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In many scientific settings data can be naturally partitioned into vari-
able groupings called views. Common examples include environmental (1st
view) and genetic information (2nd view) in ecological applications, chemi-
cal (1st view) and biological (2nd view) data in drug discovery. Multi-view
data also occur in text analysis and proteomics applications where one view
consists of a graph with observations as the vertices and a weighted measure
of pairwise similarity between observations as the edges. Further, in several
of these applications the observations can be partitioned into two sets, one
where the response is observed (labeled) and the other where the response
is not (unlabeled). The problem for simultaneously addressing viewed data
and incorporating unlabeled observations in training is referred to as multi-
view transductive learning. In this work we introduce and study a compre-
hensive generalized fixed point additive modeling framework for multi-view
transductive learning, where any view is represented by a linear smoother.
The problem of view selection is discussed using a generalized Akaike In-
formation Criterion, which provides an approach for testing the contribution
of each view. An efficient implementation is provided for fitting these mod-
els with both backfitting and local-scoring type algorithms adjusted to semi-
supervised graph-based learning. The proposed technique is assessed on both
synthetic and real data sets and is shown to be competitive to state-of-the-art
co-training and graph-based techniques.

1. Introduction. In many scientific applications the available data come from
diverse domains which are referred to as views henceforth. The views may consist
of collections of numerical and categorical variables, but also may correspond to
observed graphs. The objective of this study is to introduce a comprehensive mod-
eling framework for a numerical or categorical response variable that is a function
of data from distinct views. As a motivating example, consider a collection of
documents belonging to a particular scientific domain, for example, papers in sta-
tistics journals. The available information about the documents can be organized
in the following three views: the corpus of the documents, that is, a collection
of words in the documents [Blum and Mitchell (1998)]; information describing
the documents (e.g., title, author, journal, etc.) [McCallum et al. (2000)]; and the
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co-citation network (graph) [McCallum et al. (2000), Neville and Jensen (2005)].
For the graph, nodes correspond to documents (observations) and edges count the
number of citations to the same papers (pairwise similarity). The goal for this
problem is to classify a document according to an attribute (e.g., whether a paper
is applied or theoretical) where the attribute is known (labeled) for only a subset
of the documents, with the remainder being unknown (unlabeled). In this context,
the documents must be labeled by human action, whereas the view information
can be obtained in an automated fashion (i.e., the set of labeled observations L is
significantly smaller than the unlabeled one; |L| < |U|). Further, it is worth noting
that the first two views can be structurally represented by a data matrix with rows
corresponding to observations (documents) and columns to variables, but the third
view is given directly in the form of an observed graph.

Another example of multi-view data arises in drug discovery applications. Sup-
pose that a very large number of characteristics (e.g., > 1000) has been col-
lected for a library of chemical compounds. These characteristics range from high
throughput screening measurements of compounds’ effectiveness against numer-
ous biological targets [Lundblad (2004), Hunter (1995)] to a compound’s absorp-
tion, distribution, metabolism, excretion and toxicity (ADMET) properties [Fox
et al. (1959), Kansy, Senner and Gubemator (2001)]. Further, given the chemical
structure of a compound, it is nowadays fairly easy to computationally measure
physical properties of each compound [Leach and Gillet (2003)]. Given data on
the response of a subset of compounds in a library for a particular target (e.g.,
whether or not a side-effect is associated with the compound), the goal is to use
the data available in these diverse views (biological, chemical, ADMET) to predict
the response for the remaining members in the library. Notice also that the target
status of a potential drug can be both time consuming and hard to determine (e.g.,
side effects in humans may take many years to appear), whereas the biological
and chemical compound characteristics can be obtained in a shorter time period
(usually days to weeks) and with less effort (hence, |L| < |U]). Other examples of
multi-view problems are present in applications involving genomic [Nabieva et al.
(2005)] and proteomic data [ Yamanishi, Vert and Kanehisa (2004)].

As illustrated with these examples, the available data can be naturally parti-
tioned into disjoint data sets, referred to as views, that in some cases can be rep-
resented as data matrices, while in other cases come in the form of graphs. Views
comprised of variables can differ in the number of variables, variable type (numer-
ical, ordinal, nominal), noise level and scale. Graph views may differ in the node
degree distribution, type and distribution of edge weights. Traditionally, models
for the prediction problem at hand have been built that include all the variables
available, without taking into consideration the presence of distinct views. Further,
data in the form of an observed graph were ignored completely. Popular techniques
for building flexible prediction models include recursive partitioning [Breiman et
al. (1984)], multivariate adaptive regression splines [Friedman (1991)], random
forests [Breiman (2001)], support vector machines [Vapnik (1998)], partial least
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squares [Mevik and Wehrens (2007)], etc. Nevertheless, there are several situa-
tions where incorporating distinction of views offer a number of advantages from
a data analysis point of view, including:

e View level analysis: In many applications it is of great interest to develop a model
that provides insight into the underlying relationship among views, potentially
identifying interactions between them, and also to assess their predictive capa-
bilities. The latter can prove particularly useful in problems where collecting the
necessary data for a view may be resource demanding and thus expensive.

e Incorporation of graph information: As already discussed, in many applications
some of the available data come in the form of a graph that available statistical
models can not handle in a straightforward manner.

e Improving predictive performance: Allowing the available data to be partitioned
into different views and incorporating interactions among them offers the advan-
tage of building more flexible and potentially more powerful models, exhibiting
better performance in terms of prediction accuracy.

In this work we introduce an additive modeling framework that takes into consid-
eration the presence of distinct data views. Further, it incorporates in a seamless
fashion observed graphs, allows for view level analysis and on many occasions
leads to significant gains in performance.

The main idea of this framework is to represent each view by a linear smoother.
The difficultly is in providing representative multi-dimensional view smoothers on
any data type (graphs or numerical/categorical), while accounting for the sparse
labeling of the response which occurs in several of the applications under consider-
ation (|L| < |U|). To define a smoother for an observed graph, we build on recent
advances in graph-based transductive learning [Blum and Mitchell (1998), Zhu
(2007)]. Specifically, graph-based transductive learning addresses the problem of
learning in a setting where the available data come in the form of a graph (labeled
and unlabeled observations correspond to vertices/nodes and pairwise associations
to edges), where a numerical or categorical variable can also be associated with
each node on the graph. In this context, Culp and Michailidis (2008a) note that
the adjacency matrix of the appropriately normalized graph leads to a stochastic
matrix that resembles a kernel smoother with a transductive form defined on both
labeled and unlabeled nodes. In this work we define a transductive smoother in
general as a linear smoother defined for a response that has a missing unlabeled
component. In the case of numerical, categorical or ordinal data views, it is fairly
straightforward to extend a classical linear smoother [see, e.g., Hastie and Tibshi-
rani (1990)] into a transductive one [Culp and Michailidis (2008a)]. Upon obtain-
ing the transductive smoother for each view, the next challenge is in fitting a model
to a smoother of this form, since the smoother is linear in the response partitioned
with a labeled (observed) and unlabeled (missing or unobserved) component. To
address this, we propose a novel generalized fixed point self-training framework
(Section 2) that essentially extends the classical generalized additive model into the



MULTI-VIEW LEARNING WITH ADDITIVE MODELS 295

multi-view transductive setting. Under reasonable conditions on the transductive
smoother, the solution is guaranteed to uniquely exist. In addition, the computa-
tional issues are addressed using established iterative self-training procedures for
both the regression and classification settings [Culp and Michailidis (2008a), Zhu
(2007)].

