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CONTINUOUS-TIME DUALITY FOR SUPERREPLICATION WITH
TRANSIENT PRICE IMPACT

BY PETER BANK∗ AND YAN DOLINSKY†,‡,1

Technische Universität Berlin∗, Hebrew University† and Monash University‡

We establish a superreplication duality in a continuous-time financial
model as in (Bank and Voß (2018)) where an investor’s trades adversely af-
fect bid- and ask-prices for a risky asset and where market resilience drives
the resulting spread back towards zero at an exponential rate. Similar to the
literature on models with a constant spread (cf., e.g., Math. Finance 6 (1996)
133–165; Ann. Appl. Probab. 20 (2010) 1341–1358; Ann. Appl. Probab. 27
(2017) 1414–1451), our dual description of superreplication prices involves
the construction of suitable absolutely continuous measures with martingales
close to the unaffected reference price. A novel feature in our duality is a liq-
uidity weighted L2-norm that enters as a measurement of this closeness and
that accounts for strategy dependent spreads. As applications, we establish
optimality of buy-and-hold strategies for the superreplication of call options
and we prove a verification theorem for utility maximizing investment strate-
gies.

1. Introduction. Financial models with transaction costs have been a great
source of intriguing challenges for stochastic analysis and control theory. Starting
with [17, 20, 43] strong emphasis has been put on the singular control problems
that emerge in models with a constant spread. The duality theory for these models
is now developed in great detail (see [14, 17, 28, 32–34]). This has been used to
study utility maximization via its relation to shadow prices [9, 18, 19, 24, 35] and
has also been instrumental in the development of asymptotic approaches for small
transaction costs ([42] and the references therein).

While convenient mathematically, the assumption of a constant spread is justi-
fied only for very liquid assets. Less liquid assets will have a spread that widens
when a large transaction is being executed and, upon completion of the transac-
tion, the spread will decrease again due to market resilience. This is well known
in the order execution literature [23, 39] where one derives optimal schedules for
unwinding large positions that account for such (at least partially) transient price
impact.

Following the approach proposed in [8], we introduce a model with transient
price impact that allows for impact from both buying and selling a risky asset. We
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even allow for stochastic market depth and resilience that merely have to satisfy a
certain monotonicity assumption required to obtain convex wealth dynamics. In-
stead of the utility maximization problem of interest in [8], we focus here on the
fundamental problem of superreplicating an arbitrary contingent claim in a cost
optimal way. For models with a constant spread, the duality theory of this problem
is well understood in terms of consistent price systems that are based on the con-
struction of measures with martingales that do not deviate from the asset price by
more than the exogenously given spread; see [41] and the reference therein. This
structure is recovered here but, due to the endogenous nature of our spreads, we
also have to optimally determine these. Our main result, Theorem 3.2, shows how
to suitably penalize possible choices by a liquidity-dependent L2-norm, character-
izing the superreplication costs in the form of a convex risk measure. An interesting
point to observe is that, contrary to the models with exogenous spread, our model
does not require any notion of admissibility for our trading strategies. As already
observed in a model with purely temporary price impact in [26], this is due to
the impossibility to scale strategies at will since such scaling incurs superlinearly
growing costs.

The proof of this result rests on a particularly convenient expression for the
terminal wealth resulting from a strategy that also reveals the convexity of this
functional. As usual, a lower bound on superreplication costs is comparably easy
to obtain given the consistent price system structure imposed by our dual vari-
ables. The proof of absence of a duality gap, that is, establishing an upper bound is
more involved. The first step is a rather standard separation argument (Lemma 4.1)
which gives us a suitable pricing measure. As a second step, we introduce the mar-
tingale of the consistent price system as a Lagrange multiplier enforcing the termi-
nal liquidation constraint (Lemma 4.2). The crucial third step is the construction
of a suitable spread and the identification of its liquidity dependent L2-norm as
the correct penalty term for our duality (Lemma 4.3). This is made possible by ap-
plying a stochastic representation theorem from [4] which so far was used only in
connection with one-sided singular control problems [6, 7, 15, 22] and here finds
its first application in a two-sided control problem with bounded variation rather
than increasing controls.

As an application, we show that also in our transient price impact model the best
way to superreplicate a call option is, under natural conditions, to buy and hold the
asset until maturity. This is in line with results on models with exogenous spread;
cf. [13, 27, 30, 37, 38, 44]. We also provide a verification result for identifying
utility maximizing strategies by the construction of suitable shadow prices similar
to results with fixed spread [18, 35] and to a result with purely temporary price
impact [26].

2. Trading in a transient price impact model. We consider a financial
model with transient price impact similar to [8]. Specifically, we consider a “large”
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investor who can invest in a riskless savings account bearing zero interest (for sim-
plicity) and whose trades into and out of a risky asset move bid- and ask prices
that, in addition, are also driven by some exogenous noise. This noise will be spec-
ified by a continuous, adapted process P = (Pt )t≥0 on a filtered probability space
(�, (Ft )t≥0,P) where F0 is generated by the P-null sets. We will assume that the
filtration is continuous.

ASSUMPTION 2.1. All (Ft )t≥0-martingales have a continuous version.

REMARK 2.2. This assumption is satisfied, for example, if (Ft )t≥0 is gen-
erated by a Brownian motion. It rules out complete surprises as generated, for
instance, by the jumps of Poisson processes. The assumption ensures that there
will not be any common jumps of trading policies and our martingale prices to be
introduced later and it will allow us to apply a stochastic representation theorem
from [4] which is key for our analysis. From the duality theory of proportional
transaction costs (see in particular [18]), it is known that exogenous jumps lead to
the need for làdlàg strategies and a considerably more delicate analysis which, in
our context for strategy-dependent spreads, we have to leave for future research.
Moreover, jumps, also by P or the market depth process δ to be introduced shortly,
would pose the challenge to specify what information on the jump is available
when to the investor and how he can act on it. While certainly relevant from a
financial-economic point of view, these questions are also beyond the scope of the
present paper.

The large investor’s trading strategy is described by his given initial holdings
x0 ∈ R and a right-continuous, predictable process X = (Xt)t≥0 of bounded varia-
tion specifying the number of risky assets held at any time. We denote by X↑ and
X↓ the right-continuous predictable increasing and decreasing part resulting from
the Hahn-decomposition of

Xt = x0 + X
↑
t − X

↓
t , t ≥ 0, X0− � x0, X

↑
0− � X

↓
0− � 0.

The set of all such strategies will be denoted by X .
Trades will permanently affect the mid-price P X which, in line with [29], we

let take the linear form

P X
t � Pt + ιXt , t ≥ 0, P X

0− � P0 + ιx0,

for some impact parameter ι ≥ 0. Trades will in addition drive bid- and ask-prices
away from the mid-price. Without further interventions, market resilience lets bid-
and ask-prices then gradually revert toward the mid-price. We model this by letting
the half-spread follow the dynamics

dζX
t = 1

δt

(
dX

↑
t + dX

↓
t

) − rt ζ
X
t dt, ζX

0− � ζ0,(2.1)

for a given initial value ζ0 ≥ 0 and a given market depth process δ and resilience
rate r .
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REMARK 2.3. One way to interpret these spread dynamics is to think of trades
eating into their respective side of the limit order book, widening the spread to
an extent which depends on the current order book height δt while the market’s
resilience ensures that, without further trades, the spread will diminish at the ex-
ponential rate rt . For simplicity, we assume the order book height at any time to
be constant across ticks and identical for the ask- and the bid-side. More flexible
nonlinear spread dynamics as in [1, 40] are conceivable but beyond the scope of
the present paper. Note also that the mesoscopic time-scale underlying our model
does not allow us to accommodate all the market microstructure effects so cru-
cial for high-frequency trading, but instead suggests to view our model’s market
depth and resilience processes also as mesoscopic specifications of these market
characteristics that would in practice need to be calibrated, for example, to moving
averages of order book heights and order flow dynamics accounting for both limit
and market orders; see [16] for an empirical study in this vein that also supports
linear price impact specifications as in our stylized model.

