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We consider daily rainfall observations at 32 stations in the province of
North Holland (the Netherlands) during 30 years. Let T be the total rainfall in
this area on one day. An important question is: what is the amount of rainfall
T that is exceeded once in 100 years? This is clearly a problem belonging to
extreme value theory. Also, it is a genuinely spatial problem.

Recently, a theory of extremes of continuous stochastic processes has been
developed. Using the ideas of that theory and much computer power (simula-
tions), we have been able to come up with a reasonable answer to the question
above.

1. Introduction. When a damaging flood has occurred extreme rainfall statis-
tics are frequently used to answer questions about the rarity of the event. Engineers
often need extreme rainfall statistics for the design of structures for flood protec-
tion. A typical question is, for example, what is the amount of rain in a given area
on one day that is exceeded once in 100 years? Or, more mathematically, what is
the 100-year quantile of the total rainfall in the area on one day? In this paper this
question is investigated for a low-lying flat area in the northwest of the Nether-
lands. The area is shown in Figure 1. Because it roughly covers the province of
North Holland, it will shortly be indicated as North Holland.

There are 32 rainfall stations in the area for which daily data were available for
the 30-year period 1971–2000. Only the fall season, that is, the months September,
October and November, is considered. In this season the likelihood of flooding and
its impact are relatively large. Because of the restriction to the fall season, it is
reasonable to assume stationarity in time. Stationarity in space, except for location
and scale, is also assumed.

Since we have to extrapolate from a 30-year to a 100-year period, our problem
is an extreme value problem. There is also a clear spatial aspect.

Engineers often make use of areal reduction factors (ARFs) to convert quantiles
for point rainfall to the corresponding quantiles of areal rainfall. ARFs have been
derived empirically by estimating the areal rainfall as a function of point rainfall
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FIG. 1. The study area: North Holland.

measurements [e.g., Natural Environment Research Council (NERC) (1975), Bell
(1976)] or by statistical modeling [e.g., Bacchi and Ranzi (1996), Sivapalan and
Blöschl (1998), Veneziano and Langousis (2005)]. The latter requires assumptions
on distributions, spatial correlation and/or scaling behavior. The resulting ARF for
the 100-year quantile is generally very uncertain.

Some attempts have been made to estimate ARFs from weather radar data
[Allen and DeGaetano (2005), Stewart (1989)]. One difficulty is that the raw rain-
fall intensities from the radar reflectivities need to be adjusted for systematic de-
viations from the values observed at the rainfall stations. Another difficulty is that
archived radar data cover a relatively short time period (in the Netherlands only
10 years).

Regional Climate Model (RCM) simulations driven by weather reanalysis data
are a potential source for areal aggregated rainfall. A reanalysis is an estimate of
the state of the atmosphere based on observations and a numerical weather fore-
cast. The RCM is necessary to increase the spatial resolution. Various 40-year
simulations have been performed recently with spatial resolutions of 50 km ×
50 km and 25 km × 25 km, in particular, within the framework of the EU-funded
project ENSEMBLES (www.ensembles-eu.org). In addition to the limited length
and rather coarse resolution for our application, there are systematic differences
between simulated and observed rainfall. For the KNMI RCM driven by ERA40
reanalysis data, Leander and Buishand (2007) report differences up to 20% in sea-
sonal average rainfall for the river Meuse basin, situated south of the Netherlands.

http://www.ensembles-eu.org
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For North Holland, the differences can even be larger because it is much smaller
than the Meuse basin and it is surrounded by water.

Statisticians have used max-stable processes to obtain the quantiles of the distri-
bution of spatially aggregated rainfall. Coles and Tawn, in a series of papers [Coles
(1993), Coles and Tawn (1996)], have developed methods to deal with spatial ex-
tremes based on the spectral representation [de Haan (1984), see also Schlather
(2002)]. Here we follow a different approach based on random fields. Apart from
the parameters that characterize the upper tail of the marginal distributions, our
model has a parameter that determines spatial dependence. This parameter is es-
timated from the tails of the empirical two-dimensional marginal distributions of
daily rainfall in North Holland. The 100-year quantile of the total rainfall over
the area is found by simulating synthetic daily rainfall fields using the estimated
model.

In order to motivate our solution, we first explain some relevant aspects of ex-
treme value theory, in R

1, R
d (d > 1) and C[0,1] (Section 2). In Section 3 we

specify the stochastic process used in the simulation. This process is used only to
simulate “extreme” rainfall. For nonextreme rainfall, we sample from the available
data. In Section 4 we explain how we combine the two to get a simulated day of
rainfall. The estimation of the dependence parameter is dealt with in Section 5.
Section 6 discusses the outcome of the simulation and the answer to our problem.
Section 7 summarizes our main conclusions.