The proposed modeling framework treats both the variable and graph views
represented by the transductive smoothers as the equivalent of “variables” in a
generalized additive model which can subsequently be fitted by an extension of the
common backfitting (local scoring) algorithm to self-training. Due to the linearity
of the solution in the response variable, existing model selection techniques can be
readily applied to select important views. Also, the smoothers require estimation of
underlying parameters, as in the classical case, and we investigate a criterion more
appropriate for transductive smoothers defined on views. The results indicate that
the multi-view model using this estimation approach is quite competitive with the
state-of-the-art multi-view techniques discussed next.

1.1. Relevant existing multi-view learning approaches. We provide next a
brief exposition of existing approaches geared toward improving accuracy in
multi-view learning problems.

It is natural to consider the general semi-supervised classification problem as a
precursor to the multi-view setting. In semi-supervised learning a relatively small
percentage of the observations (cases) contain labels. The objective is to use the
labeled cases and their relation to the unlabeled cases to complete the labeling
of the data. Upon label completion, the classifier can be used to predict new cases
(inductive) or must be retrained/updated (transductive) to incorporate this informa-
tion into the classifier. Various algorithmic solutions available for this problem in-
clude self-training [Abney (2004)], graph regularization [Wang and Zhang (2006)],
semi-supervised SVM [Chapelle, Sindhwani and Keerthi (2008)], and parametric
models [Krishnapuram et al. (2005)]. For example, in Zhu, Ghahramani and Laf-
ferty (2003) the authors propose a quadratic energy optimization problem leading
to a harmonic estimate for the unlabeled data with the constraint that their la-
beled estimate retains the original labels. This approach has several connections
with electrical circuits [Zhu, Ghahramani and Lafferty (2003)], ST-minicut clus-
tering techniques [Blum and Chawla (2001)], spectral kernel techniques [Joachims
(2003), Johnson and Zhang (2007)], and kernel smoothing approaches [Lafferty
and Wasserman (2007), Culp and Michailidis (2008)]. The survey by Zhu (2007)
and the book by Chapelle, Scholkopf and Zien (2006) highlight several of these
semi-supervised approaches and address both theoretical and practical issues.

In multi-view learning Blum and Mitchell (1998) developed a co-training pro-
cedure for classification problems that is based on the idea that better predictive
models can be found at the individual view level, rather than fitting a model directly
on all the available views. The co-training procedure trains a separate classifier for
each view and then proceeds in a self-training fashion by iteratively treating the
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most confident unlabeled observations as true labeled ones using the fitted class
estimates as the true values. After a prespecified number of iterations, co-training
produces a classification of every observation in the data. A final classifier can be
formed through a combination of the individual view classifiers, in order to predict
new observations unavailable during the training phase. The intuition behind this
approach is that if the results of the individual classifiers arrive at the same classi-
fication for either a labeled observation (known response) or, more importantly, an
unlabeled observation (unknown response), and the views are conditionally inde-
pendent, then it is highly likely that the derived classification is correct [Blum and
Mitchell (1998), Abney (2002)].

Another set of procedures are based on a transductive graph-based learning set-
ting [Joachims (2003), Zhu (2007), Culp and Michailidis (2008)], where the un-
derlying graph is either observed directly or constructed from the data matrix. In
this setting, each view can be captured by a graph with its corresponding adjacency
matrix, and the views are integrated by adding their adjacency matrices. For exam-
ple, the Spectral Graph Transducer (SGT) treats the resulting graph as an energy
network, where the labeled observations are positive or negative sources and the
objective is to determine an optimal energy estimate for the unlabeled responses
[Joachims (2003)]. An approach that shares some of the SGT’s characteristics is
the Sequential Predictions Algorithm (SPA), which forms the final graph by using
graph theoretic operations such as unions and intersections [Culp and Michailidis
(2008)]. This procedure employs a local kernel smoothing algorithm with a regu-
larized extrapolation penalty that shrinks the estimates of unlabeled nodes farther
away from labeled ones toward the class prior distribution. It can be seen that such
graph-based procedures can naturally incorporate multiple views. However, views
comprised of numerical variables must first be converted into graphs, which may
not be the most effective way of representing the data. Further, high performance
classifiers such as support vector machines or random forests cannot be used in
this setting.

The proposed modeling framework shares some features with existing co-
training and graph based approaches. However, by building a smoother for each
view and then combining them through a generalized additive model, the pro-
posed approach offers useful tools such as view level analysis and incorporation
of graph terms, together with performance improvements. The remainder of the
paper is organized as follows: In Section 2 we introduce the modeling framework
and address estimation and model selection issues. Section 3 illustrates the model
on a number of real and simulated data sets. Some concluding remarks are drawn
in Section 4.

2. Modeling framework for multi-view data. For the problem at hand, let
Y denote the response variable of length n = |L U U|, partitioned into the set
L of labeled observations and U of unlabeled ones (specifically Yy is missing
with |U| > 0), that is, Y = [Y; Y/,]". The available predictors can be partitioned
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into g distinct views, where views may consist of variables, observed graphs or
both. Views comprised of numerical, nominal or ordinal variables are represented
by data matrices Xy of size n x py. It is assumed that a particular variable can
only be present in one view. Each individual data matrix can be partitioned row-
wise into two disjoint labeled and unlabeled sets: X¢ = [X} X, 1. Views can also
correspond to observed graphs, Gy = (N¢, E¢), with N, = L U U denoting the
node set and E, the edge set. The similarity weighted n x n adjacency matrix Ay
for observed graph G, can also be partitioned in the following way:

l ¢
Ag= (AgL ALy )
AUL AUU

with A‘i L Ag L Ag y representing edges between labeled nodes, between labeled
and unlabeled nodes and between unlabeled nodes, respectively.

As noted above, the response variable is partitioned into a labeled and unlabeled
component, which induces the corresponding partitions to X and G, respectively.
The proposed modeling framework accommodates multiple views, as well as their
interactions, as follows:

n=a+Yy fi,(X;)+>_ fu(Ge)

2.1)
+ Z fj,‘,jl-/(Xj,‘s le-/) + Z f@,‘,@i/(Gﬁi’ G@i/)’

ii’ ii’

where 7 = g (1) denotes the link function of the response Y =[Y}, ¥/, for which
Yy is missing, with E(Y) = u, o is an intercept term, { f}; (-)} are smooth functions
defined on the feature space X, and {f¢,(-)} are smooth functions defined on the
nodes of G [Culp and Michailidis (2008a), Zhu (2005)].

