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CUTOFF FOR THE CYCLIC ADJACENT TRANSPOSITION
SHUFFLE

BY DANNY NAM1 AND EVITA NESTORIDI

Princeton University

We study the cyclic adjacent transposition (CAT) shuffle of n cards,
which is a systematic scan version of the random adjacent transposition (AT)
card shuffle. In this paper, we prove that the CAT shuffle exhibits cutoff at
n3

2π2 logn, which concludes that it is twice as fast as the AT shuffle. This is
the first verification of cutoff phenomenon for a time-inhomogeneous card
shuffle.

1. Introduction. How long does it take to shuffle a deck of cards sufficiently
well? Mixing time of card shuffling schemes and Markov chains in general is a
widely studied subject in probability. Recently, there has been a lot of interest in
understanding the behavior of time-inhomogeneous chains and in sharpening the
techniques that have been developed in the time-homogeneous case (see [3, 8, 9,
11–15]). In the present paper, we study the mixing time of the cyclic adjacent trans-
position shuffle and show that it exhibits cutoff, which is the first demonstration of
cutoff phenomenon for a time-inhomogeneous card shuffle.

The cyclic adjacent transposition (CAT) shuffle is a systematic scan version of
the adjacent transposition shuffle. In the CAT shuffle, we start with a deck of n

cards, that are placed on the vertices on a path of length (n − 1). At the beginning
of the first step, we flip a fair coin, which determines if we are going to move
from left to right or from right to left. If we do the former, then at time t = 1 with
probability 1/2 we transpose the cards at the ends of the first edge, otherwise we
stay fixed. For t = 2, . . . n− 1, with probability 1/2 we transpose cards at the ends
of the t th edge, otherwise we stay fixed, etc. If we move from right to left, at time
t = 1, . . . n − 1, with probability 1/2 we transpose the cards that lie on the ends of
the (n − t)-th edge, otherwise we do nothing.

In other words, we explore the deck from the first card to the last card with
respect to the direction we choose at the beginning, and independently at each
step either swap the positions of the neighboring ones or stay fixed according to
a fair coin toss. When t ≡ 1 mod (n − 1), we repeat the first (n − 1) steps of
the chain independently, that is, pick the orientation (either from 1 to n or from
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n to 1) uniformly at random, move from the first card to the last one according
to the chosen direction and at each step either transpose or do nothing uniformly
independently at random.

The configuration space of the CAT shuffle is the symmetric group Sn. Let
x, y ∈ Sn and let P t

x(y) be the probability of moving from the x to y in t steps.
Then the basic limit theorem of Markov chains tells us that P t

x converges to the
uniform measure μ as t → ∞ with respect to the total variation distance

dx(t) := ∥∥P t
x − μ

∥∥
T.V. :=

1

2

∑
y∈Sn

∣∣P t
x(y) − μ(y)

∣∣.
The mixing time of this Markov chain is defined as

tmix(ε) = min
{
t ∈ N : max

x∈Sn

{
dx(t)

} ≤ ε
}
.

Our main result provides sharp bounds for the mixing time of the CAT shuffle.

THEOREM 1. For the cyclic adjacent transposition shuffle, we have that for
any ε > 0:

(a) There is a universal constant c, such that tmix(1 − ε) ≥ n3

2π2 logn −
n3

2π2 log(
c logn

ε
).

(b) tmix(ε) ≤ (1 + o(1)) n3

2π2 logn.

Theorem 1 says that the cyclic adjacent transposition shuffle exhibits cutoff at
n3

2π2 logn, that is, that there is window wn = o(n3 logn) such that

lim
k→∞ lim

n→∞d

(
n3

2π2 logn − kwn

)
= 1 and

lim
k→∞ lim

n→∞d

(
n3

2π2 logn + kwn

)
= 0.

As mentioned above, the CAT shuffle is a systematic scan version of the adja-
cent transposition (AT) shuffle. In the AT shuffle, with probability 1/2 we trans-
pose a random adjacent pair of cards and otherwise do nothing. It is an important
card shuffling model mainly because of its connection to the exclusion process.
Only recently, Lacoin [6] proved the sharp upper bound for the mixing time of
the AT shuffle, which combined with the sharp lower bound of Wilson [17] con-
cluded the proof of cutoff for this model. They also established the same result
for the simple exclusion process, verifying the close connections between the two
models.

The first time-inhomogeneous card shuffle to be studied is the semirandom
transposition card shuffle, which suggests that at time t we transpose the card in po-
sition t mod n with a uniformly random card. It was introduced by Thorp [16], and
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Aldous and Diaconis [1] first raised the question of determining the mixing time
of semirandom transpositions. Mironov [7] used this model for a cryptographic
system and proved that the mixing time is at most O(n logn). Mossel, Peres and
Sinclair [9] established a matching lower bound of order �(n logn). This lower
bound was obtained using Wilson’s method [17], which relies on finding an appro-
priate eigenfunction.

Another well-studied time-inhomogeneous card shuffle is the card-cyclic-to-
random shuffle. In this model, at time t we remove the card with the label t mod n

and insert it to a uniformly random position of the deck. This model was introduced
by Pinsky [11], who showed that n steps are not sufficient to shuffle the deck well
enough. Morris, Ning, Peres [8] later proved both a lower and an upper bound of
order n logn.

Saloff-Coste and Zuniga [12–15] studied time-inhomogeneous Markov chains
via singular value decomposition. In their work, they find better constants for the
upper bound for both semirandom transpositions and card-cyclic-to-random shuf-
fles. Their result is based on bounding the singular values of the transition matrix
of the time-inhomogeneous chains by the eigenvalues of the time-homogeneous
card shuffles. Although very useful in some models, their technique does not work
well in our case.

Very recently, Angel and Holroyd [2] asked a different question concerning a
similar model; given a sequence of parameters S = (ai, bi,pi)

�
i=1, at time t =

1, . . . , � with probability pt they transpose card at with the card bt , otherwise do
nothing. They study the question of finding the minimum length � such that the
resulting permutation of n cards is uniformly random. They prove that the for the
case that bi = ai + 1, this minimum length is exactly

( n
2
)
.

Another model one can consider is the single-directional CAT shuffle, which
at time t swaps the cards at positions t , t + 1 mod n − 1. In other words, it is a
variant of the CAT shuffle that explores the deck in a single direction rather than
renewing it at every n − 1 steps. In this model, we have the same upper bound on
the mixing time as part (b) of Theorem 1, and indeed the proof works analogously
for this case. However, the techniques used to prove part (a) no longer applies to
this model due to lack of symmetry. In the CAT shuffle, setting a random direction
of exploration at every n − 1 steps provides some amount of symmetry which
makes it more convenient to carry out our approach. We conjecture that the single-
directional CAT shuffle exhibits cutoff at n3

2π2 logn, the same location as the CAT
shuffle.

1.1. Proof outline. The main difficulty of studying the CAT shuffle comes
from its deterministic selections of update locations. Due to this aspect, it seems
impossible to write down the closed formula of the transition using eigenvalues and
eigenfunctions, although most of the properties of the AT shuffle can be deduced
by this approach [6, 17]. To overcome this difficulty, we rely on the following
observations:
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(i) We can compute “approximate eigenfunctions,” which behave like the ac-
tual eigenfunctions but with errors.

(ii) When n is large enough, each card follows a Brownian-type move under an
appropriate scaling of n and t .

To prove the lower bound on the mixing time, we derive a generalized version
of Wilson’s lemma [17] which enables to implement the “approximate eigenfunc-
tions” obtained from observation (i). Using this lemma, we conclude the first part
of Theorem 1 by showing that the errors of the approximate eigenfunctions are
small enough.

For the upper bound, we rely on the idea of monotone coupling and censor-
ing from Lacoin [6]; by defining the “height” of card decks, we can construct a
monotone coupling of the system and take advantage of the censoring inequality
following the approach of [6].

In this procedure, a crucial ingredient we need is that the height of the deck
decays exponentially in time according to the correct rate. In the AT shuffle [6],
this property is derived based on the algebraic relations of the model. Since this
approach seems impossible for the CAT shuffle, we take account of (ii) to deduce
such condition.

1.2. Organization of the paper. In Section 2, we derive a generalized Wilson’s
lemma that works for approximate eigenfunctions. Then in Section 3.1, we intro-
duce the appropriate approximator to study and show that the error is small enough
to deduce the correct lower bound. Based on this result, we conclude the proof of
part (a) of Theorem 1 in Section 3.2.

Section 4 is devoted to understanding the movement of a single card. Here,
we explain the precise meaning of observation (ii) above and deduce hitting time
estimates of a single card. The monotone coupling, the censoring inequality and
the exponential decay of the “height” are explained in Section 5.1, and we prove
part (b) of Theorem 1 in Section 5.2.

In the final section, Section 6, as an application of our main theorem we study
the systematic simple exclusion process which is the particle system version of the
CAT shuffle.

