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NONPARAMETRIC SPOT VOLATILITY FROM OPTIONS1

BY VIKTOR TODOROV

Northwestern University

We propose a nonparametric estimator of spot volatility from noisy short-
dated option data. The estimator is based on forming portfolios of options
with different strikes that replicate the (risk-neutral) conditional character-
istic function of the underlying price in a model-free way. The separation
of volatility from jumps is done by making use of the dominant role of the
volatility in the conditional characteristic function over short time intervals
and for large values of the characteristic exponent. The latter is chosen in
an adaptive way in order to account for the time-varying volatility. We show
that the volatility estimator is near rate-optimal in minimax sense. We further
derive a feasible joint central limit theorem for the proposed option-based
volatility estimator and existing high-frequency return-based volatility esti-
mators. The limit distribution is mixed Gaussian reflecting the time-varying
precision in the volatility recovery.

1. Introduction. Options provide a natural source of information for study-
ing volatility. Indeed, following the seminal work of [14] and [34], any option
written on an asset can be used to back out the unknown volatility of the asset. The
resulting estimator of volatility is typically referred to as Black–Scholes Implied
Volatility (BSIV). Unfortunately, the assumptions behind the model of [14] and
[34], mainly constant volatility and no jump risk, are too simple for such volatility
extraction to work in practice; see, for example, [19], [21] and [40]. Indeed, BSIV
backed out from available options with strikes that are far from the current price
level are typically too high when compared to historical averages based on returns
data. These elevated implied volatility levels are a reflection of the importance of
time-varying volatility and jump risk for investors. The goal of this paper is to de-
velop nonparametric spot volatility estimator from options that works in general
settings when jumps are present and volatility can vary over time.

Recent developments in financial markets make the construction of option-
based nonparametric volatility estimates practically feasible. In particular, the
availability and liquidity of very short-maturity options with a wide range of strikes
have significantly increased over the last few years; see, for example, [6].

We use these short-dated options in the construction of our estimator. A natural
candidate for a spot volatility estimator is provided by the BSIV of options with
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strikes that are close to the current price level. The short time to expiration limits
the effect of the time-varying volatility on these options. Similarly, the proximity
of their strikes to the current price limits the effect of jumps on them. Neverthe-
less, we show that jumps cause an upward bias in the recovery of volatility from
the BSIV of short-dated options with strikes close to the price level. This bias is
nontrivial and cannot be ignored in practice.

In this paper, we take a different approach for estimating spot volatility from
options, which allows for an efficient separation of volatility from jumps. Our ap-
proach makes use of the fact that the expected value of smooth functions of the
price of the underlying asset at expiration can be replicated by portfolios of op-
tions with continuum of strike levels; see, for example, [15] as well as the earlier
work of [26] and [38]. Using this insight, we construct portfolios of options which
replicate the conditional risk-neutral characteristic function of the price at expira-
tion. If the time to expiration is short, then the time variation in volatility has a
negligible effect on the latter and can be ignored. The effect of the jumps on the
characteristic function, on the other hand, is more subtle. If the value of the char-
acteristic exponent is close to zero, then the jumps have a nonnegligible effect.
However, their effect diminishes for higher values of the characteristic exponent.
We show that asymptotically (as the time to maturity shrinks) optimal separation
of volatility from jumps can be achieved when the characteristic exponent is grow-
ing at a rate proportional to the square root of the time to expiration of the options.
This leads to a volatility estimator which is significantly less biased in presence of
jumps than the BSIV of options with strikes close to the current price.

We establish consistency of the proposed volatility estimator in an asymptotic
setting in which options are observed with error, their maturity goes to zero to-
gether with shrinking mesh of the available strike grid. We further derive a Central
Limit Theorem (CLT) for our volatility estimator. The limiting distribution is deter-
mined by the asymptotic behavior of the observation error in the available options.
The convergence is stable and its asymptotic limit is mixed Gaussian. That is, the
limit is centered Gaussian when conditioning on the sigma algebra on which the
return and option data are defined. This allows for the asymptotic variance of the
volatility estimator to depend, in particular, on the current level of volatility and
more generally on any other variable that determines the quality of the option data.
Hence, the precision in estimation will typically differ over different points in time.
For feasible inference, we develop a simple estimator of the asymptotic variance
which is based on an option portfolio that measures the sensitivity of the observed
option prices to changes in their strikes.

There are many asymptotically valid choices for the characteristic exponent of
the volatility estimator. However, for the successful performance of the estimator
in practice, this choice matters a lot. Therefore, we develop an adaptive procedure
for setting this tuning parameter by using an initial consistent estimator of volatil-
ity constructed from the option data. Our initial consistent estimator is the option
analogue of the truncated high-frequency return volatility estimator of [31]. It is
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based on integrating the available options in a portfolio which spans a truncated
second moment of the price at expiration (i.e., a function which behaves like the
square function around zero and diminishes to zero for values of the argument
diverging from zero).

We show that our estimator is near-rate optimal. In particular, in the specialized
setting of Lévy jump-diffusion dynamics for the underlying price and Gaussian
observation errors proportional to the true unobserved option prices, we show that
the efficient rate (in a minimax sense) of recovering volatility from the noisy short-
maturity option data coincides with the rate of convergence of our estimator up to
a log term (the rate of convergence of our estimator is some power of the time to
maturity). This is unlike a volatility estimator based on the average of close-to-
money BSIV.

The nonparametric spot volatility estimator developed in this paper can be
viewed as the option counterpart of the high-frequency return-based volatility esti-
mators. In pioneering work, [7, 10] propose so-called multipower variation statis-
tics as a way to separate volatility from jumps while [31, 32] develops truncated
variance estimator that achieves the same goal. More recently, [30] propose the use
of the empirical characteristic function of returns as a way to measure volatility in
a jump-robust way, which allows also to deal with jumps of arbitrary high activity
in an efficient way.