The main difficulty with (2.1) stems from the transductive nature of the model,
due to the presence of the missing response vector Y. To fit (2.1), we propose next
a two stage optimization framework referred to as generalized fixed point self-
training. For this approach, we must first define the training response as Yy, =
[Y;,Y[,]" with g(Yy) € RIYl an arbitrary initialization. The training response is
then employed in two stages, each discussed in detail next to obtain an estimate
Y=Y, ¥,) =g ().

In the first stage, the training response Yy,, is employed to determine an estimate
forn=a + ) f; by solving

(2.2) min  L(Yy,, g ')+ J(f),

where L(y, f) is a loss function that increases as the deviance from y and f in-
creases, and J(f) is an appropriate penalty term on f. The key issue is that of
existence and uniqueness of the resulting estimate 7(Yy) as a function of Yy .
From this perspective, it can be seen that the posited problem is a “supervised”
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one with respect to response Yy, and data X, G. As a result, there are a number
of well-known approaches that lead to a unique solution including SVMSs, logis-
tic regression, additive models, neural nets, etc. [Hastie, Tibshirani and Friedman
(2001)]. Upon completing the first stage an estimate )?yU =g~ (7(Yy)) is obtained
for the entire response vector Y as a function of Yy .

The second stage deals with the problem of optimally determining an appropri-
ate value of Yy necessary for training purposes. It can be chosen as the solution to
the following optimization problem:

(2.3) rgli]n(g(m — v (Yv)) (g(Yv) — fiu (Y)),

that is, the deviance between g(Yy) and ny (Yy) is minimized. A moment of reflec-
tion shows that the optimal Yy corresponds to a fixed point. Existence and unique-
ness of the fixed point YU = 1(17U(YU)) are a key issue [Kakutani (1941)]. In
several cases the solution can be obtained in a direct manner, given the form of
n(-). However, in other circumstances the fixed point solution must be approxi-
mated. One way to approximate is using Newton’s method whose kth update step
is given by

Py =7 = (1= Vg G Vudly,_y0)” (B =87 (o (F57))).

A key assumption is that the maximum eigenvalue of the gradient Vg~ (i (-))
is less than one, which renders the corresponding map a contraction, thus guaran-
teeing the existence of a fixed point. By the derivative chain rule, this approach
requires the gradient of ﬁU(f’l(]k)) for each k, which can be computationally de-
manding to obtain. This motivates the following slower iterative self-training al-
gorithm [Culp and Michailidis (2008a)]:

1. Initialize the unlabeled response vector, I?L(,O) and get tolerance &.

2. Iterate until ||17(k) ﬁg‘_l)ll <é

(a) Solve (2.2) with response Y);(k—]) =[Y;, ?l(]k—l)’]/ and data {X,, G} to
U
get .
5 (k _1nk
() Set V1) = g1 HI).

Convergence of this algorithm provides an approximation to the fixed point de-
fined in (2.3) by construction. Whenever there exists an initialization that results
in local convergence of the above procedure, then the fixed point exists and is
approximated by the algorithm. Moreover, if the algorithm converges globally in-
dependent of the initialization, then the fixed point is uniquely approximated by
the procedure. The global convergence depends on the specific choices for { f;(-)}
[Culp and Michailidis (2008a)]. We provide below the details for fitting this proce-
dure first for squared error loss and then for logistic loss when { f; (-)} are estimated
using transductive smoothers.
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Before we discuss transductive smoothers, we briefly address the bias and vari-
ance of an estimate f resulting from the proposed fixed point self-training ap-
proach in the regression context. To begin, we consider first the supervised case
with the goal of estimating a function fL from data (X, Y1), where the response
Y is continuous. It is well known that the supervised error of fL with respect to
response Y7 can be decomposed into bias, variance and irreducible terms [Hastie,
Tibshirani and Friedman (2001)]. Recall that the semi-supervised problem using
the fixed point self-training method arrives at an estimate f = [ f s fA{J]/ with data
04 o X). From this, the error of estimate f with respect to response Y 4, can be
decomposed as

Error(f) = o2 + Bias(f1 | X) + Var(fz | X) 4 Error(fy),

where o2 is the irreducible error term, Bias( fL | X) and Var( fL | X) are the re-
spective bias and variance of the labeled estimate relative to the true function con-
ditioned on the full data X, and Error( fU) = 0 by construction. The resulting su-
pervised and semi-supervised bias and variance terms are given by

Training Bias/Variance _
Supervised  Error = o2 + Bias(f7 | X1) + Var(fL | X1)
Self-training Error = o2+ Bias(fr | X) + Var(fr | X).

Therefore, the self-training approach allows one to determine a labeled estimate,
f L, that balances the bias/variance tradeoff by employing the entire X information,
whereas the corresponding supervised problem achieves a similar goal by only
using the X; information. Naturally, this decomposition extends in the presence
of graph views.

REMARK 1. The connection between the two stage optimization approach
and the self-training algorithm reveals that this framework is a semi-supervised
example of a block relaxation algorithm [see the discussion in Leeuw (1994)].

2.1. Fitting the additive model in the regression context. For ease of presen-
tation, we study the simplest form of (2.1) using the fixed point self-training ap-
proach that combines a numerical/categorical feature set X and a graph view G
for a continuous response Y . The resulting model is given by

(2.4) Y =a+ fi(X)+ fr(G) +e&.

Our strategy in fitting this model is based on constructing transductive smoothers
for both the X and G views. We provide next the details of such a construction and
extend it to incorporate interactions among these two views. The implementation
details are presented in Section 2.4.
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To fit the function n = @ + f1(X) + f2(G) under a squared-error loss criterion,
we must minimize with respect to f = [ f{ f;1’ the following:

2
2.5) min(Yy, — ' Yy, —m)+ D i fiPjfi,
j:l

where P;’s are penalty matrices for each view, o = YYU ,and A; > 0 the associated
tuning parameters. For a graph view we choose P as the combinatorial Laplacian
operator, thatis, P = D — A, where A is the adjacency matrix and D is its row-sum
diagonal matrix. For X data views, there are many choices, including generalized
additive models, spline-based models, nonparametric models, etc. [Hastie and Tib-
shirani (1990)]. Below we provide more details on the penalty matrix for the graph
case (Section 2.1.1) and for the feature X data case (Section 2.1.2). No matter how
it is obtained, each penalty matrix emits the following partition:

_(Prr; Pru;
(25) PJ_(PUL,- Pyy; )’

In the above expression, the submatrix Py captures associations between labeled
portions of the data, while Py and Pry labeled to unlabeled data associations,
and finally Pyy unlabeled to unlabeled ones. Each penalty matrix, P;, is assumed
to be positive semidefinite, which in turn implies that the problem in (2.5) is jointly
convex. Therefore, one can solve it to obtain the following equations:

Q7 fi— Sg(YyU -y fj) =0  for&=1,2with Sy =C( +ArPp)" ",
J#t

where C = (I — 11'/n) is a centering matrix. This is clearly an extension of the

Gauss—Seidel algorithm with response Yy, and smoothers {Sg}%zlz

2.8) (I Sl)(fl(x))=(S1YYv).