2. Generalizing Wilson’s lemma. For the lower bound, we will need a gen-
eralization of Wilson’s lemma [17]. The main difference is that we do not use the
precise eigenfunctions of the transition matrix P , but rather functions that behave
sufficiently like eigenfunctions.

LEMMA 2. Let Xt be a Markov chain on a state space �n, with stationary
distribution μ. Let x0 ∈ �. Suppose that there are parameters γ, δ,R > 0 and a
function 	 : �n →R such that 	(x0) > 0, satisfying the following:

(a) The mean of 	 under stationarity is zero, that is μ(	) = 0.
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(b) We have 0 < γ < 2 − √
2 and for all t ≥ 0 it holds that∣∣E[

	(Xt+1)|Xt

] − (1 − γ )	(Xt)
∣∣ ≤ δ.

(c) We also have that E[(
	t)
2|Xt ] ≤ R, where 
	t := 	(Xt+1) − 	(Xt).

Then for t = 1
γ�

log(	(x0)) − 1
2γ�

log(
48(δ‖	‖∞+R)

γ ε
), we have∥∥P t

x0
− μ

∥∥
T.V. ≥ 1 − ε,

where γ� := − log(1 − γ ).

PROOF. Let ε > 0. By iterating the condition (b), we get that

(2.1) Ex0

[
	(Xt)

] ≥ (1 − γ )t	(x0) − δ/γ.

To control the variance, we notice the inequality that

(2.2)
E

[(
	(Xt+1)

)2|Xt

] = (
	(Xt)

)2 + 2	(Xt)E[
	t |Xt ] +E
[
(
	t)

2|Xt

]
≤ (1 − 2γ )	(Xt)

2 + (
δ‖	‖∞ + R

)
.

Iterating (2.2), we have that

(2.3) Ex0

[(
	(Xt)

)2] ≤ (1 − 2γ )t	(x0)
2 + δ‖	‖∞ + R

2γ
.

Using (2.1), this implies that

(2.4) Var
(
	(Xt)|X0 = x0

) ≤ δ‖	‖∞ + R

2γ
+ 2δ‖	‖∞

γ
≤ 3(δ‖	‖∞ + R)

γ
.

Letting t go to infinity, we also get the same bound for Var(	) under the stationary
distribution.

Let t = 1
γ�

log(	(x0)) − 1
2γ�

log(
48(δ‖	‖∞+R)

γ ε
) and consider the event

A =
{
x ∈ �n : 	(x) <

1

2
Ex0

[
	(Xt)

]}
.

Then by Chebychev’s inequality combined with (2.1) and (2.4), we have that

(2.5) Px0(Xt ∈ A) ≤ 12(δ‖	‖∞ + R)/γ

(1 − γ )2t	(x0)2 − 2δ‖	‖∞/γ
≤ ε

2
.

Similarly with respect to the stationary measure, we obtain that

(2.6) Pμ(X ∈ A) ≥ 1 − ε

2
.

Combining (2.5) and (2.6), we deduce that∥∥P t
x0

− μ
∥∥

T.V. ≥
∣∣P t

x0
(A) − μ(A)

∣∣ ≥ 1 − ε. �
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3. The lower bound. In [17], the lower bound on the mixing time for the
random AT shuffle is obtained by analyzing the height function representation of
the chain. In this case, one can compute the exact eigenvalues and eigenfunctions
of the transition of height functions.

On the other hand, the main difficulty of investigating the CAT shuffle is that we
cannot precisely calculate such eigenvalues and eigenfunctions since the update
locations are not given randomly. However, we can still overcome this obstacle
by using the objects which approximately behave like eigenfunctions with small
enough errors.

In Section 3.1, we introduce the height function representation of the CAT shuf-
fle and describe its first and the second moment estimates, based on the aforemen-
tioned idea of “approximate eigenfunctions.” Then Section 3.2 is devoted to prov-
ing Theorem 1, part (a) using the ingredients obtained in Section 3.1 and Lemma 2.

3.1. The moment estimates. Let σ0 := id ∈ Sn be the starting state of the CAT
shuffle and let σs denote the deck at time s. For each t ∈ N, the height function
ht : [n] → R of (σs) is defined as

(3.1) ht (x) :=
x∑

z=1

1
{
σ(n−1)t (z) ≤ 
n/2�} − 
n/2�

n
x.

Let Ft denote the sigma-algebra for the shuffling until time (n − 1)t . Our goal
in this subsection is to obtain the first and the second moment estimates on the
following quantity 	t :

(3.2) 	t :=
n−1∑
x=1

ht (x) sin
(

πx

n

)
.

We begin with the first moment estimate of 	t . The following lemma is proven
similarly as Lemma 17, and the proof can be found in Section A.3.

LEMMA 3. Let 	t , Ft defined as above. For any t ∈ N, we have

(3.3)
∣∣E[	t+1|Ft ] − (1 − γ )	t

∣∣ ≤ 3π

4n
,

where γ := π2/n2 − O(n−4).

REMARK 4. Although we cannot have a more precise form such as
E[	t+1|Ft ] = (1 − γ )	t as [17], Lemma 2 says that the estimate of Lemma 3
is sufficient to get a lower bound.

Our next goal is to bound the second moment of 	t . One convenient way of
doing this is to look at 
	t := 	t+1 − 	t , similar to what is done in [17].
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LEMMA 5. There exists an absolute constant C > 0 such that for any t ∈ N,

E
[
(
	t)

2|Ft

] ≤ Cn logn.

PROOF. For each a ∈ [n], let qt (a) denote the position of the card a at time
(n − 1)t , that is, qt (a) := σ−1

(n−1)t (a). Observe that we can write ht (x) in terms of
qt (a) in the following way:

(3.4) ht (x) =

n/2�∑
a=1

1{qt (a)≤x} − x

n

⌊
n

2

⌋
.

Therefore, 
	t = 	t+1 − 	t becomes


	t =

n/2�∑
a=1

{
n−1∑
x=1

(1{qt+1(a)≤x} − 1{qt (a)≤x}) sin
(

πx

n

)}
=


n/2�∑
a=1

ψt(a),

where we define ψt(a) by

ψt(a) :=
n−1∑

x=qt+1(a)

sin
(

πx

n

)
−

n−1∑
x=qt (a)

sin
(

πx

n

)
.

We begin with estimating E[ψt(a)2 | Ft ]. Let
→
E (resp.

←
E) denote the condi-

tional expectation given the event that we explore the deck from position 1 to n

(resp. n to 1) over the time period of (n− 1)t + 1 to (n− 1)(t + 1). In other words,
if ct ∈ {1, n} is the random variable that denotes the starting position of exploration

at time (n− 1)t , then
→
E[· | Ft ] = E[· | Ft , ct = 1]. Recall that qt+1(a)− qt (a) fol-

lows the distribution (4.2, 4.3). Letting j count the displacement of card a, we
have that for 2 ≤ qt (a) ≤ n − 1,

(3.5)

→
E

[
ψt(a)2 | Ft

]
≤ 1

2
sin2

(
π(qt (a) − 1)

n

)
+

∞∑
k=1

1

2k+2

{
k−1∑
j=0

sin
(

π(qt (a) + j)

n

)}2

≤ π2

2n2

{(
qt (a) − 1

)2 +
∞∑

k=1

1

2k+1

(
kqt (a) + k(k − 1)

2

)2
}

≤ C1,

for some absolute constant C1 > 0, using the fact that sin θ ≤ θ and qt (a) ≤ n.
We can conduct a similar calculation for the cases qt (a) = 1, n as well as for←
E[ψt(a)2 | Ft ] and obtain that for all a,

(3.6) E
[
ψt(a)2 | Ft

] ≤ C1.
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We turn our attention to estimating the correlation and show that |E[ψt(a)ψt (b) |
Ft ]| = O( 1

n
) for a, b which are far apart from each other. In particular, let us as-

sume that both qt (a) ≥ 2 and qt (a) + 4 logn ≤ qt (b) ≤ n − 1 hold true. Define A

to be the event that

A := {
qt+1(a) − qt (a) ≤ 4 logn − 2

}
.

Then qt+1(a) and qt+1(b) are conditionally independent given Ft and the event

{ct = 1} ∩ A.

Therefore, we can express
→
E[ψt(a)ψt (b) | Ft ] by

(3.7)

→
E

[
ψt(a)ψt (b) | Ft

] = →
P (A)

→
E

[
ψt(a) | A,Ft

]→
E

[
ψt(b) | A,Ft

]
+ →

E
[
ψt(a)ψt (b)1Ac | Ft

]
.

