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LOCALIZATION OF THE GAUSSIAN MULTIPLICATIVE CHAOS
IN THE WIENER SPACE AND THE STOCHASTIC HEAT

EQUATION IN STRONG DISORDER

BY YANNIC BRÖKER, AND CHIRANJIB MUKHERJEE

University of Münster

We consider a Gaussian multiplicative chaos (GMC) measure on the
classical Wiener space driven by a smoothened (Gaussian) space-time white
noise. For d ≥ 3, it was shown in (Electron. Commun. Probab. 21 (2016)
61) that for small noise intensity, the total mass of the GMC converges to
a strictly positive random variable, while larger disorder strength (i.e., low
temperature) forces the total mass to lose uniform integrability, eventually
producing a vanishing limit. Inspired by strong localization phenomena for
log-correlated Gaussian fields and Gaussian multiplicative chaos in the fi-
nite dimensional Euclidean spaces (Ann. Appl. Probab. 26 (2016) 643–690;
Adv. Math. 330 (2018) 589–687), and related results for discrete directed
polymers (Probab. Theory Related Fields 138 (2007) 391–410; Bates and
Chatterjee (2016)), we study the endpoint distribution of a Brownian path
under the renormalized GMC measure in this setting. We show that in the
low temperature regime, the energy landscape of the system freezes and en-
ters the so-called glassy phase as the entire mass of the Cesàro average of
the endpoint GMC distribution stays localized in few spatial islands, forcing
the endpoint GMC to be asymptotically purely atomic (Probab. Theory Re-
lated Fields 138 (2007) 391–410). The method of our proof is based on the
translation-invariant compactification introduced in (Ann. Probab. 44 (2016)
3934–3964) and a fixed point approach related to the cavity method from
spin glasses recently used in (Bates and Chatterjee (2016)) in the context of
the directed polymer model in the lattice.

1. Introduction and the main result.

1.1. Motivation. Let � be a metric space which is endowed with a finite mea-
sure μ. Consider the tilted random measure of the form

(1.1) Mβ(dω) = Mβ,H (dω) = exp
{
βH (ω) − 1

2
β2E

[
H (ω)2]}μ(dω),

where β > 0 is a parameter and {H (ω)}ω∈� is a centered Gaussian field defined
on a complete probability space (E,F,P). The theory of Gaussian multiplicative
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chaos (GMC), whose idea was first propounded by Kahane [34], is the general-
ization of (1.1) to the setting when the random field {H (ω)} lives on the space of
distributions, that is, they are defined via a family of integrals w.r.t. a suitable class
of test functions.

One of the crucial properties of the GMC is captured by the following sim-
ple comparison principle which was also discovered by Kahane [34]. If {H (ω)}
and {G (ω)} are two continuous Gaussian fields such that E[G (ω1)G (ω2)] ≤
E[H (ω1)H (ω2)] for all ω1,ω2 ∈ �, then for any concave function F : R+ → R
with at most polynomial growth at infinity,

(1.2) E
[
F(Zβ,G )

]≥ E
[
F(Zβ,H )

]
where Zβ,· =

∫
�

Mβ,·(dω).

In the finite dimensional setting, GMC measures share close connection to the
two-dimensional Liouville quantum gravity [29] and its studies have seen a lot of
revived interest in the recent years. In this setting, the relevant measures are defined
as Mβ,T (dx) := e−β2T/2eβXT (x) dx where D is a domain in Rd , dx stands for the
Lebesgue measure and the ambient Gaussian field (XT (x))x∈D is log-correlated
or star-scale invariant after a suitable cut-off regularization at level T . A rigor-
ous construction of the limiting measure limT →∞ Mβ,T has been carried out us-
ing a martingale approximation [34] and it is well known that when β <

√
2d ,

Mβ,T converges as T → ∞ toward a nontrivial measure Mβ which is diffuse and
is known as the subcritical GMC, while for β ≥ √

2d , Mβ,T converges to 0 as
T → ∞. In this setting (i.e., for log-correlated fields in Rd ), a rigorous construc-
tion of the subcritical GMC measure also follows from a stable mollification pro-
cedure (see [7, 29, 41]). Alternatively, a subcritical GMC in a general setting is
also characterized by requiring that Mβ,H +v(dω) = ev(ω)Mβ,H (dω) for every
Cameron–Martin vector v for the Gaussian field H , that is, for all deterministic
v : � → R such that the law of H + v is absolutely continuous w.r.t. that of H
(see [43]).

In the finite dimensional setting, the regime β >
√

2d corresponds to the so-
called supercritical phase of the GMC measures, which has also received much
attention in the physics literature (see [26, 37] for questions on dyadic trees and
[15, 30, 31] for log-correlated fields). Heuristically speaking, in this regime, one
expects the energy landscape of the underlying Gaussian field to freeze and en-
ter a glassy phase. On a rigorous level, for log-correlated or star-scale invariant
Gaussian fields in the Euclidean set up, this has been justified rigorously in [36]
(see also [11] for similar results for discrete 2d Gaussian free field). In particular,
it was shown that for β >

√
2d and for suitable constants λ1(β), λ2(β) > 0, the

renormalized GMC measure

eλ1(β) log t+λ2(β)tMβ,t
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in the limit t → ∞ is supported only on atoms.1

Quite naturally, the above results inspire questions concerning the behavior of
supercritical GMC in the infinite dimensional setting, which have not been ex-
plored to the best of our knowledge. In the present context, we drop all assump-
tions regarding log-correlations or star-scale invariance of the underlying field and
consider a GMC measure of the form (1.1) on a noncompact metric space. In this
setting, we show that when the temperature is low, the limiting measures are also
supported only on atoms as the cut-off level is sent off to infinity. We now turn to
a precise mathematical layout of the problem.

We fix any spatial dimension d ≥ 1 and set � = C([0,∞);Rd) to be the metric
space of continuous functions endowed with the topology of uniform convergence
of compact subsets. � is tacitly equipped with the Wiener measure Px correspond-
ing to a Rd -valued Brownian motion starting at x ∈Rd . We denote by B a cylindri-
cal Wiener process and by Ḃ a Gaussian space-time white noise which is indepen-
dent of the path W . In other words, for any Schwartz function ϕ ∈ S(R+ × Rd),
Ḃ(ϕ) is a Gaussian random variable on a fixed probability space (E,F,P) with
mean 0 and covariance E[Ḃ(ϕ1)Ḃ(ϕ2)] = ∫∞

0
∫
Rd ϕ1(t, x)ϕ2(t, x)dx dt . Through-

out the rest of the article, E will denote expectation w.r.t. P. We also fix a nonneg-
ative function φ which is smooth, spherically symmetric and is supported in a ball
B1/2(0) of radius 1/2 around 0 and normalized to have total mass

∫
Rd φ(x)dx = 1.

Then we have a (spatially convolved white noise) Gaussian field {HT (W)}W∈� at
level T , defined as

(1.3) HT (W) = HT (W, Ḃ) =
∫ T

0

∫
Rd

φ(Ws − y)Ḃ(s, y)dy ds.

The corresponding tilted measure

(1.4) Mβ,T (dW) = exp
{
βHT (W) − β2T

2
(φ � φ)(0)

}
P0(dW)

is then readily interpreted as a Gaussian multiplicative chaos indexed by Wiener
paths (recall (1.1)). It has covariance kernel

(1.5)

E
[
HT

(
W(1))HT

(
W(2))]= ∫ T

0
ds

∫
Rd

dyφ
(
W(1)

s − y
)
φ
(
W(2)

s − y
)

=
∫ T

0
ds(φ � φ)

(
W(1)

s − W(2)
s

)
≤ T (φ � φ)(0).

1In fact, in the literature cited above, it is shown that, for β >
√

2d , the GMC measure Mβ,t con-

centrates its mass only on sites close to centered maximum supx∈D[Xt (x) − √
2dt] of the field and

consequently, the limiting measure is described as a Poisson measure with (random) intensity given
by the derivative martingale or the critical GMC at β = √

2d whose construction was rigorously
carried out in [27, 28].
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If we denote the total mass by Zβ,T = ∫
� Mβ,T (dW), we also have the renormal-

ized GMC measure

(1.6) M̂β,T (dW) = 1

Zβ,T

Mβ,T (dW).

Using Kahane’s comparison inequality (recall (1.2)) and the domination of the ker-
nels (1.5), it was also shown in [39] that, in d ≥ 3, there exists βc ∈ (0,∞) so that
for β < βc, the total mass Zβ,T = ∫

� Mβ,T (dW) of the GMC converges in prob-
ability to a strictly positive random variable, while for β > βc, Zβ,T ceases to be
uniformly integrable and eventually collapses to zero as T → ∞. In the present
context, the main result of our article shows that, loosely speaking, when the tem-
perature is sufficiently low, in particular when limT →∞ Zβ,T = 0, the renormal-
ized GMC measure M̂β,T (dW) = Zβ,T

−1Mβ,T (dW) has no asymptotic disinte-
gration of mass—its entire mass is preserved and accumulated in few randomly
located islands in Rd . Given the above discussion pertaining to low-temperature
localization of GMC in finite dimensions (e.g., [36]), the present result is then a
contribution toward a rigorous understanding of atomic (or supercritical) GMC in
the infinite dimensional setting. We turn to a precise statement of our main result.

1.2. The result. We set

(1.7) 	(β) = − lim
T →∞

1

T
E[logZβ,T ],

where Zβ,T = ∫
Mβ,T (dW). It is easy to see via a subadditivity argument that

the above limit always exists and Jensen’s inequality together with the fact that

E[exp{βHT (W,B)}] = exp{β2T
2 (φ � φ)(0)} forces it to be nonnegative. Further-

more, the map β �→ 	(β) is monotone increasing and 	(β) > 0 also implies that
limT →∞ Zβ,T = 0 almost surely; see Theorem A.1. For any ε, t > 0, we define
the regions

(1.8) Ut,ε = {
x ∈ Rd : Qβ,t

[
B1(x)

]
> c0ε

}
, c0 = ∣∣B1(0)

∣∣
that carry uniformly positive density for the GMC endpoint

(1.9) Qβ,t = M̂β,tW
−1
t .

Here is our first main result.

THEOREM 1.1 (Pure atomicity of the GMC endpoint). Let d ≥ 1 and fix β >

β1 := inf{β > 0 : 	(β) > 0} ∈ [0,∞]. Then for any sequence εt → 0 with t → ∞,

lim
T →∞

1

T

∫ T

0
Qβ,t [Ut,εt ]dt = 1 P-a.s.(1.10)
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Note that Theorem 1.1 holds for any d ≥ 1 as long as 	(β) > 0. Furthermore,
Theorem A.1 shows that 	(β) > 0 implies limT →∞ Zβ,T = 0, and combined
with Theorem 3.7 it also shows that the latter convergence is in fact exponential
Zβ,T = e−T [	(β)+o(T )], which contrasts the polynomial rate of the convergence of
the (Gaussian) fluctuations of Zβ,T when β is small; see [18].

We refer to the interesting works [5, 6, 16, 17, 23, 44] where low temperature
localization properties of discrete directed polymers have been extensively stud-
ied. In the lattice setting, in [23] the averages on the left-hand side in (1.10) were
shown to be uniformly bounded below by a constant c ∈ (0,1]. The latter statement
was later strengthened in [44] for heavy-tailed environments (i.e., when the loga-
rithmic moment generating function is infinity). Very recently, substantial progress
was made when the latter statement was shown to be true in [6] for polymers in
the lattice even with finite exponential moments. We also remark that localization
properties for polymers in the lattice setting can be efficiently studied by using
the method of fractional moments introduced in [23]. In the continuous setting,
this method, however, seems to break down, and particularly for Gaussian fields,
techniques from GMC like comparison inequalities are well suited and efficient,
as demonstrated in [39]. We refer to Section 1.3 for a comparison of techniques of
the proofs.

We mention that the GMC (1.4) is also closely related to the multiplicative noise
stochastic heat equation which is formally written as

(1.11) dut = 1

2
�ut dt + βut dBt .