The high-frequency return-based volatility estimators use an asymptotically in-
creasing number of increments in a local window of time to estimate volatility in
a way similar to estimating volatility from a sequence of i.i.d. returns in classical
settings. By contrast, the newly-proposed option-based estimator uses an asymp-
totically increasing number of short-dated options with different strikes to identify
the expectation about the future volatility embodied in them. In turn, this condi-
tional expectation of volatility converges to the spot volatility when the time to
maturity of the options shrinks. We show that the convergence of the option-based
and return-based volatility estimators holds jointly. This allows one to construct
an optimal mixture of the two types of estimators which has the lowest asymptotic
variance for measuring spot volatility from return and option data.

We evaluate the performance of the option-based volatility estimator in a Monte
Carlo experiment whose setup mimics key features of available option data. The
Monte Carlo shows satisfactory finite sample properties of the developed estimator
and the inference about it. In an empirical application to short-dated S&P 500
index options, we find that the option-based volatility estimator is on average very
close to an estimator based on high-frequency returns on the S&P 500 index but it
is significantly more accurate.

The current paper is related to two strands of literature on volatility inference
from option data. First, there is a large body of work that considers short-maturity
expansions of at-the-money options or options which become at-the-money in the
limit; see, for example, [12], [23], [24], [36], [35]. Unlike this body of work, we
consider a portfolio of options across strikes which is important to reduce the



NONPARAMETRIC SPOT VOLATILITY FROM OPTIONS 3593

asymptotic bias of the estimator. We further allow for observation error, derive
a stable CLT for our estimator and establish its near rate-optimality. Second, [11],
[20], [41], [42], [43, 44] consider nonparametric inference for the diffusive volatil-
ity in the class of exponential-Lévy models from options with fixed maturity. The
major difference between the current paper and this strand of work is that our anal-
ysis applies to general Itô semimartingales and the asymptotic setup here is one
with shrinking maturity of the options. The latter difference leads to a significantly
faster rate of convergence of the volatility estimator in the current asymptotic set-
ting as the shrinking maturity aids the separation of diffusive volatility from jumps.

The rest of the paper is organized as follows. In Section 2, we develop nonpara-
metric methods for recovering volatility from options in the infeasible scenario
where a continuum of short-maturity options with strikes spanning the positive
real line are available. Section 3 adapts these procedures to the feasible setting
where only a finite number of noisy option observations are available instead. In
this section, we further characterize the rate of convergence of the volatility esti-
mator, derive a feasible CLT for it and develop an adaptive method for selecting
the tuning parameter used in its construction. Section 4 derives the minimax risk
of recovering spot volatility from noisy short-dated options in the special Lévy
case and Gaussian observation errors. Section 5 contains a Monte Carlo study and
Section 6 an empirical application. The proofs are given in Section 7.

2. Option portfolios and volatility. We begin our analysis with showing how
to identify volatility in the infeasible setting where short-dated options with arbi-
trary strikes are available and further when the options are observed without error.
We will relax these assumptions about the option observation scheme in the next
section.

The underlying asset price is denoted by X and is defined on the filtered prob-
ability space (�(0),F (0), (F (0)

t )t≥0,P
(0)). Since our focus in this paper is on ex-

tracting information from options, we will specify here only the behavior of X

under the so-called risk-neutral measure Q, which under no-arbitrage is locally
equivalent to P(0). For the return-based volatility estimates, which we use later on
to compare the option-based volatility estimator with, we will need to impose some
structure on the P(0) dynamics of X as well (see Assumption A6 in Section 3.2).
The dynamics of the log-price x = ln(X) under Q is given by

(2.1) xt =
∫ t

0
as ds +

∫ t

0
σs dWs +

∫ t

0

∫
R

xμ̃(ds, dx),

where W is a Brownian motion, μ is an integer-valued random measure on
R+ × R, counting the jumps in x, with compensator νt (x) dt ⊗ dx and μ̃ is the
martingale measure associated with μ (W and νt are defined with respect to Q).
The regularity conditions for the above quantities are given in Section 3.2.

Although equation (2.1) describes the dynamics of x under Q, under no-
arbitrage, σt continues to be the diffusive volatility of x under P(0). Our goal here
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is to estimate the spot diffusive variance Vt ≡ σ 2
t under general conditions, that is,

with minimal regularity assumptions about (at , σt , νt ).
For the recovery of Vt , we will use options written on X at time t , which expire

at t + T , for some T > 0. Since t will be fixed throughout, we will henceforth
suppress the dependence on t in the notation of the option prices and other related
quantities. For simplicity, we will further assume that the dividend yield associated
with X and the risk-free interest rate are both equal to zero as their effect on short-
dated options is known to be negligible. With these normalizations, the theoretical
values of the options we will use in our analysis are given by

(2.2) κT (k) =
{
E
Q
t

(
ek − ext+T

)+
, if k ≤ xt ,

E
Q
t

(
ext+T − ek)+, if k > xt .

κT (k) is the price of an out-of-the-money (OTM) option (i.e., an option which will
be worth zero if it were to expire today). This is a call contract (an option to buy
the asset) if k > xt and a put contract (an option to sell the asset) if k ≤ xt . In what
follows, we will refer to K ≡ ek and k as the strike and log-strike, respectively, of
the option.

To simplify analysis, in this section, we will assume that jumps are of finite
activity, that is,

(2.3)
∫ t+T

t

∫
R

νs(dx) ds < ∞ a.s.

Many jump models used in financial applications satisfy the above finite activ-
ity assumption and we will further relax it in the derivation of the formal results
presented in the next section.

Henceforth, for a generic sequence of random variables YT and some determin-
istic sequence RT , YT = Op(RT ) will mean that YT /RT is bounded in probability
and YT = op(RT ) will mean that YT /RT converges in probability to zero, with
both statements being for T ↓ 0; see, for example, Section 2.2 in [46].