We will require the following regularity of market depth δ and resilience rate r .

ASSUMPTION 2.4. The market depth δ = (δt )t≥0 > 0 is continuous and
adapted. The resilience rate r = (rt )t≥0 ≥ 0 is predictable and such that δ and
ρ are bounded away from zero and infinity where

ρt � exp
(∫ t

0
rs ds

)
, t ≥ 0.

Moreover, the resilience rate dominates the changes in market depth in the sense
that

κt � δt/ρ
2
t is strictly decreasing in t ≥ 0.(2.2)

REMARK 2.5. As will become apparent in Lemma 4.1, Condition (2.2) is
needed to ensure that the wealth dynamics are convex. When δ is absolutely con-
tinuous it amounts to the requirement

1

2

d

dt
log δt < rt , t ≥ 0,

that is, relative changes in the market’s depth have to be dominated by the market’s
resilience. In particular, Assumption 2.4 holds when δ and r are strictly positive
constants and we confine ourselves to a finite trading period [0, T ] as is natural for
the superreplication duality discussed shortly. The question whether one can de-
velop a duality theory without this assumption we have to leave for future research;
see, however, [5] for considerations in this direction in a deterministic order exe-
cution problem.
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By time T ∈ (0,∞), the induced investor’s cash position will have evolved from
its given initial value ξ0 ∈ R to ξX

T as determined by the profits and losses made
from trading in and out of the risky asset. These trades are executed half the spread
away from the mid-price P X and so the terminal cash position is

ξX
T � ξ0 −

∫
[0,T ]

P X
t ◦ dXt −

∫
[0,T ]

ζX
t ◦ d

(
X

↑
t + X

↓
t

)
.(2.3)

REMARK 2.6. The above ◦-integrals are understood in the sense that for two
RCLL processes X,Y with X of bounded variation, we let∫

[0,T ]
Yt ◦ dXt �

∫
[0,T ]

1

2
(Yt− + Yt+) dXt ,

where on the right-hand side we have a standard Lebesgue-integral with respect to
the signed measure dX. In (2.3), this way of integrating accounts for the fact that,
when buying assets in a bulk 	X

↑
t > 0, both the mid-pricee P X and the half-spread

ζX will increase only gradually during the order execution, letting the investor
effectively trade at the average between pre- and post-transaction mid-price and
the average between pre- and post-transaction half spread. We refer to [39] for
similar considerations in an order execution framework. Alternatively, it is possible
to consider

∫
Y ◦ dX as a Marcus integral for our controlled system. For our linear

impact specification, this amounts to the Stratonovich-like integral (2.3); cf. [11]
and the references therein.

3. Duality for superreplication of contingent claims. Let us now consider
the classical superreplication problem for a cash-settled European contingent claim
with FT -measurable payoff H ≥ 0 at time T ≥ 0 that is not affected by the large
investor’s trades, but exogenously given, for instance, as a functional of the given
unaffected price process P . We will give a dual description of such an exogenous
payoff’s superreplication costs

π(H) � inf
{
ξ0 ∈ R : ξX

T ≥ H for some X ∈ X with XT = 0
}
.(3.1)

REMARK 3.1. We have to confine ourselves to claims whose payoff are not
affected by the large investor because we have to preserve the convexity of the
superreplication problem. Of course, pricing and hedging claims with payoffs that
can be affected (or even manipulated) by the large investor is a practically (and in
the aftermath possibly judicially) most relevant problem. But this would require a
rather product-specific analysis and is thus beyond the scope of this duality paper.
See, however, the PDE approaches in, for example, [10, 12] as well as [3, 31] for
some results in this direction. Note also that for a vanilla option, whose payoff only
depends on the terminal mid-price at time T , the liquidation constraint XT = 0
ensures that P X

T = PT and thus prevents any manipulation possibilities, making
our duality result below applicable to these products.
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On the dual side of our description of superreplication costs, the market frictions
will be captured by the optional random measure μ that, under Assumption 2.4, is
induced by the continuous increasing process −κ = −δ/ρ2 on (0, T ) with point
mass κT = δT /ρ2

T in T :

μ(dt)� 1(0,T )(t)|dκt | + κT DiracT (dt).(3.2)

With this notation, we can now formulate our main result.

THEOREM 3.2. Under Assumptions 2.1 and 2.4, the superreplication costs
(3.1) of a contingent claim H ≥ 0 have the dual description

(3.3) π(H) = sup
(Q,M,α)

{
EQ[H ] − 1

2
‖α − ζ0‖2

L2(Q⊗μ)
− M0x0 − 1

2
ιx2

0

}
> −∞,

where the supremum is taken over all triples (Q,M,α) of probability measures
Q � P on FT , martingales M ∈ M 2(Q) and all optional α ∈ L2(Q ⊗ μ) which
control the fluctuations of P in the sense that

|Pt − Mt | ≤ ρt

δt

EQ

[∫
[t,T ]

αuμ(du)
∣∣∣Ft

]
, 0 ≤ t ≤ T .(3.4)

3.1. Comparison with other superreplication duality formulae. Let us discuss
the above duality formula for superreplication prices by comparing it with other
such dualities obtained in different financial models.

First, the supremum on the right-hand side of (3.3) includes all measures Q� P

for which P is a square-integrable martingale (if there are any). For these, one
can choose M = P and α = ζ0 to satisfy the constraint (3.4) and obtain that
π(H) ≥ EQ[H ] − x0P0 when ignoring permanent impact (ι = 0). This inequal-
ity is clearly in line with the classical frictionless super-replication duality. (Notice
that the value of the initial position x0P0 is subtracted here because π(H) in (3.2)
describes the superreplication costs in cash required when starting with a position
of x0 in the risky asset.)