Since P(Ac) ≤ n−4, Hölder’s inequality implies that

(3.8)

→
E

[
ψt(a)ψt (b)1Ac | Ft

] ≤ →
E

[
ψt(a)4 |Ft

] 1
4
→
E

[
ψt(b)4 | Ft

] 1
4
→
P

(
Ac) 1

2

≤ C2

n2 ,

by noting that the fourth moment of ψt(a) conditioned on Ft can be estimated in
the same way as (3.5). On the other hand, we have∣∣→E[

ψt(a)1A | Ft

]∣∣
=

∣∣∣∣∣1

2
sin

(
π(qt (a) − 1)

n

)
−


4 logn�−2∑
k=1

1

2k+2

k−1∑
j=0

sin
(

π(qt (a) + j)

n

)∣∣∣∣∣
≤

∣∣∣∣∣1

2
sin

(
π(qt (a) − 1)

n

)
−

∞∑
k=1

1

2k+2

k−1∑
j=0

sin
(

π(qt (a) + j)

n

)∣∣∣∣∣ + 1

n3 .

Using | sin(x + δ) − sin(x)| ≤ δ to control the right-hand side, we obtain that

(3.9)
∣∣→E[

ψt(a)1A | Ft

]∣∣ ≤ π

2n
+

∞∑
k=1

1

2k+2

k−1∑
j=0

jπ

n
+ 1

n3 ≤ C′
3

n
,

for an absolute constant C′
3 > 0. Similar computations can be done for

←
E . Since

→
P (A) ≥ 1 − n−4 and |→E[ψt(b) | Ft ]| ≤ C1, we deduce by combining (3.7–3.9)
that

(3.10)
∣∣E[

ψt(a)ψt (b) | Ft

]∣∣ ≤ C3

n
,

for some absolute constant C3 > 0.



CYCLIC ADJACENT TRANSPOSITIONS 3869

Let Q ⊂ [
n/2�]2 be defined as

Q := {
(a, b) ∈ [
n/2�]2 : 2 ≤ qt (a), qt (b) ≤ n − 1,

∣∣qt (a) − qt (b)
∣∣ ≤ 4 logn

}
.

We also denote Qc := [
n/2�]2 \ Q. Then we can estimate E[(
	t)
2|Ft ] using

the inequalities (3.6) and (3.10) as follows:

E
[
(
	t)

2|Ft

] =

n/2�∑
a,b=1

E
[
ψt(a)ψt (b)|Ft

]
≤ ∑

(a,b)∈Qc

E
[
ψt(a)ψt (b)|Ft

]
+ ∑

(a,b)∈Q

E
[
ψt(a)2|Ft

] 1
2E

[
ψt(b)2|Ft

] 1
2

≤ n2

4
· C3

n
+ 4n logn · C1 ≤ Cn logn,

for an absolute constant C > 0. �

3.2. Proof of Theorem 1, part (a). In this section, we conclude the proof of
Theorem 1, part (a). Lemma 3 says that

(3.11)
∣∣E[	t+1|Ft ] − (1 − γ )	t

∣∣ ≤ 3π

4n
,

where γ = π2/n2 − O(n−4). Moreover, Lemma 5 gives us that

(3.12) E
[
(
	t)

2|Ft

] ≤ Cn logn.

Also, by the definition of 	t , when t = 0 it satisfies that

(3.13) 	0 =
n−1∑
x=1

1

2

{
x ∧ (n − x)

}
sin

(
πx

n

)
≥ 2

n
2∑

x= n
4

n

4
sin

(
π

4

)
≥ n2

8
√

2
.

Define 	 : Sn →R to be

	(σ) =
n∑

x=1

h(σ, x) sin
(

πx

n

)
,

where h(σ, ·) is the height function of σ defined in (3.1). We also have that
	(σ(n−1)t ) = 	t . Plugging 	 into Lemma 2, equations (3.11), (3.12) and (3.13)
imply that

tmix(1 − ε) ≥ n3

2π2 logn − n3

2π2 log
(

c logn

ε

)
,

where c > 0 is a universal constant.
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4. Following one card. Throughout this section, we label our deck of n-cards
by [n0] := {0,1, . . . , n−1}. Our state space is the symmetric group on [n0], which
is denoted by Sn0 . For a ∈ [n0], let qt (a) = σ−1

(n−1)t (a) denote the position of card
a at time (n − 1)t .

Let Ta := min{t : qt (a) = n − 1} be the first (scaled) time that the card a in the
deck reaches at the right end. Our goal in this subsection is to prove the following
lemma on Ta .

LEMMA 6. Let a be an arbitrary element of [n0], and define qt (a), Ta as
above. For any CAT shuffle (σt ) and any δ > 0, there exist Nδ, θδ > 0 independent
of n such that for all n ≥ Nδ and θδ ≤ θ ≤ n, we have

(4.1) P

(
Ta >

θn2

π2

)
≤ (

1 + O
(
θn−2))

e− (1−δ)
4 θ .

In order to prove Lemma 6, we analyze the process qt (a) by coupling it with
another random walk that we may have a better control over. From now on, we
focus on the process {qt (a)}t∈N, regarding each exploration of the whole line as
a single step. Let X be a random variable on Z with the following probability
distribution:

• For all k ∈ Z, P(X = k) = 2−(|k|+3) + 2−(3−|k|)1{|k|≤1}.

Note that X has mean 0 and variance 2. Let Xi be i.i.d. copies of X, and define St

to be

St :=
t∑

i=1

Xi.

LEMMA 7. For all a ∈ [n0], there is a coupling between {qt (a)}t∈N and
{Xi}i∈N such that for all t ≥ 0, on the event {Ta > t} we have

qt (a) ≥ Ŝa
t := St − (

min{Ss : s ≤ t} ∧ (−q0(a)
))

.

REMARK 8. Ŝa
t is obtained by pushing St + q0(a) above as little as possible

while making it stay nonnegative. Figure 2 describes an example of its sample
path.

PROOF OF LEMMA 7. We first notice that the distribution of qt (a) − qt−1(a)

is very similar to that of X, as drawn in Figure 1. Given that 0 < x := qt−1(a) <

n − 1, one can see that:

• For −x + 1 ≤ k ≤ n − x − 2,

(4.2) P
(
qt (a) = x + k

) = 2−(|k|+3) + 2−(3−|k|)1{|k|≤1} = P(X = k);
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FIG. 1. Jump probabilities of the process {qt (a)}.

• For k ∈ {−x,n − x − 1}, P(qt (a) = x + k) = 2−(|k|+2) + 2−(3−|k|)1{|k|≤1}.

If x = 0, then

• For 0 ≤ k ≤ n − 2,

(4.3) P
(
qt (a) = k

) = 2−(k+2) + 1

4
1{k≤1} ≥ P(X = k);

• For k = n − 1, P(qt (a) = k) = 2−n.

Notice that if 0 < x := qt−1(a) < n − 1, we have P(qt (a) = 0) = P(X ≤ −x).
Combined with (4.2), this implies that when 0 < x < n − 1, the laws of qt (a) and
Xt can be coupled so that

(4.4) qt (a) − x = Xt ∨ (−x).

Similarly when x = 0, we have P(qt (a) = 0) ≤ P(X ≤ 0), and hence with (4.3)
gives us that we have a coupling of qt (a) and Xt that satisfies

(4.5) qt (a) − x ≥ Xt ∨ (−x).

As mentioned in Remark 8, ŜA
t is the process obtained by pushing St + q0(a)

above to 0 whenever it hits a negative point. Therefore, under the aforementioned

FIG. 2. Sample paths of qt (a) and Ŝa
t := St − (mins≤t Ss ∧ (−q0(a))), with q0(a) = 2.
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coupling (4.4, 4.5), qt (a) and Ŝa
t satisfies

qt (a) ≥ Ŝt . �

Let us define the stopping time τx
n such that

τx
n := min

{
t : St −

(
min
s≤t

Ss ∧ (−x)
)

≥ n
}
.

Due to Lemma 7, it suffices to prove the corresponding inequality for τx
n as (4.1)

for arbitrary x. Since St −(mins≤t Ss ∧(−x)) is increasing in x, it is enough to look
at τ 0

n . Consider the extension St to noninteger t’s by setting (t, St ) to be the point
on the linear segment connecting (r, Sr) and (r + 1, Sr+1) for r = 
t�. Since the
increments of St for integer times are i.i.d. with mean 0 and variance 2, Donsker’s
theorem (see, e.g., [4]) directly implies the following.

PROPOSITION 9. Let Bt and Rt denote the standard Brownian motion and the
standard reflected Brownian motion, respectively. Then, as m → ∞, we have the
following weak convergence when viewed as measures on C[0,∞), the space of
continuous functions on [0,∞):

Sm2t√
2m

−→ Bt ;
Sm2t − mins≤m2t Ss√

2m
−→ Rt .

PROOF. The first equation is a restatement of Donsker’s theorem. For the
second part, define � : C[0,∞) → C[0,∞) as �(f )(t) = f (t) − mins≤t {f (s)}.
Since �(Bt) = Rt in law and � is continuous with respect to the supremum norm
topology, the second convergence follows from the first one. �

Define τR := min{t > 0 : Rt ≥ 1/
√

2}. As an immediate consequence of Propo-
sition 9, we have the following corollary.