Since the volatility accounts for the small moves in the asset price, a natural
candidate for a spot volatility estimator is the at-the-money (ATM) Black–Scholes
option implied volatility. Indeed, the ATM BSIV has often been used as a proxy for
spot volatility in empirical work. When (2.3) holds and under some weak regularity
type assumptions for (at , σt , νt ), it is easy to show that

(2.4) κT (0) =
√

T√
2π

σt + Op(T ) as T ↓ 0.

This bound on the error for recovering σt from κT (0) is sharp and a large compo-
nent of it is due to the jumps in X. This can be illustrated using the seminal Merton
jump-diffusion model ([33]) for which a higher-order expansion of κT (0) can be
derived. In the Merton model, the volatility is constant and the jumps are com-
pound Poisson with intensity λ and their size is drawn from a normal distribution
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with mean μj and variance σ 2
j . In this case, by directly expanding the option price

by considering the leading cases of no jump or one jump in X until expiration, we
get for the ATM option price, κM

T (0), the following as T ↓ 0:

κM
T (0) =

√
T√
2π

σ − T σ 2

4

+ λT

(
�

(
−μj

σj

)
− eμj+ σ2

j
2 �

(
−μj

σj

− σj

))
+ Op

(
T 3/2),

(2.5)

where � denotes the cdf of a standard normal random variable. The first two terms
on the right-hand side of (2.5) are the leading terms of the option price when condi-
tioning on no jumps in X until expiration. The third term is the leading component
of the option price when conditioning on exactly one jump occurring during the
life of the option.

The above parametric example shows that the bound in (2.4) is sharp. Using the
ATM option price expansion in (2.4), we have

(2.6) Vt = 2π

T
κ2
T (0) + Op(

√
T ) as T ↓ 0,

and we can alternatively estimate Vt using the Black–Scholes implied volatility
corresponding to κT (0) (with obviously the same order of magnitude of the ap-
proximation error as above). In Figure 1, we illustrate the accuracy of the ATM

FIG. 1. ATM BSIV as a measure of volatility. The solid line corresponds to simulated path of V

from the model in the Monte Carlo experiment in Section 5 (case H). The dashed line is the ATM
BSIV with time to maturity of two business days.
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BSIV for measuring spot volatility using volatility and option data generated from
the parametric model used later in the Monte Carlo study. The maturity of the op-
tions in the experiment is set to T = 2 days. As seen from the figure, even for
such short maturity, the bias due to the jumps in the ATM BSIV as a measure of
V is rather nontrivial and increases as a function of the volatility. Moreover, in
practice, we often do not have an option with k equal exactly to 0 (due to the dis-
creteness of the available strike grid) and this will likely generate additional bias
in the measurement of spot volatility.

REMARK 1. While Figure 1 shows that BSIV is a poor estimator of the true
spot diffusive volatility of the underlying asset, we note nevertheless that BSIV
is widely used in practice to quote options and also to generate option prices for
strikes which are not available via interpolation in BSIV space. In addition, if one
is interested solely in modeling the options, then (misspecified) diffusive stochas-
tic volatility models which generate option prices free of arbitrage can be used.
However, there is a large nonparametric evidence for presence of jumps in the un-
derlying asset from return data (see, e.g., [1]) as well as from option data (see, e.g.,
[16]). Therefore, if one is interested in the joint modeling of the underlying asset
and the derivatives written on it in a dynamically consistent way, then the nonpara-
metric recovery of the spot diffusive volatility is important. Moreover, the volatility
of the underlying asset is interesting in itself for addressing various practical risk
management and theoretical asset pricing questions.

We now develop an alternative strategy for recovering spot volatility from short-
dated options which will have much smaller approximation error than the ATM
BSIV. Our strategy builds on the fact that the conditional expectation (under Q)
of any sufficiently smooth functions of xt+T can be spanned by a portfolio of
options with continuum of strikes, {κT (k)}k∈R; see, for example, [15]. We note
that this spanning result lies also behind the construction of the popular volatility
VIX index computed by the CBOE options exchange.

The idea of our estimation strategy is to pick a function of the terminal price
which will allow us to efficiently separate the volatility from the jumps. We will
use the characteristic function to achieve this. Using {κT (k)}k∈R, we can recover
E
Q
t (eiu(xt+T −xt )) (see the expression in (3.11) below for the explicit formula). For

an appropriate choice of u, as we now show, we can disentangle volatility from
jumps using E

Q
t (eiu(xt+T −xt )).

To help intuition, lets first assume that xt+T − xt is, Ft -conditionally, a Lévy
process under Q (i.e., a process with i.i.d. increments). In this case, the Lévy–
Khintchine formula ([39], Theorem 8.1) implies

E
Q
t

(
eiu(xt+T −xt )/

√
T )

= exp
(
iu

√
T at − u2

2
Vt + T

∫
R

(
eiuT −1/2x − 1 − iuT −1/2x

)
νt (x) dx

)
.

(2.7)



NONPARAMETRIC SPOT VOLATILITY FROM OPTIONS 3597

Using our finite activity jump assumption in (2.3), we easily have that∫
R(cos(uT −1/2x) − 1)νt (x) dx = Op(1) and, therefore,

(2.8) Vt = − 2

u2 
(
ln
(
E
Q
t

(
eiu(xt+T −xt )/

√
T )))+ Op(T ) as T ↓ 0.

As we show in the proof of Theorem 1 below, the above approximation contin-
ues to hold even when xt+T − xt is not Ft -conditionally a Lévy process but it
can instead have time-varying volatility and jump intensity. Comparing (2.6) and
(2.8), we can see that the characteristic function based approach has asymptotically
smaller error than the ATM BSIV for estimating the spot volatility.