Although equation (1.11) is a priori ill-posed, when d = 1 substantial recent
progress has been made in giving a rigorous meaning to its solution ([2, 3, 8,
10, 32, 33, 42]; see also [9, 13] for the case d = 2). It is natural to consider a
regularized version

(1.12) duε,t = 1

2
�uε,t dt + β(ε, d)uε,t dBε,t , uε,0(x) = 1,

of (1.11) by interpreting the above stochastic differential in the classical Itô
sense and considering the spatially mollified noise Bε,t (x) = Ḃ(ϕε,t,x) with
ϕε,t,x(s, y) = 1[0,t](s)φε(y − x) and φε(·) = ε−dφ( ·

ε
) being an approximation of

the Dirac-delta. Clearly, Bε,t (x) is again a centered Gaussian process with covari-
ance E[Bε,t (x)Bε,s(y)] = (s ∧ t)(φε �φε)(x −y) = (s ∧ t)ε−dV ((x −y)/ε), where

(1.13) V = φ � φ

is a smooth function supported in the unit ball B1(0) around the origin. Then

(1.14)

uε,t (x) = Ex

[
exp

{
β(ε, d)

∫ t

0

∫
Rd

φε(Wt−s − y)Ḃ(s, y)dy ds

− tβ(ε, d)2

2
ε−dV (0)

}]
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provides the renormalized Feynman–Kac solution to (1.12), and for d ≥ 3 if we
choose

β(ε, d) = βε
d−2

2 and d ≥ 3, β > 0,

then by Brownian scaling and time-reversal,

(1.15) uε,t (·) (d)= Zβ,ε−2t

(
ε−1·),

where Zβ,T (x) = ∫
� M (x)

β,T (dW) is the total mass of the GMC measure weighted
w.r.t. the Wiener measure Px . When β > 0 is sufficiently small, asymptotic behav-
ior of the solutions (as ε → 0) as well as associated measures have been studied
extensively (see [12, 18, 19, 38, 39]). When β > 0 is large, then Theorem 1.1 com-
bined with the scaling relation (1.15) imply the localization effect of the measures
associated to (1.14) as ε → 0:

COROLLARY 1.2 (Pure atomicity of the stochastic heat equation). Let d ≥ 3
and assume 	(β) > 0 and εt → 0 as t → ∞ as in Theorem 1.1. Then

lim
T →∞

1

T

∫ T

0
M̄β,t−1/2[Wt ∈ Ut,εt ]dt = 1 in P-probability,

where M̄β,ε is the normalized GMC measure corresponding to the Feynman–Kac
solution (1.14).

REMARK 1. In the present setting, the parameter β is considered to be a posi-
tive (large enough) real number. It is an intriguing question to see if the localization
property proved in this article can be extended to a complex GMC in the Wiener
space, that is, GMC with complex β .

1.3. Outline of the proof and comparison of proof techniques. In order to pro-
vide some guidelines to the reader, we will briefly sketch the central idea of the
proof of Theorem 1.1 in this section. We will also emphasize on the similarities
and differences to the earlier approaches used in the existing literature.

As remarked earlier, localization statements for directed polymers were derived
using the method of fractional moments [23, 44], while similar results for GMC
measures for log-correlated fields in Rd were proved [11, 36] by studying maxi-
mum of branching random walks [1, 35]. These methods are quite different from
the approach used in the present article, for which we directly leverage the ma-
chinery in [40], while following [6] as a guiding philosophy.

1.3.1. Outline of the proof. The proof of Theorem 1.1 splits into three main
steps.

Step 1 : The first step is based on studying a metric on the translation-invariant
compactification (of the quotient space) of probability measures on Rd developed
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in [40].2 Since the method for [40] will be a building block of our proof on a
conceptual level, it is useful to briefly review its main idea.

Note that the space M1(Rd) of probability measures on Rd is noncompact un-
der the usual weak topology determined by convergence of integrals w.r.t. con-
tinuous and bounded functions. There can be several reasons which can be at-
tributed to this phenomenon. For instance, a Gaussian with a very large variance
spreads its mass very thin and eventually totally disintegrates into dust. Also, a
mixture like 1

2(μ � δan + μ � δ−an) splits into two (or more) widely separated
pieces as an → ∞. To compactify this space, we should be allowed to “center”
each piece separately as well as to allow some mass to be “thinly spread and dis-
appear.” The intuitive idea, starting with a sequence of probability distributions
(μn)n in Rd is to identify a compact region where μn has its largest accumula-
tion of mass. By choosing subsequences if necessary, we can assume that for any
r > 0, supx∈Rd μn(Br(x)) → q(r) as n → ∞ and q(r) → p1 ∈ [0,1] as r ↑ ∞.
Then there is a shift λn = μn � δan that converges along a subsequence vaguely to
a subprobability measure α1 of mass p1. This means λn can be written as αn + βn

so that αn ⇒ α1 weakly and we recover the partial mass p1 ∈ [0,1]. We peel off
αn from λn and repeat the same process for βn to get convergence along a further
subsequence. We go on recursively to get convergence of one component at a time
along further subsequences in the space of subprobability measures, modulo spa-
tial shifts. The picture is, μn roughly concentrates on widely separated compact
pieces of masses {pj }j∈N while the rest of the mass 1 −∑

j pj leaks out.
In other words, given any sequence μ̃n of equivalence classes in M̃1(Rd),

which is the quotient space of M1(Rd) under spatial shifts, there is a subsequence
which converges (the convergence criterion is determined by a metric structure,
see Section 2.1 for the precise definition) to an element ξ = {α̃1, α̃2, . . . }, a collec-
tion of equivalence classes of subprobabilities αj of masses 0 ≤ pj ≤ 1, j ∈ N.3

The space X̃ of such collections ξ of equivalence classes is the compactification
of M̃1(Rd); see Theorem 2.1 below for a precise statement. In the present con-
text, then our task boils down to investigating the asymptotic behavior of the GMC
endpoint orbits Q̃β,T embedded in X̃ .

With the function V = φ � φ vanishing at infinity, we heavily exploit the met-
ric structure on the compactification X̃ to derive continuity properties of shift-

2Although the compactification in [40] was carried out for the space M1(Rd) of probability mea-

sures on Rd , the exact same construction carries over to the setting of any (Abelian) group acting on
the relevant Polish space. In particular, it works also in the lattice setting for the action of Zd as an
additive group on M1(Zd).

3For example, let μn be the Gaussian mixture 1
3N(n,1) + 1

3N(n2,1) + 1
3N(0, n). Then the limit-

ing object for μ̃n is the collection ξ = {α̃1, α̃1} ∈ X̃ , where α̃1 is the equivalence class of a Gaussian
with variance 1 and weight 1

3 .
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invariant functionals of the form

�(ξ) = β2V (0)

2
− β2

2

∑
i

∫
R2d

V (x − y)αi(dx)αi(dy), ξ = (α̃i)i ∈ X̃ ,

on X̃ (see Sections 2.2–2.3). Methods from stochastic calculus [21, 22] then enable
us to decompose the polymer free energy 1

T
logZβ,T in terms of a martingale and

an additive functional of �(Q̃β,T ). This step is carried out in Section 2.4.
Step 2 : The next main step is to construct a certain dynamics on X̃ described

by transition probabilities πt(ξ, dξ ′) = P[ξ (t) ∈ dξ ′|ξ ] with ξ (t) = (α̃
(t)
i )i∈I and

α
(t)
i ∈ M≤1 for any i ∈ I and t ≥ 0. Here, α

(t)
i can be seen as the subprobability

αi whose mass gets transported through the space Rd from time zero to t by the
following dynamic:

α
(t)
i (dx) := 1

Ft (ξ) + E[Zt − Ft (ξ)]
∫
Rd

αi(dz)Ez

[
1{Wt∈dx} exp

{
βHt (W)

}]
where Zt = E0[exp{βHt (W)}], Ht (W) = ∫ t

0
∫
Rd φ(Ws − y)Ḃ(s, y)dy ds is the

Gaussian field (recall (1.3)) and

Ft (ξ) =∑
i∈I

∫
Rd

∫
Rd

αi(dz)Ez

[
1{Wt∈dx} exp

{
βHt (W)

}]
.

Section 3 is then devoted to showing that for any t > 0, the above kernel map
ξ �→ πt(ξ, ·) is continuous on X̃ . For its proof, we also heavily exploit the pre-
cise metric structure on the space X̃ . In particular, an important recipe is pro-
vided by Proposition 3.6 which is based on a second moment computation that
hinges on the notion of total disintegration of mass, an important trait for the
topology on X̃ (see (2.7) for a precise statement) as well as a decoupling phe-
nomenon of two independent GMC chains at large distances that captures the
underlying attractive nature of the model. The aforementioned representation of
1
T

logZβ,T and the above continuity of ξ �→ πt(ξ, ·) also imply a variational for-
mula for the (quenched) free energy limT →∞ 1

T
logZβ,T = infϑ∈m

∫
�(ξ)ϑ(dξ),

where the infimum is taken (and given the continuity of the above map), attained
over the compact set m = {ϑ ∈ M1(X̃ ) : �t(ϑ, ·) = ϑ∀t ≥ 0} of fixed points of
�t(ϑ, ·) = ∫

πt(ξ, ·)ϑ(dξ) for ϑ ∈ M1(X̃ ).
Step 3 : Finally, one shows that the minimizers m0 ⊂ m of the above variational

formula attract the empirical measures 1
T

∫ T
0 δQ̃t

dt of the endpoint orbit and as
long as 	(β) > 0, no mass dissipates under any ϑ ∈ m0, which concludes the
proof of Theorem 1.1.

1.3.2. Comparison with the earlier approach. As mentioned earlier, we have
drawn inspiration from the techniques recently employed in [6] for directed poly-
mers which also followed the program in [40] for constructing a metric on the
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compactification in a lattice setting. It was also shown ([6], Proposition A.3) that
the metric therein produces the same topology as [40] when the latter structure is
adapted to the lattice setting. However, the metric in [6] is structurally quite differ-
ent from [40]. In particular, the construction of the former metric crucially exploits
the countability (graph structure) of Zd and relies on interpreting probability mea-
sures on Zd as (mass) functions which allows distant point masses to nearly live on
separate copies of Zd .4 In this setting, then the rewrite of the polymer free energy is
carried out by a telescoping sum and crucial continuity properties of the function-
als therein are checked exploiting this distance function between two partitioned
mass functions in the lattice setting.

In contrast (i.e., in absence of the countable lattice structure), in the present
context, the crucial continuity properties of the relevant functionals are deduced
by directly leveraging the representation structure of the metric in [40]. Therefore,
the actual execution of the machinery in Section 2–Section 3 (i.e., for Step 1 and
Step 2 in the aforementioned discussion) is therefore quite different from the ex-
isting literature in the lattice setting. The remaining arguments for the proof of
Theorem 1.1 are then provided in Section 4 by adapting the approach from [6] to
our setting.

Organization of the rest of the article: The rest of the article is organized as
follows. In Section 2, we first review the construction of the metric D on X̃ from
[40], record its salient properties, prove the requisite (semi)continuity properties
of functionals on X̃ and derive a suitable representation of the free energy. In
Section 3, we derive the continuity properties of the transition probabilities in X̃
and obtain a variational formula for the free energy. In Section 4, we provide the
necessary details to conclude the proof of Theorem 1.1 and in the Appendix we
recall and sketch the proof of some auxiliary results.

2. Functionals on the metric space ( ˜X ,D) and their properties.

2.1. The space X̃ and its metric D. Throughout the article, we will denote
by M1 = M1(Rd) (resp., M≤1) the space of probability (resp., subprobability)
distributions on Rd and by M̃1 = M1/ ∼ the quotient space of M1 under the
action of Rd (as an additive group on M1), that is, for any μ ∈ M1, its orbit is
defined by μ̃ = {μ � δx : x ∈ Rd} ∈ M̃1.

As usual, we write αn ⇒ α when αn converges weakly to α in the space
M≤1 (i.e., if

∫
f dαn → ∫

f dα for all continuous and bounded f in Rd ). We
say two sequences (αn)n and (βn)n in M≤1 are widely separated if

∫
R2d F (x −

y)αn(dx)βn(dy) → 0 for any continuous function F which vanishes at infinity.

