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INFERENCE USING SHAPE-RESTRICTED REGRESSION SPLINES

BY MARY C. MEYER

Colorado State University

Regression splines are smooth, flexible, and parsimonious nonparamet-
ric function estimators. They are known to be sensitive to knot number and
placement, but if assumptions such as monotonicity or convexity may be im-
posed on the regression function, the shape-restricted regression splines are
robust to knot choices. Monotone regression splines were introduced by Ram-
say [Statist. Sci. 3 (1998) 425–461], but were limited to quadratic and lower
order. In this paper an algorithm for the cubic monotone case is proposed, and
the method is extended to convex constraints and variants such as increasing-
concave. The restricted versions have smaller squared error loss than the un-
restricted splines, although they have the same convergence rates. The rela-
tively small degrees of freedom of the model and the insensitivity of the fits
to the knot choices allow for practical inference methods; the computational
efficiency allows for back-fitting of additive models. Tests of constant versus
increasing and linear versus convex regression function, when implemented
with shape-restricted regression splines, have higher power than the standard
version using ordinary shape-restricted regression.

1. Introduction. We consider the regression model

yi = f (xi) + σεi, i = 1, . . . , n,(1)

where the errors are i.i.d. Nonparametric regression methods provide estimates
for f using minimal assumptions, and are appropriate when a parametric form is
unavailable. Many methods assume only some sort of smoothness; three of the
most widely used of these are the kernel smoother, the smoothing spline, and re-
gression splines. These require user-specified choices as bandwidth, or smoothing
parameter, or number and placement of knots. If the fits are not robust to these
choices, inference about the regression function is problematic.

Fits using only shape restrictions such as monotonicity or convexity do not re-
quire user-defined parameters, but are typically not smooth, nor are the fits par-
simonious, in that the model degrees of freedom is in some sense large. Some
inference methods have been developed: for testing constant versus increasing re-
gression function [see Robertson, Wright and Dyskstra (1988), hereafter RWD]
and for linear versus convex regression function [see Meyer (2003)], test statistics
with exact distributions under the null hypothesis and normal errors assumption
have been derived.
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Several methods combining smoothing and shape restrictions have been pro-
posed. Mammen (1991) investigated the asymptotic behavior of the monotonized
kernel estimator, and alternatively, the kernel-smoothed monotone regression es-
timator, showing that either obtains the n−2/5 pointwise convergence rate of the
original kernel estimator.

The constrained smoothing splines are more challenging to obtain. The expres-
sion

n∑
i=1

[yi − f (xi)]2 + λ

∫ b

a

[
f (k)(x)

]2
dx(2)

is to be minimized over the set of f satisfying the constraints. The constant λ

is called the “smoothing parameter” because larger values result in smoother fits.
Tantiyaswasdikul and Woodroofe (1994) characterized the monotone smoothing
splines for k = 1. The natural cubic smoothing spline minimizes the expression (2)
for k = 2, but although it is relatively easy to impose shape restrictions at the ob-
served x-values, ensuring that the restrictions hold between the observations is
more difficult. For monotone cubic interpolation, it is known that additional knots
must be placed between the observations [Fredenhagen, Oberle and Opfer (1999)],
but the exact placement of these knots is not understood. Delecroix, Simioni and
Thomas-Agnan (1995) demonstrated through simulations that imposing shape re-
strictions on top of smoothing leads to substantial reductions of squared error loss
for moderately sized samples and many choices of underlying function, error vari-
ance, and shape. The monotone smoothing splines were shown by Mammen and
Thomas-Agnan (1999) to obtain the optimal n−p/(2p+1) convergence rate, where p

is the maximum of k and the order of the polynomial.
In this paper the estimation of f using shape-restricted regression splines is

discussed, and inference methods proposed. Regression splines are simple and
straight-forward; a set of basis functions are provided which act as the regres-
sors in an ordinary least-squares model. The basis functions are smooth, often
piecewise polynomials of degree d between the user-specified knots, with d − 1
continuous derivatives. The optimal convergence rate is attained; Huang and Stone
(2002) provide a nice discussion of the trade-off between estimation error and ap-
proximation error in choosing the number of knots. The set of linear combinations
of the basis functions typically provides more than enough flexibility to fit a scat-
terplot; in fact, in the absense of shape restrictions, the flexibility for a rather small
number of knots is so great that most of the regression spline literature concerns
guarding against the over-fitting of data. Friedman and Silverman (1989) discussed
knot placement of unconstrained polynomial splines, based on forward-backward
model selection. They imposed a minimum span for possible knot locations, based
on the idea that the smoother will “follow runs” of sequential positive or negative
errors, and result in over-fitting. Eilers and Marx (1996) proposed using a rather
large number of knots, but including a penalty term to reduce the flexibility of the
regression estimator and guard against over-fitting.
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These techniques are not necessary for the shape-restricted regression spline.
Typically, when assumptions about both shape and smoothness are warranted,
the fits are robust to the choice of smoothing parameters. The monotonicity con-
straints, for example, do not allow peaks and valleys in the fit, although rounded
“steps” may be present, and convexity (or concavity) constraints disallow any
sort of wiggling. In other words, the shape restrictions themselves provide some
smoothing, and obviate cures for over-fitting.