2. Extreme value background. We now explain the background of our ap-
proach by reviewing some aspects of extreme value theory and the related theory
of excursions over a high threshold. This will be done first in the one-dimensional
case (Section 2.1), then the finite-dimensional case (Section 2.2) and finally the
case of continuous stochastic processes (Section 2.3). The results in the various
cases are similar but of increasing complexity. That is why we start with the one-
dimensional case which is well known [Gnedenko (1943) and Pickands (1975),
resp.].

2.1. One-dimensional space. Suppose that the distribution function F is in the
domain of attraction of an extreme value distribution, that is, if X1,X2, . . . are i.i.d.
with distribution function F , there are a positive function a and a function b, such
that

lim
n→∞P

(
max

1≤i≤n

Xi − b(n)

a(n)
≤ x

)
= G(x),

a nondegenerate distribution function. We denote this by F ∈ D . Then a and b can
be chosen such that

G(x) = Gγ (x) = exp{−(1 + γ x)−1/γ }
for all x with 1 + γ x > 0. Then we also say F ∈ D(Gγ ).
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Let X be a random variable with distribution function F . Then there exist a
positive function a0 and a real shape parameter γ (the extreme value index), such
that for all x with 1 + γ x > 0,

lim
t↑x∗ P

(
X − t

a0(t)
> x

∣∣∣X > t

)
= (1 + γ x)−1/γ =: 1 − Qγ (x).

Here x∗ := sup{x :F(x) < 1}. This means that the larger observations in a sam-
ple follow approximately the probability distribution Qγ —the generalized Pareto
distribution [GPD, cf. Balkema and de Haan (1974), Pickands (1975)]. Note that
1 − Qγ (x) = − logGγ (x).

Let R be a random variable with distribution function Qγ . Then,

P

(
R − t

1 + γ t
> x

∣∣∣R > t

)
= P(R > x)

for those x and t for which 1 + γ t > 0 and 1 + γ x > 0. We can call this property
excursion stability.

Suppose that we have observed a sample X1,X2, . . . ,Xn from F . Since the
approximate distribution of the large values is completely specified, it is possible
to use it as a basis to simulate more “large observations,” even larger than those in
the sample. Thus, by resampling the nonextreme part of the sample and simulating
extreme observations from the GPD distribution, one can produce more and more
“observations,” even extreme ones. Using partly simulation and partly resampling
is the main idea behind what we intend to do. Hence, we sample from

F̄ (x) =
⎧⎨
⎩

F(x), if x < t ,

1 − (
1 − F(t)

)
Qγ

(
x − t

a0(t)

)
, if x ≥ t .(1)

We can implement this by letting t be one of the upper order statistics and using
estimators for F , γ and a0.

The extra “extreme” observations are sampled from the tail model and they are
independent of the “nonextreme” observations. This is justified by the so-called
“découpage de Lévy” stating roughly that cutting up a sequence of i.i.d. random
variables in two subsequences according to whether their values are in a set B or in
its complement Bc results in two independent i.i.d. sequences. The result has been
formulated and proved carefully in Resnick (1987), pages 212 and 215. A similar
argument applies in higher dimensional space (Sections 2.2 and 2.3).

2.2. Finite-dimensional space. Let us now consider the finite-dimensional
case, or rather the two-dimensional case, for simplicity. Let (X,Y ) be a random
vector with distribution function F . Suppose F ∈ D , that is, if (X1, Y1), (X2, Y2),

. . . are i.i.d. with distribution function F , there are positive functions a and c and
functions b and d , such that

lim
n→∞P

(
max

1≤i≤n

Xi − b(n)

a(n)
≤ x, max

1≤i≤n

Yi − d(n)

c(n)
≤ y

)
= G(x,y),
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a distribution function with nondegenerate marginals. If this is the case, we say F ∈
D(G) and G is a (multivariate) extreme value distribution. Then, as in the one-
dimensional case, there exists a related two-dimensional GPD distribution QH ,
obtained, for example, as follows:

lim
t→∞P

(
X − b(t)

a(t)
>

xγ1 − 1

γ1

or
Y − d(t)

c(t)
>

yγ2 − 1

γ2

∣∣∣X > b(t) or Y > d(t)

)

= 2
∫ 1

0
max

(
s

x
,

1 − s

y

)
H(ds) =: 1 − QH(x, y),

for (x, y) ∈ DH = {(x, y) : 2
∫ 1

0 max( s
x
, 1−s

y
)H(ds) ≤ 1} ⊃ {(x, y) :x, y ≥ 2},

where γ1 and γ2 are the marginal extreme value indices, and H is a probability
distribution function on [0,1] with mean 1/2. Any distribution H with mean 1/2
may occur [cf., e.g., de Haan and Ferreira (2006), Chapter 6]. H characterizes
the dependence in the tail. It is different from the traditional dependence measure:
correlation coefficient which measures the dependence at moderate level. If H con-
centrates all its measure on point 1/2, (X,Y ) is completely tail dependent. If H

is a discrete measure on only two points, 0 and 1 with weight 1/2 each, (X,Y ) is
completely tail independent. Similar to the one-dimensional case, we have

− logG

(
xγ1 − 1

γ1
,
yγ2 − 1

γ2

)
= 1 − QH(x, y).