4In [6], the difference (n, x)− (m,y) between any two elements (n, x), (m,y) ∈N×Zd is defined
to be infinity if n �= m, while it is x −y if n = m. This interpretation is used in this setting to construct
the metric on the set S = {f : N × Zd → R : f ≥ 0,

∑
(n,x) f (n, x) ≤ 1} of subpartitioned mass

functions and derive its compactness; see [6], Section 2.1, for details.
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We also say that a sequence (βn)n in M≤1 total disintegrates if for any r > 0,
supx∈Rd βn(Br(x)) → 0 as n → ∞. Clearly, any totally disintegrating sequence is
widely separated from every sequence of subprobability measures.

We define

(2.1) X̃ =
{
ξ : ξ = {α̃i}i∈I , αi ∈ M≤1,

∑
i∈I

αi

(
Rd)≤ 1

}

to be the space of all empty, finite or countable collections of orbits of subprobabil-
ity measures with total masses ≤ 1. For any ξ = (α̃i)i ∈ X̃ and any μ ∈ M1(Rd),
we will also write

(2.2) ξ � μ = (α̃i � μ)i.

The space X̃ also comes with a metric structure that allows explicit computations
which will be used throughout the sequel. The definition of the metric is inspired
by the following class of functionals. For any k ≥ 2, let Hk is the space of functions
h : (Rd)k → R which are invariant under rigid translations and which vanish at
infinity in the following sense. Any h ∈ Hk satisfies

h(x1 + y, . . . , xk + y) = h(x1, . . . , xk) ∀y, x1, . . . , xk ∈Rd and

lim
supi �=j |xi−xj |→∞h(x1, . . . , xk) = 0.

Then for k ≥ 2, (Hk,‖ · ‖∞) is a separable Banach space. Moreover, for any h ∈
H =⋃

k≥2 Hk , the functionals

(2.3) 	(h, ξ) = ∑
α̃∈ξ

∫
(Rd )k

h(x1, . . . , xk)α(dx1) · · ·α(dxk),

are well defined on X̃ because of translation-invariance of h, and are natural con-
tinuous functions to consider on X̃ . In other words, a sequence ξn is desired to
“converge” to ξ in the space X̃ provided 	(h, ξn) → 	(h, ξ) for any h ∈ H. This
leads to the following definition of the metric D on X̃ . For any ξ1, ξ2 ∈ X̃ , we set

(2.4)

D(ξ1, ξ2) =
∞∑

r=1

1

2r

1

1 + ‖hr‖∞
∣∣	(hr, ξ1) − 	(hr, ξ2)

∣∣
=

∞∑
r=1

1

2r

1

1 + ‖hr‖∞

∣∣∣∣∣∑
α̃∈ξ1

∫
hr(x1, . . . , xkr )

kr∏
i=1

α(dxi)

− ∑
α̃∈ξ2

∫
hr(x1, . . . , xkr )

kr∏
i=1

α(dxi)

∣∣∣∣∣.
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The following representation theorem was derived in [40], Theorem 3.1, Theo-
rem 3.25 and will be used throughout the sequel.

THEOREM 2.1. D is a metric on X̃ . The quotient space M̃1 is dense in (X̃ ,D)

and any sequence in M̃1 has a limit in X̃ along a subsequence. Thus, X̃ is the
compactification as well as the completion of the totally bounded metric space
M̃1 under D.

The metric D provides the following convergence criterion in X̃ . Let a sequence
(ξn)n consist of a single orbit γ̃n and D(ξn, ξ) → 0 where ξ = (α̃i)i ∈ X̃ such
that α1(Rd) ≥ α2(Rd) ≥ . . . . Then given any ε > 0, we can find k ∈ N such that∑

i>k αi(Rd) < ε and:

• We can write

(2.5) γn =
k∑

i=1

αn,i + βn

such that for any i = 1, . . . , k, there is a sequence (an,i)n ⊂ Rd such that

(2.6) αn,i � δan,i
⇒ αi with lim

n→∞ inf
i �=j

|an,i − an,j | = ∞.

• The sequence βn totally disintegrates, meaning for any r > 0, supx∈Rd βn ×
(Br(x)) → 0. Equivalently, for any h ∈ H2,

(2.7)

lim
n→∞

∫
R2d

h(x, y)αn,i(dx)βn(dy) = 0 for any i = 1, . . . , k and

lim sup
n→∞

∫
R2d

h(x, y)βn(dx)βn(dy) ≤ ε.

Finally, we remark on the topology on the space of probability measures on the
space X̃ , which as usual, will be denoted by M1(X̃ ). On this space, we will work
with the Wasserstein metric defined by

W
(
ϑ,ϑ ′)= inf

�

∫
X̃×X̃

D(ξ1, ξ2)γ (dξ1, dξ2),(2.8)

where the infimum is taken over probability measures � on X̃ ⊗ X̃ with marginals
ϑ,ϑ ′ ∈M1(X̃ ). Sometimes it will be convenient to use the dual-representation

(2.9) W
(
ϑ,ϑ ′)= sup

�

∣∣∣∣∫X̃ �(ξ)ϑ(ξ) −
∫
X̃

�(ξ)ϑ ′(dξ)

∣∣∣∣
5Note that the uniqueness of the above representation theorem is captured by the fact that ξ1 = ξ2

in X̃ if 	(h, ξ1) = 	(h, ξ2) for all h ∈ Hk and k ≥ 2, while the existence part is underlined by
the fact that for any (μ̃n) ⊂ M̃1(Rd), 	(h,μn) → 	(h, ξ) for some ξ ∈ X̃ and conversely for any
ξ ∈ X̃ the latter convergence holds for some (μ̃n) ⊂ M̃1(Rd).
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with the supremum being taken over all Lipschitz functions � : X̃ → R with Lip-
schitz constant bounded by 1. Since the difference of the integrals above is not
altered by adding any finite constant, we can as well restrict the above supremum
to those � which also vanish at 0̃ ∈ X̃ . The space of such Lipschitz functions on X̃
will be denoted by Lip1(0).

2.2. The total mass functional. We introduce the following functionals �,�ε :
X̃ → [0,1] and I�ε : M1(X̃ ) →R: as

�(ξ) =∑
i∈I

αi

(
Rd) with ξ = (α̃i)i∈I ,(2.10)

�ε(ξ) =∑
i∈I

∫
Rd

1{y∈Rd : αi(B1(y))>c0ε}(x)αi(dx),

where ε ∈ (0,1), c0 = ∣∣B1(0)
∣∣,

I�ε(ϑ) =
∫
X̃

�ε(ξ)ϑ(dξ).(2.11)

Obviously, for any z ∈ Rd and i ∈ I , αi(Rd) = αi � δz(Rd) and∫
Rd

1{y:(αi�δz)(B1(y))>c0ε}(x)(αi � δz)(dx) =
∫
Rd

1{y:αi(B1(y))>c0ε}(x)αi(dx).

Thus � , �ε and I�ε are all well defined. We make two remarks regarding the
above functionals. First, if

νT = 1

T

∫ T

0
δQ̃β,t

dt ∈ M1(X̃ ) where Q̃β,t = ˜̂Mβ,tW
−1
t ∈ X̃ ,

then the identity

(2.12) I�ε(νT ) = 1

T

∫ T

0
�ε(Q̃β,t )dt = 1

T

∫ T

0
Qβ,t [Ut,ε]dt

will be useful in deriving Theorem 1.1. Second, for any p ∈N and t, β > 0,

(2.13) E
[(

�(ξ)Zβ,t + (
1 − �(ξ)

)
EZβ,t

)−p]
< ∞.

Indeed, if [0,1] � �(ξ) ≥ 1/2, then �(ξ)Zβ,t + (1 −�(ξ))EZβ,t ≥ 1
2Zβ,t and by

Jensen’s inequality, E[Z−p
β,t ] ≤ E[E0[exp{−pβHt (W)}]], such that

E
[(

�(ξ)Zβ,t + (
1 − �(ξ)

)
EZβ,t

)−p]≤ 2pE
[
Z

−p
β,t

]≤ 2pep2β2tV (0)/2.

If �(ξ) ≤ 1/2, then also �(ξ)Zβ,t + (1 − �(ξ))EZβ,t ≥ 1
2EZβ,t which again

ensures the validity of the above bound and proves (2.13).
Although � and �ε need not be continuous,6 we have the following.

6Obviously, if μn = N(0, n), then μ̃n → 0̃ in X̃ , while 1 = �(μ̃n) > �(̃0) = 0.
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LEMMA 2.2. Fix ε ∈ (0,1). Then � , �ε are lower semicontinuous on X̃ and
I�ε is lower semicontinuous on M1(X̃ ).

PROOF. If ξn → ξ = (α̃i)i in X̃ , we will show that lim infn→∞ �(ξn) ≥ �(ξ).
Suppose ξn consists of a single orbit γ̃n. Then by the convergence criterion
in X̃ (recall (2.5)–(2.7)), for any arbitrary η > 0 there exists k ∈ N such that,∑

i>k αi(Rd) < η and

γn

(
Rd)= k∑

i=1

∫
Rd

(αn,i � δan,i
)(dx) +

∫
Rd

βn(dx)

≥
k∑

i=1

∫
Rd

(αn,i � δan,i
)(dx),

and αn,i � δan,i
⇒ αi for i = 1, . . . , k. Therefore,

lim inf
n→∞ γn

(
Rd)≥ k∑

i=1

∫
Rd

αi(dx) ≥∑
i∈I

αi

(
Rd)− η,

and since η > 0 is arbitrary, lim infn→∞ γn(Rd) ≥∑
i∈I αi(Rd) = �(ξ). Now if ξn

consist of multiple orbits (γ̃n,i)i∈I , we can choose a subsequence such that for each
i, γ̃n,i has a limit (α̃j,i)j∈J ∈ X̃ , and from the first case we have

∑
j αj,i(Rd) ≤

lim infn→∞ γn,i(Rd) for any i. Then, by Fatou’s lemma,

�(ξ) =∑
i

∑
j

αj,i

(
Rd)≤∑

i

lim inf
n→∞ γn,i

(
Rd)

≤ lim inf
n→∞

∑
i

γn,i

(
Rd)= lim inf

n→∞ �(ξn)

proving lower semicontinuity of � .
For �ε , we proceed in a similar way. Since∫

Rd
1{y∈Rd :γn(B1(y))>c0ε}(x)αn,i(dx)

≥
∫
Rd

1{y∈Rd :αn,i (B1(y))>c0ε}(x)αn,i(dx)

=
∫
Rd

1{y∈Rd :(αn,i�δan,i
)(B1(y))>c0ε}(x)(αn,i � δan,i

)(dx),

for any η > 0,

lim inf
n→∞

∫
Rd

1{y∈Rd :γn(B1(y))>c0ε}(x)γn(dx)

≥∑
i∈I

∫
Rd

1{y∈Rd :αi(B1(y))>c0ε}(x)αi(dx) − η.
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Repeating the argument for � yields lower semicontinuity of �ε on X̃ , which in
turn implies the lower semicontinuity of I�ε on M1(X̃ ). �

2.3. The functional �. Recall that V = φ � φ. We define � : X̃ →R by

�(ξ) = β2

2
V (0)

(
1 − 1

V (0)

∑
i∈I

∫
Rd×Rd

V (x2 − x1)

2∏
j=1

αi(dxj )

)
(2.14)

for ξ = (α̃i)i∈I . Again, because of shift-invariance of the integrand in the above
display, � is well defined on X̃ . Also, since φ is rotationally symmetric, for any
α ∈M≤1(Rd), by the Cauchy–Schwarz inequality,

(2.15)

∫
R2d

V (x1 − x2)α(dx1)α(dx2)

=
∫
R2d

α(dx1)α(dx2)

∫
Rd

dzφ(x1 − z)φ(x2 − z)

≤
∫
R2d

α(dx1)α(dx2)

[∫
Rd

dzφ2(x1 − z)

]1/2[∫
Rd

dzφ2(x2 − z)

]1/2

≤ ‖φ‖2
2 = V (0)

and as
∑

i∈I

∫
Rd×Rd V (x2 − x1)

∏2
j=1 αi(dxj ) ≤ V (0) by the same argumentation,

�(·) ≥ 0. We will now state the following.