An example data set involving age and income data is shown in Figure 1. These
data were used as an example in Ruppert, Wand and Carroll (2003) (hereafter
RWC) and represent a sample of 205 Canadian workers, all of whom were edu-
cated to grade 13. The relationship between log(income) and age is to be mod-
eled nonparametrically. In plot (a) there are three examples of penalized regres-
sion splines. The solid line represents the cross-validation choice of the smooth-
ing parameter; the dashed line has a larger parameter, and the dot-dash line has
a smaller. Smaller penalty parameters allow the fit to be steeper at the left-hand
side, but allow for wiggles toward the right-hand side. The cross-validation choice
still has a dip at about age 41–42. If we believe that the true relationship between
log(income) and age should not have a dip, we might assume the relationship is
convex. In plot (b) we see the cubic regression splines, constrained to be convex,
for three choices of interior knots. The fits are very close to one another, almost
indistinguishable, and have no trouble with the steep slope at the left.

A second motivating example uses the “onion” dataset from RWC. When onions
are planted more densely in a field, it is expected that the yield per plant will de-
crease, and we suppose here that the log of the yield is also convex in the density
of the planting. The smoothing splines presented in plot (a) of Figure 2 are con-

FIG. 1. Age and income data for a sample of Canadians. (a) Penalized cubic splines for three
values of the penalty parameter; the solid curve represents the cross-validation choice. (b) Cubic
regression splines constrained to be concave, with three (dashed), five (solid) and seven (dot-dash)
interior knots.
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FIG. 2. Comparison of fits to the onion data. (a) The natural cubic smoothing spline fits con-
strained to be decreasing and convex, for three choices of smoothing parameter; the solid line is the
cross-validation choice. (b) The decreasing convex cubic regression spline, for three choices of knots.

strained to be decreasing and convex (at the observed x-values), for three choices
of the smoothing parameter. The solid curve represents the cross-validation choice.
The parameter for the dotted curve is larger, and the fit is close to a straight line.
The smoothing parameter is smaller for the dashed curve, which rises more sharply
at the left. The decreasing convex cubic regression splines are shown in (b), for
two, four, and six interior knots. Again, these fits lie almost on top of each other.

Robustness of nonparametric function estimator to user inputs is important for
inference, to ensure that different choices will not produce different answers. The
rest of the paper is organized as follows. The algorithm for the computation of
shape-restricted regression splines is described in Section 2. Hypothesis tests for
constant versus increasing and linear versus convex regression function are dis-
cussed in Section 3, where an exact test statistic is obtained. Degrees of freedom
and estimation of model variance are discussed in Section 4.

2. Computing the estimator. Ramsay (1988) introduced monotone regres-
sion splines to fit a scatterplot of data (xi, yi), for i = 1, . . . , n, where the xi are
ordered. For regression splines of order k, choose l grid points tk+1, . . . , tk+l , and
define knots x1 = t1 = · · · = tk < · · · < tl+k+1 = · · · = tl+2k = xn. Then the num-
ber of M-spline basis functions is m = l+k; these are given recursively as follows.
Order 1 M-splines are the piecewise constant (step functions)

M
(1)
i (x) =

⎧⎨
⎩

1

ti+1 − ti
, for ti ≤ x ≤ ti+1,

0, otherwise,
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for i = 1, . . . , l + 1. Order k M-splines are computed from the lower orders:

M
(k)
i (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

k[(x − ti)M
(k−1)
i (x) + (ti+k − x)M

(k−1)
i+1 (x)]

(k − 1)(ti+k − ti)
,

for ti ≤ x ≤ ti+k,

0, otherwise.

Finally, the I -splines are

I
(k)
i (x) =

∫ x

t1

M
(k)
i (u) du for i = 1, . . . , l + k = m, for x ∈ [x1, xn].(3)

The regression function is estimated by a linear combination of the basis functions
and the constant function. To constrain the estimator to be monotone, the coeffi-
cients of the basis functions must be nonnegative (the coefficient of the constant
function is not constrained).

For convex C-splines, the I -splines are integrated, to get basis functions that
are both increasing and convex. In particular,

C
(k)
i (x) =

∫ x

t1

I
(k)
i (u) du for i = 1, . . . , l + k = m for x ∈ [x1, xn].(4)

A convex regression function is estimated using linear combinations of the basis
functions with nonnegative coefficients, plus an unrestricted linear combination
of the constant function and the identity function g(x) = x. If the underlying re-
gression function is both increasing and convex, we restrict the coefficient on the
identity function also to be nonnegative.

Define the set of vectors σ j in R
n containing the values of the j th basis function,

evaluated at the x-values. For kth-order monotone regression splines, let σ
j
i =

I
(k)
j (xi), for j = 1, . . . ,m, and i = 1, . . . , n. For the convex case, simply substitute

the C-spline basis functions for the Ij . Let V be the linear space contained in
the constraint set; for the monotone and monotone-convex cases, V = L(1), and
for convex constraints, V = L(1,x), where L denotes “linear space spanned by,”
1 = (1, . . . ,1)′, and x = (x1, . . . , xn)

′.
A set of “generating vectors” that are orthogonal to V are

δj = σ j − �(σ j |V ),

where � is a projection operator. Because the σ and v vectors form a linearly
independent set, then the δ vectors are also linearly independent. The constraint
set C can then be characterized by

C =
{
θ : θ = v +

m∑
j=1

bjδ
j , where bj ≥ 0, j = 1, . . . ,m, and v ∈ V

}
.