Let us next turn to models with transaction costs arising from a fixed spread.
Adjusting the multiplicative settings considered in [14, 17, 18] to an additive one as
considered here leads to consistent price systems given by P-martingales (Z0,Z1)

with Z0
0 = 1, Z0

T > 0 such that the distance of M � Z1/Z0 to P is dominated by
the (constant for simplicity) half-spread λ which one has to pay on top of P when
buying and which is subtracted from the proceeds when selling a unit of the risky
asset. One can then define Q by dQ/dP � Z0

T and put α � λ to obtain a triple
(Q,M,α) as required by our duality formula, for example, in any model with zero
resilience (r = 0, ρ = 1) and initial spread ζ0 = λ. Indeed, (3.4) does hold for any
market depth δ > 0 (which has to be decreasing to meet Assumption 2.4) since
then

ρt

δt

EQ

[∫
[t,T ]

αuμ(du)
∣∣∣Ft

]
= ρt

δt

λEQ

[
μ

([t, T ])|Ft

] = ρt

δt

λκt = λ.
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As a result, ignoring possible permanent impact (ι = 0), π(H) ≥ EQ[H ] − Z1
0x0,

in line with the superreplication results for models with fixed spread.
Observe that, contrary to these models, our setting with spread impact does

not require any notion of admissibility for trading strategies. Also, in our model
we have, regardless of the initial position x0, that π(0) > −∞ for any choice of
(continuous) price process P . Hence, even for specifications allowing for the most
egregious arbitrage in a fixed-spread model (let alone in a frictionless one), there
is no way to reach zero terminal wealth from arbitrarily low initial cash positions.
This is due to the fact that scaling favorable strategies ultimately turns these unfa-
vorable as transaction costs effectively grow quadratically when scaling a strategy,
not just linearly as in any setting with a fixed spread. This effect has been observed
in an Almgren–Chriss [2]-style model with temporary rather than transient mar-
ket impact in [26]. Like our superreplication cost formula, theirs takes the form
of a convex risk measure rather than a coherent one as found for the fixed spread
models. This is again due to the nonlinear scaling of transaction costs.

3.2. Applications. To illustrate the usefulness of the above duality result, let
us derive in this section the superreplication costs of a call option and show how
to verify optimality of a proposed investment strategy.

3.2.1. Superreplicating call options. As a first application of our superrepli-
cation duality, let us verify that also in our model with strategy-dependent spread,
buy-and-hold is the best way to superreplicate a call option

H = (PT − k)+ with k ≥ 0,

at least if liquidity coefficients are deterministic and if the unaffected price P sat-
isfies the conditional full-support property (see [27])

suppP
[
(Pu)t≤u≤T ∈ ·|Ft

] = CPt

([t, T ],R+
)
, 0 ≤ t ≤ T ,(3.5)

where, for p ≥ 0, Cp([t, T ],R+) denotes the class of continuous, nonnegative
functions f on [t, T ] with f (t) = p.

COROLLARY 3.3. Let Assumption 2.1 hold true and let market depth and re-
silience be deterministic and satisfy Assumption 2.4. In addition, suppose P is
strictly positive with the conditional full support property (3.5). Then, for an in-
vestor with initial position x0 ≤ 1, the superreplication cost of a cash-settled call
option is

π
(
(PT − k)+

) = P0(1 − x0) − 1

2
ιx2

0 + ζ0(1 − x0) + (1 − x0)
2

2δ0

+ ζ0 + (1 − x0)/δ0

ρT

+ 1

2δT

(3.6)

and it is attained by holding one unit of the risky asset over [0, T ) to be sold at
time T .
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PROOF. Let us consider the strategy that immediately takes its position in the
risky asset to one unit and keeps it there until unwinding it in the end:

X̂↑ � (1 − x0)1[0,T ], X̂↓ � 1{T }, X̂ = 1[0,T ).

When starting with the cash position ξ0 given by the right-hand side of (3.6) this
leads by (2.3) to the terminal wealth

ξ X̂
T = PT ≥ (PT − k)+ = H.

Here, the estimate holds true as P is nonnegative. So the right-hand side of (3.6)
is sufficient initial cash to superreplicate the call.

We will use our duality formula from Theorem 3.2 to show that ε > 0 less than
this amount is not sufficient. To this end, we choose

αt � ζ0 + 1 − x0

δ0
+ ρT

δT

1{T }(t), 0 ≤ t ≤ T .

Clearly, there exists a Lipschitz continuous, nonincreasing deterministic function
g : [0, T ] →R with

g0 =
∫
[0,T ] αuμ(du)

δ0
,

gT = −αT

ρT

,

|gt | ≤ ρt

δt

∫
[t,T ]

αuμ(du), 0 ≤ t ≤ T .

Lemma 3.4 below yields a probability measure Q � P with Q(PT > ε) < ε and a
square integrable Q-martingale M such that

|gt + Pt − Mt | < ε inf
0≤t≤T

ρt

δt

μ
([t, T ]), 0 ≤ t ≤ T .

Hence, the triple (Q,M,α + ε) is as requested by our duality Theorem 3.2. Using
the simple inequality PT ≤ (PT − k)+ + ε + k1{PT >ε}, we thus obtain

π(H) ≥ EQ[PT − MT ] + M0 −EQ

[
PT − (PT − k)+

]
− 1

2
‖α − ζ0‖2

L2(Q⊗μ)
− M0x0 − 1

2
ιx2

0

≥ αT

ρT

+ (1 − x0)P0 + (1 − x0)

∫
[0,T ] αuμ(du)

δ0

− 1

2

∫
[0,T ]

|αu − ζ0|2 dμ(u) − 1

2
ιx2

0 − O(ε).

The result follows by using μ([0, T ]) = δ0 and taking ε ↓ 0. �
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LEMMA 3.4. Suppose P > 0 exhibits the conditional full support prop-
erty (3.5) and let g : [0, T ] →R be Lipschitz-continuous and nonincreasing. Then,
for any ε > 0, there is a probability measure Q � P and a square-integrable Q-
martingale M such that Q-almost surely

|gt + Pt − Mt | < ε, 0 ≤ t ≤ T(3.7)

and

Q(PT > ε) < ε.

PROOF. Without loss of generality, we can assume that T = 1 and fix 0 < ε <

1. It will be convenient to denote increments of a given process (Xt) by 	N
n X �

X n
N

−Xn−1
N

where N ∈ N and n = 1, . . . ,N . For such n,N and for σ > 0, consider

the disjoint events A
N,σ
+,n and A

N,σ
−,n given by

A
N,σ
±,n �

{
	N

n (P + g) = ±(
Pn−1

N
∧ N1/4) σ√

N
+ o for some o ∈ [

0,1/N2]}

∩
{

max
n−1
N

≤t≤ n
N

|Pt − Pn−1
N

| ≤ ε/3
}
.

For N > (6σ/ε)4 (as assumed henceforth), the path properties described for P in
the definition of both A

N,σ
+,n and A

N,σ
−,n are met for any given Pn−1

N
> 0 by nonempty

open sets of continuous paths taking values in (0,∞). Indeed, the latter nonnega-
tivity requirement is allowed here because g is assumed to be nonincreasing (where
	N

n g ≤ 0). Therefore, the conditional full support property (3.5) ensures that

P
[
A

N,σ
+,n |F n−1

N

]
> 0 and P

[
A

N,σ
−,n,|F n−1

N

]
> 0, n = 1, . . . ,N.

So there is QN,σ � P for which

QN,σ [
A

N,σ
+,n |F n−1

N

] =QN,σ [
A

N,σ
−,n |F n−1

N

] = 1

2
, n = 1, . . . ,N;

for instance QN,σ with density

dQN,σ

dP
�

∏
n=1,...,N

1

2

( 1
A

N,σ
+,n

P[AN,σ
+,n |F n−1

N
] +

1
A

N,σ
−,n

P[AN,σ
−,n |F n−1

N
]
)

will do. In conjunction with the definition of A
N,σ
±,n , this ensures that QN,σ -a.s.