LEMMA 2.3. � is continuous on X̃ .

The proof of Lemma 2.3 follows by showing lower and upper semicontinuity.
The arguments are similar to the proof of Lemma 2.2 and are omitted to avoid
repetition.

2.4. The partition function and the free energy. For notational brevity, hence-
forth we will fix the disorder parameter β > 0, and for any t > 0, we will write

M̂t = M̂β,t , Qt = M̂β,tW
−1
t ,

Zt [x] = Zβ,t [x] = Ex

[
exp

{
βHt (W,B)

}]
, Zt = Zt [0].

Likewise, Q̃t ∈ X̃ will stand for the GMC endpoint orbit of Qt embedded in X̃ .
In this section, we will provide a decomposition of the “free energy” 1

T
logZT

in terms of a martingale and an additive functional of Q̃t . Recall the map � from
(2.14).

LEMMA 2.4 (Rewrite of the free energy). We can write

(2.16)
1

T
logZT = 1

T
MT + 1

T

∫ T

0
�(Q̃t )dt,
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where

MT = β

∫ T

0

∫
Rd

EM̂t
[
φ(y − Wt)

]
Ḃ(t, y)dy dt and

is a square integrable martingale. In particular,

(2.17)

1

T
E[logZT ] = 1

T

∫ T

0
E
[
�(Q̃t )

]
dt and

1

T
logZT − 1

T

∫ T

0
�(Q̃t )dt → 0 a.s.-P.

PROOF. Recall our earlier notation

(2.18) Ht (W,B) =
∫ t

0

∫
Rd

φ(y − Ws)Ḃ(s, y)dy ds.

We now apply Itô’s formula to Zt = E0[eβHt (W,B)] to get

dZt = E0

[
β

∫
Rd

eβHt (W,B)φ(y − Wt)Ḃ(t, y)dy

]
dt

+E0

[
β2

2

∫
Rd

eβHt (W,B)φ(y − Wt)
2 dy

]
dt.

We can also compute the quadratic variation for Zt as

d〈Zt 〉 = d
〈
E0

[
β

∫
Rd

eβHt (W,B)φ(y − Wt)Ḃ(t, y)dy

]〉
= β2E⊗

0

[∫
Rd

eβ(Ht (W,B)+Ht (W
′,B))φ(y − Wt)φ

(
y − W ′

t

)]
dt

= β2E⊗
0

[
V
(
Wt − W ′

t

)
eβ(Ht (W,B)+Ht (W

′,B))]dt,

where W ′ is another Brownian motion independent of W . We again apply Itô’s
formula to logZt and use the last display to get

d logZt = 1

Zt

dZt − 1

2Z2
t

d〈Zt 〉

= βEM̂t

[∫
Rd

φ(y − Wt)Ḃ(t, y)dy

]
dt

+ β2

2
EM̂t

[∫
Rd

φ(y − Wt)
2 dy

]
dt

− β2

2
EM̂ ⊗

t
[
V
(
Wt − W ′

t

)]
dt.
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Since
∫
Rd φ(y − Wt)

2 dy = ∫
Rd φ2(y)dy = V (0), then

logZT =
∫ T

0
βEM̂t

[∫
Rd

φ(y − Wt)Ḃ(t, y)dy

]
dt

+ β2T V (0)

2
−
∫ T

0

β2

2
EM̂ ⊗

t
[
V
(
Wt − W ′

t

)]
dt

= β

∫ T

0

∫
Rd

EM̂t
[
φ(y − Wt)

]
Ḃ(t, y)dy dt

+
∫ T

0
dt

[
β2

2
V (0)

×
(

1 − 1

V (0)

∫
Rd×Rd

V (x2 − x1)M̂t (Wt ∈ dx1)M̂t

(
W ′

t ∈ dx2
))]

= MT +
∫ T

0
�(Q̃t )dt

proving (2.16).
Now the first display in (2.17) readily follows since MT is a martingale, whose

quadratic variation is given by

d〈MT 〉 =
∫ T

0

∫
Rd

β2(EM̂t
[
φ(y − Wt)

])2 dy dt

≤
∫ T

0

∫
Rd

β2EM̂t
[
φ(y − Wt)

2]dy dt

= β2
∫ T

0
dtEM̂t

[∫
Rd

dyφ(y − Wt)
2
]

= Tβ2V (0).

Since MT /T → 0 almost surely, the second display in (2.17) follows from (2.16).
�

We will end this section with a corollary which will be used later. For the map
� : X̃ →R, we define the functional, I� : M1(X̃ ) →R as

(2.19) I�(ϑ) =
∫
X̃

�(ξ)ϑ(dξ).

Again since � is continuous on the compact metric space X̃ , I�(·) is continuous
on M1(X̃ ).

COROLLARY 2.5. With

νT = 1

T

∫ T

0
δQ̃t

dt ∈ M1(X̃ )
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we have
1

T
E[logZT ] = E

[
I�(νT )

]
,

lim inf
T →∞

1

T
logZT = lim inf

T →∞ I�(νT ) a.s.

PROOF. Both statements follow immediately from Lemma 2.4 and the defini-
tion of νT . �

3. Dynamics on elements of ˜X .

3.1. Continuity of the transition probabilities. Recall the notation for
Ht (W,B) from (2.18). We fix t > 0, and for any element ξ = (α̃i)i ∈ X̃ , we
set

α
(t)
i (dx) := 1

Ft (ξ) + E[Zt − Ft (ξ)]
×
∫
Rd

αi(dz)Ez

[
1{Wt∈dx} exp

{
βHt (W,B)

}]
,(3.1)

where

(3.2)

Ft (αi) =
∫
Rd

∫
Rd

αi(dz)Ez

[
1{Wt∈dx} exp

{
βHt (W,B)

}]
and

Ft (ξ) =∑
i

Ft (αi).

We remark that for any a ∈ Rd and t > 0, Ft (αi)
(d)= Ft (αi � δa) and

(αi � δa)
(t)(dx)

(d)= (
α

(t)
i � δa

)
(dx),

and for any r, t > 0, (̃δ0)
(t) (d)= Q̃t and Q̃(r)

t
(d)= Q̃t+r since

Qt+r (dx) = 1

Zt+r

∫
Rd

E0
[
eβ

∫ t
0 φ(y−Ws)Ḃ(s,dy)ds1{Wt∈dz}

×E0
(
eβ

∫ t+r
t φ(y−Ws)Ḃ(s,dy)ds1{Wt+r−Wt∈d(x−z)}|Gt

)]
(d)=

∫
Rd

1

F ′
r (Q̃t )

Ez

[
eβ

∫ r
0 φ(y−W ′

s )Ḃ (s,dy)ds1{W ′
r∈dx}

]
Qt (dz),

where Gt is the σ -algebra generated by the Brownian path W until time t and F ′
r

is defined as Fr , but w.r.t. a Brownian path W ′ independent of W .
Then (3.1) and the above remarks, for any t > 0 and ξ = (α̃i)i ∈ X̃ , define a

transition kernel πt(ξ, ·) ∈ M1(X̃ ) as

πt

(
ξ, dξ ′)= P

[
ξ (t) ∈ dξ ′|ξ ] where ξ (t) = (

α̃
(t)
i

)
i∈I ∈ X̃ .(3.3)

Here is the main result of this section.
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THEOREM 3.1. For any fixed t > 0, the map

πt : X̃ → M1(X̃ )

ξ �→ πt(ξ, ·)
is continuous with respect to the Wasserstein metric on M1(X̃ ).

The rest of the section is devoted to the proof of Theorem 3.1.

PROOF OF THEOREM 3.1. We want to show that if ξn → ξ in (X̃ ,D), then
for any fixed t > 0, πtξn → πtξ in (M1(X̃ ),W ) where W is the Wasserstein
metric W (recall (2.8)). Since W (πtξn,πtξ) ≤ E[D(πtξn,πtξ)], by definition of
the metric D, it suffices to show that for any hr ∈ Hkr and r ≥ 1,

E
[∣∣	(hr, ξ

(t)
n

)− 	
(
hr, ξ

(t))∣∣]
= E

∣∣∣∣∣ ∑
α̃∈ξ

(t)
n

∫
(Rd )kr

hr(x1, . . . , xkr )

kr∏
i=1

α(dxi)

− ∑
α̃∈ξ (t)

∫
(Rd )kr

hr(x1, . . . , xkr )

kr∏
i=1

α(dxi)

∣∣∣∣∣
−→ 0 as n → ∞.

(3.4)

Note that by (3.1), the first term 	(hr, ξ
(t)
n ) in the above display can be rewritten

as ∑
α̃∈ξn

∫
(Rd )kr

hr(x1, . . . , xkr )

kr∏
i=1

α(t)(dxi)

= ∑
α̃∈ξn

∫
(Rd )kr

hr(x1, . . . , xkr )

kr∏
i=1

(
1

Ft (ξn) + E[Zt − Ft (ξn)]

×
∫
Rd

α(dzi)Ezi

[
1{Wt∈dxi} exp

{
βHt (W,B)

}])

=
[

1

Ft (ξn) + E[Zt − Ft (ξn)]
]kr ∑

α̃∈ξn

∫
(Rd )kr

hr(x1, . . . , xkr )

×
kr∏

i=1

(∫
Rd

α(dzi)Ezi

[
1{Wt∈dxi} exp

{
βHt (W,B)

}])

=
[

1

Ft (ξn) + E[Zt − Ft (ξn)]
]kr

	
(
hr,At (ξn)

)
,
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where in the third identity we used the notation

At (ξ) = ((
Ft (ξ) + E

[
Zt − Ft (ξ)

])
α

(t)
i

)
i∈I ,

recall the definition of α̃
(t)
i from (3.1) and that of 	(h, ξ) from (2.3). Note that if

�(ξ) = 0, the second term in (3.4) is zero and since ξn → ξ , by a similar argument
as in the proof of Proposition 3.2 below, 	(hr, ξ

(t)
n ) → 0 as n → ∞. Thus we

restrict to the case where �(ξ),�(ξn) > 0.
In view of the last computation, then the claim (3.4) follows by triangle inequal-

ity once we prove the following two facts.

PROPOSITION 3.2. For any kr ≥ 2,

(3.5)
lim

n→∞ E
[(

1

Ft (ξ) + E[Zt − Ft (ξ)]
)kr

× ∣∣	(hr,At (ξn)
)− 	

(
hr,At (ξ)

)∣∣]= 0.

PROPOSITION 3.3. For any kr ≥ 2,

(3.6)

lim
n→∞ E

[
	
(
hr,At (ξn)

)∣∣∣∣( 1

Ft (ξn) + E[Zt − Ft (ξn)]
)kr

−
(

1

Ft (ξ) + E[Zt − Ft (ξ)]
)kr

∣∣∣∣]= 0.

We will first finish the following.

PROOF OF PROPOSITION 3.2. Since ξn → ξ in (X̃ ,D) and E[|	(hr,

At (ξn))−	(hr,At (ξ))|2] ≤ 4‖hr‖2∞e2β2tV (0), by the Cauchy–Schwarz inequality
and dominated convergence theorem it suffices to show that, for a finite constant C,

(3.7) E
[(

1

Ft (ξ) + E[Zt − Ft (ξ)]
)2kr

]
≤ C.

Indeed, note that Ft (ξ) + E[Zt − Ft (ξ)] = Ft (ξ) + (1 − �(ξ))EZt . The calcu-
lation for (2.13) with an extra argument in the case where �(ξ) ≥ 1/2 proves the
inequality above. In that case, we use that

∑
α̃∈ξ

∫
α(dx) = �(ξ) and Jensens’s

inequality so that

E
[
Ft (ξ)−2kr

]= �(ξ)−2kr E
[(∫

Zt [x]
(∑

α̃∈ξ

α(dx)

�(ξ)

))−2kr
]

≤ �(ξ)−2kr E
[∫

Zt [x]−2kr

(∑
α̃∈ξ

α(dx)

�(ξ)

)]

≤ �(ξ)−2kr e2k2
r β2tV (0)

(3.8)

to complete the proof of (3.7) and Proposition 3.2. �
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We will now prove the following.