S 1 f2(G) $2 Yy,
The solution of the Gauss—Seidel algorithm is well known to take the form
nYy)=a+ f1 X))+ fz(G) = RYYy, with smoother R independent of Yy,, [Hastie
and Tibshirani (1990)]. Therefore, the first stage in our model fitting strategy re-
sults in a linear fitting technique, 7(Yy) = RYy,,.

For the fixed point step (2.3), we need to define the class of fransductive
smoothers generated from X, G or both as follows:

A[-]={S5:S is an n x n linear smoother matrix
constructed from source such that p(Syy) < 1},

where S € A[-] emits the partition

See Siu )
2.9 S= ,
(29) (SUL Svu
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and p(-) denotes the spectral radius of the matrix under consideration. The par-
titions in the transductive smoother correspond to the partitions in the penalty
matrix given above, that is, (2.6). From the first optimization problem discussed
above, we get that for any smoother S the unlabeled estimate is given by ny (Yy) =
SurYr + SyuYy. The optimization problem in (2.3) subsequently reduces to

rr;in((l — Syv)Yu — SurYL) (I — Syv)Yu — SuLYL),
U

and therefore, the condition that p(Syy) = p(Viy(+)) < 1 results in I?U = -
Suv) " 'SyLYr as the unique fixed point. From this, in the case of a regression
model a closed form solution can be obtained as
Y1 See+ Scu = Syv)~'SuL

(-10) (YU> _< (I = Suv) 'SuL )YL'
As expected, the resulting predicted responses are linear in the labeled data Y7 , that
is, Y = Mp.Yr, with M and My the respective |L| x |L|, |U| x |L| matrices
identified in parenthesis in the above expression.

A special case arises when f(X) is modeled by a linear model, that is, f1(X) =
Xp. The additive model in (2.4) reduces to the following semi-parametric model:

Y =XB+ f2(G) +¢,

which is fit using transductive smoothers, S| = H = X (X'X )"l X’ and centered
symmetric smoother Sy = § defined on G. The goal is to obtain a closed form
expression for 8 and f> such that n = X ﬁ + f2 We first assume that the solution
uniquely exists for each Yy, that is, there exists a unique R with 7(Yy) = RYy,.

Now apply (2.8) to get that (X'X)~'f(Yy) = X' (Yy, — f(Yp)) and fo(Yy) =
S(Yy, — XB(Yy)), which yields
BYy) = (X' = 9HX)™'X'(I - 9)Yy,
and
H(Yy)=S(Yy, — XB(Yv)).

Therefore, the Gauss—Seidel algorithm obtains the function estimate nYy)=U -

)X,B(YU) + SYYU = RYYU For the fixed pomt phase we assume that p(Ryy) <
1 to get that YU = nU(YU) XU,B(YU) + f2U (YU) Profiling out fo from YU
and after some algebra, we get that

(X' =8$)X)B=X'(I =Yy, =X'(I = S)[Y + XB) — X, (I — Mr1)X 1B,

where My = Spz + Spu(I — Syy) ™ Syr and Y, = [Y], ¥},1 with Yy = (I —
Suv) ' SyLYL. Solving for the coefficient yields the following estimate for both

B and f7:
(2.11) B=(X U~ MLL)XL)_lx/L(I — MY,

(2.12) fZL:MLL(YL_XLB) and f2U=MUL(YL—XL/§),
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with My = (I — Syy)~'Syr. This results in Ay, = (I — M) X1f + ML YL,
which is the natural generalization of the classical semi-parametric modeling result
[Hastie and Tibshirani (1990)].!

In general, one can apply the Gauss—Seidel algorithm directly to a sequence of
smoothers with eigenvalues in (—1, 1]. The algorithm is guaranteed to converge
to a solution whenever the smoothers are diagonally dominant, or symmetric and
positive semidefinite. In other words, one can forgo the first optimization problem
and apply the Gauss—Seidel algorithm directly to a sequence of smoothers defined
on X and G, analogous to the supervised setting [Hastie and Tibshirani (1990)].
For the second step, the solution to the optimization problem technically exists
whenever the final matrix R is a transductive smoother. Thus, with well defined
smoothers one can always follow this approach to obtain (2.10).

2.1.1. Obtaining transductive smoothers for graph views. We elaborate next
on how to obtain the smoother matrix S from an observed graph view G. The
graph is represented by its weighted n x n adjacency matrix A defined above, with
A(i, j) = 0. The normalized right stochastic smoother matrix S is then defined by
S = D~'A, with D being a diagonal matrix containing the row sums (node de-
grees) of A. Notice that the matrices A, D and S all emit the necessary partition
structure given in (2.9). For example, the weighted similarity adjacency matrix A
has four blocks: the Ay block provides weighted links between labeled observa-
tions, the Ayr and Ay blocks are weighted links between labeled and unlabeled
observations, and the Ayy block is comprised of weighted links between unla-
beled and unlabeled observations. For the document classification example, the
weights are defined by document similarity between observations in L U U'.

In the Corollary to Proposition 2 in Culp and Michailidis (2008a), we estab-
lished that p(Syy) < 1 whenever Ayp x 1, > 0 and Ayy is irreducible (i.e.,
these assumptions are sufficient for S € A[G]). The condition on Ay is inter-
preted that each unlabeled node has at least one connection to a labeled node. In
data involving graphs it should be noted that this condition is difficult to satisfy,
especially when the size of the labeled set is small relative to that of the unlabeled
set, as illustrated in Figure 1. To account for this, one could start with the observed
graph, compute the shortest path distance between nodes and obtain a new com-
plete graph on each component (all nodes are connected to all other nodes within
each component), and then, subsequently, “thin” the obtained graph. Notice that
these additional steps can circumvent the problem by generalizing to every dis-
connected component must have a label on it as discussed in Culp and Michailidis
(2008a).

In the case of the linear model without the graph term [i.e., f(X) = Xp or f(X) =¥ (X)B], we
have that (2.11) with M ; = Oresultsin 8 = 8¢9 = (X’LXL)_IX’LYL (i.e., the supervised ordinary
least squares estimate), which is consistent with Culp and Michailidis (2008a).



MULTI-VIEW LEARNING WITH ADDITIVE MODELS 303

°®
@]
P < ‘: © o O-e
L2 .
‘n' . - . ®
(] Qe —g—g=*
. e .
Oe @ .'O'
. O A o
-. . 2 et
7 . 0o . \
h » ® oo
[ ° . .O
.
()
. ®
L]
o
.