In Figure 2, we illustrate the accuracy of the expression on the right-hand side
of (2.8) for measuring Vt in the context of the parametric model used in the
Monte Carlo study below. We use two horizons of T = 2 and T = 5 days. As
seen from the figure, when u is very small, the bias in estimating volatility due
to the presence of jumps is rather nontrivial. Indeed, for the limit case of u ↓ 0,
− 2

u2 
(ln(E
Q
t (eiu(xt+T −xt )/

√
T ))) converges to the (expected) spot quadratic varia-

tion, Vt + ∫
R x2νt (x) dx, which includes the (risk-neutral) second moment of the

jump part. As u increases, the effect due to the jumps disappears and the charac-
teristic function based volatility measures converge to Vt . This happens faster for
the volatility measure based on the shorter of the two horizons and this volatility
measure is also uniformly (across u) less biased.

FIG. 2. Characteristic function based volatility estimates. The plot displays

− 2
u2 
(ln(E

Q
t (eiu(xt+T −xt )/

√
T ))) as a function of u for the model in the Monte Carlo ex-

periment in Section 5 (case H). The solid line corresponds to two business days and the dashed one
to five business days. The horizontal solid line is at the true value of the spot variance.
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Overall, consistent with our asymptotic analysis above, volatility estimation
based on the conditional characteristic function can separate volatility from jumps
far more efficiently than ATM BSIV (in the sense of smaller bias). For this to be of
practical use, however, we need to be able to estimate reliably from the available
options the conditional characteristic function of the returns for sufficiently high
values of u for which the effect of the jumps is minimal. This is what we study
next.

3. Nonparametric option-based volatility estimation. We now develop the
feasible counterpart of the volatility estimator based on the characteristic function
proposed in the previous section and derive its asymptotic properties. We start with
describing the observation scheme in Section 3.1 and stating our assumptions in
Section 3.2, followed by a formal definition of the estimator in Section 3.3 and
derivation of its asymptotic order. Section 3.4 proposes an option-based truncation
volatility which we use in Section 3.5 to select the characteristic exponent of the
volatility estimator in an adaptive way. This section further presents a feasible CLT.

3.1. The observation scheme. Our data consists of OTM options at time t ,
expiring at t + T , and having log-strikes

(3.1) k ≡ k1 < k2 < · · · < kN ≡ k,

with the corresponding strikes given by

(3.2) K ≡ K1 < K2 < · · · < KN ≡ K.

We denote the gaps between the log-strikes with 	i = ki − ki−1, for i = 2, . . . ,N .
We note that we do not assume an equidistant log-strike grid, that is, we allow for
	i to differ across i-s. The asymptotic theory developed below is of joint type in
which the time to maturity of the option T goes down to zero, the mesh of the log-
strike grid supi=2,...,N 	i shrinks to zero and (in some cases) the log-strike limits
−k and k increase to infinity.

Finally, as common in empirical derivatives pricing, we allow for observation
error, that is, instead of observing κT (ki) directly, we observe

(3.3) κ̂T (ki) = κT (ki) + εi,

where the sequence of observation errors {εi}i≥1 is defined on a space �(1) = RR.
This space is equipped with the product Borel σ -field F (1) and with conditional
probability P(1)(ω(0), dω(1)) from the original probability space �(0)—on which
X is defined—to �(1). The reason for defining the errors on RR is that our asymp-
totic setup is of infill type and so we need to define an error for every log-strike
which takes value in R. We further define

� = �(0) × �(1), F = F (0) ×F (1),

P
(
dω(0), dω(1)) = P(0)(dω(0))P(1)(ω(0), dω(1)).
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We will assume E(εi |F (0)) = 0 and that εi and εj are F (0)-conditionally inde-
pendent for i �= j . At the same time, we will allow for a general form of F (0)-
conditional heteroskedasticity in the observation error.

3.2. Assumptions. We continue with our formal assumptions for the process
x, the option observation scheme as well as the observation error.

A1. Vt > 0 and the process σ has the following dynamics under Q for s ≥ t :

σs = σt +
∫ s

t
bu du +

∫ s

t
ηu dWu +

∫ s

t
η̃u dW̃u

+
∫ s

t

∫
R

δσ (u, z)μσ (du, dz),

(3.4)

where W̃ is a Brownian motion independent of W ; μσ is a Poisson random mea-
sure on R+ ×R with compensator νσ (du, dz) = du⊗ dz, having arbitrary depen-
dence with the random measure μ; b, η and η̃ are processes with càdlàg paths and
δσ (u, z) :R+ ×R →R is left continuous in its first argument.

A2-r. With the notation of A1 and for some r ∈ [0,1], there exists an Ft -
adapted random variable t > t such that for s ∈ [t, t]:

E
Q
t |as |4 +E

Q
t |σs |6 +E

Q
t

(
e4|xs |)

+E
Q
t

(∫
R

[(
e3|z| − 1

)∨ |z|r ]νs(z) dz

)4
< Ct,

(3.5)

for some Ft -adapted random variable Ct , and in addition for some ι > 0:

(3.6) E
Q
t

(∫
R

(∣∣δσ (s, z)
∣∣4 ∨ ∣∣δσ (s, z)

∣∣)dz

)1+ι

≤ Ct .

A3. With the notation of A1, there exists an Ft -adapted random variable t > t

such that for s ∈ [t, t]:
E
Q
t |as − at |p +E

Q
t |σs − σt |p +E

Q
t |ηs − ηt |p +E

Q
t |η̃s − η̃t |p

≤ Ct |s − t |, p ∈ [2,4],
(3.7)

E
Q
t

(∫
R

(
ez∨0|z| ∨ |z|2)∣∣νs(z) − νt (z)

∣∣dz

)p

≤ Ct |s − t |, p ∈ [2,3],(3.8)

E
Q
t

(∫
R

(
δσ (s, z) − δσ (t, z)

)2
dz

)
≤ Ct |s − t |,(3.9)

for some Ft -adapted random variable Ct .
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A4. The log strike grid {ki}Ni=1 is F (0)
t -adapted and on a set with probability

approaching one, we have

(3.10) η	 ≤ inf
i=2,...,N

	i ≤ sup
i=2,...,N

	i ≤ 	,

where η ∈ (0,1) is some positive constant and 	 is a deterministic sequence with
	 → 0.