COROLLARY 10. For any constant θ > 0, we have

(4.6) lim
n→∞P

(
τ 0
n > θn2) = P

(
τR > θ

) = P
(
τ |B| > θ

)
,

where τ |B| := min{t > 0 : |Bt | ≥ 1/
√

2}.
PROOF. The first equality is obvious by Proposition 9. The second follows by

the fact that (Rt )t≥0 = (|Bt |)t≥0 in law (see, e.g., Chapter 3.6 of [5]). �

From now on, we choose to look at τ |B| instead of τR . Let S̃m denote the simple
random walk so that the increments are i.i.d. 2 Ber(1

2) − 1 and S̃0 = 0. Let τ̃ n :=
min{m : S̃m /∈ (−n/

√
2, n/

√
2)}. Then the following lemma is based on the same

spirit as Lemma 9 of [17]. We postpone its proof to Section A.2.
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LEMMA 11. There exists a constant C > 0 that satisfies

P
(
τ̃ n > θn2)

< C
(
1 + O

(
θn−2))

exp
(
−π2θ

4

)
for all θ > 0 (θ may depend on n).

The following corollary is a consequence of Corollary 10 and Lemma 11.

COROLLARY 12. For any δ > 0, there exist constants θ0 = θ0(δ) and N =
N(δ, θ0) > 0 such that for all n ≥ N , we have

P
(
τ 0
n > θ0n

2) ≤ (
1 + O

(
θ0n

−2))
exp

(
−(1 − δ)

4
π2θ0

)
.

PROOF. Let δ > 0 be given. By Lemma 11, we can pick a large θ0 = θ0(δ)

such that for all constants θ ≥ θ0 − δ not depending on n,

P
(
τ̃ n > θn2) ≤ (

1 + O
(
θn−2))

exp
(
−(1 − δ/2)

4
π2θ

)
.

Then Donsker’s theorem implies that P(τ |B| > θ0) ≤ exp(−(1 − δ/2)π2θ0), since
S̃m2t /m converges to (Bt ) as in Proposition 9. Noting that τR and τ |B| share the
same law, we use (4.6) to deduce that there exists N = N(δ, θ0) such that for all
n > N ,

P
(
τ 0
n > θ0n

2) ≤ P
(
τR > θ0 − δ

) ≤ (
1 + O

(
θ0n

−2))
exp

(
−(1 − δ)

4
π2θ0

)
,

which is the desired inequality. �

PROOF OF LEMMA 6. As observed in Lemma 7, we can couple the two pro-
cesses qt (a) and St such that Ta ≤ τ 0

n , as a single increment in St corresponds to
n − 1 steps of swapping in the CAT shuffle. Therefore, Corollary 12 implies that

(4.7) P
(
Ta > θ0n

2) ≤ (
1 + O

(
θ0n

−2))
exp

(
−(1 − δ/2)

4
π2θ0

)
for some constant θ0 > 0 depending on δ. For any θ > θ0 and n > Nδ , we have

P
(
Ta > θn2) ≤(

1 + O
(
θn−2))

) exp
(
−(1 − δ/2)

4
π2θ0

⌊
θ

θ0

⌋)

≤(
1 + O

(
θn−2))

exp
(
−(1 − δ)

4
π2θ

)
,

where the first inequality is obtained by iterating (4.7) for 
θ/θ0�-times and by the
fact that θ ≤ n, and the last inequality holds for all θδ < θ ≤ n where θδ is a large
constant. �
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5. The upper bound. In [6], Lacoin derives the sharp upper bound on the
mixing time of the random AT shuffle by introducing a monotone coupling of the
model and implementing the censoring inequality in a clever way. He defines the
function σ̃t which can be understood as the “height” of σt to build up a monotone
framework of the system. It turns out that a similar argument is also applicable to
the CAT shuffle along with some appropriate adjustments.

However, in the CAT shuffle, the major difficulty of adopting this argument
comes from understanding the decay of the height σ̃t . In [6], exponential decay of
σ̃t is obtained using algebraic properties of the model based on its eigenvalues and
eigenfunctions. Since this approach seems impossible in the current context, we
rely on the ideas developed in Section 4 to deduce the same property for the CAT
shuffle.

In Section 5.1, we introduce a monotone coupling for the CAT shuffle. In such
a monotone system, we can take advantage of the censoring inequality, which es-
sentially says that if we ignore some updates (swaps) in a CAT shuffle, then the
distance from equilibrium of the resulting chain is greater than that of the original
one. In Section 5.2, we conclude the proof of Theorem 1 based on the tools from
the previous sections. Finally, we prove the decay estimate on σ̃t in Section A.1.

5.1. Monotone coupling. In this subsection, we introduce a monotone cou-
pling for the CAT shuffle following the argument of Lacoin [6] and Wilson [17].
Via the monotone coupling, we derive the censoring inequality which will be cru-
cial in Section 5.2.

Let Sn be the group of permutations on [n] = {1, . . . , n}. For each σ ∈ Sn, we
define the function σ̃ : [n] × [n] → R as follows:

(5.1) σ̃ (x, y) :=
x∑

z=1

1{σ(z)≤y} − xy

n
.

Subtracting xy/n is introduced in order to set the average μ(σ̃ (x, y)) to be 0,
where μ denotes the uniform measure on Sn. Throughout this section, we use the
following partial order on Sn based on the function σ̃ :

• For σ,σ ′ ∈ Sn, σ ≥ σ ′ if and only if σ̃ (x, y) ≥ σ̃ ′(x, y) for all x, y ∈ [n].
Under this ordering, one can observe that the identity element (denoted id) is max-
imal, and the permutation that maps x to n + 1 − x is minimal.

DEFINITION 13 (Monotone coupling). Let {Ut : t ∈ N} be the family of i.i.d.
Ber(1

2) random variables, and let {ci : i ∈ N} be the family of i.i.d. Unif{1, n} ran-
dom variables (i.e., ci = 1 or n, each with probability half) that is independent from
Ut ’s. Using ci ’s and Ut ’s, we define the updates of the CAT shuffle as follows:

(1) At time (n− 1)i + 1 for each i = 0,1, . . ., we begin the exploration starting
from position ci . That is, if for instance ci = 1, then during the time interval from
(n − 1)i + 1 to (n − 1)(i + 1), we explore the deck from left to right.
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(2) Suppose that (x, x + 1) is the edge we are about to swap or not at time
t + 1.

• If either Ut = 0 and σt (x) < σt(x +1) or Ut = 1 and σt (x) > σt (x +1), then we
swap the edge (x, x + 1), hence obtaining σt+1(x) = σt (x + 1) and σt+1(x +
1) = σt (x).

• In other cases, we do nothing.

In other words, if Ut = 0 we reverse-sort the cards at positions x, x +1, whereas
if Ut = 1 we sort the cards at x, x + 1. One can easily check that this update rule
exhibits the same transition matrix as the CAT shuffle. The following proposi-
tion describes a significant advantage of this coupling, namely the preservation of
monotonicity. For a proof, we refer to [6].

PROPOSITION 14 ([6], Proposition 3.1). Let ξ, ξ ′ ∈ Sn and let σ
ξ
t (resp., σ

ξ ′
t )

denote the CAT shuffle starting from ξ (resp., ξ ′) coupled by the aforementioned
update rules. If ξ ≥ ξ ′, then we have

σ
ξ
t ≥ σ

ξ ′
t for all t ≥ 0.

DEFINITION 15. A probability distribution ν on Sn is called increasing if
ν(σ ) ≥ ν(σ ′) holds for all σ,σ ′ ∈ Sn such that σ ≥ σ ′.

One property of the adjacent transposition shuffle is that it preserves the mono-
tonicity of measures. This fact is formalized in the following lemma, whose proof
can be found in [6].

LEMMA 16 ([6], Proposition A.1). Let ν be an increasing probability measure
on Sn. For any x ∈ [n − 1], let σx be the resulting state of σ after performing an
update at edge (x, x + 1), that is, either swap the labels σ(x), σ(x + 1) with
probability half or stay fixed otherwise. Let νx denote the distribution of σx when
σ ∼ ν. Then, νx is increasing.

Furthermore, we introduce two additional tools which will be used in the next
subsection: decay estimate of σ̃t and the censoring inequality.

For any fixed x, y ∈ [n], the average of σ̃ (x, y) over μ is 0. We are interested
in decay speed of the expected value of σ̃t (x, y), which can be described as the
following lemma.

LEMMA 17. Let (σt ) denote the CAT shuffle on [n] that starts from an ar-
bitrary initial state and let δ > 0 be arbitrary. Then there exist Nδ, θδ > 0 in-
dependent of n such that for any n ≥ Nδ , x, y ∈ [n], and θδn

3 < t ≤ n4, we
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have ∣∣E[
σ̃t (x, y)

]∣∣ ≤ n
(
1 + O

(
tn−5))

exp
(
−(1 − δ)

π2

n3 t

)
.