∣∣EQN,σ

[
	N

n (P + g)|F n−1
N

]∣∣ ≤ 1

N2 , n = 1, . . . ,N,

and thus, the auxiliary discrete-time martingale

M̃n � P0 + g0 +
n∑

m=1

(
Pm

N
−EQN,σ [Pm

N
|Fm−1

N
]), n = 0, . . . ,N,
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satisfies QN,σ -a.s.

|P n
N

+ g n
N

− M̃n| ≤ 1

N
, n = 0, . . . ,N.(3.8)

Combining this with the Lipschitz-continuity of g and the ε/3-bound on the fluc-
tuations of P over any time interval of length 1

N
from the definition of A

N,σ
±,n yields

|M̃n − M̃n−1| ≤ ε

2
, n = 1, . . . ,N,QN,σ -a.s.

for N > N0, where N0(σ ) depends only on σ , ε, and the Lipschitz constant L of g.
We conclude that the bounded QN,σ -martingale given by

M
N,σ
t � EQN,σ [M̃N |Ft ], 0 ≤ t ≤ T ,

satisfies M
N,σ
n
N

= M̃n, n = 0, . . . ,N , and

max
n=1,...,N

max
n−1
N

≤t≤ n
N

∣∣MN,σ
t − M

N,σ
n−1
N

∣∣ ≤ ε

2
, QN,σ -a.s.

This together with (3.8) and the ε/3-bound on the fluctuations of P from the defini-
tion of A

N,σ
±,n gives that g +P −MN,σ satisfies the required bound (3.7) QN,σ -a.s.

for N > N0(σ ).
It remains to argue that σ and then N > N0(σ ) can be chosen such that Q �

QN,σ from the above construction also satisfies the second requirement Q(P1 >

ε) < ε. To this end, note that the difference equation

Z
N,σ
0 � P0,

(3.9)

	N
n ZN,σ �

(
Z

N,σ
n−1
N

∧ N1/4) σ√
N

(1
A

N,σ
+,n

− 1
A

N,σ
−,n

) + L + 1

N
, n = 1, . . . ,N,

yields a process ZN,σ dominating P in the sense that Z
N,σ
n
N

≥ P n
N

, n = 0, . . . ,N ,

QN,σ -a.s., as follows readily by induction using the definition of A
N,σ
±,n and the

Lipschitz continuity of g. Theorem 4.4 in [21] in conjunction with (3.8) yields
that, as N ↑ ∞, the distribution of Z

N,σ
1 under QN,σ converges to the distribution

of Z
(σ)
1 where Z(σ) is the (unique) solution of the linear SDE

Z
(σ)
0 = P0, dZ

(σ)
t = Z

(σ)
t σ dWt + (L + 1) dt

for some standard Brownian motion W . In view of (3.9), we can thus choose σ

and N > N0(σ ) to fulfill the requirement QN,σ (P1 > ε) < ε provided that Z
(σ)
1

converges to 0 in probability as σ ↑ ∞. For this, observe that

Z
(σ)
1 = P0e

σW1−σ 2/2
(

1 +
∫ 1

0
(L + 1)e−σWt+σ 2t/2 dt

)
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≤ P0e
σW1−σ 2/2 + P0(L + 1)e−σ 2/(2 lnσ)

∫ 1−1/ lnσ

0
eσ(W1−Wt) dt

+ P0(L + 1)

∫ 1

1−1/ lnσ
eσ(W1−Wt)−σ 2(1−t)/2 dt.

Clearly, the first two summands in the last expression vanish almost surely while,
due to Fubini’s theorem, the expectation of the last one is

E

(∫ 1

1−1/ lnσ
eσ(W1−Wt)−σ 2(1−t)/2 dt

)
= 1

lnσ
→ 0

for σ ↑ ∞. This shows that indeed limσ↑∞ Z
(σ)
1 = 0 in probability and the proof

is completed. �

3.2.2. Utility maximization by duality. Superreplication duality is often used
to study utility maximization problems which, in turn, allow for less conservative
and practically more useful contingent claim valuation paradigms such as indif-
ference pricing. While this paper has to leave indifference valuation for future
research, let us note here a verification theorem to illustrate the suitability of our
duality concepts for this theory.

COROLLARY 3.5. Let Assumptions 2.1 and 2.4 hold and consider a strictly
concave, increasing and differentiable utility function u for which

sup
X∈X with XT =0

E
[
u
(
ξX
T

) ∨ 0
]
< ∞.

Suppose X̂ ∈ X with X̂T = 0 yields via

dQ̂

dP
� u′(ξ X̂

T )

E[u′(ξ X̂
T )]

a probability measure Q̂ � P which allows for a shadow price M̂ for spread dy-
namics

λ̂t �
ρt

δt

EQ̂

[∫
[t,T ]

α̂uμ(du)
∣∣∣Ft

]
, 0 ≤ t ≤ T ,

with α̂ � ρζ X̂ ∈ L2(Q̂⊗ μ), that is, for a Q̂-square integrable martingale M̂ such
that

Pt − λ̂t ≤ M̂t ≤ P + λ̂t , 0 ≤ t ≤ T ,(3.10)

with equality almost surely holding true in the first and second estimate on the
support of dX̂↓ and dX̂↑, respectively.

Then X̂ yields the highest expected utility E[u(ξX
T )] among all strategies X ∈

X with XT = 0.
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The proof of this corollary will follow readily from considerations required
for the proof of Theorem 3.2. We thus postpone it to the end of Section 4.2. We
adopted the notion of shadow prices from the theory of optimal investment with
proportional transaction costs (see, e.g., [17, 19, 35]) where the martingales M̂

with the stated flat-off conditions are constructed explicitly or emerge from duality
of utility maximization. In our setting, the construction of shadow prices is more
challenging as the spread λ̂ is not given exogenously. It is thus not obvious how
to construct optimal investment policies X̂ from the above verification result. See,
however, [8] for a convex analytic approach to exponential utility maximization
when P is a Brownian motion with drift and δ and r are constant.

4. Proof of the duality theorem.

4.1. Preliminaries. Let us prepare the proof of Theorem 3.2 by rewriting the
profits and losses from trading in our price impact model.

LEMMA 4.1. Suppose Assumption 2.4 holds true. Then, for any strategy X ∈
X with XT = 0, we have

ξX
T = v0 − �X

T ,(4.1)

where

v0 � ξ0 + 1

2

(
ιx2

0 + δ0ζ
2
0
)

(4.2)

and

�X
T �

∫
[0,T ]

Pt dXt + 1

2

∫
[0,T ]

(
ηX

t

)2
μ(dt)(4.3)

with

ηX
t � ρtζ

X
t = ζ0 +

∫
[0,t]

ρs

δs

d
(
X↑

s + X↓
s

)
, 0 ≤ t ≤ T .(4.4)

Moreover, there is a constant C > 0, depending only on the bounds on δ/ρ from
Assumption 2.4, such that, for any X ∈ X , we have

X
↑
T + X

↓
T ≤ C

(
l + sup

0≤t≤T

|Pt |
)

on
{
�X

T ≤ l2}
.(4.5)

Finally, the mapping X �→ �X
T is convex and lower semicontinuous. More pre-

cisely, if Xn ∈ X converges weakly to X ∈ X in the sense that almost surely
Xn,↑ and Xn,↓ converge weakly as Borel-measures on [0, T ] to, respectively,
some adapted, right continuous, increasing A and B with X = x0 + A − B ,
A0− = B0− = 0, then almost surely

lim inf
n

�Xn

T ≥ �X
T .(4.6)
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PROOF. 1. Let us first prove our formula (4.1) for ξX
T . For the integral of the

mid-price, we get by continuity of P that∫
[0,T ]

P X
t ◦ dXt =

∫
[0,T ]

Pt dXt + ι

∫
[0,T ]

Xt ◦ dXt

=
∫
[0,T ]

Pt dXt + ι
1

2

(
X2

T − x2
0
)
,

(4.7)

where the last identity is due to the chain rule for Stratonovich integrals. Similarly,
using ζX = ηX/ρ and d(X

↑
t + X

↓
t ) = δt

ρt
dηX

t , we get∫
[0,T ]

ζX
t ◦ d

(
X

↑
t + X

↓
t

) =
∫
[0,T ]

δt

ρ2
t

ηX
t ◦ dηX

t =
∫
[0,T ]

κt ◦ d

(
1

2

(
ηX

t

)2
)

= κT

1

2

(
ηX

T

)2 − δ0
1

2
ζ 2

0 −
∫
(0,T )

1

2

(
ηX

t

)2
dκt(4.8)

= 1

2

∫
[0,T ]

(
ηX

t

)2
μ(dt) − 1

2
δ0ζ

2
0 .