QH is a probability distribution function on DH with the following properties:
1. Standard one-dimensional GPD marginals: QH(x,∞) = QH(∞, x) = 1 −

1/x, for x ≥ 1.
2. Homogeneity: 1 − QH(tx, ty) = t−1(1 − QH(x, y)) for t > 1 and (x, y) ∈

DH , in particular, QH ∈ D :

Qn
H(nx,ny) = (

1 − (
1 − QH(x, y)

)
/n

)n

→ exp
{−(

1 − QH(x, y)
)} = G

(
xγ1 − 1

γ1
,
yγ2 − 1

γ2

)
.

Sometimes the function 1 − QH(1/x,1/y) is called the asymptotic dependence
function of F . It determines the tail dependence between the two components with-
out specifying the marginal distributions.

3. Excursion stability: If (R,S) is a random vector with distribution func-
tion QH , then with c := 1 − QH(1,1), we have for x, y ∈ DH , t > c

P

(
R >

tx

c
or S >

ty

c

∣∣∣R > t or S > t

)
= P(R > x or S > y).

We remark that a random vector with an arbitrary extreme value distribution can
be constructed as follows. Let E1,E2, . . . be i.i.d. standard exponential random
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variables. Let V be a random variable with distribution function H and consider
i.i.d. copies V1,V2, . . . of V . Let the sequences {Ei} and {Vi} be independent. Then
the random vector(

max
i≥1

2Vi/(E1 + E2 + · · · + Ei),max
i≥1

2(1 − Vi)/(E1 + E2 + · · · + Ei)

)

has an extreme value distribution and both marginals have distribution function
exp(−1/x), x > 0.

We want to follow the line of reasoning from the one-dimensional situation and
propose to use QH to simulate more “large observations,” to be combined with
resampling from the available sample. However, simulation from a multivariate
distribution is more complicated than in the one-dimensional case. It is more con-
venient if we can find a random vector that is easy to simulate and that has the same
distribution. Consider the random vector (2YV,2Y(1−V )) with Y and V indepen-
dent, Y has distribution function 1−1/x, x ≥ 1, and V has distribution function H .
It is easy to check that the distribution function Q0

H(x, y) of (2YV,2Y(1 − V ))

coincides with QH(x, y) for x, y ≥ 2. The fact that the distribution function is
not exactly the same is not a problem: we are dealing with an asymptotic prop-
erty and the important thing is that Q0

H has the asymptotic dependence function
1 − QH(1/x,1/y), that is,

lim
t→∞P

(
2YV > tx or 2Y(1 − V ) > ty|2YV > t or 2Y(1 − V ) > t

)
(2)

= 1 − QH(x, y)

for x, y > 1. In fact, any distribution function in the domain of attraction of G

would do since the asymptotic dependence structure is the same as for the limiting
extreme value distribution.

Now the random vector (2YV,2Y(1 − V )) is useful but not flexible enough:
the set of conditions V ∈ [0,1] and EV = 1/2 is rather restrictive. Hence, let us
consider the random vector (YA1, YA2) with Y and the vector (A1,A2) indepen-
dent, Y as before and A1 and A2 positive with EA1 = EA2 = 1. The distribution
function Q∗ of (YA1, YA2) satisfies the following properties:

1∗. 1 − Q∗(x,∞) = E min(1, A1
x

) for x > 0, hence, limt→∞ t (1 − Q∗(tx,

∞)) = 1/x, similarly for Q∗(∞, x);
2∗. limt→∞ t (1 − Q∗(tx, ty)) = E max(A1

x
, A2

y
) for x, y > 0, that is, Q∗ ∈ D ;

3∗.

lim
t→∞P(YA1 > tx/c or YA2 > ty/c|YA1 > t or YA2 > t) = E max

(
A1

x
,
A2

y

)

for x, y > 0 with c := E max(A1,A2).
We can easily simulate from Q∗, but this distribution satisfies only approxi-

mately (not exactly) the three properties 1, 2 and 3. Because of property 2∗ [mean-
ing that the distribution function of (YA1, YA2) has the same asymptotic depen-
dence function as the distribution function of max(0,1 −E max(A1

x
, A2

y
)), cf. (2)],

we can still use Q∗ for simulation, albeit with caution.
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2.3. Extremes of continuous stochastic processes. What do we mean by ex-
tremes in C[0,1], the space of continuous functions defined on the unit interval?
The setup is as follows. Let {X(s)}s∈[0,1] be a stochastic process in C[0,1]. Con-
sider independent copies X1,X2, . . . of the process X. Compose for each n a con-
tinuous stochastic process {

max
1≤i≤n

Xi(s)

}
s∈[0,1]

.