REMARK 18. The random AT shuffle version of Lemma 17 is discussed in
[6], Lemma 4.1. In the random AT shuffle, this is proven by a direct computation
of the eigenvalues and eigenvectors of the simple random walk. In the present
context, such method seems extremely difficult to be applied because the model
is more complicated. Instead, we choose an alternative approach, based on the
ideas similar to Lemmas 6 and 11. Due to its technicality, we defer the proof of
Lemma 17 to Section A.1.

To conclude this section, we introduce the censoring inequality for the CAT
shuffle. In [10], Peres and Winkler proved the censoring inequality for the Glauber
dynamics on monotone spin systems. The message of this inequality is that ignor-
ing updates can only slow down the mixing. In [6], Lacoin extended the inequality
to the random AT shuffle. It turns out that in the CAT shuffle, the censoring in-
equality is still true.

To formalize, a censoring scheme is a function C :N → P([n− 1]) that is inter-
preted as follows:

• At each time t , the edge (x, x + 1) that we are about to update is ignored if and
only if x ∈ C(t).

Let P t
ν be the probability distribution of the CAT shuffle at time t with initial

distribution ν, and let P t
ν,C denote the distribution of the CAT shuffle at time t

which has performed the censoring dynamics according to C while started from
the same distribution ν. Intuitively, the updates are the triggers that carry the chain
to its equilibrium, so one might guess that the censored dynamics is further away
from the equilibrium than the original one. This intuition turns out to be true for
the CAT shuffle due to monotonicity of the system, as long as we start from an
“increasing” initial distribution ν. Lacoin [6] and [10] describe this phenomenon
as follows.

PROPOSITION 19 (The censoring inequality). Let ν be an increasing proba-
bility distribution on Sn. For any censoring scheme C : N → P([n − 1]) and any
t ≥ 0, we have

(5.2)
∥∥P t

ν − μ
∥∥

T.V. ≤
∥∥P t

ν,C − μ
∥∥

T.V..

In particular, (5.2) holds for the starting distribution ν = δid, the point mass at the
identity.

We omit the proof of the censoring inequality. A proof can be found either in
[6] or in [10].
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5.2. Proof of Theorem 1, part (b). In this subsection, we prove the second part
of Theorem 1. Implementing the ingredients we obtained in the previous sections,
the proof follows similarly as in the case of random AT shuffle [6].

To this end, we first explain the projection of measures on Sn which serves as a
pretty tool to understand the mixing clearly. After that, we describe the main ideas
of the proof. Some of the details will be presented in the Appendix.

Let K be a fixed integer and define xi := 
 in
K

� for all i = 0,1, . . . , n. Following
the notation in [6], we define the functions σ̂ and σ̄ for each σ ∈ Sn and the sets
Ŝn, S̄n by

σ̂ : [n] × [K] →R, σ̂ (x, j) := σ̃ (x, xj ), Ŝn := {σ̂ : σ ∈ Sn};
σ̄ : [K] × [K] →R, σ̄ (i, j) := σ̃ (xi, xj ), S̄n := {σ̄ : σ ∈ Sn}.

That is, we are intentionally forgetting information from σ̃ by projecting it to a
smaller domain. For a probability measure ν on Sn, we similarly define the mea-
sure ν̂ (resp., ν̄) on Ŝn (resp., S̄n) by

ν̂(σ̂ ) := ∑
ξ :̂ξ=σ̂

ν(ξ); ν̄(σ̄ ) := ∑
ξ :ξ̄=σ̄

ν(ξ).

Furthermore, we introduce one more notation which is closely related to the
projection ν̂. Let Tn be the subset of Sn defined as

Tn := {
σ ∈ Sn : σ ({xi−1 + 1, . . . , xi}) = {xi−1 + 1, . . . , xi} for all i ∈ [K]}.

It is clear that |Tn| = ∏K
i=1(
xi)!, where 
xi := xi − xi−1. For a probability mea-

sure ν on Sn, the probability measure νu is defined by

νu(σ ) := 1

|Tn|
∑
τ∈Tn

ν(τ ◦ σ).

Therefore, νu becomes an invariant measure under composing an element of Tn.
In other words, it is locally uniformized in the sense that permuting the label
σ(x) ∈ (xi−1, xi] within the same interval (xi−1, xi] does not affect its probabil-
ity. In addition, note that for any σ ∈ Sn and τ ∈ Tn, σ̂ = τ̂ ◦ σ . Based on this
observation, we can deduce a connection between ν̂ and νu.

LEMMA 20 ([6], Lemma 4.3). Let μ denote the uniform measure on Sn. For
any probability measure ν on Sn,

‖ν̂ − μ̂‖T.V. =
∥∥νu − μ

∥∥
T.V..
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PROOF. The lemma readily follows from the above observation. Since νu is
constant on {σ : σ̂ = ξ̂} for each fixed ξ̂ ∈ Ŝn, we have∑

σ

∣∣νu(σ ) − μ(σ)
∣∣ = ∑

ξ̂∈Ŝn

∣∣∣∣ ∑
σ :σ̂=ξ̂

(
νu(σ ) − μ(σ)

)∣∣∣∣
= ∑

ξ̂∈Ŝn

∣∣∣∣ ∑
σ :σ̂=ξ̂

(
ν(σ ) − μ(σ)

)∣∣∣∣ = ∑
ξ̂∈Ŝn

∣∣̂ν(̂ξ) − μ̂(̂ξ )
∣∣.

�

In order to establish the main theorem, we will introduce a censoring scheme
C, and show that the censored dynamics indeed mixes in the desired time, and
hence implying the mixing of the original chain by the censoring inequality. We
follow [6] for the construction of C, while the proofs for each step rely on different
ingredients to fit with the CAT shuffle.

Let η > 0 be a small fixed constant, set K := 
η−1� and let xi := 
in/K� as
before. Define the censoring scheme C :N → P([n − 1]) by

C(t) =
{{

xi : i ∈ [K − 1]}, if t ∈ [0, t1] ∪ [t2, t3];
∅ if t ∈ (t1, t2),

where the times t1, t2 and t3 are given by

t1 :=
(

η

3

)
n3

2π2 logn; t2 :=
(

1 + 2η

3

)
n3

2π2 logn; t3 := (1 + η)
n3

2π2 logn.

In other words, in the first and the third steps, we ignore the updates happening at
edges (xi, xi + 1) for all i ∈ [K − 1], while running the chain without censoring
in the second phase. Thus, in the first and the third steps, the chain operates sepa-
rately at each interval (xi−1, xi], while being dependent from each other since they
share the directions of exploration {cl}. What happens in the censored shuffle can
intuitively be described as follows (also see Figure 3):

(1) At time t1, the cards in the same interval (xi−1, xi] are distributed nearly
uniformly, hence becoming indistinguishable. Thus, we can label all cards in
(xi−1, xi] by the same index i.

(2) At time t2, cards with different indices get mixed, and each interval
(xi−1, xi] contains approximately equal number of cards of index j for all j . How-
ever, the locations within (xi−1, xi] of the cards of different indices might not be
uniform.

(3) After time t3, within each interval (xi−1, xi], the placement of cards of dif-
ferent indices become almost uniform.

Let us denote the uniform measure by μ as before, and define

νt := P t
id,C,
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FIG. 3. An illustration of mixing divided into three steps. Dashed edges indicate the censored
updates during the first and the third phases.

the probability distribution of the censored CAT shuffle at time t under the censor-
ing scheme C which started from the initial state id. Then by Lemma 20,

(5.3) ‖νt − μ‖T.V. ≤
∥∥νt − νu

t

∥∥
T.V. + ‖ν̂t − μ̂‖T.V..

Having (5.3) in mind, we will establish mixing in terms of ‖νt − νu
t ‖ and ‖ν̂t − μ̂‖

as follows.

PROPOSITION 21. For any given η, ε > 0, the following holds for all large
enough n and all t > t1: ∥∥νt − νu

t

∥∥
T .V . ≤ ε/3.

PROPOSITION 22. For any given η, ε > 0, the following holds for all large
enough n:

‖ν̂t3 − μ̂‖T .V . ≤ 2ε/3.

PROOF OF THEOREM 1, PART (B) FROM PROPOSITIONS 21–22. The censor-
ing inequality and equation (5.3) implies that∥∥P t3

id − μ
∥∥

T.V. ≤ ‖νt3 − μ‖T.V. ≤
∥∥νt3 − νu

t3

∥∥
T.V. + ‖ν̂t3 − μ̂‖T.V. ≤ ε.