A5. We have: (1) E(εi |F (0)) = 0, (2) E(ε2
i |F (0)) = κT (ki)

2σ 2
t,i where σt,i ≡

σt (ki) with infk∈R σt (k) and supk∈R σt (k) being finite-valued, positive and F (0)
t -

adapted random variables, (3) E(|εi |4|F (0)) ≤ ζtκT (ki)
4 for some finite-valued

F (0)
t -adapted random variable ζt and (4) εi and εj are F (0)-conditionally inde-

pendent whenever i �= j .

A6. The dynamics of X and σ under P is as (2.1) and (3.4) but with W , W̃

and μσ defined with respect to P, and with μ having a compensator under P of
the form νPt (x) dt ⊗ dx. The drift coefficient of X is locally bounded. Moreover,
for a sequence of stopping times (τn) increasing to infinity and a sequence of
functions �n(z) satisfying

∫
R �n(z) dz < ∞, we have

∫
R(|z| ∧ 1)νPt (dx) < ∞ and

|δσ (t, z)| ≤ �n(z) for t ≤ τn.

Assumption A1 imposes σt to be an Itô semimartingale under Q, which is the
case for many applications, for example, for models in the popular affine class;
see, for example, [22]. Assumption A2 imposes existence of conditional moments.
This assumption also assumes that the so-called jump activity of X (see, e.g., Sec-
tion 3.2 of [27]) is bounded by r ∈ [0,1]. Assumption A3 imposes “smoothness in
expectation” type conditions which are satisfied for example when the correspond-
ing processes are Itô semimartingales. Assumption A4 is a weak condition on the
strike grid and Assumption A5 is about the observation error. The latter is F (0)-
conditionally centered at zero and it can have F (0)-conditional heteroskedasticity.
The F (0)-conditional standard deviation of the observation error is proportional
to the option price it is attached to and this determines the asymptotic order of
the error as T ↓ 0. Finally, Assumption A6 is only needed for the high-frequency
return-based volatility estimator and is taken from [27] (Assumption H in Sec-
tion 9.1).

3.3. Construction of the volatility estimator and its rate of convergence. We
proceed with formally defining our characteristic function based volatility estima-
tor. Using Appendix 1 of [15], the conditional characteristic function of the log
return, EQ

t (eiu(xt+T −xt )), can be spanned by the following portfolio of options:

(3.11) 1 − (
u2 + iu

) ∫
R

e(iu−1)k−iuxt κT (k) dk, u ∈R.
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The integral in the above expression is not computable, given available data, be-
cause we do not have option observations over a continuum of strikes and, fur-
thermore, we do not observe directly κT (k). The computable counterpart of the
expression in (3.11) is formed by using a Riemann sum approximation of the inte-
gral in (3.11) constructed from the available noisy option observations:

(3.12) f̂t,T (u) = 1 − (
u2 + iu

) N∑
j=2

e(iu−1)kj−1−iuxt κ̂T (kj−1)	j , u ∈ R.

While in general xt+T − xt is not F (0)
t -conditionally the increment of a Lévy pro-

cess, when T is small, the expression for the characteristic function in (2.7) nev-
ertheless holds approximately true. This motivates the following estimator of the
volatility:

(3.13) V̂t,T (u) = 2

T u2 R̂t,T (u),

where R̂t,T (u) is given by

(3.14) R̂t,T (u) = −
(
ln
(
f̂t,T (u) ∨ T

))
.

For V̂t,T (u) to be a consistent estimator of Vt , we will need f̂t,T (u) to converge
in probability to the expression in (3.11) and for this we will need the mesh of the
discrete strike price grid in (3.1) to go to zero and the time to maturity T of the
options to shrink. The formal result for the consistency and rate of convergence of
V̂t,T (u) is given in the next theorem.

THEOREM 1. Suppose Assumptions A1–A5 in Section 3.2 hold for some r ∈
[0,1] and in addition 	 � T α , K � T −β , K � T γ for some α > 1

2 , β ≥ 0 and

γ ≥ 0. Let (uT ) be an F (0)
t -adapted sequence such that

(3.15) u2
T T

a.s.−→ u where u is a finite nonnegative random variable.

Then we have

(3.16) V̂t,T (uT ) − Vt = Op

(
ur−2

T ∨
√

	

T 1/4 ∨ u−1
T e−2(|k|∨k)

)
.

Since the order of magnitude of the increment xt+T − xt shrinks asymptotically
as T ↓ 0, it is intuitively clear that we need to consider sequences (uT ) which go
to infinity. We look only at the case where uT increases as fast as 1/

√
T because

for sequences (uT ) going at a faster rate to infinity, the limit of f̂t,T (u) will be zero
(recall (2.7)), and hence the signal about the volatility will be smaller.

The rate of convergence result in (3.16) reveals the role of the different sources
of error in the volatility estimation. The first term on the right-hand side of (3.16)
is a bias due to the presence of jumps in X. The parameter r controls the so-called
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jump activity (see Assumption A2-r), with higher values of r implying more con-
centration of small jumps in X which in turn are harder to separate from the diffu-
sive component. The case of finite activity jumps that we considered in the previ-
ous section corresponds to r = 0. Similar to earlier work on recovering volatility
from high-frequency return data (e.g., [7, 10] and [31, 32]) and in line with earlier
empirical evidence in [4] and [18], here we consider only the case of finite variation
jumps, that is, r ≤ 1. For the infinite variation case, the bias due to the jumps be-
comes larger and a bias correction analogous to the one in [30] for the return-based
estimator is probably needed for satisfactory performance of the volatility estima-
tor in practice. Finally, from (3.16), it is clear that better separation of volatility
from jumps is achieved for higher values of uT .