For y = θ +ε, the least-squares estimator θ̂ minimizes ‖y −θ‖2 over θ ∈ C, where
the notation is ‖a‖2 = ∑

a2
i . The set of nonnegative linear combinations of the δ
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FIG. 3. Spline basis functions (curves) using three equally spaced interior knots, along with edge
vectors (with values marked as dots) for a data set with n = 40 equally spaced design points. The
knot positions are marked with “X.” (a) Quadratic monotone, scaled so that the vectors have mean
zero. (b) Cubic convex, scaled so that the vectors are orthogonal to both the one-vector and the
x-vector.

vectors is called the “constraint cone” �, and θ̂ can be found by projecting onto
� and V separately, then adding the projections. A depiction of the cone edges for
piecewise quadratic increasing constraints using three interior knots and n = 40
is shown in Figure 3, plot (a). The piecewise cubic edge vectors for the convex
case are shown in plot (b). The knots are marked on the plots with “X.” The basis
functions and basis vectors are easily modified for use with concave constraints,
or increasing concave, and so on.

The third-order (quadratic) I -splines defined in (3) are “proper” set basis func-
tions, in that the coefficients of the piecewise quadratic monotone basis functions
being nonnegative is a necessary and sufficient condition for the linear combina-
tion to be nondecreasing. This can be seen by observing that, at each knot, exactly
one basis function has a positive first derivative. Similarly, the first and second or-
der I -splines form proper sets, but the cubic I -splines do not. A linear combination
of cubic I -splines might be nondecreasing while one or more of the coefficients is
negative, so that the least-squares estimator might lie outside of C. The lack of a
cubic version of the monotone splines is a drawback when the user would like a
smooth first derivative. An approach to obtaining a solution is presented at the end
of this section.

For the convex cubic splines defined in (3), we observe that, at each knot, exactly
one basis function has a positive second derivative, so that the C-splines form
proper sets of basis functions up to order four.

Ramsay (1988) provides a gradient-based algorithm for finding the least-squares
solution for the I -splines. This converges to the solution in “infinitely many” steps,
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meaning that the algorithm produces a sequence of estimates that get closer to the
true least-squares estimate, then stops when the gradient satisfies a convergence
criterion. The algorithm proposed here finds the true solution in a small number
of steps, by taking advantage of the fact that the constraint set is a closed convex
polyhedral cone in R

n.
Because C is convex, the minimizer θ̂ of ‖y − θ‖2 over θ ∈ C is unique, and

the necessary and sufficient condition is 〈y − θ̂ , θ̂ − θ〉 ≥ 0, for all θ ∈ C (RWD).
Here the notation 〈a,b〉 denotes the inner product

∑
aibi . Because C is a cone,

the condition may be written as

〈y − θ̂, θ̂〉 = 0(5)

and

〈y − θ̂, θ〉 ≤ 0 for all θ ∈ C.(6)

Subsets of the generators δj define “faces” of the constraint cone. Any J ⊆
{1,2, . . . ,m} defines a set F (J ) = ∑

j∈J bjδ
j , where bj > 0 for j ∈ J . The con-

straint cone itself is a face with J = {1, . . . ,m}, and the origin is a face with J

equal to the empty set, so that there are 2m faces. The projection onto the cone �

will land on one of these faces, and in fact is a projection onto a linear subspace;
for a proof of the following proposition, see Meyer (1999).

PROPOSITION 1. Let J be the subset of {1, . . . ,m} such that the unique min-
imizer of ‖y − θ‖2 is θ̂ = v + ∑

j∈J bjδ
j , where the bj are strictly positive for

j ∈ J . Then θ̂ is the projection of y onto the linear space spanned by vectors in V

and the δj , j ∈ J .

The mixed primal-dual bases algorithm by Fraser and Massam (1989) and the
hinge algorithm by Meyer (1996) are efficient ways to determine the set J . In ei-
ther scheme, an initial set J0 is proposed, and ordinary least squares projection
onto the face with edges indexed by J is determined. Edges are added or removed
one-by-one (the rules are different for the two algorithms) until the correct J [as
determined by (1) and (2)] is found. A QR decomposition of the “design matrix”
allows the new projection to be obtained from the old projection with less compu-
tation. To demonstrate the speed of the algorithm, 10,000 datasets of size n = 100,
simulated using yi = x2

i + εi , with x values equally spaced on (0,2) and i.i.d.
standard normal errors. A piecewise quadratic monotone spline was fit with the
hinge algorithm to each dataset, using four interior knots. At most ten iterations
of the algorithm were needed; the modal number of iterations was five. When n is
increased to 500 and using six interior knots, the maximum number of iterations
(out of 10,000 simulated data sets) was twelve, with a mode of seven.
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Consistency and rates of convergence. The following proposition states that
the shape-restricted version of the regression spline has smaller squared error loss
than the unrestricted version, when the true regression function satisfies the shape
assumptions. Therefore, the shape-restricted regression spline is consistent under
the same regularity conditions as the ordinary piecewise polynomial regression
spline, and the rate is at least as good. The proof is straight-forward.

PROPOSITION 2. Let S̃ be the linear space spanned by the δ vectors and the
vectors in V . Let θi = f (xi), and assume the shape restrictions hold for f . Let ŷ

be the unconstrained projection of y onto S̃, and recall that θ̂ is the projection of y
onto C. Then

‖θ̂ − θ‖ ≤ ‖ŷ − θ‖,
with equality only if θ̂ = ŷ.