Suppose that for some positive functions as(n) and real functions bs(n), the se-
quence of processes {

max
1≤i≤n

Xi(s) − bs(n)

as(n)

}
s∈[0,1]

converges in C[0,1]. If this is the case, we say X ∈ D . Let us call the limiting
process {U(s)}s∈[0,1]. Then we say X ∈ D(U). The following proposition is useful
for our purposes [de Haan and Lin (2001)].

PROPOSITION 2.1. X ∈ D if and only if the following two statements hold:
1. (Uniform convergence of the marginal distributions.) There exists a continu-

ous function γ (s) such that, for x > 0,

lim
n→∞P

(
max

1≤i≤n

Xi(s) − bs(n)

as(n)
≤ xγ (s) − 1

γ (s)

)
= exp

(
−1

x

)
,

uniformly for s ∈ [0,1].
2. (Convergence of the standardized process.) With Fs(x) := P(X(s) ≤ x) for

s ∈ [0,1], {
max

1≤i≤n

1

n(1 − Fs(Xi(s)))

}
d→ {η(s)} (say)

in C[0,1]. Note that all one-dimensional marginal distributions of the process
1/(1 − Fs(Xi(s))) are equal to 1 − 1/x, x ≥ 1.

The process η satisfies the following: if η1, η2, . . . are i.i.d. copies of η, then

1

n
max

1≤i≤n
ηi

d= η,

that is, the process is simple max-stable. [The word “simple” indicates that all mar-
ginal distributions are standard Fréchet distributions, exp(−1/x), x > 0.] More-
over, we have that

{U(s)} d=
{
(η(s))γ (s) − 1

γ (s)

}
.

As a consequence of this proposition, we can study the “simple” process η first
and go back to U later, in a straightforward way.
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Two characterizations of simple max-stable processes are known. One of them
can serve our purposes. It is given in the following proposition. The other charac-
terization is discussed at the end of this subsection.

PROPOSITION 2.2 [Schlather (2002), de Haan and Ferreira (2006), Corol-
lary 9.4.5]. Every simple max-stable process η in C[0,1] can be generated in
the following way. Let E1,E2, . . . be i.i.d. standard exponential random variables.
Further, consider i.i.d. positive stochastic processes V,V1,V2, . . . in C[0,1] with
EV (s) = 1 for all s ∈ [0,1] and E sup0≤s≤1 V (s) < ∞. Let the sequences {Ei}
and {Vi} be independent. Then

η
d= max

i≥1
Vi/(E1 + E2 + · · · + Ei).

Conversely, each process with this representation is simple max-stable. One can
take the stochastic process V such that

sup
0≤s≤1

V (s) = c a.s.

with c some positive nonrandom constant.

Now recall the “generalized Pareto” results in one- and finite-dimensional ex-
tremes that allowed us to simulate from the tail of the distribution. What is the
situation in this spatial setup?

One way to proceed is as in the finite-dimensional case. Let Y be a random
variable with distribution function 1 − 1/x, x ≥ 1 (i.e., one-dimensional GPD).
Let V be a positive stochastic process in C[0,1] that satisfies the conditions of
Proposition 2.2: EV (s) = 1 for s ∈ [0,1] and sup0≤s≤1 V (s) = c, a nonrandom
constant. Let Y and V be independent. Consider the GPD process

{ξ(s)}s∈[0,1] := {YV (s)}s∈[0,1].

The process ξ is in C[0,1] and satisfies the following:
1. Standard GPD tail: P(YV (s) > x) = 1/x for x > c;
2. Homogeneity;
3. Excursion stability: The distribution of {cYV (s)/t} given sup0≤s≤1 YV (s) >

t is the same as that of {YV (s)} for t > c.
The validity of the three properties requires the condition that sup0≤s≤1 V (s) =

c, a nonrandom constant. If we only know E sup0≤s≤1 V (s) < ∞, the properties
do not hold as they stand, but we still have an asymptotic version of them as in the
finite-dimensional case. In particular, ξ ∈ D(η).

We remark that the stochastic process {YV (s)} is in the domain of attraction
of the process {η(s)}, hence, the asymptotic dependence structure of the two
processes is the same (cf. Section 2.2) and either of the processes can be used
for simulating extreme events. This is also true for the process {YV (s)} with the



632 T. A. BUISHAND, L. DE HAAN AND C. ZHOU

weaker side condition E sup0≤s≤1 V (s) < ∞. Hence, there are three candidate
processes for simulating extremal rainfall.