The second term on the right-hand side of (3.16) is due to the observation error,
that is, due to the fact that we use κ̂T (k) in the estimation instead of κT (k). The
conditional volatility of the observation error is assumed to be of the same order
of magnitude as the option price it is associated with (see Assumption A5). This
is intuitive and is motivated by the empirical evidence in [4] regarding the size of
the relative bid-ask spread in available option data sets. The asymptotic order of
magnitude of the option prices differ depending on the strike (and hence the same
applies for the observation errors attached to the options). In particular, for log-
strikes which are within a range from the current log-price of order Op(

√
T ), the

option prices are of asymptotic order Op(
√

T ). On the other hand, for log-strikes
which are of fixed size (different from the current log-price), the option prices are
of asymptotic order Op(T ) only. That is, for time-to-maturity T shrinking to zero,
the option prices whose strikes are close to the current price level are of larger
asymptotic order than the ones whose strikes are further away from it. Note that
in (3.12) we use options with all available strikes (provided β and γ are strictly
positive). The above discussion suggests that the effect of the observation error
on the recovery of volatility will be determined by the option observations whose
strikes are in the vicinity of the current price.

The third term on the right-hand side of (3.16) is due to the finite log-strike
range of the available option data (k, k) used in the estimation. Intuitively, the or-
der of magnitude of this error will depend on the probability mass in the tails of
the risk-neutral F (0)

t -conditional distribution of xt+T − xt . With stronger assump-
tions for the latter, than what is currently assumed in Assumption A2, the order of
magnitude of this error can be further relaxed. From a practical point of view, this
error is likely to have little impact on the estimation, as for the typical option data
sets, the deepest available OTM option prices are very close to zero. This implies
that the “effective” support of the conditional return distribution is covered by the
available log-strike range (k, k). Indeed, earlier empirical work has documented
that the effect of the finite strike range of the available options on the precision
of the VIX index (which is another portfolio of options with different strikes) is
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typically small. We further note that since the argument of the characteristic func-
tion uT is asymptotically drifting to infinity, we have that V̂t,T (uT ) is a consistent
estimator of Vt even when the strike range of the options remains finite.

Finally, the recovery of the spot volatility from the short-dated options contains
an error due to the time-variation in the volatility and the jump intensity over the
interval [t, t + T ]. The effect of this error on the volatility estimation is of order
Op(T ), and hence it is asymptotically dominated by the first term on the right-
hand side of (3.16) (which recall is due to the separation of volatility from jumps
and is present even if volatility is constant). We note in this regard that our interest
here is in the effect of the error due to the time-variation in volatility and jump
intensity on the recovery of the option portfolio in (3.11) and not on an individual
option. The former is much smaller than what we can show for the latter. We also
mention that it is only the stochastic changes in the volatility and the jump intensity
which cause the above mentioned bias in the estimation. Indeed, if conditional on
Ft the process V has deterministic time-variation over the interval [t, t + T ], then
V̂t,T (uT ) is an estimate of 1

T

∫ t+T
t Vs ds without any bias due to the time-variation

in V .

3.4. Data-driven choice of uT and option-based truncated volatility. From
Theorem 1, it is clear that in order to minimize the impact of the jumps on the
volatility recovery, it is optimal to set uT to be of asymptotic order Op(1/

√
T ).

This, of course, is an asymptotic statement and it does not give a specific guid-
ance regarding the choice of uT in finite samples. At the same time, from the
expression for the log-characteristic function in (2.7), it is clear that its behavior is
governed by the product T × u2

T × Vt . Therefore, one would like to set uT such
that T × u2

T × Vt is some fixed constant. To do this, we will need a preliminary
estimator of volatility and further we will have to show that our estimator V̂t,T (uT )

can be made adaptive, that is, uT can be replaced with an estimate ûT based on the
data.

In this section, we tackle the first problem, that is, the construction of a prelimi-
nary volatility estimator from the option data, and in the next section we deal with
making V̂t,T (uT ) adaptive. One natural choice of a preliminary volatility estimator
is the ATM BSIV which has the additional advantage of being free of tuning pa-
rameters. However, given the documented large bias in the ATM BSIV, we propose
an alternative one. Our initial consistent volatility estimator can be viewed as the
option analogue of the truncated volatility estimator of [31] and is given by

(3.17) T̂Vt,T (η) = 1

T

N∑
j=2

hη(kj−1)κ̂T (kj−1)	j , η ≥ 0,

where we denote

hη(k) = e−k−η(k−xt )
2[

4η2(k − xt )
4

+ 2 − 10η(k − xt )
2 + 2η(k − xt )

3 − 2(k − xt )
]
.
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T̂Vt,T (η) is a consistent estimator of E
Q
t (e−η(xt+T −xt )

2
(xt+T − xt )

2) from the
available options. In the special case when η = 0, we denote

(3.18) Q̂Vt,T ≡ T̂Vt,T (0),

and we note that Q̂Vt,T is an estimator of the expected risk-neutral spot quadratic
variation

(3.19) QVt,T = Vt +
∫
R

x2νt (x) dx.

Thus, Q̂Vt,T is the option counterpart of the realized variance computed from re-
turn data ([2] and [8, 9]). We note however a fundamental difference. The realized
variance is an estimator of

∫ t+τ
t Vs ds +∑

s∈[t,t+τ ](	xs)
2 for some τ > 0. By con-

trast, QVt,T can be viewed as the risk-neutral F (0)
t -conditional expectation of this

quantity for τ small (and further standardized, i.e., divided, by τ ). While for small
τ , we have Vt ≈ E

Q
t (Vt+τ ), the same does not hold for the expected and realized

jumps no matter how small τ is and regardless of whether the jump intensity varies
over time or not (i.e., whether νt depends on t or not).