Hwang and Stone (2002) show that for the unrestricted case and “bounded mesh
ratio,” the asymptotically optimal number of knots is l ≈ n1/(2p+1), where p is
the order of the polynomial pieces. This choice allows the estimator to attain the
pointwise convergence rate Op(n−p/(2p+1)).

Choice of knots. Shape restrictions impose some degree of smoothness by
themselves. Combining shape restrictions with smoothing will result in estima-
tors that are typically more robust than smoothing only, especially if a convexity
assumption is warranted. The asymptotically optimal n−1/(2p+1) rounds to two or
three for n up to about 500, but if the underlying regression function shows a lot
of variation such as rapid rises, more knots might be needed to follow the data
adequately. This is demonstrated in the following simulations, which give some
insight into knot choices.

Goodness of fit. We compare the root mean squared error loss of the con-
strained regression splines with that of the penalized regression spline and the
standard shape-restricted regression estimators using simulations. The squared er-
ror loss for the estimate f̂j from the j th simulated dataset is

SELj = 1

n

n∑
i=1

[f̂j (xi) − f (xi)]2,

and the square roots of the average SEL are reported for 10,000 simulated datasets.
For monotone constraints, we use two underlying functions: f (x) = 4x and

f (x) = 5 exp(10x − 5)/(1 + exp(10x − 5)) over (0,1), both with unit model vari-
ance. The first varies steadily, but the latter has a steep increase in the middle of
the range of the data, which makes it difficult for the quadratic monotone spline
if there are too few knots. The fit with two interior knots is not flexible enough to
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TABLE 1
Comparison of the root mean squared error loss for penalized splines with quadratic regression
splines constrained to be increasing. Data were simulated using the indicated f , σ 2 = 1, and
x-values equally spaced on (0,1). PSPL indicates the penalized regression spline with k = n/3

knots, and cross-validation selection of the smoothing parameter; MR is ordinary monotone
regression, MSPL2 is quadratic monotone regression spline with two interior knots,

MSPL4 is defined similarly

f (x) = 4x f (x) = 5 exp(10x − 5)/[1 + exp(10x − 5)]
n PSPL MR MSPL2 MSPL4 PSPL MR MSPL2 MSPL4

40 0.36 0.43 0.31 0.34 0.41 0.52 0.47 0.35
80 0.26 0.34 0.23 0.26 0.33 0.41 0.41 0.25

200 0.17 0.25 0.15 0.17 0.22 0.27 0.26 0.16

fit the steep rise adequately, although using four interior knots gives a substantial
improvement. In summary, the 4-knot monotone spline does best for the sigmoidal
data for all three sample sizes, followed by the penalized spline. The 2-knot spline
does not do better than the unsmoothed monotone regression for this choice of
function. For the linear function, the 2-knot spline performs best, followed by
the 4-knot spline and the penalized spline, which out-perform the unsmoothed
monotone regression.

The advantage of using monotone convex constraints when available is illus-
trated using the regression functions f (x) = 4x and f (x) = 4x2. In each case,
the smoothed constrained fits do best, followed by the unsmoothed, constrained
regression. The unconstrained fit is last in each case.

Weighted regression. Suppose we have the model y = θ +σε, where cov(ε) =
A for a known positive definite A. The weighted shape-restricted regression spline
fit is easy to obtain with a transformation of the data and of the constraint cone. We
transform the model to the i.i.d. case by multiplying the model through by A−1/2,
the inverse of the Cholesky decomposition of the covariance matrix, to get ỹ = θ̃ +

TABLE 2
Same as for Table 1 except MCR is ordinary monotone-convex regression, MCSPL2 is cubic

monotone-convex regression spline with two interior knots, MCSPL4 is defined similarly

f (x) = 4x f (x) = 4x2

n PSPL MCR MCSPL2 MCSPL4 PSPL MCR MCSPL2 MCSPL4

40 0.36 0.30 0.21 0.29 0.36 0.31 0.27 0.27
80 0.26 0.22 0.19 0.20 0.25 0.23 0.20 0.21

200 0.16 0.14 0.12 0.13 0.17 0.16 0.14 0.14
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FIG. 4. Weighted residuals for the fit to the Canadian age and income data.

σ ε̃, and similarly transforming ṽj = A−1/2v, j = 1, . . . , r and δ̃
j = A−1/2δj . The

projection is performed using the transformed model, then the answer is subjected
to the reverse transformation.

This is useful when there are multiple observations at some x-values. For ex-
ample, the ages in the Canadian age and income dataset are integers ranging from
21 to 65, with one to twelve observations at each age. Because we want to have
distinct x-values, we average the incomes for each age group and weight the re-
gression according to the number of observations comprising the average. The fits
shown in Figure 1(b) were computed using the weighted model. In Figure 4 we see
the weighted residuals plotted against age for the fit with five interior knots. There
is not so much of a “fanning out” pattern as might be expected from the scatterplot,
partly because more observations were taken for the younger ages. In fact, if the
outlier at age 57 is ignored, there is hardly any pattern to the residuals.

Additive models. The computational efficiency facilitates “back-fitting” addi-
tive models of the form

y = θ + Dβ + ε,

for an n×q design matrix D and r-dimensional parameter vector β . For a given β ,
θ̂ ∈ C may be found to minimize ‖(y −Dβ)−θ‖2, using the projection algorithm.
The space R

q is searched for the optimal β .
A simple example is the two-parallel curves model. To illustrate, we use the

onion data set again, with two locations of farms indicated as shown in Fig-
ure 5. The decreasing convex parallel cubic regression splines are shown for three
choices of knots.
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FIG. 5. Log (yield) of onion plants against density of planting, for two locations. The Pumong
Landing data are shown as triangles and the Virginia data are indicated with circles. The cubic
regression splines constrained to be decreasing and convex are shown for two, four, and six equally
spaced interior knots.