Combining (4.7) with (4.8), we obtain (4.1) when XT = 0.
2. For X ∈ X , it follows from the definition (4.3) of �X

T that on {�X
T ≤ l2} we

have

l2 + sup
t∈[0,T ]

|Pt |(X↑
T + X

↓
T

) ≥ l2 −
∫
[0,T ]

Pt dXt

≥ 1

2

∫ T

0

(
ηX

t

)2
μ(dt) ≥ (

X
↑
T + X

↓
T

)2
/C

for some constant C > 0 only depending on the bounds on δ and ρ from Asssump-
tion 2.4. Hence, x � X

↑
T +X

↓
T is such that x2 ≤ C(px + l2) for p � supt∈[0,T ] |Pt |.

This implies (4.5).
3. Let X0,X1 ∈ X and observe that then 1

2(X
↑
0 + X

↑
1 ) − 1

2(X
↓
0 + X

↓
1 ) is a

decomposition of X � 1
2(X0 + X1) into the difference of two right-continuous

increasing processes. It follows that 1
2(X

↑
0 + X

↑
1 ) − X↑ and 1

2(X
↓
0 + X

↓
1 ) − X↓

are increasing and so 0 ≤ ηX ≤ 1
2(ηX0 + ηX1). In light of (4.3), this yields the

convexity of �X .
Similarly, for Xn converging to X = x0 + A − B as described in the lemma,

A − X↑ and B − X↓ are increasing. Hence, we have ηXn

t → η
x0+A+B
t ≥ ηX

t in
t = T and in every point of continuity t for A + B . By continuity of P , we also
have

lim
n

∫
[0,T ]

P dXn =
∫
[0,T ]

P dX.

So lower semicontinuity of X �→ �X
T is a consequence of (4.3) and Fatou’s lemma.

�
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4.2. Proof of the lower bound. Observe first that the supremum in (3.3) is
greater than −∞. Indeed we can take any Q0 � P for which α0

t � sup0≤s≤t |Psρs |,
0 ≤ t ≤ T , is in L2(Q0 ⊗ μ) and let M0 � 0 to obtain a triple (Q0,M0, α0) satis-
fying the constraint (3.4). Indeed, we then have

ρt

δt

EQ0

[∫
[t,T ]

α0
uμ(du)

∣∣∣Ft

]
≥ ρt

δt

α0
t EQ0

[
μ

([t, T ])|Ft

]

= α0
t

ρt

≥ |Pt | =
∣∣Pt − M0

t

∣∣.
Hence, the supremum in (3.3) cannot be −∞.

To prove that it gives a lower bound, consider ξ0 ∈ R and X ∈ X with XT = 0
such that ξX

T ≥ H ≥ 0 and let (Q,M,S) be a triple as in Theorem 3.2.

LEMMA 4.2. We have

X
↑
T + X

↓
T , sup

0≤t≤T

|Pt | ∈ L2(Q).(4.9)

PROOF. By Doob’s maximal inequality, supt∈[0,T ] |Mt | ∈ L2(Q). Similarly,
α ∈ L2(Q ⊗ μ) yields that also the supremum over [0, T ] of the right-hand side
of (3.4) is in L2(Q). Together with our previous observation, this implies that
also sup0≤t≤T |Pt | ∈ L2(Q). Square-integrability of X

↑
T + X

↓
T is now immediate

from (4.5) with l2 � v0 = ξX
T +�X

T ≥ �X
T because ξX

T ≥ H ≥ 0 almost surely. �

By Lemma 4.1, the superreplication property of X is tantamount to

v0 ≥ H +
∫
[0,T ]

Pt dXt + 1

2

∫
[0,T ]

(
ηX

t

)2
μ(dt).(4.10)

Observe that by (3.4) we can estimate∫
[0,T ]

Pt dXt =
∫
[0,T ]

(Pt − Mt)dXt +
∫
[0,T ]

Mt dXt

≥ −
∫
[0,T ]

|Pt − Mt |(dX
↑
t + dX

↓
t

) − M0x0 −
∫ T

0
Xt dMt(4.11)

= −
∫
[0,T ]

|Pt − Mt | δt

ρt

dηX
t − M0x0 −

∫ T

0
Xt dMt,

where we first used integration by parts and XT = 0 and then that (2.1)
gives dηX

t = ρt/δt (dX
↑
t + dX

↓
t ). Square-integrability of M and (4.9) yield

EQ[∫ T
0 X2

t d[M]1/2
t ] < ∞, ensuring that

∫ .
0 Xt dMt is a true martingale. Hence,
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taking expectation in (4.11) we find

EQ

[∫
[0,T ]

Pt dXt

]

≥ −EQ

[∫
[0,T ]

|Pt − Mt | δt

ρt

dηX
t + M0x0

]
(4.12)

≥ −EQ

[∫
[0,T ]

EQ

[∫
[t,T ]

αuμ(du)
∣∣∣Ft

]
dηX

t + M0x0

]
(4.13)

= −EQ

[∫
[0,T ]

∫
[0,u]

dηX
t αuμ(du) + M0x0

]

= −EQ

[∫
[0,T ]

(
ηX

u − ζ0
)
αuμ(du) + M0x0

]
,

where in the second estimate we used (3.4) and the first identity follows
from Fubini’s theorem in conjunction with the observation that the conditional
expectation in (4.13) can be dropped as it gives the optional projection of
(
∫
[t,T ] αuμ(du))0≤t≤T .
Now we take expectation in (4.10) and use the preceding estimate to obtain

v0 ≥ EQ

[
H +

∫
[0,T ]

{
1

2

(
ηX

t

)2 − (
ηX

t − ζ0
)
αt

}
μ(dt) − M0x0

]

= EQ

[
H +

∫
[0,T ]

{
1

2

(
ηX

t − αt

)2 − 1

2
(αt − ζ0)

2 + 1

2
ζ 2

0

}
μ(dt) − M0x0

]

≥ EQ

[
H +

∫
[0,T ]

{
−1

2
(αt − ζ0)

2 + 1

2
ζ 2

0

}
μ(dt) − M0x0

]

= EQ[H ] − 1

2
EQ

[∫
[0,T ]

(αt − ζ0)
2μ(dt)

]
+ 1

2
ζ 2

0 δ0 − M0x0,

where in the last step we used that μ([0, T ]) = κ0 = δ0. Recalling the defini-
tion (4.2) of v0, this gives

ξ0 ≥ EQ[H ] − 1

2
‖α − ζ0‖2

L2(Q⊗μ)
− M0x0 − 1

2
ιx2

0 ,

which yields the claimed lower bound.
It is at this point easy to also give the proof of the verification result stated in

Corollary 3.5. For this, take any X ∈ X and note that, by concavity of u,

u
(
ξX
T

) − u
(
ξ X̂
T

) ≤ u′(ξ X̂
T

)(
ξX
T − ξ X̂

T

)
.