We finish this section with two remarks.
In all of the above we can replace [0,1] by any compact subset of an Euclidean

space, that is, we can deal with spatial extremes.
An alternative approach to areal rainfall is presented in Coles (1993) and Coles

and Tawn (1996), as mentioned before. Rather than the representation of Proposi-
tion 2.2, their approach is based on an alternative, more analytical, representation
involving spectral functions originating from de Haan (1984) and an unpublished
manuscript by Smith (1990). They sketch how to calculate (rather than simulate)
a quantile of the areal rainfall. The model developed by Coles (1993) consists of
a multivariate extreme-value distribution that describes the extremes at a subset
of the rainfall stations and deterministic “storm profile functions” to obtain the
amount of rain in the remaining points of the area. A consequence of this approach
is that the model depends on the positions of the rainfall stations. Coles and Tawn
(1996) applied this model to calculate quantiles of extreme daily areal rainfall in
the winter season for a region in south-west England. It is assumed that heavy rain-
fall always takes place throughout the region. Schlather (2002) advocated the use
of the representation of Proposition 2.2 to simulate extreme widespread rainfall,
like winter rainfall in south-west England.

3. Stochastic process for simulating “extreme” rainfall. The starting point
for the simulation of the rainfall process is Proposition 2.2, the representation
of simple max-stable processes and its counterpart, the excursion stable process
{YV (s)}. Conceptually, as explained in Section 2, the excursion stable process is
the right one to use.

However, nonparametric estimation of the characteristics of the process V is
presently beyond our reach. Hence, we choose to work with a tractable para-
metric model for V . Unfortunately, the condition sup0≤s≤1 V (s) = c, that makes
the process {YV (s)} excursion stable, is very stringent and we could not find
a reasonable parametric model for such a process. Hence, it seems better to
stay with the model {YV (s)} but replace the condition sup0≤s≤1 V (s) = c by
E sup0≤s≤1 V (s) < ∞, as allowed by Proposition 2.2. Then the excursion stability
is still approximately true, that is, the process has the same asymptotic dependence
structure. But we meet another problem. In order to tie the simulated process to
the observed nonextreme rainfall, it is imperative that the marginal distributions
of the simulated process have a GPD tail [cf. relation (6) below]. As explained
in Section 2, this is not correct for {YV (s)} with E sup0≤s≤1 V (s) < ∞, worse,
the marginal distribution is quite untractable, hence, a transformation to repair this
problem seems difficult to find.

Only the third possibility remains: to choose the simple max-stable process from
Proposition 2.2 for the simulation. Then the asymptotic dependence structure of
the process is the same as that of the corresponding GPD-type process {YV (s)}
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(they are in the same domain of attraction) and the marginal distributions are all the
same, hence, they can easily be transformed to the distribution function 1 − 1/x,
x ≥ 1. The transformation on marginal distributions will not change the asymptotic
dependence structure.

This is what we do in the simulation. For V , we choose the so-called exponen-
tial martingale [cf. Øksendal (1992), Exercise 4.10]. Also, we have to extend the
process to a process with a two-dimensional index set. We choose the model

η(s1, s2) := max
i≥1

exp{W1i (βs1) + W2i (βs2) − β(|s1| + |s2|)/2}
E1 + E2 + · · · + Ei

(3)

for (s1, s2) ∈ R
2 (or rather the area under study, North Holland). Here {Ei}

is an i.i.d. sequence of standard exponential random variables. The processes
W11,W21,W12,W22,W13,W23, . . . are independent copies of double-sided Brown-
ian motions W defined as follows. Take two independent Brownian motions B1
and B2. Then

W(s) :=
{

B1(s), s ≥ 0;
B2(−s), s < 0.

(4)

The positive constant β reflects the amount of spatial dependence at high levels
of rainfall: “β small” means strong dependence and “β large” means weak depen-
dence. The model assumes that the dependence between extreme rainfall at two
locations depends only on the distance between the locations as we shall see later
on.

The process η satisfies the requirements of Proposition 2.2:

E exp{W1(βs1) + W2(βs2) − β(|s1| + |s2|)/2} = 1 for (s1, s2) ∈ R
2,

and

E sup
a1≤s1≤b1
a2≤s2≤b2

exp{W1(βs1) + W2(βs2) − β(|s1| + |s2|)/2} < ∞

for all a1 < b1, a2 < b2 real.

By Proposition 2.2, the one-dimensional marginal distributions of (3) are all
e−1/x, x > 0. The two-dimensional marginal distributions are calculated in de
Haan and Zhou (2008). They are invariant under a shift. The same holds for
the higher-dimensional marginal distributions [the proof is in de Haan and Zhou
(2008)]. Hence, the process is shift stationary as it should be for our application.

The choice of this particular process is mainly one of convenience: the process
is not too crude and it allows easy simulation and estimation of the dependence
parameter.

For the simulation of our process, we need to simulate (3), the maximum of infi-
nitely many terms. However, since the denominators form an increasing sequence,
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one can approximate the process η by taking the maximum of only finitely many
terms. In fact, it turns out that even 4 terms are sufficient to get a reasonable result.