Therefore, the mixing time tmix(ε) of the CAT shuffle satisfies

tmix(ε) ≤ t3 = (1 + η)
n3

2π2 logn,

where η > 0 can be taken arbitrarily small as n tends to infinity. �

PROOF OF PROPOSITION 21. Our approach will be essentially the same as
Lemma 6. Let σt be the state at time t under performing the censoring of C with
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initial condition σ0 = id. Since the cards can only move within each intervals
{xi−1 + 1, . . . , xi} for i ∈ [K − 1] until time t1, we have σt ∈ Tn for all t ≤ t1.
This implies that

νu
t = 1u

id,

where 1id is the point mass at id. Moreover, 1u
id is the stationary distribution of our

chain until time t1. Therefore, by the coupling inequality,

(5.4)
∥∥νt1 − νu

t1

∥∥
T.V. =

∥∥νt1 − 1u
id

∥∥
T.V. ≤ max

τ,τ ′∈Tn

P
(
σ τ

t1
�= στ ′

t1

)
,

where σ τ
t denotes the censored chain with initial condition στ

0 = τ . Note that the
inequality holds for any coupling (σ τ

t , σ τ ′
t ). Let τ, τ ′ ∈ Tn be arbitrary and for each

a ∈ [n], define

T̃a := min
{
t ≥ 0 : (

σ τ
t

)−1
(a) = (

σ τ ′
t

)−1
(a)

}
to be the coupling time of the card a in both decks. In order to estimate the decay
of the coupling time between σ τ

t and στ ′
t , we adopt the coupling which differs

from the monotone coupling in Section 5.1. This can be described as follows:
At time (n − 1)s for each s = 0,1,2, . . ., we choose the same orientation of

exploration in both decks. At time t , let (x, x + 1) denote the edge that we are
about to swap or not.

(1) If σt (x) = σ ′
t (x + 1) or σt (x + 1) = σ ′

t (x) then we do opposite moves. In
other words, we pick either σt or σ ′

t uniformly at random and swap the cards at
positions x, x + 1 of the chosen one while leaving the other fixed.

(2) Otherwise, we do identical moves; we either transpose the cards at x, x + 1
for both σt and σ ′

t or do nothing for both of them, each with probability 1/2.

This rule ensures that once a specific card is in the same position in both
decks, then it will remain matched forever. Thus, if a ∈ (xi−1, xi] and τ−1(a) ≤
(τ ′)−1(a), then T̃a is bounded by the hitting time Ta defined as

Ta := min
{
t ≥ 0 : (

σ τ
t

)−1
(a) = xi

}
.

Therefore, we are in the identical situation as Lemma 6, except that the length of
the interval which the process (σ τ

t )−1(a) can move around is now 
xi ≤ 
ηn�+1.
Therefore, Lemma 6 gives that

P(Ta > t1) ≤ (
1 + O

(
n−1))

exp
(
− π2

5η2n3 t1

)
,

and by a union bound over all a ∈ [n] we obtain that

P
(
σ τ

t1
�= στ ′

t1

) ≤
n∑

a=1

P(Ta > t1) ≤ n exp
(
− π2

15η
logn

)
≤ ε/3,

for all large enough n. Combining with (5.4) implies the desired result. �
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REMARK 23. In [6], where they study the random AT shuffle, the censored
shuffle under the same censoring scheme C during time [0, t1] simplifies to the
product chain of K copies of independent random AT shuffle on (xi−1, xi]. Thus,
they prove Proposition 21 using this fact without introducing the above coupling.

In order to prove Proposition 22, we need the following observation.

PROPOSITION 24. For any given η, ε > 0, the following holds for all large
enough n:

‖ν̄t2 − μ̄‖T .V . ≤ ε/3.

PROOF. We define the function h : Sn →R to be

h(σ) :=
K−1∑
i,j=1

σ̄ (i, j).

Then for any increasing probability measure ν on Sn, we have the following
lemma from [6] which tells us how the expected value ν(h) controls the distance
‖ν − μ‖T.V. from the uniform measure.

LEMMA 25 ([6], Lemma 5.5). Let ν be an increasing probability measure on
Sn. For all ε > 0, there exists a constant γ (K, ε) > 0 such that for all sufficiently
large n,

ν(h) ≤ γ
√

n implies ‖ν̄ − μ̄‖T.V. ≤ ε/3.

Lemma 25 stems from the observation that if σ ∼ μ, then n−1/2σ̄ (i, j) con-
verges to a Gaussian distribution as n tends to infinity. Due to this fact, one can
show that if ν(σ̄ (i, j)) is less than a small constant times

√
n, then the distance

between μ̄i,j and ν̄i,j is accordingly small, where ν̄i,j (resp., μ̄i,j ) denotes the
distribution of σ̄ (i, j) under σ ∼ ν (resp., σ ∼ μ). The function h combines the
information for all i, j .

Due to Lemma 17, νt2(h) can be bounded by γ
√

n, and hence we can apply
Lemma 25 to obtain the desired inequality. Letting δ = η/7 in Lemma 17, we have

νt2(h) ≤ P
t2−t1
id (h) ≤ n(K − 1)2 exp

(
−

(
1 − η

6

)
π2

n3 (t2 − t1)

)
≤ γ

√
n,

where the last inequality holds for any fixed γ > 0 when n is large enough. More-
over, since 1id is increasing, Lemma 16 implies that νt2 is also increasing. There-
fore, Lemma 25 tells us that

‖ν̄t2 − μ̄‖T.V. ≤ ε/3. �
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Now we conclude the proof of Proposition 22. We again rely on the ideas in the
proof of Proposition 21 and then have the following.

PROOF OF PROPOSITION 22. Let σt be the state of the censored CAT shuffle
at time t . Due to our censoring scheme, we have

σt

({xi−1 + 1, . . . , xi}) = σt2

({xi−1 + 1, . . . , xi}) for all i ∈ [K], t ∈ [t2, t3].
Therefore, the stationary distribution μσt2

for the chain during time t ∈ [t2, t3] can
be written as

μσt2
(·) := μ

(· | σ ({xi−1 + 1, . . . , xi}) = σt2

({xi−1 + 1, . . . , xi}),∀i ∈ [K]).
(Note the difference between μσt2

and 1u
σt2

; the former uniformizes over the posi-
tions x ∈ (xi−1, xi] while the latter uniformizes over the labels σ(x) ∈ (xi−1, xi].)
Thus, the same coupling argument in Proposition 21 implies that

(5.5)
∥∥νt3(· | σt2) − μσt2

∥∥
T.V. ≤ ε/3,

where νt3(· | σt2) denotes the probability distribution of σt3 given that it was at
state σt2 at time t2. For arbitrary ξ ∈ S̄n, we average the inequality (5.5) on the
event {σ̄ = ξ} to obtain that∑

σt2 :σ̄t2=ξ

νt2(σt2 |σ̄t2 = ξ)
∥∥νt3(· | σt2) − μσt2

∥∥
T.V.

≥ ∥∥νt3(· | σ̄t2 = ξ) − μ(· | σ̄ = ξ)
∥∥

T.V..

Thus, by taking projections and using (5.5) we have

(5.6)
∥∥ν̂t3(· | σ̄t2 = ξ) − μ̂(· | σ̄ = ξ)

∥∥
T.V. ≤ ε/3.

Following the computation in Proposition 5.3 of [6], this implies that∑
σ̂∈Ŝn

∣∣̂νt3(σ̂ ) − μ̂(σ̂ )
∣∣ ≤ ∑

ξ∈S̄n

∑
σ̂ :σ̄=ξ

∣∣̂νt3(σ̂ ) − μ̂(σ̂ )
∣∣

≤ ∑
ξ∈S̄n

∑
σ̂ :σ̄=ξ

(
ν̄t2(ξ)

∣∣̂νt3(σ̂ | σ̄t2 = ξ) − μ̂(σ̂ | σ̄ = ξ)
∣∣

+ μ̄(σ̂ | σ̂ = ξ)
∣∣ν̄t2(ξ) − μ̄(ξ)

∣∣)
≤ 2ε

3
+ 2ε

3
≤ 4ε

3
,

where the last line follows from (5.6) and Proposition 24. �
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6. Application to the systematic simple exclusion process. In this section,
we study the systematic simple exclusion process using the techniques developed
from the previous chapters. We show that the mixing time of this process satisfies
a similar bound as Theorem 1.

The systematic simple exclusion process can be understood as a projection of
the CAT shuffle. To define the model, consider we have a length (n − 1) path on
{1, . . . , n} and locate k ≤ n particles at vertices, with each vertex being occupied
by at most one particle. We introduce the dynamics similar to the CAT shuffle:
At the beginning, we pick either 1 or n uniformly at random. If 1 is chosen, then
at time t ∈ {1, . . . , n − 1} we update the edge (t, t + 1), meaning that we either
swap the possessions of the endpoints of the edge or leave it stay fixed, each with
probability 1

2 . If n is chosen, we explore in the opposite direction. After updating
all (n − 1) edges, we again choose a random initial location out of {1, n} and
continue the systematic updates starting from the chosen point. In other words, it
is the projection of the CAT shuffle which regards k cards as particles and the rest
as empty sites.

Using the argument from previous sections, we have the following mixing time
bound for the systematic simple exclusion process.