When η is a positive number, then T̂Vt,T (η) estimates a truncated (conditional)
second moment of the increment xt+T − xt with the degree of truncation deter-
mined by η. When η is replaced with an increasing function depending on T , that
is, when the degree of truncation changes as we get more short-dated option data,
then we can use T̂Vt,T (η) to separate volatility from jumps. This is analogous to
the truncated volatility estimator based on return data proposed by [31], with the
difference being that, unlike [31], we use a smooth truncated square function here.

To implement the option-based truncated volatility estimator, we need to choose
the truncation level. The tradeoff we face here is similar to the one for the return-
based counterpart of our estimator. On one hand, we would like to set the trun-
cation as high as possible to minimize the impact of the jumps on the statistic.
On the other hand, a more severe truncation will cause a downward bias in the
recovery of volatility since such severe truncation will start eliminating even the
contribution coming from the continuous part of the process in the second moment
of the return. Therefore, an adaptive version of T̂Vt,T (η) is necessary. We use the
following data-driven choice for the cutoff parameter:

(3.20) η̂T = ηT

T

1

Q̂Vt,T ∨ T
,

for some deterministic sequence ηT that depends only on T and which goes to
zero, but at a rate slower than the one at which T decreases. The reason for setting
the truncation parameter this way is that the downward bias in T̂Vt,T (η) caused
by the truncation depends on the product η × T × QVt,T . In the next theorem, we
present the consistency result for our truncation volatility estimator.
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THEOREM 2. Suppose Assumptions A1–A5 in Section 3.2 hold for some r ∈
[0,1] and in addition 	 � T α , K � T −β , K � T γ for some α > 1

2 , β > 0 and
γ > 0. We have

(3.21) Q̂Vt,T
P−→ QVt,T .

Suppose in addition that for ηT in (3.20):

(3.22)
ηT√
T

→ 0 and
ηT

T
→ ∞.

Then we also have

(3.23) T̂Vt,T (η̂T )
P−→ Vt .

The result in (3.21) is of independent interest and can be used for making infer-
ence for the jump part of X. We note that we can further derive a CLT associated
with the convergence in (3.21) which will allow us to assess the precision in the
recovery of the jump part of the quadratic variation.

3.5. Feasible CLT for the characteristic function based volatility estimator.
Theorem 1 allows for the sequence (uT ) to be random. However, it restricts (uT )

to be F (0)
t -adapted and this rules out the case where (uT ) depends on the option

data used in the construction of V̂t,T (uT ). The goal of this section is to make the
volatility estimator adaptive by making uT a function of our preliminary truncated
volatility T̂Vt,T (η̂T ). In particular, we set the characteristic exponent in the con-
struction of V̂t,T (u) in the following data-driven way (recall our discussion at the
beginning of Section 3.4):

(3.24) ûT = u√
T

1√
T̂Vt,T (η̂T )

,

where u is some fixed positive number that does not depend on the data.
We will further derive a feasible CLT for V̂t,T (ûT ) and for this we will need a

consistent estimator for its conditional asymptotic variance. We now introduce the
necessary notation for this. First, our estimates for the variance of the observation
error are based on

ε̂j = κ̂T (kj ) − 1

2

(
κ̂T (kj−1) + κ̂T (kj+1)

)
,

j = 2, . . . ,N − 1 and j �= j∗,
(3.25)

where j∗ ∈ {1, . . . ,N} with |kj∗ − xt | ≤ |kj − xt |, for j = 1, . . . ,N , and

ε̂1 = ε̂2 and ε̂N−1 = ε̂N ,

ε̂j∗ = κ̂T (kj∗) − κ̂T (kj∗−1)
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− (
κ̂T (kj∗−1) − κ̂T (kj∗−2)

) Kj∗ − Kj∗−1

Kj∗−1 − Kj∗−2
, if kj∗ ≤ xt ,

ε̂j∗ = κ̂T (kj∗) − κ̂T (kj∗+1)

− (
κ̂T (kj∗+1) − κ̂T (kj∗+2)

) Kj∗ − Kj∗+1

Kj∗+1 − Kj∗+2
, if kj∗ > xt .

Since the true option price is smooth in k, then for j = 2, . . . ,N − 1 and j �= j∗,
ε̂j is an estimate of εj − 1

2(εj−1 + εj+1). We use a different estimate for the error
associated with the available option with strike closest to the current price level.
This is done so that we can incorporate the no-arbitrage restriction that the option
price is a monotone function of its strike (decreasing for calls and increasing for
puts).

Given {̂εj }j=2,...,N , we set

Ĉt,T (u) = 2

3

N∑
j=2

ζj−1(u)ζj−1(u)�e−2kj−1 ε̂2
j−1	

2
j ,

ζj (u) =
(
u2 cos(ukj − uxt ) − u sin(ukj − uxt )

u cos(ukj − uxt ) + u2 sin(ukj − uxt )

)
, j = 1, . . . ,N,

(3.26)

and with it our estimate for the asymptotic variance is given by

Âvar
(
V̂t,T (u)

) = 4

T 2u4

1

|f̂t,T (u)|4
(

f̂t,T (u)

�f̂t,T (u)

)�
Ĉt,T (u)

(

f̂t,T (u)

�f̂t,T (u)

)
.(3.27)

Theorem 3 gives a feasible CLT for V̂t,T (ûT ). Below, L− s denotes stable con-
vergence, that is, convergence in law that holds jointly with any bounded positive
random variable defined on the probability space; see, for example, [28] for further
details.