We have now a simple max-stable process that can be simulated rather well.
But—taking into account our discussion of the finite-dimensional case—in fact,
we need a process that has generalized Pareto marginals, not the standard Fréchet
extreme value distribution as marginals. Hence, we use the process η from (3) but
transform the marginal distributions to the generalized Pareto distribution 1−1/x,
x ≥ 1:

ξ(s1, s2) := 1

1 − exp{−1/(η(s1, s2))}(5)

for (s1, s2) in the area.
The last step is a further transformation of the marginal distribution that adapts

the process to the local shape (γ ), scale (a) and shift (b) parameters. These pa-
rameters can be estimated from each station separately, using the local sample.
However, the resulting estimates may not be accurate enough, due to the small
sample size (there is a large number of days with no rain). To increase precision,
it is often assumed in the hydrological and climatological literature that the shape
parameter γ is constant over the region of interest [e.g., Natural Environment Re-
search Council (NERC) (1975), Alila (1999), Gellens (2002), Fowler and Kilsby
(2003)]. A reliable estimate of γ is then obtained using all extreme values (usu-
ally in the literature this concerns the seasonal or annual maxima) in the region.
This can be done by combining the extremes into a single record (the so-called
station-year method), by averaging a local estimate of γ or a skewness statistic
over the region of interest, or by maximizing a log likelihood with a common γ

and local scale and location parameters. For annual maximum daily rainfall in the
Netherlands, Buishand (1991) compared the maximum likelihood approach with
the averaging of a local estimate of γ . Almost the same results were obtained.

Here we use the average of the local estimates of γ . We found the value
γ̂ = 0.1082. This value is comparable with the estimates of the shape parame-
ter found for daily maximum rainfall in the winter half-year (October–March) in
the Netherlands [Buishand (1983)] and Belgium [Gellens (2002)]. Of course, our
model allows γ to vary over the area.

The final transformation results into the process

X(s1, s2) := â(s1,s2)(n/k)

(
ξ(s1, s2)

γ̂n,k − 1

γ̂n,k

)
+ b̂(s1,s2)(n/k).(6)

Note that

P

(
X(s1, s2) − b(s1,s2)(n/k)

a(s1,s2)(n/k)
> x

)

= P

(
ξ(s1, s2)

γ − 1

γ
> x

)
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= P

(
η(s1, s2) >

1

− log(1 − (1 + γ x)−1/γ )

)

= (1 + γ x)−1/γ ,

hence, all marginal distributions are GPD.
The estimation for γ , a and b (cf. Proposition 2.1) at any location is based on

the “extreme” part of the local sample, that is, the upper k order statistics of that
sample. In the asymptotic theory, when the sample size n is going to infinity, k will
go to infinity: k = k(n) → ∞; but of lower order than n: k(n)/n → 0, n → ∞.

The estimation of the shift b(s1,s2)(n/k) is particularly simple: b̂(s1,s2)(n/k) is
the kth largest order statistics of the local sample. There are various estimators
of γ and a(s1,s2)(n/k) that converge at speed k−1/2. In the present application we
use the so-called moment estimator for γ [cf., e.g., de Haan and Ferreira (2006),
Section 3.9] and the accompanying estimator for a(s1,s2)(n/k) [cf., e.g., de Haan
and Ferreira (2006), Section 4.2].

As explained before, to obtain a global shape parameter, we take the average
of the local estimates of γ among all the stations. However, we keep the local
estimates of the scale and shift at each station.

To choose the number of upper order statistics k used for the estimation of the
shape parameter, we plot the average estimate of this parameter across monitoring
stations against k. This average is constant when k is around 125. Similar plots
for each individual station confirmed that to choose k = 125 is also reasonable for
most stations. Therefore, we keep it also for estimating the scale a and the shift b

throughout the area. The sample size n is 2730.
With these estimations, the process (6) provides the simulated (extreme) rainfall

in the area.

4. Simulating a day of rainfall. On an arbitrary day, there will be “extreme”
rainfall in part of the area and “nonextreme” rainfall (or no rainfall at all) in the
rest of the area.

We achieve this in the simulation as follows: on the one hand, we simulate the
process (6) for the whole area; on the other hand, we choose at random a day out
of the 30 × (30 + 31 + 30) = 2730 days of observed rainfall and we connect the
two as follows:

For each station we check whether the observed rainfall on the chosen day is
larger than the shift parameter b̂(s1,s2)(n/k) for that station. If so, we use (6) (i.e.,
the simulated process) to get the rainfall at that station. If not, we just use the
observed rainfall for the chosen day at that station.

How do we extend this to obtain the rainfall in the entire area?
First we connect the monitoring stations with each other, so as to cover the

area with Triangles. The division is presented in Figure 2 as the solid lines. The
numbers refer to the local 100-year quantile for each station; see Section 6. We
write Triangles since later on we shall also deal with smaller triangles, also we
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FIG. 2. The Triangles connecting the observation stations (the numbers give the local 100-year
quantile in mm).

write Vertex and Edge for a vertex and edge of a Triangle. Any Triangle can be
extreme or nonextreme.

1. Nonextreme: this is the case if all Vertices of the Triangle are nonextreme.
The rainfall in such a Triangle is just a linear function whose values at the Vertices
are the observed values.