PROOF OF PROPOSITION 3.3. In order to prove (3.6), we recall (3.2) and
estimate

(3.9) 	
(
hr,At (ξn)

)≤ ‖hr‖∞Ft (ξn)
kr .

Moreover, note that, E[Zt − Ft (ξn)] ≥ 0, since

E
[
Ft (ξn)

]= E[Zt ]
∑
i

∫
Rd

∫
Rd

αn,i(dz)Pz[Wt ∈ dx]

= E[Zt ]
∑
i

∫
Rd

αn,i(dz) = E[Zt ]�(ξn) ≤ E[Zt ].

Therefore by (3.9), the requisite claim (3.6) for Proposition 3.3 follows once we
prove the estimate stated below in Proposition 3.4. �

PROPOSITION 3.4. For any kr ≥ 2,

lim
n→∞ E

[∣∣∣∣1 −
(

Ft (ξn) + E[Zt − Ft (ξn)]
Ft (ξ) + E[Zt − Ft (ξ)]

)kr
∣∣∣∣]= 0.

The proof of Proposition 3.4 is based on the following two results. For k ∈ N
and ξ = (α̃i)

k
i=1, we will write (recall (3.2)),

(3.10) F t (ξ) = E[Zt ] +
k∑

i=1

[
Ft (αi) − E

[
Ft (αi)

]]
.

LEMMA 3.5. Let k ∈ N and ξn = (α̃n,i)
k
i=1, ξ = (α̃i)

k
i=1 such that αn,i �

δan,i
⇒ αi for i = 1, . . . , k and |an,i − an.j | → 0 for i �= j . If �(ξ) =∑k

i=1 αi(Rd) > 0, then for any p ∈ N with p ≥ 2,

lim
n→∞ E

[(
F t (ξn)

p − F t (ξ)p
)2]= 0.

PROPOSITION 3.6 (Second moment method). Let (βn)n be a sequence in
M≤1(Rd) that totally disintegrates (recall (2.7)). Then

lim
n→∞ E

[(
Ft (βn) − E

[
Ft (βn)

])2]= 0.

We will first prove Lemma 3.5 and Proposition 3.6 and then deduce Proposi-
tion 3.4 from these two results.

PROOF OF LEMMA 3.5. We recall that

Ft (αi) =
∫
Rd

∫
Rd

αi(dz)Ez

[
1{Wt∈dx}eβ

∫ t
0
∫
Rd φ(y−Ws)Ḃ(s,dy)ds]
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and note that E[Ft (αi)] = αi(Rd)EZt . Hence, we need to show that

(3.11) E
[(

Ap
n − Ap)2]→ 0,

where

An = EZt +
k∑

i=1

∫
Rd

αn,i(dz)Ez

[
eβHt (W,B) − E

[
eβHt (W,B)]] and

A = EZt +
k∑

i=1

∫
Rd

αi(dz)Ez

[
eβHt (W,B) − E

[
eβHt (W,B)]].

Binomial theorem then yields

Ap
n − Ap =

p−1∑
l=0

(
p

l

)(
E[Zt ])l

((
k∑

i=1

∫
Rd

Z̄t [x]αn,i(dx)

)p−l

−
(

k∑
i=1

∫
Rd

Z̄t [x]αi(dx)

)p−l)
,

where we have used the notation

Z̄t [x] = Ex

[
eβHt (W,B) − E

[
eβHt (W,B)]].

The requisite claim follows once we show

E

[((
k∑

i=1

∫
Rd

Z̄t [x]αn,i(dx)

)p

−
(

k∑
i=1

∫
Rd

Z̄t [x]αi(dx)

)p)2]
→ 0

(3.12)

for all p ∈ N. We first consider the case p = 2. In this case, (
∑k

i=1
∫
Rd Z̄t [x] ×

αi(dx))2 =∑k
i=1

∑k
j=1

∫
Rd Z̄t [x]αi(dx)

∫
Rd Z̄t [x]αj (dx) and∫

Rd
Z̄t [x]αi(dx)

∫
Rd

Z̄t [x]αj (dx)

−
∫
Rd

Z̄t [x]αn,i(dx)

∫
Rd

Z̄t [x]αn,j (dx)

=
∫
Rd

Z̄t [x](αi − αn,i)(dx)

∫
Rd

Z̄t [x]αj (dx)

+
∫
Rd

Z̄t [x]αn,i(dx)

∫
Rd

Z̄t [x](αj − αj,n)(dx).

(3.13)
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For the first summand on the right-hand side above, we then have

E

[(
k∑

i,j=1

∫
Rd

Z̄t [x](αi − αn,i)(dx)

∫
Rd

Z̄t [x]αj (dx)

)2]
(3.14)

= E

[
k∑

i,j,l,m=1

∫
Rd

Z̄t [x](αi − αn,i)(dx)

∫
Rd

Z̄t [x]αj (dx)

(3.15)

×
∫
Rd

Z̄t [x](αl − αn,l)(dx)

∫
Rd

Z̄t [x]αm(dx)

]

≤
k∑

i,j,l,m=1

E
[(∫

Rd
Z̄t [x](αi − αn,i)(dx)

)4]1/4

(3.16)

× E
[(∫

Rd
Z̄t [x]αj (dx)

)4]1/4

× E
[(∫

Rd
Z̄t [x](αl − αn,l)(dx)

)4]1/4
E
[(∫

Rd
Z̄t [x]αm(dx)

)4]1/4
,(3.17)

where we used the Cauchy–Schwarz inequality for the upper bound. Since for
i = 1, . . . , k,(∫

Rd
Z̄t [x](αi − αn,i)(dx)

)4
=
∫
R4d

4∏
j=1

[
Z̄t [xj ](αi − αn,i)(dxj )

]
and E[Z̄t [x]Z̄t [y]] ≤ E[Z̄t [x]2]1/2E[Z̄t [y]2]1/2 as well as E[Z̄t [x]2p] ≤
E[Zt [x]2p] ≤ e2p2β2tV (0),

E
[(∫

Rd
Z̄t [x](αi − αn,i)(dx)

)4]
≤ e8β2tV (0)(αi

(
Rd)− αn,i

(
Rd))4.

The last inequality can also be applied to the other factors in (3.16)–(3.17) such
that

E

[(
k∑

i,j=1

∫
Rd

Z̄t [x](αi − αn,i)(dx)

∫
Rd

Z̄t [x]αj (dx)

)2]

≤ e8β2tV (0)�(ξ)2
k∑

i,l=1

(
αi

(
Rd)− αn,i

(
Rd))(αl

(
Rd)− αn,l

(
Rd)).

(3.18)

Now since αn,i � δani
⇒αi , (3.13) together with (3.18) yields (3.12) for p = 2. The

same argument then carries over to the case p ∈ N (Indeed, for general p, in (3.13)
we have to add p − 1 summands instead of one and the exponent in the upper
bound of (3.18) is then given by 2p2β2tV (0).) �
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We will now provide the following.

PROOF OF PROPOSITION 3.6. The proof involves two main steps.
Step 1 : Total disintegration. Let βn be a sequence in M≤1(Rd) which totally

disintegrates, meaning that, for any r > 0, supx∈Rd βn(Br(x)) → 0 and
∫
R2d h(x1 −

x2)βn(dx1)βn(dx2) → 0. We want to show that, for any fixed t > 0,

(3.19) E
[
Ft (βn)

2]− E
[
Ft (βn)

]2 → 0.

Note that

(3.20)

E
[
Ft (βn)

2]= E

[∫
R2d

∫
R2d

βn(dz1)βn(dz2)

×E⊗
(z1,z2)

[ 2∏
i=1

(
1
{
W

(i)
t ∈ dxi

}
exp

{
βHt

(
W(i),B

)})]]

= (I) + (II),

where for any R > 0,

(I) = E

[∫
R2d

∫
BR(x1)

∫
BR(x2)

βn(dz1)βn(dz2)

×E⊗
(z1,z2)

[ 2∏
i=1

(
1
{
W

(i)
t ∈ dxi

}
exp

{
βHt

(
W(i),B

)})]](3.21)

and (II) is defined canonically, which we can estimate using Fubini’s theorem as
follows:

(3.22)

(II) ≤ 2e2β2tV (0)
∫
R2d

∫
Rd

βn(dz2)Pz2[Wt ∈ dx2]

×
∫
BR(x1)

c
βn(dz1)Pz1[Wt ∈ dx1]

≤ Ce2β2tV (0)βn

(
Rd)P0

[
Wt ∈ BR(0)c]

≤ Ce2β2tV (0)P0
[
Wt ∈ BR(0)c]

= δ(R) → 0 as R → ∞.

Hence we focus on (3.21), which can be decomposed further as (I) = (I)a +(I)b,
where

(3.23)

(I)a = E

[∫
R2d

∫
BR(x1)

∫
BR(x2)

βn(dz1)βn(dz2)1
{|x1 − x2| ≥ 2R

}

×E⊗
(z1,z2)

[ 2∏
i=1

(
1
{
W

(i)
t ∈ dxi

}
exp

{
βHt

(
W(i),B

)})]]
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and

(3.24)

(I)b = E

[∫
R2d

∫
BR(x1)

∫
BR(x2)

βn(dz1)βn(dz2)1
{|x1 − x2| ≤ 2R

}

×E⊗
(z1,z2)

[ 2∏
i=1

(
1
{
W

(i)
t ∈ dxi

}
exp

{
βHt

(
W(i),B

)})]]

≤ e2β2tV (0)
∫
R2d

∫
BR(0)

∫
BR(0)

βn

(
d(x1 − z1)

)
βn

(
d(x2 − z2)

)
× 1

{|x1 − x2| ≤ 2R
} 2∏

i=1

P0[Wt ∈ dzi]

≤ e2β2tV (0)
∫
R2d

2∏
i=1

P0[Wt ∈ dzi]

×
∫
R2d

1
{|x1 − x2| ≤ 4R

}
βn(dx1)βn(dx2)

= e2β2tV (0)
∫
R2d

1
{|x1 − x2| ≤ 4R

}
βn(dx1)βn(dx2)

≤ e2β2tV (0)
∫
R2d

hR(x1 − x2)βn(dx1)βn(dx2),

where hR(·) is a continuous function that is identically one inside the ball of radius
4R around the origin and vanishes outside a ball of radius 4R + 1. Since βn totally
disintegrates, for any fixed t , R, the last display converges to zero as n → ∞.

Step 2 : Decoupling. We now focus on (I)a defined in (3.23), which can be
estimated further as follows:

(3.25)

(I)a ≤ E

[∫
R2d

∫
BR(x1)

∫
BR(x2)

βn(dz1)βn(dz2)1
{|x1 − x2| ≥ 2R

}
×E⊗

(z1,z2)

[
1
{
W

(1)
t ∈ dx1

}
1
{
W

(2)
t ∈ dx2

}

× 1
{∣∣W(1)

s − W(2)
s

∣∣> 1 ∀s ∈ [0, t]} exp

{
β

2∑
i=1

Ht

(
W(i),B

)}]]

+ η(R),

where η(R) is defined canonically, and it is easy to see that for any fixed t

and uniformly in n, limR→∞ η(R) = 0. Indeed, on the event {|W(1)
s − W

(2)
s | ≤
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1 for some s ∈ [0, t]}, we have

(3.26) E

[
exp

{
β

2∑
i=1

Ht

(
W(i),B

)}]≤ e2β2tV (0)

and, therefore,

η(R)

= e2β2tV (0)
∫
R2d

∫
BR(x1)

∫
BR(x2)

βn(dz1)βn(dz2)1
{|x1 − x2| ≥ 2R

}
× P⊗

(z1,z2)

[
W

(1)
t ∈ dx1,W

(2)
t ∈ dx2,

∣∣W(1)
s − W(2)

s

∣∣≤ 1 for some s ∈ [0, t]]
and the last probability is equal to Pz1−z2{

√
2Wt ∈ d(x1 − x2),

√
2|Ws | ≤ 1

for some s ∈ [0, t]} whose integral on the set |x1 − x2| ≥ 2R above vanishes as
R → ∞.