Taking expectations under P and recalling the definition of Q̂, it thus suffices to
argue

EQ̂

[
ξX
T

] ≤ EQ̂

[
ξ X̂
T

]
.(4.14)
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For this, note that from (4.1), we have

EQ̂

[
ξX
T

] = v0 −EQ̂

[∫
[0,T ]

Pt dXt

]
− 1

2
EQ̂

[
1

2

∫
[0,T ]

(
ηX

t

)2
μ(dt)

]
.

Proceeding as for (4.12), (4.13), we estimate

EQ̂

[∫
[0,T ]

Pt dXt

]
≥ −EQ̂

[∫
[0,T ]

(
ηX

u − ζ0
)
α̂uμ(du) + M̂0x0

]

and observe that for X = X̂ we actually get an equality here due to the support
assumption (3.10). Therefore,

EQ̂

[
ξX
T

] ≤ v0 +EQ̂

[∫
[0,T ]

(
ηX

t − ζ0
)
α̂t − 1

2

(
ηX

t

)2
μ(dt) + M̂0x0

]

= v0 + M̂0x0 +EQ̂

[∫
[0,T ]

{
−1

2

(
ηX

t − α̂t

)2 + 1

2
(α̂t − ζ0)

2 − 1

2
ζ 2

0

}
μ(dt)

]

≤ v0 + M̂0x0 +EQ̂

[∫
[0,T ]

{
1

2
(α̂t − ζ0)

2 − 1

2
ζ 2

0

}
μ(dt)

]
,

where, again, we have equality everywhere for X = X̂ by choice of α̂ = ηX̂ . It
follows that (4.14) does hold true as remained to be shown.

4.3. Proof of the upper bound. In order to prove “≤” in our dual descrip-
tion (3.3), we have to construct for any ξ̂0 < π(H) a triple (Q̂, M̂, α̂) as considered
in Theorem 3.2 such that

ξ̂0 < EQ̂[H ] − 1

2
‖α̂ − ζ0‖2

L2(Q̂⊗μ)
− M̂0x0 − 1

2
ιx2

0 .(4.15)

Observe that, by changing to an equivalent measure if necessary, we can assume
without loss of generality that

H ∈ L1(P), sup
0≤t≤T

|Pt | ∈ L6(P).(4.16)

For notational convenience, let us introduce the class

X 2 �
{
X ∈ X : X↑

T + X
↓
T ∈ L2(P)

}
and let us denote by

v̂0 � ξ̂0 + 1

2

(
ιx2

0 + δ0ζ
2
0
)

(4.17)

the constant from (4.2) corresponding to ξ0 = ξ̂0.
We start with the construction of Q̂ which emerges from a standard separation

argument.



SUPER-REPLICATION WITH TRANSIENT PRICE IMPACT 3909

LEMMA 4.3. There is a probability measure Q̂ with bounded density with
respect to P such that

v̂0 < EQ̂[H ] + inf
X∈X 2 with XT =0

EQ̂

[
�X

T

]
.(4.18)

PROOF. In light of our expression (4.1) for the investor’s terminal cash posi-
tion, the condition ξ̂0 < π(H) translates into

H − v̂0 /∈ C �
{−�X

T − A : X ∈ X withXT = 0,A ∈ L0+(FT )
}
.(4.19)

We will argue below that C is a convex and closed subset of L0(FT ). It follows
then that C ∩ L1(P) is a convex and closed subset of L1(P) that, by (4.19), does
not contain H − v̂0 ∈ L1(P). By the Hahn–Banach separation theorem we can thus
find Z ∈ L∞(FT ) − {0} such that

E
[
Z(H − v̂0)

]
> sup

C∈C∩L1(P)

E[ZC].(4.20)

Since L1−(P) − �0
T ⊂ C , we must have Z ≥ 0 almost surely. We can therefore

define a probability measure Q̂ � P via

dQ̂

dP
� Z

E[ZT ] .

Then (4.20) readily yields (4.18) upon observing that for X ∈ X 2 we have �X
T ∈

L1(P) due to Assumption 2.4 and (4.16).
It remains to prove that C is indeed a convex, closed subset of L0(FT ). Con-

vexity is immediate from the convexity of X �→ �X
T established in Lemma 4.1. For

closedness, take Xn ∈ X with Xn
T = 0 and An ∈ L0+(FT ), n = 1,2, . . . , such that

�Xn

T + An converges in L0(P) or, without loss of generality, even almost surely to
some finite limit L. We have to show that −L ∈ C , that is,

L ≥ �X
T for some X ∈ X .

By the given convergence, supn �Xn

T is finite almost surely. Hence, by our

estimate (4.5) also supn(X
n,↑
T + X

n,↓
T ) is finite almost surely. In particular,

conv(X
n,↑
T + X

n,↓
T , n = 1,2, . . . ) is bounded almost surely, and thus in probabil-

ity. So, by a Komlos lemma as Lemma 3.4 of [25] or Lemma 3.1 in [8], there
is a cofinal sequence of convex combinations X̃n of Xn,Xn+1, . . . , such that al-
most surely X̃n,↑ and X̃n,↓ converge weakly as Borel-measures on [0, T ] to, re-
spectively, A and B , two adapted, right continuous, and increasing processes with
A0− = B0− = 0. By lower semicontinuity and convexity of X �→ �X

T (see (4.6) in
Lemma 4.1), it follows that for X � x0 + A − B ∈ X we indeed have

�X
T ≤ lim inf

n
�X̃n

T ≤ lim inf
n

�Xn

T ≤ L

as desired. �
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The martingale M̂ is constructed as a Lagrange multiplier for the constraint
XT = 0 in the infimum of (4.18).

LEMMA 4.4. We have

inf
X∈X 2 with XT =0

EQ̂

[
�X

T

] = sup
M∈M 2(Q̂)

inf
X∈X 2

EQ̂

[
�X

T − MT XT

]
.(4.21)

In conjunction with (4.18), this lemma shows in particular that there is M̂ ∈
M 2(Q̂) with

v̂0 < EQ̂[H ] + inf
X∈X 2

EQ̂

[
�X

T − M̂T XT

]
.(4.22)

PROOF. We start by observing that

inf
X∈X 2 with XT =0

EQ̂

[
�X

T

] = lim
n

inf
X∈X 2

{
EQ̂

[
�X

T

] + n‖XT ‖L2(Q̂)

}
(4.23)

= lim
n

inf
X∈X 2

sup
‖MT ‖

L2(Q̂)
≤n

EQ̂

[
�X

T − MT XT

]
.