2. Extreme: all other cases. In that case the rainfall is mainly determined by
the process (6) where the functions a(s1,s2)(n, k) and b(s1,s2)(n, k) on the Triangle
are chosen as linear functions whose values at the Vertices are the values obtained
by local estimation. Note that this mix of extreme and nonextreme simulation is
similar to (1).

More specifically we proceed as follows:
2a. Subdivide each Edge into d intervals of equal length. Connect the separating

points on the Edges with each other using lines parallel to the Edges as indicated
by the dashed lines in Figure 2. This results into d2 triangles inside a Triangle. We
used d = 5 in the simulation.

2b. Next we determine the rainfall process in each vertex (i.e., vertex of a tri-
angle). For Vertices we already determined the process. For the vertices, there are
two cases.

2b.1. On an Edge connecting two nonextreme Vertices in an extreme Triangle,
the rainfall is chosen to be the linear function whose values at the Vertices are the
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FIG. 3. Observed (left) and simulated (right) rainfall for Oct 11, 1997.

observed values. This determines the rainfall for all vertices on such an Edge. The
process (6) plays no role.

2b.2. The rainfall for every other vertex in an extreme Triangle is determined by
the process (6).

2c. In order to carry out the numerical integration, we simplify the rainfall
process on each triangle in an extreme Triangle. The rainfall in each triangle is
given as a linear function whose value at the vertices is the one obtained in part 2b.

This is the way we obtained a day of rainfall. An example of a simulation for
Oct 11, 1997, is given in Figure 3. Rainfall for this day is extreme over large parts
of the north and the middle of the study area. The left figure is based on the real
data for Oct 11, 1997 and the right one presents a simulation. The latter produces
very extreme rainfall over a small region in the middle of the study area with a
steep gradient to the south. Note that the process is continuous and that it is easy
to integrate numerically.

We remark that on 2299 out of the 2730 days of observation, none of the Vertices
(stations) is extreme, so that no simulation is necessary. On the other hand, there
are 44 days on which all Triangles are extreme, so that the whole area is simulated.

The choice for Triangles with monitoring stations as Vertices is one of conve-
nience: triangles fit together easily to produce a continuous process and are rela-
tively simple to handle.

5. Estimation of the dependence parameter. One problem remains: we do
not know β , the global dependence parameter in (3). It has to be estimated. This
can be done along the lines indicated in de Haan and Pereira (2006).

We need to calculate the two-dimensional marginal distributions of the process η

[defined in (3)] at locations (u1, u2) and (v1, v2), say. This is done in de Haan and
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Zhou (2008). The result is as follows: for x, y real with h := |u1 − v1| + |u2 − v2|,
P

(
η(u1, u2) ≤ ex, η(v1, v2) ≤ ey)

(7)

= exp
{
−

(
e−x�

(√
βh

2
+ y − x√

βh

)
+ e−y�

(√
βh

2
+ x − y√

βh

))}
,

where � is the standard normal distribution function. Taking x = y = 0, we find

P
(
η(u1, u2) ≤ 1, η(v1, v2) ≤ 1

) = exp
{
−2�

(√
βh

2

)}
,

and consequently,

β = 4

h

(
�←

(
−1

2
logP

(
η(u1, u2) ≤ 1, η(v1, v2) ≤ 1

)))2

.

Hence, we can estimate β if we know how to estimate

L(u1,u2),(v1,v2)(1,1) := − logP
(
η(u1, u2) ≤ 1, η(v1, v2) ≤ 1

)
.

This is a problem of two-dimensional extreme value theory that has been solved
by Huang and Mason [cf. Huang (1992), Drees and Huang (1998)].

Let the continuous process X be in D (cf. beginning of Section 2.3). Let
X1,X2, . . . be i.i.d. copies of X. Write {Xi,n(s1, s2)}ni=1 for the order statistics
at location (s1, s2). Then the estimator

L̂
(k)
(u1,u2),(v1,v2)

(1,1) := 1

k

n∑
j=1

1{Xj (u1,u2)≥Xn−k+1,n(u1,u2) or Xj (v1,v2)≥Xn−k+1,n(v1,v2)}

is consistent provided k = k(n) → ∞, k(n)/n → 0, n → ∞. It is asymptotically
normal under certain mild extra conditions.

Now label the monitoring stations with the numbers 1,2, . . . ,N (N = 32) and
define for p < q ≤ N ,

β̂p,q = 4

h

(
�←

(
1

2
L̂

(k(p,q))
(u1,u2),(v1,v2)

(1,1)

))2

,

where (u1, u2) and (v1, v2) are the coordinates of station p and q respectively,
k(p, q) is the number of higher order statistics used in the estimation. Our estima-
tor for β is

β̂ := 2

N(N − 1)

N∑
q=2

q−1∑
p=1

β̂p,q

(consistent and asymptotically normal).
We found that β̂ = 0.04277.
Note that the estimators γ̂ , â and b̂ come from one-dimensional extreme value

theory, the estimator β̂ comes from finite-dimensional extreme value theory and
the process η comes from extreme value theory in C[0,1].
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6. Application. Our purpose is to study extremes of the total rainfall in North
Holland. In particular, we want to determine how severe the areal rainfall is that
occurs once in 100 years. To be precise, it is once in 100 × (30 + 31 + 30) = 9100
days. In other words, we are studying the 1 − 1/9100 quantile of the daily total
rainfall in the area. This quantile will be briefly indicated as the 100-year quantile.