All distinct x-values are used to define the spline basis functions. Given a choice
of β , the least-squares parallel curves can be computed though a cone projection.
The golden section search method [see Press et al. (1992), Section 10.1] is used to
find the parameter β representing the location effect, or the distance between the
curves, that minimizes the overall sum of squared residuals. The estimates for β

do not vary substantially with choice of knots. For two, three, and four interior
knots, we estimate that the Pumong Landing log (yield) is 0.335 points higher than
for the Virginia onions, and for five and six interior knots, the estimated difference
is 0.338.

Toward a monotone piecewise cubic regression spline. The necessary and suf-
ficient conditions that a cubic function be monotone on an interval can not be writ-
ten as a set of linear inequality constraints, so a proper set of basis functions for
the monotone cubic regression splines does not exist. Fritsch and Carlson (1980)
outline the conditions and provide an algorithm for the monotone piecewise cubic
interpolation to monotone data, which will be part of the method proposed here.

The set of nondecreasing vectors in R
n form a polyhedral convex cone that

can be characterized by �M = {θ :Aθ ≥ 0}, where the nonzero elements of the
(n − 1) × n matrix A are Ai,i = −1 and Ai,i+1 = 1, i = 1, . . . , n − 1. The cubic
M-spline vectors span a linear subspace of R

n, and the intersection of this sub-
space with �M forms a polyhedral convex subcone �. The edges of this cone can
be used as basis vectors for the monotone cubic splines. This constrains the fit to be
increasing at the observations, that is, θ̂1 ≤ · · · ≤ θ̂n, but between observations the
piecewise cubic function may be decreasing. Hence, we propose to use these basis
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vectors to get the least-squares solution θ̂ , then, if necessary, find the monotone in-
terpolating cubic spline of Fritsch and Carlson (1980) to get f̂ . This interpolation
does not minimize the integral of the squared second derivative of f , and, in fact,
there is not a unique monotone cubic interpolation, but the optimal convergence
rate is attained for any monotone interpolation.

The general method for finding the edges for the intersection of a convex cone
with a linear subspace is as follows. Suppose a basis for the linear subspace is
represented by the columns of the n × k matrix V , and the cone is defined by
the m × n constraint matrix A, that is, Aθ ≥ 0. Then the vector v = V c is in the
intersection if AV c ≥ 0, so that the constraint matrix for the coefficient vector is
the m × k matrix AV . Suppose the row space of AV has dimension q ≤ k. The
edges of the cone are found as follows. If r1, . . . , rq−1 are linearly independent
rows of AV , r0 ∈ R

q is orthogonal to the space spanned by r1, . . . , rq−1, and
AV r0 ≥ 0, then r0 is an edge. Furthermore, all edges are of this form. The proof
of this claim can be found in Meyer (1999).

Using this method, we can find all linear combinations of the M-splines that are
increasing at the observations. The number of edge vectors for the sub-cone can
be quite large, which is typical for the case of more constraints than dimensions
[see Meyer (1999) for more examples]. For three interior knots and n = 40, sixteen
of the 233 edges are shown in Figure 6. The dots are the values of the edge vec-
tors, and the lines are the piecewise cubic spline functions. The functions appear
to be increasing, but some are not. For example, the top left curve is increasing
and then decreasing between the last two observation points. The cone formed
by these edges is larger than that of the cubic I -splines, and any vector θ that is
a linear combination of the cubic M-spline basis vectors and satisfies θi ≤ θi+1,
i = 1, . . . , n − 1, is in the cone. Therefore, a monotone cubic spline interpola-
tion of the projection of y onto the cone coincides with the least-squares solution
and attains the optimal convergence rate. The piecewise cubic monotone spline is
compared with the piecewise quadratic in Figure 7, for the same sigmoidal func-
tion used in the goodness of fit simulations. The cubic version is more flexible with
fewer knots, and is able to follow the steeper rise in the data.

3. Hypothesis testing. One practical use for nonparametric function estima-
tion is in testing proposed parametric models. The simplest examples are the test
H0 :f ≡ c versus Ha :f is increasing, and the test of linear versus convex re-
gression function. When the alternative fit is the ordinary (unsmoothed) shape-
restricted estimator, a likelihood ratio approach yields a test statistic distributed as
a mixture of beta random variables. See RWD, Chapter 2, for the monotone case
and Meyer (2003) for the convex case. If we include the “smooth” assumption, and
use the shape-restricted regression spline for the alternative fit, we get again a test
statistic with a mixture of betas distribution. To show this, some characterizations
of the constraint and polar cones are needed.
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FIG. 6. Some of the edge vectors for the piecewise cubic regression spline, monotone at the
x-observations, for three interior knots and n = 40.