Indeed, the second identity is immediate as is “≥” in the first line. For “≤”
there, take Xn ∈ X 2 such that EQ̂[�Xn

T ] + n‖Xn
T ‖L2(Q̂) approaches the limit

in the first line. Then supnEQ̂[�Xn

T ] < ∞ and, by convexity of X �→ �X
T , we

even have supX∈conv(Xn,n=1,2,... )EQ̂[�X
T ] < ∞. It thus follows from (4.5) that

conv(X
n,↑
T + X

n,↓
T , n = 1,2, . . . ) is bounded in L2(Q̂). In particular, it is bounded

in L0 and we can thus apply a Komlos result such as Lemma 3.1 in [8] to obtain
X̃n ∈ conv(Xn,Xn+1, . . . ), n = 1,2, . . . that converge to some X̃ ∈ X in the way
required for the lower semicontinuity statement (4.6) in Lemma 4.1. We claim that

X̃T = 0 with EQ̂

[
�X̃

T

] ≤ lim
n

{
EQ̂

[
�X̃n

T

] + n
∥∥X̃n

T

∥∥
L2(Q̂)

}
.(4.24)

Then, since by construction of the (X̃n)n=1,2,... this limit coincides with the one
in (4.23), we obtain that “≤” must hold there. For the proof of (4.24), note that
(�X̃n

T ) is bounded in L1(Q̂) because conv(X
n,↑
T + X

n,↓
T , n = 1,2, . . . ) is bounded

in L2(Q̂). With the limit in (4.24) finite, this implies ‖X̃n
T ‖L2(Q̂) → 0 and so indeed

X̃T = 0. For the estimate in (4.24), observe that by Fatou’s lemma and the lower
semicontinuity of X �→ �X it suffices to show that (�X̃n

T ∧ 0)n=1,2,... is uniformly
Q̂-integrable. This, in turn, follows by observing that due to Hölder’s inequality
(with p = 4, q = 4/3),

EQ̂

[∣∣�X̃n

T ∧ 0
∣∣3/2] ≤ EQ̂

[∣∣∣∣
∫
[0,T ]

Pt dX̃n
t ∧ 0

∣∣∣∣3/2]

≤ EQ̂

[
sup

0≤t≤T

|Pt |3/2(
X̃

n,↑
T + X̃

n,↓
T

)3/2
]
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≤ EQ̂

[
sup

0≤t≤T

|Pt |6
]1/4

EQ̂

[(
X̃

n,↑
T + X̃

n,↓
T

)2]3/4

is bounded because of (4.16) and because of the already established L2(Q̂)-
boundedness of conv(X

n,↑
T + X

n,↓
T , n = 1,2, . . . ).

With (4.23) established, we obtain our assertion (4.21) from the minimax rela-
tion

inf
X∈X 2

sup
‖MT ‖

L2(Q̂)
≤n

EQ̂

[
�X

T − MT XT

]

= sup
‖MT ‖

L2(Q̂)
≤n

inf
X∈X 2

EQ̂

[
�X

T − MT XT

]
.

(4.25)

For this, we endow X 2 with the L2(P)-norm of the ω-wise total variation of its
elements, ‖X‖� EP[(X↑

T +X
↓
T )2]1/2, and the L2(Q̂)-ball with the weak topology.

Then both of these sets are convex subsets of topological vector spaces and the
latter set is even compact. Moreover, (X,MT ) �→ EQ̂[�X

T −MT XT ] is continuous
and convex in X and continuous and concave (even affine) in MT . We can thus
apply Sion’s minimax theorem [36] to obtain (4.25). �

Our final lemma constructs α̂.

LEMMA 4.5. There is an optional α̂ ∈ L2(Q̂⊗ μ) such that

|Pt − M̂t | ≤ ρt

δt

EQ̂

[∫
[t,T ]

α̂uμ(du)
∣∣∣Ft

]
, 0 ≤ t ≤ T ,

and

inf
X∈X 2

EQ̂

[
�X

T − M̂T XT

] = −1

2
‖α̂ − ζ0‖2

L2(Q̂⊗μ)
− M̂0x0 + 1

2
ζ 2

0 δ0.(4.26)

PROOF. We first use integration by parts along with the observation that
EQ̂[∫ T

0 X2
t d[M̂]1/2

t ] < ∞ for X ∈ X 2 to obtain that for such X we can write

EQ̂

[
�X

T − M̂T XT

]
= EQ̂

[∫
[0,T ]

(Pt − M̂t ) dXt + 1

2

∫
[0,T ]

(
ηX

t

)2
μ(dt) − M̂0x0

]

= EQ̂

[
−

∫
[0,T ]

|Pt − M̂t |dX̃t + 1

2

∫
[0,T ]

(
ηX̃

t

)2
μ(dt)

]
− M̂0x0,

where X̃t � x0 − ∫
[0,t] sign (Ps − Ms)dXs , 0 ≤ t ≤ T , satisfies ηX = ηX̃ . So the

infimum in (4.26) coincides with the infimum of this last expectation over all X̃ ∈
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X 2. In fact, it coincides with its infimum over all increasing and bounded X̃ ∈ X :

inf
X∈X 2

EQ̂

[
�X

T − M̂T XT

]

= inf
X̃∈X incr., bdd.

EQ̂

[
−

∫
[0,T ]

|Pt − M̂t |dX̃t + 1

2

∫
[0,T ]

(
ηX̃

t

)2
μ(dt)

]
− M̂0x0.

It thus remains to show that this last infimum is

inf
X̃∈X incr., bdd.

EQ̂

[
−

∫
[0,T ]

|Pt − M̂t |dX̃t + 1

2

∫
[0,T ]

(
ηX̃

t

)2
μ(dt)

]

= −1

2
‖α̂ − ζ0‖2

L2(Q̂⊗μ)
+ 1

2
ζ 2

0 δ0

(4.27)

for some α̂ ∈ L2(Q̂⊗ μ).
We will argue below that there is a progressively measurable process a with

upper-right continuous paths such that supτ≤v≤. av ∈ L1(Q̂⊗ μ) with

|Pτ − M̂τ | δτ

ρτ

= EQ̂

[∫
[τ,T ]

sup
τ≤v≤u

avμ(du)
∣∣∣Fτ

]
(4.28)

for any stopping time τ ≤ T , that is, such that the left-hand side in (4.28) is the
Q̂-optional projection of the μ-integral on the right-hand side. Therefore, we get
for any increasing and bounded X̃ ∈ X that

EQ̂

[
−

∫
[0,T ]

|Pt − M̂t |dX̃t + 1

2

∫
[0,T ]

(
ηX̃

t

)2
μ(dt)

]

= EQ̂

[
−

∫
[0,T ]

∫
[t,T ]

sup
t≤v≤u

avμ(du)
ρt

δt

dX̃t + 1

2

∫
[0,T ]

(
ηX̃

u

)2
μ(du)

]
(4.29)

= EQ̂

[∫
[0,T ]

{
1

2

(
ηX̃

u

)2 −
∫
[0,u]

sup
t≤v≤u

av dηX̃
t

}
μ(du)

]
,

where for the second equality we applied Fubini’s theorem and used that by mono-
tonicity of X̃ and (4.4) we have ρt

δt
dX̃t = dηX̃

t . Introducing

α̂u � sup
0≤v≤u

av ∨ ζ0, 0 ≤ u ≤ T ,

we can estimate the expression in {. . . } in (4.29) by

1

2

(
ηX̃

u

)2 −
∫
[0,u]

sup
t≤v≤u

av dηX̃
t

≥ 1

2

(
ηX̃

u

)2 −
∫
[0,u]

α̂u dηX̃
t = 1

2

(
ηX̃

u

)2 − α̂u

(
ηX̃

u − ζ0
)

(4.30)

= 1

2

(
ηX̃

u − α̂u

)2 − 1

2
(α̂u − ζ0)

2 + 1

2
ζ 2

0 ≥ −1

2
(α̂u − ζ0)

2 + 1

2
ζ 2

0 ,(4.31)



SUPER-REPLICATION WITH TRANSIENT PRICE IMPACT 3913

which does not depend on the choice of increasing, bounded X̃ ∈ X . Combin-
ing (4.29) with this estimate thus gives

inf
X̃∈X incr., bdd.