Before presenting the simulation result, we would like to introduce some sta-
tistics and results for separate stations. Take Station West Beemster as an example
(it is located in the middle of the area, and considered as the origin point when
simulating the dependence process). The largest observed rainfall in the 30 years
is 68.2 mm. By fitting the GPD with shape parameter γ̂ = 0.1082 to the observed
extreme daily rainfall amounts at West Beemster, we can estimate the 1 − 1/9100
quantile for this station. The point estimator is 63.0 mm.

The 1 − 1/9100 quantiles for the other monitoring stations were obtained in
the same way. Figure 2 gives the result for each station. We get that the average
1 − 1/9100 quantile among all the stations is 66.9 mm.

The simulation procedure in Section 4 has been repeated 91,000 times. This
results in a sample of 91,000 days of rainfall in North Holland. For each day we
calculate the total rainfall as the numerical integral of the rainfall process on the
area. We take the 10th largest order statistic of this sample, that is, we determine
the 1 − 1/9100 sample quantile of the integrated rainfall. Dividing by the total
area, 2010 km2, we get the average rainfall in the area. We replicate this procedure
60 times. A histogram of the 60 simulated quantiles is given in Figure 4.

FIG. 4. Histogram of simulated 100-year quantiles.
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TABLE 1
Statistics of simulated 100-year quantiles of area-average rainfall

Mean (mm) 58.8 Sample Std (mm) 3.16

Min 54.4 Max 66.7

Some statistics of the 60 simulated quantiles are given in Table 1. From the
table, the sample mean of the simulated quantiles is 58.8 mm, and the sample
standard deviation is 3.16 mm. Hence, the standard deviation of the sample mean
is 0.41 mm.

When estimating the dependence parameter β in Section 5, we take the average
of 496 estimates from all pairs of the monitoring stations, 0.04277. This is what we
used in the above simulation. In order to study the sensitivity of the dependence
parameter β , we take the 25% and 75% quantiles of the 496 estimates, 0.0339
and 0.0496, as β in the simulated model to repeat the above analysis. From 10
simulated 100-year quantiles for each new β , we get sample means of 58.4 mm
and 60.0 mm respectively. Hence, the result does not change much.

A setback of the exponential martingale model is the dependence on the coordi-
nate axes. In order to see how important the choice of the axes is, we have repeated
the analysis after a 45 degree rotation of the axes and the result does not change a
lot (from 10 simulated 100-year quantiles, we get a sample mean of 58.2 mm, and
a sample standard deviation of 3.1 mm). After rotation, one of the axes is more or
less the prevailing wind direction.

It is interesting to compare the estimated 100-year quantile with the value ob-
tained by fitting the GPD with γ̂ = 0.1082 to the extremes of the average daily
rainfall of the 32 stations in the area. The use of the same shape parameter as that
for the extremes at the individual stations can be justified from multivariate ex-
treme value theory [Coles and Tawn (1994)]. The resulting value of 57.8 mm for
the 100-year quantile is slightly smaller than the average of our simulations.

The quantile for the area-average rainfall is smaller than the average of the cor-
responding quantile for the individual measurement stations. The areal reduction
factor ARF is the ratio of these two quantities, ARF = 58.8/66.9 = 0.88. It is
remarkable that from the graph in the UK Flood Studies Report [see Natural En-
vironment Research Council (NERC) (1975)], a similar value of ARF is found for
an area of 2010 km2. The latter refers to annual maximum rainfall rather than sea-
sonal maximum rainfall. The ARF from the GPD fit to the extreme average daily
rainfall equals 57.8/66.9 = 0.86.

7. Conclusion. The theory of extremes of continuous processes was used to
estimate the 100-year quantile of the daily area-average rainfall over North Hol-
land. The estimation of this quantile was done by simulating the daily process.
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Regions with large rainfall were generated using a specific max-stable spatial
process. It was argued that direct simulation from the excursion process is not
feasible.

The estimated 100-year quantile for the areal average rainfall turns out to be
12% lower than the average 100-year quantile of the 32 measurement stations.

The model used in this paper is convenient: it is really infinite-dimensional (does
not depend on a finite number of random variables only); the two-dimensional
distributions can be calculated and it can be simulated easily. A disadvantage is
that the process is not invariant with respect to rotation of the coordinate axes (see
end of Section 6). This will be the subject of future research.
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