FIG. 7. Comparing the piecewise quadratic monotone spline (dashed) with the piecewise cubic
(solid), both using two interior knots and n = 40. The true function is the dotted curve.
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Let S be the linear space spanned by the vectors δj , j = 1, . . . ,m. Then the
polar cone is defined as all vectors in S making obtuse angles with all vectors
in �:

�0 = {ρ ∈ S : 〈ρ, θ〉 ≤ 0, for all θ ∈ �}.
Let γ 1, . . . ,γ m be the rows of the matrix [−(	′	)−1	′], where the columns of
the n × m matrix 	 are the δj . Then 〈γ j , δi〉 = 0 for i �= j , and 〈γ j , δj 〉 = −1,
and by construction, γ j ∈ �0 and the γ j span the same space as the δj vectors.
The proof of the next result is straight-forward.

PROPOSITION 3. The vectors γ j are generators of �0, that is,

�0 =
{
ρ :ρ =

m∑
i=1

bjγ
j , where bj ≥ 0, for all j = 1, . . . ,m

}
.

Let r be the dimension of V , so that r = 1 for monotone or monotone-convex,
and r = 2 for convex constraints. We may define n − m − r linearly independent
vectors w that are orthogonal to the δ vectors and to V . The proof of the next
proposition is given in the Appendix.

PROPOSITION 4. For any y ∈ R
n, there is a unique J ⊆ {1, . . . ,m} so that y

can be written uniquely as

y = v + ∑
j∈J

bjδ
j + ∑

j /∈J

bjγ
j +

n−m−r∑
j=1

cjw
j ,(7)

where v ∈ V , bj > 0 for j ∈ J and bj ≥ 0 for j /∈ J .

Let χ2
01 = (SSE0 − SSE1)/σ

2, where SSE0 is the residual sum of squares under
the hypothesis θ ∈ V and SSE1 is that under Ha : θ ∈ C. To derive the distribution
of χ2

01 under H0, we need to define “sectors” CJ , for all J ⊆ {1, . . . ,m}. We have

CJ =
{
y :y = v + ∑

j∈J

bjδ
j + ∑

j /∈J

bjγ
j +

n−m−r∑
j=1

cjw
j

}
,

where v ∈ V , bj > 0 for j ∈ J and bj ≥ 0 for j /∈ J . By Proposition 4, these 2m

sectors are disjoint and cover R
n. Note that the interior of the constraint set is itself

a sector with J = {1, . . . ,m}. We write

P(χ2
01 ≤ a) = ∑

subsets J

P (χ2
01 ≤ a|y ∈ CJ )P (y ∈ CJ ).

The derivation of Theorem 1 of Meyer (2003) applies, to show that under H0,
P(χ2

01 ≤ a|y ∈ CJ ) = P(χ2(n− d − r) ≤ a), where χ2(k) is a chi-square random
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variable with k degrees of freedom, and d is the number of indices in J . Therefore,

P(χ2
01 ≤ a) =

m∑
d=0

P
(
χ2(n − d − r) ≤ a

)
P(D = d),

where D is a random variable indicating the number of δ generators corresponding
to the sector in which the data vector y falls, that is, the size of the set J .

The mixing distribution parameters P(D = d) are found numerically as de-
scribed in Meyer (2003). If the model variance σ 2 is not known, the test statistic

B01 = χ2
01

χ2
01 + SSE1/σ 2

= SSE0 − SSE1

SSE0

has under H0 a mixture of beta densities

P(B01 ≤ a) =
m∑

d=0

P

[
B

(
d

2
,
n − d − r

2

)
≤ a

]
P(D = d),

where B(p,q) is a beta random variable with parameters p and q . Because the
mixing distribution can be determined as precisely as desired, the distribution of
the test statistic under the null hypothesis is known exactly.

Onion example. The example of Figure 2 involves estimating yield as a func-
tion of planting density for onions. Suppose the farmer would prefer to use the
simple linear relationship. Is there enough evidence to show that this is incorrect?
The test for linear versus convex regression function provides a p-value of 0.0047
for two interior knots, p = 0.0036 for three, and p = 0.0037 for four.

Simulations. The power for the tests is compared with tests using the stan-
dard shape-restricted regression estimators, and also with the F -test. To compare
tests of monotone versus increasing regression function, we choose two under-
lying regression functions (linear and “ramp”), three sample sizes, and for each
sample size, three model standard deviations. The “ramp” regression function is
f (x) = exp[8(x − 1/2)], so that it is flat at the left and increasing steeply at the
right. For each sample size, the three model standard deviations were chosen so
that the power of the F -test was 0.25, 0.50 and 0.75. The alternative fit for the F -
test is a line, so that the model is not correct for the data generated from the ramp
function. The idea is that practitioners might not know the true regression function,
and might use the simplest choice of parametric function for the alternative fit in a
“test for trend.”

For each combination of sample size, model standard deviation, and underly-
ing regression function, 10,000 datasets were simulated. For each dataset, three
hypothesis tests were performed: the F -test for constant versus linear regression
function, for constant versus increasing regression function using the monotone
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TABLE 3
Power comparisons for the test of constant vs. monotone regression function. For the regression
spline, the number of interior knots is l = 2, 2, and 3 corresponding to n = 20, 40 and 80. The

results for the tests using the ordinary shape-restricted regression estimators are labeled as MREG

Linear regression function “Ramp” regression function

n F -test IQRS B-test MREG B-test n F -test IQRS B-test MREG B-test

20 0.25 0.22 0.22 20 0.25 0.28 0.27
20 0.50 0.45 0.44 20 0.50 0.63 0.61
20 0.75 0.69 0.68 20 0.75 0.90 0.88
40 0.25 0.22 0.21 40 0.25 0.30 0.28
40 0.50 0.45 0.41 40 0.50 0.62 0.59
40 0.75 0.70 0.66 40 0.75 0.89 0.86
80 0.25 0.21 0.20 80 0.25 0.28 0.27
80 0.50 0.44 0.41 80 0.50 0.60 0.56
80 0.75 0.69 0.65 80 0.75 0.88 0.84

quadratic (IQRS), and the test for constant versus increasing regression function
using the standard monotone regression estimator (MREG).