FI1G. 1. A cross-section of an observation graph with both labeled and unlabeled vertices (obser-
vations). The labeled vertices consist of either a large dark or light circle, and the unlabeled vertices
consist of small black circles. The interest in this example is to illustrate the affect of unlabeled data
on the topology of the graph.

The above smoother is generally too simplistic to perform well on real data
since there is no tuning parameter A. One way to address this is to define the
combinatorial Laplacian as P = D — A and then, subsequently, generalize the
smoother to S = (A + AP)~'A or the symmetric smoother § = (I + AP)~! in
(2.7). Either of these generalizations tend to improve performance over that of the
stochastic smoother since the parameter A can be estimated based on the response
Yr.

2.1.2. Obtaining transductive smoothers for feature views. In the case of fea-
ture data, it is fairly straight forward to obtain the transductive smoother from the
penalty matrix as given in (2.7). However, additional considerations are made for
the case of constructing transductive smoother matrices based on kernel functions,
which is the approach primarily used in this work. Specifically, one can construct
a similarity matrix W, with

(2.13) Wij=K,(d(xi,x;))  withi, je LUU,

where d(-, -) is a distance function applied to the vectors containing the data for
observations i and j, and K, is a kernel function. The corresponding smoother is
then given by S = (W + AP)~'W, with P the combinatorial Laplacian of W. In
Ehe case of A = 1, by construction, we have that S € A[X] whenever Wy x 11 >
0 and Wy is irreducible as with the graph case. However, unlike in the graph
case, this condition is typically satisfied in practice when using noncompact kernel
functions. On the other hand, performance can improve by introducing a parameter
K and constructing adjacency matrix A as the K nearest neighbors defined by
similarity associations in W (often referred to as a K-NN graph). As a result, the
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adjacency may require similar modifications as indicated for the observed graph
to form the smoother S = (A + AP)"'A (or S = (I + AP)~ 1), where P is now
redefined as the combinatorial Laplacian operator defined on the K-NN graph A.

2.1.3. Parameter estimation. As noted above, in several instances the pro-
posed framework requires the estimation of several tuning parameters including
kernel parameters, nearest neighbor parameters and Lagrangian parameters. In
general, the tuning parameters can be broken into two groups: within view and
between view ones. The within view parameters denoted by t are necessary to
construct the penalty matrix P, from either X data sources or graph sources [i.e.,
T¢ = (¢, k¢) to form the k-NN graph for view £]. The between view parameters
correspond to the Lagrangian on the penalty matrices for the additive model and
are denoted as A = (A1, ..., A4).

Upon completing the within view parameter estimation step, the goal is to obtain
a penalty matrix, Py, from each view £. This problem is treated on a view-by-
view basis. For example, in view 1 suppose that it has been established that a
random forest learner works particularly well and, similarly, for view 2 a neural
net learner is the best performing one. To incorporate this information, we consider
a search over the parameter space which finds a transductive smoother S, that
predicts similarly to the learner. More precisely, let ¢7,, and ¢y, be the predictions
of the procedure applied to view £ (e.g., a random forest or a neural net) and define
the penalty matrix P;, = Dy — W, using the following criterion:

(2.14) min gy, — (I = Syv) ' SuLYell;  with S = D;'w,.
4

In other words, the goal is to find a value y; and k, such that the solution involv-
ing smoother § in (2.10) coincides closely to predictions from learner ¢. Notice
that the individual smoothers mimic specifically chosen learners within each view,
which can result in strong performance in several data applications [refer to the
pharmacology data example in Section 3.3, where we observe that the estimate
with (2.14) performs quite strongly compared to the state-of-the-art co-training
algorithms with random forest].

Upon obtaining the appropriate penalty matrices, one then must deal with the
between view parameter estimation problem for XA in (2.5). The Lagrangian al-
lows one to simultaneously account for the smoother’s contribution for each view.
To perform this, we first make use of the fact that the labeled estimate is lin-
ear in Yy ; that is, Y7 = My (L)Y, where My (A) = Rpp(A) + Rpy(M(U —
Ryy (W) 'Ryr (M) (the notation is modified to indicate the dependance of the
smoother matrices on the parameters). In this case, we make use of the standard
GCV criterion adjusted to transductive smoothers given by

(Yo —Mpp(W)YL) (Y, — Mpp(M)Yr)
(1 —te(Mpr(A)/m)?

In practice, the tGCV criteria is optimized simultaneously for each A ; so that ad-
justments can be made between the views.

(2.15) tGCVMrr(»)) = rnkin
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REMARK 2. The optimization criterion in (2.15) can also be used to estimate
within view parameters when a learner is not available. For example, the parameter
k on an observed graph view could be estimated with (2.15). However, in our
experience, if a learner is available, then performance can improve by usage of
(2.14).

2.1.4. View interaction terms. Next we elaborate on the view interaction terms
provided in (2.1). We restrict attention to two-way interaction terms that prove
most useful in practice. There are three possible types of interactions in the present
setting: an interaction between two views comprised of feature data, f12(X1, X2),
an interaction between two views comprised of observed graphs, f12(G1, G2),
and, finally, an interaction between a feature and a graph view, f12(X1, G2).

In this work we are primarily interested in the case when the views are modeled
as transductive kernel or graph smoothers. The interaction term can be defined as a
composite graph operation, which can be achieved in various ways. One possibil-
ity is to use the intersection, while another the union of the underlying two graphs.
The intersection between two graphs G; N G ; with corresponding weighted adja-
cency matrices W;, W; is defined by a new graph whose adjacency matrix is given

by [W;jl(u,v) = \/W,- (u, v)W;(u, v), while that for their union, W;; = wz
These terms are then processed as additional smoothers in (2.8).

REMARK 3. Another approach for defining interactions is given in Hastie and
Tibshirani (1990) where the authors employ restrictions on the f12(-, -) term during
estimation. Extensions of this approach to (2.1) could also be considered especially
for interactions with nonkernel based terms (e.g., linear terms).

2.2. Fitting the model in classification. In classification we assume that the
response takes on binary values, Yy € {0, 1}. The goal is to fit a general semi-
supervised multi-view model of the form

n=oa+ fi(X)+ f2(G),

with n = g(u), where g is the logit link function. Next we utilize the generalized
fixed-point self-training strategy to achieve this objective.

As previously discussed, one must first obtain the training response as Yy, =
[Y], Y[, where g(Yy) € RIYI. For the first step in (2.2), we optimize for 7} in

2
(2.16) min L(Yyy, g~ (1) + 3 3 fiP; fs
j=1

2There are other possibilities for defining the union term, however, we compute it additively [Gould
(1998)]. It should be noted that when interaction terms are included in the model, care should be
taken to avoid identifiability issues arising from the following situation: fi12(G1 U Gy) =~ f1(G1) +

f2(G2) — f12(G1 N G).
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where the logistic loss function (L(y, p) = —ylog(p) — (1 — y)log(1l — p) with
p =g '(f))is used and P; are the appropriate penalty matrices for X, G, respec-
tively. The solution to this problem # = #(Yy) must satisfy

AP fi — (Yv, —g7 ') = 0.