THEOREM 26. Consider the systematic simple exclusion process on the line
{1, . . . , n} with k(n) particles such that both k and n − k tends to infinity as n →
∞. Let k′ := min{k,n − k}. Then for any ε > 0, we have

(a) tmix(1 − ε) ≥ n3

2π2 log k′ − n3

2π2 log(
c log k′

ε
), where c is a universal constant.

(b) tmix(ε) ≤ (1 + o(1))4n3

π2 log k′.

REMARK 27. We conjecture that the lower bound of Theorem 26 is sharp,
that is, the systematic simple exclusion process should exhibit cutoff at tmix(ε) =
(1 + o(1)) n3

2π2 logk′. The main difficulty of improving (b) of Theorem 26 stems
from the deterministic aspects of the update rule. For instance, in [6] where cutoff
for the simple exclusion process is established, the problem can be reduced to
analyzing simple random walks. However, in the systematic case, the increments
of the random walks corresponding to those derived in [6] are heavily correlated,
which makes it more difficult to study.

PROOF. We can assume that k ≤ n
2 , since in the other case we can swap the

roles of empty sites and particles. Let �n,k := {ξ ∈ {0,1}n : ∑n
x=1 ξ(x) = k} be the

state space of the chain, where ξ(x) = 1 (resp., ξ(x) = 0) indicates that position x

is occupied (resp., empty).
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To prove part (a), We consider the following height function for each ξ ∈ �n,k :

(6.1) gξ (x) :=
x∑

z=1

ξ(z) − xk

n
.

Using the height function, define

(6.2) �(ξ) :=
n∑

x=1

gξ (x) sin
(

πx

n

)
.

We additionally define ∧t to be the state at time t of the systematic simple exclu-
sion process with initial condition that has particles in the first k positions (i.e.,
∧(x) = 1{x≤k} for all x), and let

(6.3) �t := �(∧(n−1)t ).

Then the following is a straightforward generalization of Lemmas 3 and 5.

LEMMA 28. Let �t be defined as (6.3). For any t ∈ N, we have

(a) |E[�t+1|Ft ] − (1 − γ )�t | ≤ 3π
4n

, where γ := π2/n2 − O(n−4).
(b) E[(
�t)

2|Ft ] ≤ Ck log k, where C > 0 is a universal constant.

We can then conclude the proof of the lower bound by following the approach
of Section 3.2, based on Lemmas 2 and 28.

To prove the upper bound, we consider two copies ξ1
t , ξ2

t of systematic simple
exclusion processes with different initial configurations, and estimate their cou-
pling time using Lemma 6. To be specific, we first label the k particles arbitrarily
in both chains, and consider the coupling introduced in the proof of Proposition 21.
For each i, the coupling time of the ith particle in ξ1

t and ξ2
t is bounded by the hit-

ting time of the left particle reaching at the right end of the deck. Therefore, if we
call the latter quantity Ti , then for any ε, δ > 0 and t = (1 + δ)4n3

π2 log k, Lemma 6
implies that

max
ξ1

0 ,ξ2
0 ∈�n

P
(
ξ1
t �= ξ2

t

) ≤
k∑

i=1

P(Ti > t) ≤ ε,

for all sufficiently large n. �

APPENDIX

A.1. The decay estimate: Proof of Lemma 17.

LEMMA 17. Let (σt ) denote the CAT shuffle starts from an arbitrary initial
state and let δ > 0 be arbitrary. Then there exist Nδ, θδ > 0 such that for any
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x, y ∈ [n], n ≥ Nδ and t > θδn
3 satisfying t = O(n4), we have

(A.1)
∣∣E[

σ̃t (x, y)
]∣∣ ≤ n

(
1 + O

(
tn−5))

exp
(
−(1 − δ)

π2

n3 t

)
.

PROOF. Let y ∈ [n] be given and let t be of the form t = (n − 1)i for i ∈ N.
Assume that y < n (otherwise we have nothing to prove) and set 
 := n − 1. We
analyze the expected difference between σ̃ at time t + 
 and t given the informa-
tion Ft until time t . Recall Definition 13, where we defined the random variables
Us , ci and the update rules using them. Notice that between time t and t + 
,
σ̃s(x, y) can only be changed when updating the edge (x, x + 1). Also, when up-
date is performed at edge (x, x + 1) at time s, it goes up by 1 if σs(x) > y ≥
σs(x + 1) and Us = 1, whereas it moves down by 1 if σs(x) ≤ y < σs(x + 1) and
Us = 0.

Set vt (x) := σ̃t (x, y). We compute E[vt+
(x) − vt (x) | Ft ] based on the above
properties of σ̃ , by considering the cases ci = 1 and ci = n separately. If 2 ≤ x ≤
n − 2, we have

(A.2)

E
[
vt+
(x) − vt (x) | Ft , ci = 1

]
=

x−2∑
k=0

1

2k+2 (1{σt (x+1)≤y<σt (x−k)} − 1{σt (x+1)>y≥σt (x−k)})

+ 1

2x
(1{σt (x+1)≤y<σt (1)} − 1{σt (x+1)>y≥σt (1)}),

E
[
vt+
(x) − vt (x) | Ft , ci = n

]
=

n−x−2∑
k=0

1

2k+2 (1{σt (x+1+k)≤y<σt (x)} − 1{σt (x+1+k)>y≥σt (x)})

+ 1

2n−x
(1{σt (n)≤y<σt (x)} − 1{σt (n)>y≥σt (x)}).

Notice the following relation between the indicators:

1{σ(x1)≤y<σ(x2)} − 1{σ(x1)>y≥σ(x2)}
= 1{σ(x1)≤y} − 1{σ(x1),σ (x2)≤y} = 1{σ(x2)≤y} + 1{σ(x1),σ (x2)≤y}
= 1{σ(x1)≤y} − 1{σ(x2)≤y}
= σ̃ (x1, y) − σ̃ (x1 − 1, y) − σ̃ (x2, y) + σ̃ (x2 − 1, y),
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where we define σ̃ (0, y) := 0. This property implies that

(A.3)

E
[
vt+
(x) − vt (x) | Ft

]
=

x−2∑
k=0

1

2k+3

{
vt (x + 1) − vt (x) − vt (x − k) + vt (x − k − 1)

}
+ 1

2x+1

{
vt (x + 1) − vt (x) − vt (1)

}
+

n−x−2∑
k=0

1

2k+3

{
vt (x + 1 + k) − vt (x + k) − vt (x) + vt (x − 1)

}
+ 1

2n−x+1

{−vt (n − 1) − vt (x) + vt (x − 1)
}
.

Letting v̄t (x) = E[vt (x)], taking expectations on both sides of (A.3) and rearrang-
ing the terms in the right-hand side, we have that for each 2 ≤ x ≤ n − 2,

(A.4) v̄t+
(x) =
n−x−2∑
k=−1

v̄t (x + k)

2k+3 +
x−2∑

k=−1

v̄t (x − k)

2k+3 .

Similar calculations for x = 1 and x = n − 1 yield that

(A.5)

v̄t+
(1) = 1

8
v̄t (1) + 1

4
v̄t (2) +

n−2∑
k=2

v̄t (k)

2k+2 ;

v̄t+
(n − 1) = 1

8
v̄t (n − 1) + 1

4
v̄t (n − 2) +

n−2∑
k=2

v̄t (n − k)

2k+2 .

Due to the monotonicity of σ̃ (x, y) in terms of σ , it suffices to prove the desired
inequality (A.1) for the initial condition σ0 = id which is the maximal case. The
minimal case with initial state σ−(z) = n + 1 − z is also included in the maximal
case; the only differences are the sign and taking σ̃−(·, n − y) instead of σ̃ (·, y).

Thus, let us assume that σ0 = id. In order to establish the main inequality (A.1),
we will introduce us : [n] → R which satisfies us(x) ≥ v̄
s(x) and the bound

‖us‖∞ ≤ n
(
1 + O

(
sn−4))

exp
(
−(1 − δ)

π2

n2 s

)
.

Let u0(x) := v̄0(x), us(0) = us(n) = 0 and define us+1(x) to follow (A.4) so
that

(A.6) us+1(x) =
n−x−1∑
k=−1

us(x + k)

2k+3 +
x−1∑

k=−1

us(x − k)

2k+3 ,
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for each x ∈ [n] and j ∈ N. Note the difference between v̄s and us as v̄s+1(x)

satisfies (A.4) only for 2 ≤ x ≤ n−2. Since u0 = v̄0 is positive and the coefficients
in (A.6) are at least as large as those in (A.4) and (A.5), we have us ≥ v̄s for all s.

Furthermore, we define ds : [n] → R by

(A.7) ds(x) := us(x) − us(x − 1).

We analyze ds instead of us since it has a tractable initial condition. Indeed, note
that ‖d0‖∞ ≤ 1, which is much smaller compared to ‖u0‖∞ � n. Also, note the
obvious inequality that

(A.8) ‖us‖∞ ≤ ‖ds‖1.

