heterogeneity in concentrations with retaining computational
feasibility and transparency for scientific communication. The modeling is being
extended to other parts of the US to add exposure estimates for a larger portion of
the NHS cohort, and we hope to use it for other cohorts as well.

The model borrows from a variety of spatio-temporal and semiparametric re-
gression approaches in the literature and captures key aspects of the data that are
not captured in other approaches. The two-stage approach is similar in spirit to
the ANOVA space–time decomposition of Diez-Roux et al. (in preparation). Their
first-stage ANOVA decomposes the variability into site- and time-specific fixed
effects. The site-specific effects are then modeled as random variables conditional
on covariates, but they do not consider spatio-temporal interaction, as represented
in our monthly spatial surfaces. The form of the model with a time-invariant spatial
surface and space–time residuals modeled independently at each time increment
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is similar to Smith et al. (2003), but we deal with a much larger set of covariates
to represent fine-scale spatial heterogeneity and include the site-specific intercept
and second-stage model to help avoid overfitting.

Yanosky et al. (2008a, 2008b) demonstrate that the model outperforms simpler
specifications. The alternative statistical formulations we present in the supple-
mentary material [Paciorek et al. (2009), Section S1] did not improve predictive
performance markedly. With respect to the key assumption of independence of
the spatial residual surfaces over time, residual diagnostics indicate some resid-
ual autocorrelation in time, but no autocorrelation in space, suggesting there is no
additional spatial information in the residuals that would improve our predictions
and supporting our analytic arguments (Section 3.1.1). Other specifications might
better account for the autocorrelation but this appears to not be warranted from
the perspective of model predictive performance, is difficult computationally with
such a large dataset, and introduces logistical difficulties to quick implementation
of the model by environmental scientists for use in the health modeling.

Placement of monitors by EPA and the states was not based on statistical design
considerations. The goals included standards attainment, convenience, and scien-
tific understanding of PM processes, in addition to the goal of representing popula-
tion exposure. Monitors are much more dense in urban areas than in suburban and
rural areas. This creates the potential for biased estimates of exposure, most likely
an upward bias because of dense monitoring in urban areas and monitors situated
to capture high levels of PM. We assume that pollution levels at locations without
monitors are missing at random (MAR) and therefore ignorable, conditional on
the covariates we include in the model to represent local conditions. Heuristically,
this assumes that the covariates allow the model to localize anomalous values such
that their influence does not extend very far in space. For example, an anomalously
high value may be accounted for by covariates reflecting high local emissions or
by being near a major road, while not pulling up the residual spatial surface, so
predictions nearby at locations with different covariate values may be much lower
than at the monitor. The MAR assumption is undoubtedly not completely true,
but we believe it represents an improvement over purely spatial models without
site-specific covariates. In our model, inclusion of monitors sited to detect high
concentrations and point source influences may positively bias predictions, but ex-
clusion of such monitors may negatively bias predictions in the vicinity of point
sources and hot spots and reduces spatial coverage.

While additional monitoring data are unlikely to become available in the future
and are not available for retrospective estimation, other sources of proxy informa-
tion, such as satellite remote sensing data [e.g., Liu et al. (2005)] and deterministic
atmospheric chemistry models, may provide some information, especially in rural
and suburban areas far from monitors and on days with few monitors reporting,
but evidence of improved predictions is needed. Much current statistical interest
lies in combining such sources of information [Fuentes and Raftery (2005), van
de Kassteele and Stein (2006), McMillan et al. (2008)]. We believe that our work
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serves as a reasonable baseline model of PM concentrations that can be a rigor-
ous point of comparison to judge whether models incorporating these additional
sources of information improve predictions of PM. The challenge for the applied
use of models with these additional data sources is specification of space–time
models and fitting techniques that are computationally feasible for many time pe-
riods and large spatial domains. Work in this area is underway by the first author.
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SUPPLEMENTARY MATERIAL

Additional discussion of the measurement error implications of using model
predictions in the health analyses and of modeling alternatives to the core model
are available as supplementary material linked to the paper at the journal web site,
as are the data used here and R code for fitting the core model.

Supplement A: Supplementary discussion of alternative models and mea-
surement error implications (DOI: 10.1214/08-AOAS204SUPPA; .pdf). We first
consider several alternative statistical specifications for the spatial and regression
terms in the model, including kriging, concluding that none of the alternatives im-
prove upon the predictive performance of our core model. Next we consider the
measurement error implications of using the model predictions in an epidemiolog-
ical analysis as a covariate, arguing that the exposure modeling takes the form of
regression calibration with the implication of limited bias in health analyses [Gry-
paris et al. (2009)]. However, the assessment does leave aside sources of error we
cannot quantify that may reflect classical measurement error.

Supplement B: Supplementary code and data (DOI: 10.1214/08-
AOAS204SUPPB; .zip). R code for fitting the core model and the data used here.
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