Employing a Taylor expansion on g~! about #*~1 and setting it to zero, we get
the following semi-supervised extension of the z-scoring algorithm:
F0 gD (k=) _ f=Dy _ gD e,

where the smoother is given by Si(kfl) = C(W(k_l) + A P,-)_IW(k_l), the score
by 2D = ﬁk_l — k=D Yy, — g‘l(ﬁ(k_l))), and the variance function by
wk=D = yg-l (M y=pe-n. It is easy to see that the above formulation reduces to
an application of the Gauss—Seidel algorithm for each z®). Unlike the regression
setting, the smoother for the solution depends on Yy, since W depends on Yy, and
hence, we require that there must exist a R(Yy) such that n(Yy) = R(Yy)z(Yy).
Now, if W is diagonal, then zy (Yy) = Ny — WJIIJ(YU — g_l(ﬁu)). From the fixed
point step (2.3), we get that g(fU) = ﬁU(I?U) = zy. The iterative self-training
algorithm discussed above must be applied in order to obtain this fixed point. The
following proposition provides a sufficient condition for the algorithm to converge
independent of its initialization (in this case the fixed point must be unique):

PROPOSITION 1. Assume that the solution 1 =" j fj exists and satisfies
P fi— Yy, —g~ (@) =0

for any Yy such that g(Yy) € RIYI, Assume, additl;onally, thaAt there exists a I?U
that satisfies the fixed point solution to (2.3), i.e. g(Yy) = ny Yy). If

p(Z I —S8;8)7's;a - S,-)]UU) <1,
Joi#]

with Si = (A Pi + W)™'W and W = ngl (1) |,=5. then the iterative self-training
method converges independent of initialization.

The condition on the above matrix is not of much practical use, but, neverthe-
less, it provides a general setting for which the solution to (2.3) uniquely exists.

2.3. Model selection issues. Given the multi-view model (2.1) developed
above, the next important issue to address is that of model selection, especially
in the presence of multiple views and their interactions. We present next a crite-
rion for achieving this objective. To start, for ease of presentation consider a model
involving a feature data view X and a graph view G. In this work the interest is
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in view-nested model comparisons; for example, to assess the significance of view
interaction term compare

2.17) n=a+ fi(X)+ f2(G) + f12(X, G),
(2.18) n=a+ fi(X)+ f2(G).

An example of such a model comparison is illustrated with the CORA text data
(Section 3.2).

The generalized fixed point self training framework provides a natural envi-
ronment to assess model selection in the multi-view setting. For example, let
N1 = Riz; and 72 = Raz, represent two model estimates. One approach to com-
pare two smoothers is Akaike’s Information Criterion (AIC). AIC compares two
models by penalizing the loss of the model under consideration with the degrees
of freedom of the smoother (tr(My . j)), where M}, L is linear in z;, i for model
Jj- Models with lower AIC generally fit better and are less complex than models
with larger AICs [Hastie and Tibshirani (1990), Hastie, Tibshirani and Friedman
(2001)]. The AIC model comparison for transductive smoothers is formally given
by

2 2(tr(Mprr,
(2.19) AIC(M1,) = >Loss(Myp ) + rMee))
m m

where the Loss(MLLj) is the L(Yy, g_l(MLszL)) for some loss function L (for
this work we use the logistic loss function). The best model is the one correspond-
ing to the smoother that minimizes tAIC. Also, when optimizing tAIC we preserve
the hierarchical constraint, that is, the presence of higher level interaction terms re-
quire lower level terms in the model.

2.4. Implementation issues. The proposed fitting procedures employ either
the Gauss—Seidel algorithm directly, or indirectly through the z-scoring method.
However, for regression it is computationally advantageous to employ an iterative
backfitting procedure, as opposed to solving the Gauss—Seidel equations directly
[Hastie and Tibshirani (1990)]. The main idea behind backfitting is to iteratively
smooth each function to the partial residual without that function and subsequently
mean center the function. A generalization to the local scoring algorithm is ap-
plicable to the generalized additive model setting. Convergence of both algorithms
are discussed globally for several possible smoother choices [Buja, Hastie and
Tibshirani (1989), Hastie and Tibshirani (1990)]. The transductive local scoring
algorithm is presented in Algorithm 1 and can be used to fit all the interesting
models under consideration; note that iterative backfitting is a special case of it.

The above algorithm tends to globally converge in practice, but the rate of con-
vergence depends significantly on the choice of Y [(JO). The following argument pro-
vides a fairly convenient initialization for this procedure. Consider the regression
problem in (2.5) with response Yy,,. Previously, we solved for 7(Yy) = RYy, and
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Algorithm 1 Transductive Local Scoring

1: Initialize vector ¥ [(]0) of size n, and select a smoother type for each view (e.g.
kernel, linear, spline, etc.) . Input tolerance § > O.

:fork=1,...do

3:  Apply the local scoring algorithm introduced in Buja, Hastie and Tibshirani

\®}

(1989) with smoother type specified and response YYA.[(]k—l) =[Y7, )?l(]k_l),]’

to determine the estimate 7% = [ﬁ(LkH)/, ﬁg‘“)/]/.
4 Update Y%+ = g=1(7*+D) and hence ?l(/kH) = g—l(ﬁg‘H))_

5. Stopif | AATD — 4% 1< 5.

6: end for

obtained the fixed point directly. Now, instead, we apply (2.7) to get that f@ (Yp) =
Se8e(Yy), where &,(Yy) = Yy, — "9 (Yy) is the partial residual, and solve to get
that Ay (Yy) = Sur,ér, + Svu,Yu + (I — Suu)iy O (Yy). Invoke step (2.3) 5o
that Yy = Ay (Yy) and from this we get that Yu= - LS’UUZ)_ISULZéL(Z + ﬁgz).
Placing this in (2.7) for I?U cancels out and yields ﬂ = M.r¢1,, where M, and
My, are the smoothers identified in (2.10) for view £. From this, one can then
apply backfitting directly on centered smoothers My 1, with response Y}, to obtain

an estimate I}L(O) . To obtain the estimate ¥ [(]0) , one could predict with the backfit-
ting algorithm using smoothers My, response Y, and previous estimates I?io).

The initialization ¥ I(JO) tends to be rather close to the solution from the self-training
algorithm with centered smoothers S; and response Y?U , and hence, the algorithm
converges fairly fast. A similar initialization can be derived for the more general
local scoring version.

REMARK 4. When either back-fitting/local scoring are employed for function
estimation one must approximate the degrees of freedom used for measurements
such as tGCV and tAIC; for example, a common approximate for the denominator
of (2.15)is (1 — [1 + X", (tr(M) — 1)]/|L|)? [Hastie and Tibshirani (1990)].

3. Data examples. To assess the performance and usefulness of the proposed
model, we have selected three diverse data examples. In the first example a syn-
thetic data set comprised of two graph views is examined. In the second example
an observed graph is combined with a feature set obtained from text data. In the
third example we apply our approach to a pharmaceutical problem.