For the linear regression function, the F -test is the gold standard. We see that
the tests using nonparametric alternative fits have smaller power, but the regression
spline versions have power that is considerably closer to that of the F -test. For the
ramp regression function, the power for the nonparametric tests is larger, and again
the regression spline version has higher power than the standard version.

The next set of simulations compares the power for the linear versus convex
regression function tests. The F -test uses the quadratic as the alternative fit, the
“CCRS B-test” uses the convex piecewise cubic regression spline as the alterna-
tive fit, and “CREG B-test” uses the standard convex regression estimator. The
two underlying regression functions are the quadratic and the “ramp” functions.
Again, results are reported for combinations of underlying regression function,
three sample sizes and three model standard deviations. For the quadratic under-
lying regression function, the F -test has highest power, and the power for the test
using regression splines has higher power than for the ordinary convex regression
estimator. For the ramp regression function, the test using the regression splines
again has the highest power.

4. Degrees of freedom and model variance. Hastie and Tibshirani (1990)
suggest an “effective error degrees of freedom” for a linear smoother: if the esti-
mator is ŷ = Sy, then df err = n − tr(2S − SST ). This can be used to estimate the
model variance. This definition is consistent with ordinary least-squares regres-
sion, where S is a projection matrix and, hence, 2S − SST = S and tr(S) is the
dimension of the linear space defined by the model.
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TABLE 4
Power comparisons for the test of linear vs convex regression function. For the spline, the number of
interior knots is l = 2, 2 and 3 corresponding to n = 20, 40 and 80. The results for the tests using

the ordinary shape-restricted regression estimators are labeled as CREG

Quadratic regression function “Ramp” regression function

n F -test CQRS B-test CREG B-test n F -test CQRS B-test CREG B-test

20 0.25 0.22 0.212 20 0.25 0.25 0.24
20 0.50 0.46 0.42 20 0.50 0.54 0.52
20 0.75 0.70 0.66 20 0.75 0.80 0.78
40 0.25 0.22 0.20 40 0.25 0.26 0.24
40 0.50 0.45 0.40 40 0.50 0.53 0.49
40 0.75 0.70 0.64 40 0.75 0.81 0.76
80 0.25 0.22 0.18 80 0.25 0.25 0.21
80 0.50 0.44 0.38 80 0.50 0.54 0.49
80 0.75 0.69 0.62 80 0.75 0.80 0.75

For ordinary shape-restricted regression and for shape-restricted regression
splines, the estimator is a mixture of linear estimators, with the mixing distrib-
ution corresponding to the probabilities of the data vector falling in the sectors.
Let D be r plus the number of edges of the face of the cone on which the projec-
tion falls, and let d be the realized value, so that a candidate for error degrees of
freedom is n − d . Meyer and Woodroofe (2000) showed that the model variance
estimate SSE/(n − d) is too small; in fact,

n − 2E(D) ≤ E(SSE)

σ 2 ≤ n − E(D),(8)

where D is the random variable indicating the dimension of J plus r . They rec-
ommend SSE/(n − 1.5d) to estimate the model variance for ordinary monotone
regression. Further, for monotone regression, they showed that E(D) = Op(n1/3).

For shape-restricted regression splines, E(D) is limited by the number of knots.
If the number of knots grows slowly, as n1/(2p+1) for example, then the model
dimension is small compared to the ordinary shape-restricted regression. We may
write the SSE as

‖y − θ̂‖2 =
∥∥∥∥∥
∑
j /∈J

bjγ
j

∥∥∥∥∥
2

+
∥∥∥∥∥
n−m−r∑

j=1

ajw
j

∥∥∥∥∥
2

,(9)

where the last term may be written as a2
1 + · · · + a2

n−m−r if the wj are chosen
to form an orthonormal set. The ai are mean-zero, independent normal random
variables with common variance σ 2, and because the wj are orthogonal to S, their
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distributions are independent of the constraint y ∈ CJ . Therefore,∥∥∥∥∥
n−m−r∑

j=1

ajw
j

∥∥∥∥∥
2/

σ 2 ∼ χ2(n − m − r).(10)

We can show that a result similar to (8) holds for the shape-restricted regression
splines, so that

m − 2E(D) ≤ ‖∑
j /∈J bjγ

j‖2

σ 2 ≤ m − E(D),

where D is the size of J . If the shape restrictions are strictly held (i.e., the function
is strictly monotone), the constraints are more likely to be unbinding as n gets
larger. The value of D for shape-restricted regression splines tends to be closer
to m, so that m − 2E(D) may be negative. Therefore, we choose as the model
variance estimator

σ̂ 2 = SSE

n − d
,(11)

where d is the size of the realized J plus r . This estimator tends to have a small
negative bias that decreases as n gets larger. An alternative conservative estimator
is σ̃ 2 = SSE/(n − m); this over-estimates the variance because the denominator is
too small.