EQ̂

[
−

∫
[0,T ]

|Pt − M̂t |dX̃t + 1

2

∫
[0,T ]

(
ηX̃

t

)2
μ(dt)

]

≥ EQ̂

[∫
[0,T ]

{
−1

2
(α̂u − ζ0)

2 + 1

2
ζ 2

0

}
μ(du)

]

= −1

2
‖α̂ − ζ0‖2

L2(Q̂⊗μ)
+ 1

2
ζ 2

0 δ0,

which proves “≥” in our assertion (4.27).
It remains to argue that, in fact, equality holds true, which in particular includes

showing α̂ ∈ L2(Q̂ ⊗ μ). We start by observing that α̂ is at least in L1(Q̂ ⊗ μ)

because sup0≤v≤. a ∈ L1(Q̂⊗μ). Moreover, α̂ is increasing from ζ0 and it is right-
continuous and adapted by the upper-right continuity and progressive measurabil-
ity of a. We can thus consider the increasing X̂ ∈ X with ηX̂ = α̂. For X̃ = X̂, we
clearly have equality in (4.31), and, in fact, also in (4.30). Indeed, by construction,
X̂, and thus ηX̂ increase only at times t when our process a reaches a new max-
imum beyond ζ0 so that supt≤v≤u av = sup0≤v≤u av = α̂u for any u ≥ t at these
times. Now, with X̃ = X̂ ∧ n in (4.29) we get from these considerations that

EQ̂

[
−

∫
[0,T ]

|Pt − M̂t |d(X̂ ∧ n)t + 1

2

∫
[0,T ]

(
ηX̂∧n

t

)2
μ(dt)

]
(4.32)

= EQ̂

[∫
[0,T ]

{
1

2

(
ηX̂∧n

u

)2 −
∫
[0,u]

sup
t≤v≤u

av dηX̂∧n
t

}
μ(du)

]

=
∫
{X̂≤n}

(
−1

2
(α̂ − ζ0)

2 + 1

2
ζ 2

0

)
d(Q̂⊗ μ)

+
∫
{X̂>n}

(
1

2

(
ηX̂∧n)2 − α̂ηX̂∧n + α̂ζ0

)
d(Q̂⊗ μ).(4.33)

Once we know that α̂ = ηX̂ ≥ ηX̂∧n is in L2(Q̂ ⊗ μ), we can use, respectively,
monotone and dominated convergence to let n ↑ ∞ in the preceding expression
and conclude that

inf
X̃∈X incr., bdd.

EQ̂

[
−

∫
[0,T ]

|Pt − M̂t |dX̃t + 1

2

∫
[0,T ]

(
ηX̃

t

)2
μ(dt)

]

≤
∫
�×[0,T ]

(
−1

2
(α̂ − ζ0)

2 + 1

2
ζ 2

0

)
d(Q̂⊗ μ) + 0

= −1

2
‖α̂ − ζ0‖2

L2(Q̂⊗μ)
+ 1

2
ζ 2

0 δ0
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as remained to be shown for our claim (4.27). Now, use the estimate

EQ̂

[
−

∫
[0,T ]

|Pt − M̂t |d(X̂ ∧ n)t + 1

2

∫
[0,T ]

(
ηX̂∧n

t

)2
μ(dt)

]

≥ −
∥∥∥∥ sup

0≤t≤T

(
|Pt − Mt | δt

ρt

)∥∥∥∥
L2(Q̂)

∥∥ηX̂∧n
T − ζ0

∥∥
L2(Q̂) + 1

2

∥∥ηX̂∧n
∥∥2
L2(Q̂⊗μ)

to see that if α̂ = ηX̂ was not in L2(Q̂ ⊗ μ) then the expectation in (4.32) would
tend to +∞ by monotone convergence as n ↑ ∞. At the same time, though, the
first integral in (4.33) would converge to −∞. Moreover, α̂ ∈ L1(Q̂⊗ μ) ensures
that the contribution of α̂ζ0 to the second Q̂⊗μ-integral there vanishes for n ↑ ∞.
By choice of X̂, we have α̂ = ηX̂ ≥ ηX̂∧n, so that the remaining contribution from
this integral is less than or equal to 0. Hence, the assumption α̂ /∈ L2(Q̂ ⊗ μ)

leads us to the contradiction that the identical quantities in (4.32) and (4.33) would
converge to +∞ and −∞ at the same time when n ↑ ∞.

For the completion of our proof, we still need to construct the process a

from (4.28). It will be obtained by the representation theorem from [4]. For this
we note that, while having full support on [0, T ] by Assumption 2.4, our mea-
sure μ is not directly applicable for this representation theorem since it has an
atom at time T . We thus replace it with the atomless optional random measure
μ̃(dt) = 1[0,T )(t)μ(dt) + λe−λ(t−T )1[T ,∞)(t) dt on [0,∞) where λ � μ({T }).
We also extend Yt � |Pt − M̂t | δt

ρt
, 0 ≤ t ≤ T , to a process on [0,∞) by letting

Yt � YT e−λ(t−T ) for t ≥ T and we let Ft � FT for t ≥ T . Then, by Assump-
tion 2.1, the process Y is adapted, continuous with limit limt↑∞ Yt = 0 and it
is of class (D) since it has an integrable upper bound because of M ∈ M 2(Q̂)

and (4.16). We thus can apply Theorem 3 of [4] in connection with their Re-
mark 2.1 to obtain an upper-right continuous, progressively measurable a such
that for any stopping time τ we have supτ≤v≤. av ∈ L1(Q̂⊗ μ̃) with

Yτ = EQ̂

[∫
[τ,∞)

sup
τ≤v≤u

avμ̃(du)
∣∣∣Fτ

]
.

In fact, for t ≥ T , one readily checks that at = aT = YT will do. Therefore, we
get by uniqueness of a that for any stopping time τ ≤ T the above representation
amounts to

|Pτ − M̂τ | δτ

ρτ

= Yτ = EQ̂

[∫
[τ,T )

sup
τ≤v≤u

avμ̃(du) +
∫
[T ,∞)

sup
τ≤v≤T

avμ̃(dt)
∣∣∣Fτ

]

= EQ̂

[∫
[τ,T )

sup
τ≤v≤u

avμ(du) + sup
τ≤v≤T

avμ
({T })∣∣∣Fτ

]

as requested. �

The proof of the upper bound in our duality (3.3) of Theorem 3.2 is now easy to
complete. Indeed, the constructed triple (Q̂, M̂, α̂) is as requested by our theorem.



SUPER-REPLICATION WITH TRANSIENT PRICE IMPACT 3915

Moreover, recalling the definition (4.17) of v̂0 and combining (4.22) with (4.26)
gives the desired upper bound (4.15).
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