3.1. Graph selection with disjoint lattices. We consider data from a two-
dimensional lattice comprised of 625 nodes on a 25 x 25 grid (refer to Figure 2).
The example consists of two separate simulated complex response patterns on the
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FI1G. 2. The grid of data given on the left has a two-class response represented by the light gray
and dark gray points. We consider connecting points using square neighborhoods and diagonal
neighborhoods, which correspond to the lattice (right panel).

graphs as shown in Figure 3 (row 1). For each response configuration, we allow
for two different ways to connect neighboring nodes: square and diagonal (refer to
Figure 2). Let L, be the adjacency matrix for the square neighborhood lattice and
L, for the diagonal neighborhood lattice. The following model was considered for
each response configuration (checkerboard, or mixed):

(3.1 n=a+ fi(Ls) + fa(La).

The objective was to determine which graphs were important for predicting the
response in each configuration using classification accuracy and the tAIC measure.
In the analysis we first sampled 10% of the observations in the lattice to be
treated as labeled nodes (cases), while the remaining 90% were treated as unla-
beled cases. The weight matrix for each lattice configuration (square, and mixed)
was constructed by Wi; = K, (dsp(i, j)), with K, (d) = e=4/7, where dy, (i, j)
denotes the shortest path from node i to node j on the lattice (note i, j € L U U).
The penalty matrix for the lattice was given by P = D — W, with D the diag-
onal row sum matrix of W. In the estimation of n =« + f;(L,) with € € {s, d}
the smoothers were given by S, = (W, + Pg)_l W¢ and the parameter y, was esti-
mated using the tGCV criterion. For the additive model, n =« + > f, the penalty
matrix Pg, the kernel matrix W, and the parameter vector A were supplied to the
local scoring algorithm as input. However, before proceeding with local scoring,
the A parameters were estimated simultaneously using the tGCV criterion analo-
gous to the approach discussed in Hastie and Tibshirani (1990).3 This process was
repeated 50 times. Then, the entire analysis was executed with Q% of the data
treated as labeled (Q = 20, 30, ...,90). The average accuracy (second column)
and tAIC (third column) for each labeled partition size is reported in Figure 3.
The accuracy plot for the checkerboard example illustrates that the model with
square neighborhoods exhibited the best performance. In the graph selection plot

3To speed-up computation, transductive backfitting was employed with response Y; treated as
continuous for only the parameter estimation component. Transductive local scoring was used for
fitting the actual model in each step.
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FI1G. 3. The response configurations are presented in row 1. The accuracy for each response config-

uration is given in row 2, while the tAIC for each response configuration is given in row 3. S denotes
square model, D denotes diagonal model, and S+D denotes additive model.
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the square neighborhood graph provided the optimal model in terms of smallest
tAIC. Therefore, the model suggests that the square neighborhood view fits the
data well, in accordance with the underlying checkerboard configuration. For the
mixed configuration, the additive model performed marginally better than the other
configurations. However, as the size of the labeled data grew, the square and diag-
onal graphs minimized tAIC.

3.2. Text analysis. In our next example we consider 776 documents obtained
from the artificial intelligence/machine learning segment of the CORA text data
[McCallum et al. (2000)]. The artificial intelligence segment consists of text docu-
ments that address the general topics of machine learning, planning, theorem prov-
ing, robotics, expert systems and others. The binary response is the indicator that
the text document is specifically about machine learning. The first view corre-
sponds to the co-citation network, where the vertices are the labeled and unlabeled
text documents, and the edges are the number of times that each pairwise observa-
tion agree in citation (co-citation). Specifically, the adjacency matrix is constructed
as

Total # of documents co-cited with i, i=],
ij= Zl{i and j cite the same document}, i#j.

The second view contains 141 carefully parsed words used in the title of each of
the text documents (e.g., learn, net, theory, etc.). The text string is a partial match
where the first letters of the word in the title must match the variable; for example,
if the variable is net, then the observation represents a count of any variation of
net, nets, network, etc. The following logistic model was used:

(3.2) n=o+ fl (Xiitte) + f2(Gcite) + le(Xtitle,’s Geite)-

To compute the interaction term, we employ the intersection operation by defining
leij = /Wl,-j * Agij, where W) is the kernel matrix on the title view and A,

is the co-citation adjacency matrix. The goal is determine the simplest model to
adequately predict whether a document is classified as addressing the specific topic
of machine learning in the artificial intelligence network.

As before, the percentage of labeled cases was varied from 10% to 90%. The
average accuracy results, based on 50 replications, are shown in Figure 4 (left
panel) and the tAIC results in Figure 4 (right panel). Cosine dissimilarity was used
to construct the distances between observations on the title view and tGCV was
used to estimate the parameters. The accuracy results tend to favor the models
with both the text and citation information. The tAIC measure indicates that the
additive model comprised of the text and citation views without interaction was
the minimizer. From this result we select the model n = f1(Xise) + f2(Geite) as
dominant and drop the interaction term between Xy, and G-

Next, we assess the proposed approach against the spectral graph transducer
(SGT), first using the G.j. view, and then using both the X, and Gy views
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FI1G. 4. (lefty The plot provides the average accuracy over 50 samples from applying the

multi-viewed model on the cora text data as the amount of labeled data varies from 10% to 90%.
(right) The corresponding tAIC plot is provided. T and C denote the models constructed using the
word view and the citation view, respectively. T+C is the main effects additive model, and T+C+T*C
is the full model including the interaction between views.

[Joachims (2003)]. In Figure 5, the SGT(X, G) dominates in the 10-30% config-
urations and remains competitive for the larger labeled partitions. The SGT(G),
however, is only competitive in the 10% configuration.
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F1G. 5. The plot provides the accuracy results with 95% confidence bands from applying multi-view
model with the spectral graph transducer using the co-citation view only, and the analogous plots
with both the title and co-citation views. The amount of labeled data varies from 10% to 90%.
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3.3. Drug discovery data. We revisit one of the motivating examples for this
work where the observations correspond to compounds which could potentially
become drugs. The goal is to assess early in the drug discovery process the po-
tential of a compound to cause an adverse event (AE) or side-effect. Clearly, a
compound’s AE status is critically important to its success, and as a result, phar-
maceutical companies would like to identify these compounds as early as possible
in the discovery process. The targeted compounds can then be modified in an at-
tempt to reduce the adverse event status while maintaining their effectiveness, or
eliminated from follow-up altogether.

The set of predictors consists of information describing the biological relation-
ship (view 1) between a compound and a particular target and the chemical rela-
tionship (view 2) which provides descriptors based on the structure of the com-
pound. In order to obtain the necessary biological information, a therapeutically
relevant concentration of the drug is applied to the target, and the inhibition of
the target’s activity is measured. This view consists of p; = 191 continuous and
noisy variables, each consisting of a carefully chosen target. The chemical predic-
tors are represented by a sparse and binary set of descriptors (p2 = 151), where
each descriptor represents a specific substructure in the compound. For the data
set under consideration, there are n = 438 compounds, of which 92 are known to
be associated with a specific AE (Y = 1, otherwise Y = 0).