Simulations show that, for the monotone assumptions, the proposed estimator
has smaller bias than the MLE and smaller bias and variance than that using the
Meyer–Woodroofe estimator and ordinary monotone regression, for small to mod-
erate sample sizes and several choices of model variance. In Table 5 four esti-
mators of model standard deviation for monotone regression are compared. For
each combination of choices of n and σ , 10,000 datasets were simulated using

TABLE 5
Comparison of estimators of model standard deviation. The percent bias and standard deviation of

four estimators are shown: MQRS = Monotone Quadratic Regression Spline, MQRS
(cons) = conservative version, M–W = Meyer–Woodroofe estimator, MLE = Maximum Likelihood

Estimator. Results from 10,000 simulated data sets with f (x) = x2; two significant figures presented

MQRS MQRS (cons) M–W MLE

n σ % bias std dev % bias std dev % bias std dev % bias std dev

20 0.1 −0.66 0.0036 3.8 0.0038 26 0.0086 −65 0.0019
40 0.1 −0.43 0.0024 1.7 0.0025 8.1 0.0035 −49 0.0016
80 0.1 −0.22 0.0016 0.55 0.0017 3.3 0.0020 −35 0.0013
20 1.0 −1.9 0.34 12 0.39 −5.6 0.36 −28 0.27
40 1.0 −0.77 0.24 6.8 0.25 −1.5 0.25 −18 0.21
80 1.0 −0.55 0.16 2.6 0.17 −0.52 0.17 −12 0.15
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TABLE 6
Comparison of the estimator of model standard deviation using regression spline for a convex

regression function, compared with the maximum likelihood variance estimator. The underlying
regression function is f (x) = x2. Results from 10,000 simulated data sets;

two significant figures presented

CQRS CQRS (cons) MLE

n σ % bias std dev % bias std dev % bias std dev

20 0.1 −2.8 0.018 11. 0.0039 −32 0.0026
40 0.1 −1.0 0.012 2.9 0.0024 −18.6 0.0020
80 0.1 −0.64 0.0082 0.81 0.0017 −10.9 0.0015
20 1.0 −2.4 0.17 12.1 0.39 −20 0.29
40 1.0 −0.89 0.12 7.1 0.25 −12 0.21
80 1.0 0.58 0.081 4.1 0.17 −6.7 0.15

a linear regression function and i.i.d. normal errors. The MQRS uses increasing
quadratic regression spline with variance estimate SSE/(n − d), the MQRS (cons)
is SSE/(n−m), and M–W uses standard shape-restricted regression with variance
estimate SSE/(n−1.5d). Finally, the MLE uses standard monotone regression and
variance estimate SSE/n. The percent bias is the difference between the mean of
the computed estimator and the true σ , divided by the true σ . Simulated estimates
of the bias and standard deviation of the estimator of the model variance in convex
regression are shown in Table 6, and compared with the MLE.

APPENDIX

PROOF OF PROPOSITION 4. Given J ⊆ {1, . . . ,m}, there are four orthogo-
nal linear subspaces of R

n :V , L({δj , j ∈ J }), L({γ j , j /∈ J }), and L({wj , j =
1, . . . , n − m − r}). Because the dimensions of these subspaces add to n, any
y ∈ R

n can be written as the sum of the projections onto these four subspaces.
Let θ̂ = v + ∑

j∈J bjδ
j be the unique vector in C that minimizes ‖y − θ‖2 with

bj > 0 for j ∈ J . By Proposition 1, we have e = y − θ̂ is in the space spanned by
the wj and the γ j , j /∈ J , so we write e as a linear combination of these. Now we
need only show that the coefficients bj of the γ j are nonnegative. This is easy by
(6) because, for any j /∈ J , 〈y − θ̂, δj 〉 ≤ 0, and

〈y − θ̂ , δj 〉 =
〈∑

l /∈J

blγ
l +

n−m−r∑
l=1

clw
l , δl

〉
= −bj . �

SUPPLEMENTARY MATERIAL

R code: Supplement 1 (DOI: 10.1214/08-AOAS167SUPPA). Performs a
weighted monotone piecewise quadratic spline least-squares regression. inputs:

http://dx.doi.org/10.1214/08-AOAS167SUPPA
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scatterplot points (x, y) where the x are sorted and distinct. weights w must be
positive. var(yi) = wi k is the number of interior knots. These will be placed at
approximately equal x-quantiles output: the values of the fit at the observed x

values.

R code: Supplement 2 (DOI: 10.1214/08-AOAS167SUPPB). Performs a
weighted convex piecewise cubic spline least-squares regression. inputs: scatter-
plot points (x, y) where the x are sorted and distinct. weights w must be positive.
var(yi) = wi k is the number of interior knots. These will be placed at approxi-
mately equal x-quantiles output: the values of the fit at the observed x values.

R code: Supplement 3 (DOI: 10.1214/08-AOAS167SUPPC). Performs a
weighted monotone convex piecewise cubic spline least-squares regression. in-
puts: scatterplot points (x, y) where the x are sorted and distinct. weights w must
be positive. var(yi) = wi k is the number of interior knots. These will be placed
at approximately equal x-quantiles output: the values of the fit at the observed x

values.

R code: Supplement 4 (DOI: 10.1214/08-AOAS167SUPPD). Fit two parallel
monotone piecewise quadratic curves to a scatterplot. inputs: scatterplot points
(x, d, y) where the x are sorted and distinct and d is a vector of ones and zeros.
k is the number of interior knots. These will be placed at approximately equal x-
quantiles outputs: the values of the fit for d = 0 at the observed x values and the
increase in intercept for d = 1.
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