Based on (A.6), we compute the transition rule of ds as follows:

(A.9) ds+1(x) =
n−x∑

k=−1

ds(x + k)

2k+3 +
x−1∑

k=−1

ds(x − k)

2k+3 .

Therefore, one can observe that the equation (A.9) is equivalent to the transition
rule of the random walk on Z that has i.i.d. increments Xj ∼ X with

P(X = k) = 1

2|k|+3 + 1

2−|k|+3 1{|k|≤1},

and that dies out when reaching outside of [n].
Let Sx

m := x +∑m
j=1 Xj be the symmetric random walk on Z with i.i.d. Xj ∼ X

that starts at x, and let τ̂ x
n := min{m ≥ 0 : Sx

m /∈ [n]} be its first exit time from [n].
For each l ∈ [n], let d

(l)
s denote the vector such that d

(l)
0 = 1{l} and follows the

transition rule (A.9). Then we have

(A.10)
∥∥d(l)

s

∥∥
1 =

n∑
x=1

d(l)
s (x) = P

(
τ̂ l
n > s

)
.

Thus, our goal is to bound the probability P(τ̂ l
n > s), which can be done similarly

as Lemmas 6 and 11. Since Var(X) = 2, Donsker’s theorem implies that for any
δ > 0, there exists Nδ such that

P
(
τ̂ zn
n > θn2) ≤ P

(
τ̂

z/
√

2
B > θ − δ

)
for all n ≥ Nδ , where τ̂ z

B is the first exit time from [0,1/
√

2] of the standard Brow-
nian motion with initial position z. Notice that we already have computed the prob-
ability in the right-hand side in Lemma 11 and Corollary 12. According to these
results, we obtain that for any constant θ > 0,

P
(
τ̂ z
B > θ

) ≤ C exp
(−π2θ

)
,

for some absolute constant C > 0. (Although Lemma 11 is proven for the walk
that starts at the midpoint of the given interval, generalization to the arbitrary start-
ing location is straightforward.) Repeating the argument done in Corollary 12 and
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Lemma 6, we deduce the following: For any δ > 0, there exist θδ > 0 and Nδ > 0
such that for all θ ≥ θδ , n ≥ Nδ and z ∈ [n],

P
(
τ̂ z
n > θn2) ≤ (

1 + O
(
θn−2))

exp
(−(1 − δ)π2θ

)
.

The original vector ds can be written as

ds =
n∑

l=1

d0(l) · d(l)
s .

Since ‖d0‖∞ ≤ 1, we have

‖ds‖1 ≤
n∑

l=1

∣∣d0(l)
∣∣∥∥d(l)

s

∥∥
1 ≤ n

(
1 + O

(
sn−4))

exp
(
−(1 − δ)

π2

n2 s

)
,

for all large n > Nδ and θδn
2 < s ≤ n3. Therefore, we deduce the desired result by

(A.8). �

A.2. Proof of Lemma 11.

LEMMA 11 1. Let τ̄ n be the first time that the simple random walk on
Z starting at the origin hits ±n. There exists a constant C > 0 that satisfies
P(τ̄ n > θn2) < C(1 +O(θn−2)) exp(−π2θ/8) for all θ > 0 (θ may depend on n).

REMARK 29. Lemma 11 is originally stated in terms of the hitting time at
±n/

√
2. Here, we presented an equivalent statement regarding the hitting time at

±n.

PROOF. Let S̃m denote the simple random walk on Z that starts at the origin.
By the definition of τ̄ n, it suffices to show the desired inequality for τn+, where τn+
is the first time that S+

m := |S̃m| hits n.
Let (Zm) be the random walk on {0,1, . . . , n − 1} that has the same jump rate

as S+
m on {0,1, . . . , n − 2}, and that at (n − 1) jumps to (n − 2) with probability

1/2 and stays fixed otherwise. Then one can notice that P(τ n+ > θn2) is equal to
the survival probability of Zθn2 . We focus on computing the latter quantity.

Denote the transition matrix of (Zm) by Mn and note that the matrix Mn is
symmetric. For each j = 0,1, . . . , n−1, let fj be the n-dimensional vector defined
by

fj (x) = cos
(

(2j + 1)πx

2n

)
for all x ∈ {0,1, . . . , n − 1}.

Observe that fj ’s are the eigenvectors of Mn, particularly since cos( (2j+1)πx
2n

) be-
comes zero at x = n. The corresponding eigenvalues are given by

λj = cos
(

(2j + 1)π

2n

)
for all j ∈ {0,1, . . . , n − 1}.
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It is also straightforward to check that fj ’s are orthogonal:

n−1∑
x=0

fj (x)fk(x) = 1

2

n−1∑
x=0

cos
(

(j + k + 1)πx

n

)
+ cos

(
(j − k)πx

n

)
,

and the right-hand side is nonzero if and only if j = k. Therefore, {fj } forms an
orthogonal basis of the space of n-dimensional vectors. Let δ0 be the point mass at
the origin. Elementary calculation yields that

(A.11)

P
(
τn+ > t

) =
n−1∑
x=0

Mt
nδ0(x) =

n−1∑
x=0

n−1∑
j=0

δ0 · fj

fj · fj

λt
jfj (x)

=
n−1∑
j=0

2

n + 1
cost

(
(2j + 1)π

2n

) n−1∑
x=0

cos
(

(2j + 1)πx

2n

)

≤ 4

n/2�∑
j=0

cost

(
(2j + 1)π

2n

)
,

where in the second line we used the identity fj · fj = n+1
2 . If we consider the

line passing (0, cos 0) and (α, cosα) for α = π/2n, it lies above (z, cos z) for z ∈
[π/2n,π/2]. Thus, we can bound λt

j by

cost

(
(2j + 1)π

2n

)
≤

{
1 − (2j + 1)

(
1 − cos

(
π

2n

))}t

≤ exp
{
−t (2j + 1)

(
1 − cos

(
π

2n

))}
.

Hence, summation over j = 0, . . . , n − 1 yields that


n/2�∑
j=0

cost

(
(2j + 1)π

2n

)
≤ exp(−(1 − cos( π

2n
))t)

1 − exp(−(1 − cos( π
2n

))t)

≤
(

1 + O

(
t

n4

))
exp(−π2t/8n2)

1 − exp(−π2t/8n2)
.

Therefore, combining with (A.11), we obtain that

P
(
τn+ > θn2) ≤ min

{
1,

(
4 + O

(
θn−2)) exp(−π2θ/8)

1 − exp(−π2θ/8)

}

≤ (
5 + O

(
θn−2))

exp
(
−π2

8
θ

)
,

which is the desired result with C = 5. �
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A.3. Proof of Lemma 3.

LEMMA 3. Let 	t defined as (3.2). For any t ∈ N, we have

∣∣E[	t+1|Ft ] − (1 − γ )	t

∣∣ ≤ 4π

3n
,

where γ := π2/n2 − O(n−4).

PROOF. According to the computations in (A.4, A.5), we have

(A.12)

E[	t+1|Ft ]

=
n−2∑
x=2

[
n−x−2∑
k=−1

ht (x + k)

2k+3 +
x−2∑

k=−1

ht (x − k)

2k+3

]
sin

πx

n

+
[(

n−3∑
k=0

ht (1 + k)

2k+3

)
+ 1

4
ht (2)

]
sin

(
π

n

)

+
[(

n−3∑
k=0

ht (n − 1 − k)

2k+3

)
+ 1

4
ht (n − 2)

]
sin

(
π(n − 1)

n

)
.

By rearranging the right-hand side, we obtain that

(A.13)

E[	t+1|Ft ]

=
n−2∑
y=2

[n−y−1∑
k=−1

ht (y)

2k+3 sin
(

π(y + k)

n

)
+

y−1∑
k=−1

ht (y)

2k+3 sin
(

π(y − k)

n

)]

+ (
h(1) + h(n − 1)

)(1

4
sin

(
2π

n

)
+ 1

8
sin

(
π

n

))

=
[ ∞∑

k=−1

cos(πk
n

)

2k+2

]
	t +

n−2∑
y=2

h(y)

{ ∞∑
k=1

sin(πk
n

)

2n−y+3+k
+

∞∑
k=1

sin(πk
n

)

2y+3+k

}

− (
h(1) + h(n − 1)

)[ ∞∑
k=1

3 sin(πk
n

)

2k+4

]
.

Noting that

∞∑
k=−1

cos(πk
n

)

2k+3 = 1 − π2

n2 + O

(
1

n4

)
= 1 − γ
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as well as that |ht (x)| ≤ 1
2x ∧ (n − x), we can deduce from (A.13) that

(A.14)

∣∣E[	t+1|Ft ] − (1 − γ )	t

∣∣
≤

∞∑
y=2

y

{ ∞∑
k=1

π

n

k

2y+3+k

}
+

∞∑
k=1

3k

2k+4

π

n
= 3π

4n
.

�
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