In addition to generating a predictive model, scientists are also interested in
assessing the importance of each descriptor set. That is, chemical fingerprints (data
in view 2) are extremely cheap to obtain, only requiring computation time, whereas
the biological information takes more time and money to generate because each
compound needs to be assayed. Hence, assessing the importance of both views
of information has important resource implications. To determine the appropriate
model for this data, the following logistic multi-view model was fitted to the data:

n=o-+ fl (XBio) + fZ(XChem) + le(XBio, X Chem)-

The smoothers for each term in the above model were generated by optimizing
(2.14), using random forests in each view. The results are shown in Figure 6 for
both accuracy and tAIC. In accuracy, the additive model tends to improve over that
of the chemistry view only model, but the improvement is not significant. From the
tAIC analysis, the additive model with both views seems useful for smaller labeled
partitions, but as the %-labeled increases, its utility diminishes to that of the chem-
istry view only model. This result suggests that the biology view and interactions
involving this view are not contributing significantly to the performance of this
model.

Next, we wish to assess the proposed modeling approach compared to other
multi-view procedures. From the above analysis, the chemistry only view model
is all that is necessary, but we use the biology/chemistry model without interac-
tion for comparison with other multi-view techniques. In addition to the multi-
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FI1G. 6. (left) The plot provides the average accuracy over 50 samples from applying the multi-view
model [recall that random forest were employed in (2.14)] on the pharmacology data as the amount
of labeled data varies from 10% to 90%. (right) The corresponding tAIC plot is provided. B and C
denote the models constructed using just the biology view and just the chemistry view, respectively.
B+C is the main effects additive model, and B+C+B*C is the full model including the interaction
between views. The 95% confidence bands are provided to assess the precision of the contribution
for a particular model.

view model, a random forest without making a view distinction was fitted to the
data [i.e., random forest fit directly to (Bio,Chem)], the co-training procedure dis-
cussed in the introduction using random forests as the base learner [Blum and
Mitchell (1998)] and the SGT approach was employed on this data. To measure
performance, we partition the data into 50 10-90% labeled groups, each with the
remainder treated as unlabeled, and applied both accuracy and kappa measures to
the unlabeled data. The kappa measure is defined as (O — E)/(1 — E), where
O is the observed agreement in the testing confusion matrix and E is the ex-
pected agreement [Cohen (1960)]. Values close to O represent poor agreement,
while values close to 1 represent perfect agreement. Because kappa compares ob-
served agreement to expected agreement, it is helpful for assessing performance
for unbalanced data.

The multi-view model with random forest in (2.14) and the co-training pro-
cedure are quite competitive in both the accuracy and kappa measures (refer to
Figure 7). The results based on kappa reveal that co-training is somewhat more
conservative than the multi-view model (i.e., tends to predict several observations
as not having an AE), and therefore, the multi-view model exhibits a strong per-
formance in kappa with a slight deterioration in accuracy. The supervised random
forest applied without view distinction and the SGT performed poorly with respect
to both measures for this data set.
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F1G. 7. (left) The plot provides the accuracy results with 95% confidence bands from applying the
multi-view model with random forest, Co-Training with RF, the spectral graph transducer, and the
random forest without a view distinction on the pharmacology data as the amount of labeled data
varies from 10% to 90%. (right) The plot provides the analogous results for the Kappa performance
measure, which better accounts for unbalanced classes.

4. Concluding remarks. In this paper we developed a modeling framework
suitable for analyzing multi-view data. Its main features are: (i) the generalized
fixed point framework to fit semi-supervised additive models to both observed
graph and feature views, (i1) mechanisms to perform view selection and incorpo-
rate view interactions and (iii) data-driven tuning parameter estimation. The pro-
posed framework and subsequent developments provide a marked departure from
the original co-training algorithms into a data analysis setting by allowing view
interactions and selections.

A topic of future study is the ability to assess variable contribution within
and between views. In this setting, the individual feature views are constructed
from variables and, therefore, the contribution of a particular view depends on
that of the underlying variables. On the other hand, a variable’s contribution
may occur at the view level such as in an interaction. Other interesting issues
of study involve inference, testing and transductive covariance estimation. The
process of predicting new observations (as opposed to retraining, which is the
current process) is also under investigation. The difficulty of this problem, of-
ten referred to as inductive learning, is noted in several references [Culp and
Michailidis (2008), Krishnapuram et al. (2005), Zhu, Ghahramani and Lafferty
(2003), Wang and Zhang (2006), Zhu (2007)] and is worthy of its own investiga-
tion.
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5. Proof of Proposition 1. Next we provide proof for Proposition 1.

PROPOSITION 1. Assume that the solution 1 =" j fJ exists and satisfies
jPifi— Yy, —g~ (@) =0

for any Yy such that g(Yy) € RIYl, Assume, additionajly, that thgre exists a I?U
that satisfies the fixed point solution to (2.3), that is, g(Yy) = nu(Yy). If

p(Z I —S8;s)7lsa - S,->]UU) <1,
Joi#i

with Si = (A Pi + W)™'W and W = Vg_1 (1) |,=4. then the iterative self-training
method converges independent of initialization.

PROOF. By assumption, we have that
~k A _ N _ ~
1P (0 = i) = (Vg = Y3, ) = (g7 (1) — 71 ),
where j =a +)_; fiand 7® =a® 4 Y fj(k). We also have that
g () ="' @+ WH® —h) + 0,
with W =Vg~!(n) |=7- Putting these together, we get that
A k ~ A A~
riPi (7 = i) = Vg =Yy,) = WY = i) + 00,
and hence,
A, k A _ A k A
RS Si[W 1(YpL<,/<—1> —-Y;,) - (Y- fj)} +0(1),
i#]
with S; = (W + ; P;)~'W. After some algebra and solving for a common term,
(I —SiSpH(fP = fiy=si1 - SHW ™ (Vyon =Yy )+ O, i ).
Assume W is a multiple of / and define R; = (I — S,-Sj)_lSj(I — §;), then

O Ak=1) A
IEi) — fu; = Ruu, (™" = i) + 0 D).

From this, we can cycle the above statements withi =1,...,gfor£=1,...,kto
get that

q k-1
Ak PN ~(0 ~
20— fu ZRLU,-<Z RUUj) (g — fw) + O1),
j=1

k—1
q
Ak A ~(0) A
l(]i)_fUi:RUUi(ZRUU.f) (ngj)_”U)‘FO(l)-
j=1
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Therefore, if [Z?Zl RUUj 1¥ — 0, then convergence of the algorithm is guaranteed.

The actual initialization 7’ is of no consequence, therefore, the convergence is
independent of initialization. [J
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