We now focus on the first expectation on the right-hand side in (3.25). Recall
that φ has support in a ball of radius 1/2 around the origin, and on the event
{|W(1)

s − W
(2)
s | > 1 for all s ∈ [0, t]}, we have

(3.27)
E

[
exp

{
β

2∑
i=1

Ht

(
W(i),B

)}]=
2∏

i=1

E
[
eβ

∫ t
0
∫
Rd φ(W

(i)
s −y)Ḃ(s,dy)ds]

= eβ2tV (0).

Hence, by (3.25),

(3.28)

(I)a ≤ eβ2tV (0)
∫
R2d

∫
BR(x1)

∫
BR(x2)

βn(dz1)βn(dz2)1
{|x1 − x2| ≥ 2R

}
× P⊗

(z1,z2)

[
W

(1)
t ∈ dx1,W

(2)
t ∈ dx2,

∣∣W(1)
s − W(2)

s

∣∣> 1 ∀s ∈ [0, t]]
+ η(R).

In order to conclude the proof of (3.19), we now compute (E[Ft (βn)])2 in a
similar manner as (3.20). Since all the integrands are nonnegative, we can get a
lower bound:

(3.29)

(
E
[
Ft (βn)

])2
≥ eβ2tV (0)

∫
R2d

∫
BR(x1)

∫
BR(x2)

βn(dz1)βn(dz2)1
{|x1 − x2| ≥ 2R

}
× P⊗

(z1,z2)

[
W

(1)
t ∈ dx1,W

(2)
t ∈ dx2,

∣∣W(1)
s − W(2)

s

∣∣> 1 ∀s ∈ [0, t]].
We combine (3.22), (3.24), (3.28) and (3.29), and first let n → ∞, and then pass
to R → ∞ to complete the proof of (3.19), and also of Proposition 3.6. �
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Finally, we will provide the following.

PROOF OF PROPOSITION 3.4. Recall that if ξn → ξ in (X̃ ,D), we want to
show that, for any p ≥ 2,

(3.30) E
∣∣∣∣(Ft (ξ) + E[Zt − Ft (ξ)])p − (Ft (ξn) + E[Zt − Ft (ξn)])p

(Ft (ξ) + E[Zt − Ft (ξ)])p
∣∣∣∣→ 0.

We again recall the convergence criterion (2.5)–(2.7). Also, note that, given any
δ > 0, we can choose k ∈ N large enough such that,

∑
i>k αi(Rd) ≤ δ where

�(ξ) =∑
i αi(Rd) and ξ = (α̃i)i . In order to prove (3.30), we first recall the nota-

tion

F t (ξn) = E[Zt ] +
k∑

i=1

[
Ft (αn,i) − E

[
Ft (αn,i)

]]
.

By the binomial theorem,

(3.31)

[
F t (ξn) + Ft (βn) − E

[
Ft (βn)

]]p
= F t (ξn)

p + [
Ft (βn) − E

[
Ft (βn)

]]
Bn

where

(3.32) Bn =
p−1∑
l=0

(
p

l

)(
F t (ξn)

)l(Ft (βn) − E
[
Ft (βn)

])p−1−l
.

Then

(3.33)
(L.H.S.) in (3.30) ≤ δ′ + E

[∣∣∣∣ F t (ξn)
p − F t (ξ)p

(Ft (ξ) + E[Zt − Ft (ξ)])p
∣∣∣∣]

+ E
[∣∣∣∣ Ft (βn) − E[Ft (βn)]

(Ft (ξ) + E[Zt − Ft (ξ)])p Bn

∣∣∣∣],
where δ′ → 0 as δ → 0. We will show that both expectations on the right-hand side
above converge to 0 as n → ∞. First, for both terms we will invoke the Cauchy–
Schwarz bound again. For the first expectation, note that by Lemma 3.5,

E
[(

F t (ξn)
p − F t (ξ)p

)2]→ 0

while, by the argument proving (3.7), we have, for a finite constant C1

E
[(

Ft (ξ) + E
[
Zt − Ft (ξ)

])−2p]≤ C1.

Now for the second expectation, we invoke Proposition 3.6 to get

lim
n→∞ E

[(
Ft (βn) − E

[
Ft (βn)

])2]= 0,



LOCALIZATION OF THE GAUSSIAN MULTIPLICATIVE CHAOS 3771

while again by (3.7) we have, for a finite constant C2,

E
[(

Ft (ξ) + E
[
Zt − Ft (ξ)

])−4p]≤ C2,

and we claim that for another finite constant C3,

sup
n

E
[
B4

n

]≤ C3.(3.34)

The last five assertions, together with successive application of the Cauchy–
Schwarz inequality imply that both expectations on the right-hand side in (3.33)
converge to 0. Finally, we let δ → 0 to complete the proof of Proposition 3.4.

We owe the reader only the proof of (3.34). Using that |Ft (α) − E[Ft (α)]| ≤
Ft (α) + E[Ft (α)] and two more applications of the binomial theorem, yield

B4
n ≤ p4(E[Zt ] + Ft (ξn) + E

[
Ft (ξn)

])4p−4

≤ p4
4p−4∑
l=0

(
4p − 4

l

)(
E[Zt ])l(Ft (ξn) + E

[
Ft (ξn)

])4p−4−l

which together with E[Ft (ξn)
k] ≤ �(ξn)

kek2β2tV (0)/2 ≤ ek2β2tV (0)/2 (recall (3.8))
proves the existence of C3 in (3.34). �

We will end this section with a useful remark.

REMARK 2. For any ϑ ∈ M1(X̃ ), let us set

(3.35) �t

(
ϑ, dξ ′)=

∫
X̃

πt

(
ξ, dξ ′)ϑ(dξ).

Then by Theorem 3.1, for any t > 0, the map ϑ �→ �t(ϑ, ·) ∈ M1(X̃ ) is continu-
ous. Furthermore, since �t(δ0̃, ·) = P[ξ (t) ∈ ·|ξ = 0̃] = δ0̃, the set

(3.36) m := {
ϑ ∈ M1(X̃ ) : �tϑ = ϑ for all t > 0

}
of all fixed points of �t is nonempty. Moreover, both X̃ and, therefore, M1(X̃ )

are compact, in their respective topologies. Thus, any sequence ϑn in m has a
subsequence that has a limit ϑ ∈ M1(X̃ ). The aforementioned continuity of ϑ →
�t(ϑ, ·) guarantees that this limit ϑ ∈ m, proving that m is closed and, therefore,
also compact. �

3.2. The free energy variational formula. We now state the main result of this
subsection, which provides a variational formula for the polymer free energy. Re-
call that functional � from (2.14) and I� from (2.19).

THEOREM 3.7. With m defined in (3.36),

lim
T →∞

1

T
E[logZT ] = inf

ϑ∈mI�(ϑ)(3.37)
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and

lim
T →∞

1

T
logZT = inf

ϑ∈mI�(ϑ) a.s.(3.38)

REMARK 3. Recall that the renormalized partition function ZT is directly
related to the SHE solution uε (recall (1.12)). Likewise logZT is related to the
Cole–Hopf solution hε := loguε , satisfying the Kardar–Parisi–Zhang (KPZ) equa-
tion

∂thε = 1

2
�hε +

[1

2
|�hε|2 − Cε

]
+ βε

d−2
2 Ḃε

with hε(0, x) = 0; see [18–20] for recent progress about the behavior of the lim-
iting solution as ε → 0 in d ≥ 3 and for small β . Since 1

T
logZT = 1

T
logZT −

β2

2 V (0), Theorem 3.7 then provides a law of large numbers for the KPZ solution
hε .

Theorem 3.7 will follow from the following (almost sure) law of large numbers.

THEOREM 3.8. The occupation measures νT = 1
T

∫ T
0 δQ̃t

dt are attracted by
the set m, that is, W (νT ,m) → 0 almost surely.

We defer the proof of Theorem 3.8 to Section 4 and first prove the following
statements which will be used in the proof of Theorem (3.7).

LEMMA 3.9. For ξ ∈ X̃ , if F T (ξ) = FT (ξ) + E[ZT − FT (ξ)] with FT (ξ)

defined in (3.2), then

(3.39)

log
(
F T (ξ)

)
=
∫ T

0
dt

∫
Rd

β

F t (ξ)

∑
α̃∈ξ

∫
Rd

α(dz)Ez

[
φ(y − Wt)e

βHt (W,B)]Ḃ(t, dy)

+ β2

2

[
V (0) − ∑

α̃1,α̃2∈ξ

∫
R2d

V (x2 − x1)

2∏
j=1

1

F t (ξ)

×
∫
Rd

αj (dzj )Ezj

[
1{W(j)

t ∈dxj }e
βHt (W,B)]].

In particular,

E log
(
F T (ξ)

)= E

[∫ T

0

β2

2
V (0) − β2

2

∑
α̃1∈ξ

∑
α̃2∈ξ

∫
R2d

V (x2 − x1)

(3.40)

×
2∏

j=1

1

F t (ξ)

∫
Rd

αj (dzj )Ezj

[
1{W(j)

t ∈dxj }e
βHt (W,B)]dt

]
.
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PROOF. To prove (3.39), we proceed in the same way as in the proof of
Lemma 2.4. Recall that

FT (ξ) = ∑
α̃∈ξ

∫
Rd

∫
Rd

α(dz)Ez

[
1{WT ∈dx} exp

{
βHT (W,B)

}]
= ∑

α̃∈ξ

∫
Rd

α(dz)Ez

[
exp

{
βHT (W,B)

}]
and thus F T (ξ) = ∑

α̃∈ξ

∫
Rd α(dz)Ez[exp{βHT (W,B)}] + (1 − �(ξ))EZT ,

where �(ξ) =∑
i αi(Rd) as before. By Itô’s formula,

dF T (ξ) = β

∫
Rd

∑
α̃∈ξ

∫
Rd

α(dz)Ez

[
φ(y − WT )eβHT (W,B)]Ḃ(T , dy)dT(3.41)

+ β2

2

∑
α̃∈ξ

∫
Rd

α(dz)Ez

[
V (0)eβHT (W,B)]dT

(3.42)

+ (
1 − �(ξ)

)β2

2
V (0)e

β2

2 T V (0) dT

= β

∫
Rd

∑
α̃∈ξ

∫
Rd

α(dz)Ez

[
φ(y − WT )eβHT (W,B)]Ḃ(T , dy)dT

(3.43)

+ β2

2
V (0)F T (ξ)dT .

The quadratic variation of the above term is now given by

d
〈
F T (ξ)

〉= β2
∑
α̃1∈ξ

∑
α̃2∈ξ

∫
R2d

α1(dz1)α2(dz2)

(3.44)
×E⊗

(z1,z2)

[
V
(
W

(1)
T − W

(2)
T

)
eβ(HT (W(1),B)+HT (W(2),B))]dT

with W(1) and W(2) being two independent Brownian motions starting at z1 and z2,
respectively. We now apply Itô’s formula to log(F T (ξ)) and plug in (3.41)–(3.43)
as well as (3.44) to get

log
(
F T (ξ)

)=
∫ T

0

1

F t (ξ)
dF t (ξ) − 1

2

∫ T

0

1

F
2
t (ξ)

d
〈
F t (ξ)

〉
=
∫ T

0

∫
Rd

β

F t (ξ)

∑
α̃∈ξ

∫
Rd

α(dz)Ez

[
φ(y − Wt)e

βHt (W,B)]Ḃ(t, dy)

+ β2

2
V (0)
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− β2

2

∑
α̃1∈ξ

∑
α̃2∈ξ

∫
R2d

V (x2 − x1)

×
2∏

j=1

1

F t (ξ)

∫
Rd

αj (dzj )Ezj

[
1{W(j)

t ∈dxj }e
βHt (W,B)]dt,

which proves (3.39) and, therefore, (3.40). �

PROOF OF THEOREM 3.7 [ASSUMING THEOREM 3.8]. Note that, by the def-
initions of I� and �t (recall Remark 2), we have for any t

I�(�tδξ ) =
∫
X̃

�
(
ξ ′)�t

(
δξ , dξ ′)

=
∫
X̃

�
(
ξ ′)P[ξ (t) ∈ dξ ′|ξ ]= E

[
�
(
ξ (t))].(3.45)

On the other hand, �(ξ(t)) = β2

2 V (0)(1 − 1
V (0)

∑
α̃∈ξ

∫
Rd×Rd V (x2 − x1) ×∏2

j=1 α(t)(dxj )) and so

I�(�tδξ ) = E

[
β2

2
V (0)

(
1 − 1

V (0)

×∑
α̃∈ξ

∫
Rd×Rd

V (x2 − x1)

2∏
j=1

α(t)(dxj )

)]
.

(3.46)

We claim that∫ T

0
I�(�tδξ )dt ≥ E

[
log

(
FT (ξ) + E

[
ZT − FT (ξ)

])]
.(3.47)

For proving (3.47), we start by considering the sum on the right-hand side of
(3.46). Since V , α, Zt and Ft (ξ) are nonnegative,∑

α̃∈ξ

∫
Rd×Rd

V (x2 − x1)

2∏
j=1

α(t)(dxj )

= ∑
α̃∈ξ

∫
Rd×Rd

V (x2 − x1)

2∏
j=1

1

Ft (ξ) + E[Zt − Ft (ξ)]α(dzj )

×Ezj

[
1{W(j)

t ∈dxj }e
βHt (W,B)]

≤ ∑
α̃1∈ξ

∑
α̃2∈ξ

∫
Rd×Rd

V (x2 − x1)

2∏
j=1

1

Ft (ξ) + E[Zt − Ft (ξ)]αj (dzj )

×Ezj

[
1{W(j)

t ∈dxj }e
βHt (W,B)],
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thus by (3.46),

I�(�tδξ ) ≥ E

[
β2

2
V (0) − β2

2

∑
α̃1∈ξ

∑
α̃2∈ξ

∫
Rd×Rd

V (x2 − x1)

×
2∏

j=1

1

Ft (ξ) + E[Zt − Ft (ξ)]αj (dzj )Ezj

[
1{W(j)

t ∈dxj }e
βHt (W,B)]].

The claim in (3.47) now follows from Lemma 3.9. We restrict to the case, where the
total mass functional satisfies �(ξ) > 0 and we use the concavity of the logarithm,
which implies that

E
[
log

(
FT (ξ) + E

[
ZT − FT (ξ)

])]
= E

[
log

(
�(ξ)

FT (ξ)

�(ξ)
+ (

1 − �(ξ)
)
EZT

)]

≥ �(ξ)E log
(

FT (ξ)

�(ξ)

)
+ (

1 − �(ξ)
)

log(EZT ).

(3.48)

As
∫

�(ξ)−1∑
α̃∈ξ α(dx) = 1, we can use Jensen’s inequality, so that

log
(

FT (ξ)

�(ξ)

)
= log

(∫
Rd

(∑
α̃∈ξ α(dz)

�(ξ)

)
Ez

[
eβHT (W,B)])

≥
∫
Rd

(∑
α̃∈ξ α(dz)

�(ξ)

)
log

(
Ez

[
eβHT (W,B)])

and since Ez[eβHT (W,B)] (d)= ZT ,

E log
(

FT (ξ)

�(ξ)

)
≥
∫
Rd

(∑
α̃∈ξ α(dz)

�(ξ)

)
E logZT = E logZT .

By using Jensen’s inequality once more, log EZT ≥ E logZT , and both lower
bounds, together with (3.47) and (3.48), yield

∫ T
0 I�(�tδξ )dt ≥ E[logZT ]

for any ξ ∈ X̃ . The last inequality, when �(ξ) = 0, follows immediately by

Jensen’s inequality. Indeed, if �(ξ) = 0, I�(�tδξ ) = β2

2 V (0) for all t and

so
∫ T

0 I�(�tδξ )dt = log EZT ≥ E[logZT ]. Since
∫ T

0 I�(�tδξ )dt ≥ E[logZT ]
now holds unconditionally, for any ϑ ∈m,

1

T
E[logZT ] ≤ 1

T

∫
X̃

ϑ(dξ)

∫ T

0
I�(�tδξ )dt

= 1

T

∫ T

0
dt

∫
X̃

ϑ(dξ)I�(�tδξ )

= 1

T

∫ T

0
dtI�(�tϑ) = I�(ϑ)



3776 Y. BRÖKER AND C. MUKHERJEE

proving that, lim supT →∞ 1
T

E[logZT ] ≤ infϑ∈m I�(ϑ). To prove the corre-
sponding lower bound, note that by Corollary 2.5, lim infT →∞ 1

T
logZT =

lim infT →∞ I�(νT ) almost surely. Now Theorem 3.8 dictates W (νT ,m) → 0
almost surely and we know that I�(·) is continuous. Therefore,

(3.49) lim inf
T →∞

1

T
logZT = lim inf

T →∞ I�(νT ) ≥ inf
ϑ∈mI�(ϑ) a.s.

On the other hand, again by Corollary 2.5, 1
T

E[logZT ] = E[I�(νT )]. Since both
� and I� are nonnegative, by Fatou’s lemma and (3.49),

lim inf
T →∞

1

T
E[logZT ] = lim inf

T →∞ E
[
I�(νT )

]≥ E
[
lim inf
T →∞ I�(νT )

]
≥ inf

ϑ∈mI�(ϑ)

and, therefore, limT →∞ 1
T

E[logZT ] = infϑ∈m I�(ϑ). Finally, we apply Theorem
A.2 with any δ ∈ (0,1) to conclude

lim
T →∞

logZT

T
= lim

T →∞
E logZT

T
= inf

ϑ∈mI�(ϑ) a.s. �

4. Final details. We will now conclude the proof of Theorem 1.1 in this sec-
tion. Given the results of Section 3 and 2, the arguments appearing in this part will
closely follow the approach of [6] adapted to our setting modulo slight modifica-
tions. In order to keep the present material self-contained, we will spell out the
technical details.

4.1. Proof of Theorem 3.8. In this section, we will complete the proof of The-
orem 3.8 for which we will need a technical fact.

Recall that we denote by Lip1(0) the space of all Lipschitz functions � : X̃ →R
vanishing at 0̃ and having Lipschitz constant ≤ 1. Then, for any fixed � ∈ Lip1(0),
and s ≥ 0, we set

(4.1) �T (�) =
∫ T

0
θt (�)dt where θt (�) = �(Q̃t+s) − E

[
�(Q̃t+s)|Ft

]
.

The next lemma asserts that for any fixed �, �T (�) has a sublinear growth at infin-
ity.

LEMMA 4.1. For any � ∈ Lip1(0),

lim
T →∞

|�T (l)|
T

= 0 a.s.(4.2)

PROOF. We claim that for any � ∈ Lip1(0), s ≥ 0 and n ∈ N, there exists a
constant C = C(�, s) ∈ (0,∞) such that

(4.3) E
[
�sn(�)

4]≤ Cn2.
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The above estimate implies that
∑∞

n=1 P[�sn(�)
sn

≥ (sn)−1/5] ≤ C′∑∞
n=1 n−6/5 <

∞. Then (4.2) follows at once since with n = �T
s
� we have �T (�)

T
= �sn(�)

T
+

1
T

∫ T
sn θt (�)dt . The first term converges almost surely to 0 by Borel–Cantelli

lemma, while the second term is bounded above by 2s/T , since |θt (�)| ≤ 2.
It remains to check (4.3). Note that for any t ∈ [0, s), Mn,t (�) =∑n

k=0 θt+ks(�)

is an (Ft+(n+1)s)n∈N0 martingale and �sn(�) = ∫ s
0 Mn−1,t (�)dt . Then by the Burk-

holder–Davis–Gundy inequality, E[Mn,t (�)
4] ≤ C(n + 1)2 and subsequently, by

Jensen’s inequality, E[(∫ s
0 Mn−1,t (�)dt)4] ≤ Cn2, which proves (4.3). �

We will now conclude the following.

PROOF OF THEOREM 3.8. For any fixed s ≥ 0, we set

(4.4) ν
(s)
T = 1

T

∫ T

0
δQ̃t+s

dt

and recall from (2.9) the dual representation of the Wasserstein metric W (ϑ,ϑ ′) =
sup�∈Lip1(0) |

∫
X̃ �(ξ)ϑ(dξ)−∫

X̃ �(ξ)ϑ ′(dξ)| on M1(X̃ ). Then for any � ∈ Lip1(0),

W
(
νT , ν

(s)
T

)= sup
�

(
1

T

∫ T

0
�(Q̃t )dt − 1

T

∫ T +s

s
�(Q̃t )dt

)

= sup
�

(
1

T

∫ s

0
�(Q̃t )dt − 1

T

∫ s

0
�(Q̃T +t )dt

)

≤ 1

T
2s,

and Theorem 3.8 follows once we show that, for any fixed s ≥ 0,

(4.5) W
(
ν

(s)
T ,�sνT

)→ 0.

Recall (4.1) and note that

W
(
ν

(s)
T ,�sνT

)= sup
�

�T (l)

T
.

By the definition of the metric D on X̃ , for any � ∈ Lip1(0), supξ∈X̃ |�(ξ)| ≤
supξ∈X̃ D(ξ, 0̃) ≤ 2 and thus, the family of functions � ∈ Lip1(0) is equicontinuous
and closed in the uniform norm. By Ascoli’s theorem, this space is then compact
and is also separable. Lemma 4.1 guarantees

lim
T →∞

�T (�n)

T
= 0 for all n ≥ 1(4.6)

for any countable dense set (�n)n. Further, given any �1, �2 ∈ Lip1(0) with
‖�1 −�2‖∞ < δ, we have |�T (�1)−�T (�2)| < 2δT by (4.1). Thus (�T (·)/T )T ≥0
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is equicontinuous on the compact metric space Lip1(0), and since this family
�T /T converges pointwise to 0 on a dense subset (�n)n, and again by the As-
coli’s theorem this convergence is uniform. Thus, W (ν

(s)
T ,�sνT ) → 0 as T → ∞,

which proves (4.5), and thus also Theorem 3.8. �

We will now deduce a corollary to Theorem 3.8. Let us set

(4.7) m0 =
{
ϑ0 ∈ m : I�(ϑ0) = inf

ϑ∈mI�(ϑ)
}
,

with I� defined in (2.19). Again the continuity of ϑ → I�(ϑ) guarantees com-
pactness of m0 (recall Remark 2).

COROLLARY 4.2. The measure νT converges in the Wasserstein metric to m0

for T → ∞.

PROOF. The proof is a straightforward application of the triangle inequal-
ity combined with the preceding results. Indeed, by Corollary 2.5, |I�(νT ) −
1
T

logZT | → 0 almost surely, while Theorem 3.7 dictates | 1
T

logZT − infm I�| →
0 almost surely. Therefore, I�(νT ) can be made arbitrarily close to infm I� for
T large enough. Combining this statement with the fact that W (νT ,m) → 0 (from
Theorem 3.8), continuity of the functional I�(·) (from Lemma 2.3), compactness
of m (from Remark 2) and triangle inequality proves the desired claim. �

4.2. Proof of Theorem 1.1. In this section, we will conclude the proof of The-
orem 1.1, which involves two main steps.

Step 1 : With the compact set m0 ⊂ m defined in (4.7), the first step shows that
in the very strong disorder regime, under any ϑ ∈ m0 there is no disintegration of
mass.

THEOREM 4.3. If β is large enough such that 	(β) > 0 (see Theorem A.1),
then ϑ[ξ ∈ X̃ : �(ξ) = 1] = 1 for any ϑ ∈ m0, where �(ξ) = ∑

i αi(Rd) is the
total mass functional on X̃ .

For the proof of this theorem, we use the following lemma.

LEMMA 4.4. If ϑ ∈ m, then ϑ[ξ ∈ X̃ : �(ξ) = 0]+ϑ[ξ ∈ X̃ : �(ξ) = 1] = 1.

PROOF. Suppose ξ ∈ X̃ such that �(ξ) ∈ (0,1). Recall the definition of
ξ (t) = {α(t)

i }i , from (3.1), and note that E[Zt ] ≥ E[Ft (ξ)]. Then applying Jensen’s
inequality to the strictly concave function x �→ x

x+E[Zt−Ft (ξ)] we have for any
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t > 0,

E
[
�
(
ξ (t))]= E

[∑
i∈I

∫
Rd

∫
Rd αi(dz)Ez[1{Wt∈dx}eβ

∫ t
0
∫
Rd φ(y−Ws)Ḃ(s,y)dy ds]

Ft (ξ) + E[Zt − Ft (ξ)]
]

<
E[Ft (ξ)]

E[Ft (ξ)] + E[Zt − Ft (ξ)](4.8)

=∑
i∈I

∫
Rd

∫
Rd

αi(dz)Pz(Wt ∈ dx) =∑
i

αi

(
Rd)= �(ξ).

We remark that the inequality (4.8) is strict because of strict concavity and non-
degeneracy of P. Now let ϑ ∈ m ⊂ M1(X̃ ) be such that ϑ[ξ : �(ξ) ∈ (0,1)] >

0. Then by the strict upper bound (4.8), for any t > 0,
∫

�(ξ ′)�t(ϑ, dξ ′) =∫
ϑ(dξ)E[�(ξ(t))] <

∫
ϑ(dξ)�(ξ), and since �tϑ = ϑ for any t ≥ 0, we have

a contradiction. To complete the proof of the lemma, note that for any ξ ∈ X̃ with
�(ξ) = 0 implies �(ξ(t)) = 0 and ξ ∈ X̃ with �(ξ) = 1 implies �(ξ(t)) = 1. �

We will now provide the proof of Theorem 4.3.

PROOF OF THEOREM 4.3. Recall that δ0̃ ∈ m. Suppose m = {δ0̃}. Then by
Theorem 3.7,

lim
T →∞ E

[
logZT

T

]
= I�(δ0̃) = β2

2
V (0) = log(EZT )

T

which implies that 	(β) = 0 (recall (1.7)). But our assumption β > β1 = inf{β >

0 : 	(β) > 0} provides a contradiction. Hence, there exists ϑ ∈ m such that ϑ �= δ̃0.
Lemma 4.4 guarantees that ϑ(B) > 0 with B = {ξ ∈ X̃ : �(ξ) = 1}. We will show
that if ϑ(B) < 1, then ϑ /∈ m0.

Note that ξ (t) ∈ B if and only if ξ ∈ B , and hence for any A ⊂ X̃ ,

πt(ξ,A) = πt(ξ,A ∩ B) for ξ ∈ B and πt(ξ,A ∩ B) = 0 for ξ /∈ B.

Using these two identities and with ϑ(·|B) denoting the conditional probability
on X̃ ,

�t

(
ϑ(·|B),A

)=
∫
X̃

πt(ξ,A)ϑ(dξ |B)

= 1

ϑ(B)

∫
B

πt (ξ,A)ϑ(dξ)

= 1

ϑ(B)

(∫
B

πt (ξ,A ∩ B)ϑ(dξ) +
∫
Bc

πt(ξ,A ∩ B)ϑ(dξ)

)

= 1

ϑ(B)

∫
X̃

πt(ξ,A ∩ B)ϑ(dξ)

= 1

ϑ(B)
�t(ϑ,A ∩ B).
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Hence, ϑ ∈ m implies ϑ(·|B) ∈ m. Let us assume that ϑ(B) < 1. Then we will
show that I�[ϑ(·|B)] < I�(ϑ), which in turn would imply that ϑ /∈ m0 giving
us a contradiction.

Recall that the map � is continuous and �(̃0) = β2V (0)/2. Then if ξ �= 0̃,

�(ξ) = β2

2
V (0)

(
1 − 1

V (0)

∑
i∈I

∫
Rd×Rd

V (x2 − x1)

2∏
j=1

αi(dxj )

)

<
β2

2
V (0) = �(̃0)

and hence,

I�

[
ϑ(·|B)

]= 1

ϑ(B)

∫
B

�(ξ)ϑ(dξ)

=
∫
B

�(ξ)ϑ(dξ) + 1 − ϑ(B)

ϑ(B)

∫
B

�(ξ)ϑ(dξ)

<

∫
B

�(ξ)ϑ(dξ) + (
1 − ϑ(B)

)
�(̃0)

=
∫
B

�(ξ)ϑ(dξ) +
∫
Bc

�(ξ)ϑ(dξ)

= I�(ϑ)

(4.9)

and we used Lemma 4.4 in the identity (4.9). We conclude that ϑ can only be an
element of m0, if ϑ(B) = 1. �

Step 2 : We will now conclude the following.

PROOF OF THEOREM 1.1. Recall from Section 2.2 the functional �ε on X̃
and the associated lower semicontinuous integral functional I�ε(ϑ) = ∫

�ε(ϑ) ×
ϑ(dξ) on M1(X̃ ). For any ξ ∈ X̃ with �(ξ) = 1, �ε(ξ) ↗ 1 for ε → 0. Since we
assume 	(β) > 0, Theorem 4.3 and monotone convergence theorem imply that

I�ε(ϑ) ↗ 1

pointwise for any ϑ ∈ m0. Since m0 is compact this pointwise convergence is in
fact uniform. Thus, for any m ∈ (0,1), there exists ε > 0 such that I�ε(ϑ) > m

for all ϑ ∈ m0. By compactness of M1(X̃ ) and lower semicontinuity of I�ε , for
any such m ∈ (0,1) and ε > 0, we can find δ > 0 such that for any μ ∈ M1(X̃ ),
W (μ,m0) < δ implies I�ε(μ) > m. Thus, for any given m ∈ (0,1) we can choose
ε > 0 and δ > 0 such that I�ε(ϑ) > m for all ϑ ∈ m0 and I�ε(μ) > m for μ ∈
M1(X̃ ) and so by Corollary 4.2 there is a.s. T ∗ large enough that

T ≥ T ∗ ⇒ W (νT ,m0) < δ ⇒ I�ε(νT ) > m.
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Now if we recall the relation (2.12), we have shown that, given any m ∈ (0,1),
there exists ε > 0 such that

lim inf
T →∞

1

T

∫ T

0
M̂t (Wt ∈ Ut,ε)dt > m a.s.

Note that the last display also implies the proof of Theorem 1.1. Indeed, given
any k ∈ N, assume that the last assertion holds for some ε > 0 and m ∈ (τ,1)

with τ = 1 − 1
k

. Then we choose T1, T2, T3 such that for T > T1, we have∫ T
0 M̂t (Wt ∈ Ut,ε)dt > mT , and for t ≥ T2 we have εt < ε and so M̂t (Wt ∈

Ut,ε) ≥ M̂t (Wt ∈ Ut,ε), and for T3 > T2 we have m − T2
T3

> τ . Now we conclude
for T ≥ max{T1, T3}:

1

T

∫ T

0
M̂t (Wt ∈ Ut,εt )dt

≥ 1

T

∫ T

T2

M̂t (Wt ∈ Ut,εt )dt

≥ T2

T
+ 1

T

∫ T

T2

M̂t (Wt ∈ Ut,εt )dt − T2

T3

≥ 1

T

∫ T2

0
M̂t (Wt ∈ Ut,εt )dt + 1

T

∫ T

T2

M̂t (Wt ∈ Ut,εt )dt − T2

T3

≥ 1

T

∫ T

0
M̂t (Wt ∈ Ut,εt )dt − T2

T3

> m − T2

T3
> τ,

which completes the proof of Theorem 1.1. �

APPENDIX

Recall that in the proof of Theorem 1.1, we needed 	(β) = − limT →∞ 1
T

×
E[logZβ,T ] > 0 to use Theorem 4.3. The following monotonicity result for 	(β)

was originally derived in [25] for discrete directed polymers.

THEOREM A.1. The Lyapunov exponent

	(β) = − lim
T →∞

1

T
E[logZβ,T ]

exists and is nonnegative. Furthermore, the map β �→ 	(β) is nondecreas-
ing and continuous in (0,∞) and 	(0) = 0. Finally, 	(β) > 0 implies that
limT →∞ Zβ,T = 0 almost surely.
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PROOF. The existence of the Lyapunov exponent is a consequence of a subad-
ditivity argument (see [14], Proposition 1.4), and the nonnegativity follows from a
direct application of Jensen’s inequality.

We first want to show that

(A.1) E
[

∂

∂β
logZβ,T

]
≤ 0 for all β ∈ (0,∞).

Therefore, fix β∗ ∈ (0,∞) and set I = [0, β∗]. We apply Jensen’s inequality to get
E[supβ∈I Z −2

β,T ] < ∞. Next, recall the GMC measure Mβ,T from (1.4) and note
that

∂

∂β
Zβ,T = E0

[(
HT (W,B) − βT V (0)

) dMβ,T

dP0

]
.

We again apply Jensen’s inequality followed by the Cauchy–Schwarz inequality to
get

E
[
sup
β∈I

(
∂Zβ,T

∂β

)2]
< ∞.

Then we can use the Cauchy–Schwarz inequality once more to show

E
∣∣∣∣∂ logZβ,T

∂β

∣∣∣∣= E
∣∣∣∣ 1

Zβ,T

∂Zβ,T

∂β

∣∣∣∣≤ (
E|Zβ,T |−2E

∣∣∣∣∂Zβ,T

∂β

∣∣∣∣2)1/2
,

and thus, supβ∈I
∂ logZβ,T

∂β
∈ L1(P). Then we can conclude

∂

∂β∗ E[logZβ∗,T ] = ∂

∂β∗ E[logZ0,T ] + ∂

∂β∗ E
[∫ β∗

0

∂ logZβ,T

∂β
dβ

]

= ∂

∂β∗
∫ β∗

0
E
[
∂ logZβ,T

∂β

]
dβ

= E
[

∂

∂β∗ logZβ∗,T

]
(A.2)

for all β∗ ∈ (0,∞). We will use (A.2) to show (A.1).
Note that for any fixed T , β and W , the maps Ḃ �→ HT (W,B) − βT V (0) and

Ḃ �→ −Zβ,T
−1 are nondecreasing (see [4]) and since the law P of the noise Ḃ

is a product measure, we use the FKG-inequality applied to the tilted measure
dMβ,T

dP0
dP to obtain

(A.3) E
[
− ∂

∂β
logZβ,T

]
≥ E0

[
E
[
− 1

Zβ,T

dMβ,T

dP0

]
E
[

∂

∂β

dMβ,T

dP0

]]
.

By calculations similar to (A.2), E[ ∂
∂β

dMβ,T

dP0
] = ∂

∂β
E[dMβ,T

dP0
] = 0, which combined

with (A.3) then implies (A.1) and the desired monotonicity of 	(β). The continu-
ity of β �→ 	(β) on (0,∞) is an immediate consequence of its convexity which
follows from Hölder’s inequality.
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Finally, to show that 	(β) > 0 implies limT →∞ Zβ,T = 0 P-a.s., note that V :=
{Zβ,T �→T →∞ 0} is a tail event for the process t → Ḃ(t, ·) and, therefore, P(V) ∈
{0,1}. So if limT →∞ Zβ,T > 0 almost surely, since for x > 0, − log(x) < ∞,

	(β) = lim
T →∞

1

T
E[− logZβ,T ] ≤ 0,

which provides a contradiction. �

THEOREM A.2. For any d ≥ 1, β > 0 and δ > 0, as T → ∞,

(A.4) logZT − E[logZT ] = O
(
T

1+δ
2
)

P-a.s.

PROOF. This result has been shown for a Poissonian environment in [24],
Theorem 2.4.1(b) and Corollary 2.4.2. The proof in our setting is a straightfor-
ward adaptation of this result modulo minor changes. In particular, in the proof
of [24], Theorem 2.4.1(b), the function ϕ(v) = ev − v − 1 has to be replaced by
ϕ(v) = 1

2v2 − v, while the indicator function there has to be replaced by our fixed
mollifier φ, and the constant C should be chosen to be C = |B1/2(0)|(eβ‖φ‖∞ −1)2.

�
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