THEOREM 3. Suppose Assumptions A1–A5 in Section 3.2 hold for some r ∈
[0,1] and in addition 	 � T α , K � T −β , K � T γ for some α > 1

2 , β > 0 and
γ > 0. If (3.22) holds and

(3.28) α <

(
1

2
+ 2 − r

)
∧
(

1

2
+ 4(β ∧ γ )

)
,

then

(3.29)
V̂t,T (ûT ) − Vt√
Âvar(V̂t,T (ûT ))

L−s−→ N(0,1),

where the limit is defined on an extension of the original probability space and is
independent of F .
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The condition in (3.28) ensures that the leading term in the difference
V̂t,T (ûT ) − Vt is due to the option observation error, and in particular that the
biases in the estimation due to the separation of volatility from jumps and the
finiteness of the strike range are of higher asymptotic order.

We note that the asymptotic limit of Âvar(V̂t,T (ûT )) (after appropriately rescal-
ing it) is in general random. That is, the asymptotic limit of V̂t,T (ûT )−Vt is mixed
Gaussian. This reflects the fact that the precision in the recovery of the random Vt

is itself random. This mirrors the limit behavior of the return-based volatility esti-
mators ([7, 10] and [31, 32]).

We further point out that the limit above is of self-normalizing type. That
is, we do not establish the limit of appropriately scaled V̂t,T (ûT ) − Vt and√

Âvar(V̂t,T (ûT )) but only of their ratio. This allows, in particular, to incorporate
general setups for the observed strike grid.

We finish this section by comparing the performance of our estimator with one
constructed from high-frequency return data. We will use a local (in time) version
of the truncated variance of [31, 32] in the comparison, but the results extend also
to other return-based volatility estimators, for example, the multipower variations
of [7, 10]. The return-based truncated volatility estimator is given by

(3.30) V̂
hf
t = n

kn

∑
i∈In

t

(
	n

i x
)21{|	n

i x|≤αn−� }, α > 0 and � ∈ (0,1/2),

where In
t = {i = 1, . . . , kn : �tn� − i} denotes a local window used for the cal-

culation of the volatility and 	n
i x = x i

n
− x i−1

n
. An estimator for the asymptotic

variance of V̂
hf
t can be constructed as follows:

(3.31) Âvar
(
V̂

hf
t,T

) = 2

3

n2

k2
n

∑
i∈In

t

(
	n

i x
)41{|	n

i x|≤αn−� }.

For the successful application of V̂
hf
t , it is important to set α in a data-driven way

that accounts for the current level of volatility. In the next theorem, we show that
the convergence of V̂t,T (ûT ) holds jointly with that of V̂

hf
t .

THEOREM 4. In addition to the conditions of Theorem 3, suppose also that
Assumption A6 in Section 3.2 holds and kn � √

n. Then

(3.32)
V̂

hf
t − Vt√

Âvar(V̂ hf
t,T )

L−s−→ N(0,1),

and this convergence holds jointly with the convergence in (3.29), with the limits
defined on an extension of the original probability space and being independent of
each other and of F .
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We note that V̂t,T (ûT ) and V̂
hf
t are only F -conditionally independent of each

other but, due to connections between their conditional asymptotic variances
(which recall are random), they can have dependence unconditionally. The result
of Theorem 4 suggests that we can benefit from combining the two volatility es-
timators. Indeed, we can optimally weight them (note that the weights given be-
low are in general random variables, and hence we need to use the fact that the
convergence of the two estimators holds stably) according to their F -conditional
asymptotic variances to get

V̂ mix
t = ŵt V̂t,T (ûT ) + (1 − ŵt )V̂

hf
t ,

ŵt = Âvar(V̂ hf
t,T )

Âvar(V̂ hf
t,T ) + Âvar(V̂t,T (ûT ))

.
(3.33)

The noisier one of the two volatility estimators is, the less weight it receives in
the combined estimator V̂ mix

t . In fact, if one of the two estimators converges at a
faster rate, then asymptotically the weight it receives in V̂ mix

t converges to one,
that is, it receives all the weight. A convenient feature of V̂ mix

t is that the user does
not need to take a stand on whether options or high-frequency returns are more
efficient for recovering volatility at any point in time. The optimally weighted V̂ mix

t

automatically “adapts” to the situation at hand.

4. Minimax risk for recovering volatility from noisy short-dated options.
We will now derive a lower bound for the minimax risk for recovering the spot
volatility from noisy short-dated option data. This result will show that our non-
parametric estimator V̂t,T (ûT ) is near rate-efficient. We first introduce the nec-
essary notation for stating the formal result. We will specialize attention to the
case where x is a Lévy process (under the risk-neutral measure) with finite ac-
tivity jumps, and hence we will drop the subscript t in the notation of the dif-
fusive volatility and the jump compensator here. We will define the set G(R) of
risk-neutral probability measures Q (under which the true option prices κT (k) are
computed according to (2.2)) for which x is a Lévy process with characteristics
triplet with respect to the identity truncation function ([39], Definition 8.2) given
by

(4.1)
(
−1

2
σ 2 −

∫
R

(
ez − 1 − z

)
ν(z) dz, σ 2,F (z)

)
,

where F(dz) = ν(z) dz and we further have

(4.2)
1

R
≤ |σ | ≤ R,

∫
R

((
e3|z| − 1

)∨ 1
)
ν(z) dz ≤ R,

for some constant R > 0.
The option observations are given by

(4.3) κ̂T (ki) = κT (ki) + (
κT (ki) ∨ T

)
εi, i = 1, . . . ,N,
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where {ε}i≥1 is a sequence of i.i.d. N(0,1) random variables defined on a product
extension of (�(0),F (0), (F (0)

t )t≥0,P
(0)) and independent of F (0). One can show

that the option prices for every strike are of order Op(T ). Therefore, the truncation
from below in the scale of the option error does not change its asymptotic order.

In what follows, we will denote with ET expectations under which the true (un-
observable) option prices κT (k) are computed according to the risk-neutral proba-
bility measure T .

THEOREM 5. In the setting of (4.1)–(4.3), assume further that η	 ≤ 	i ≤ 	,
for i = 1, . . . ,N and some η ∈ (0,1] and 	 > 0. Let 	 � T α , K � T −β and
K � T γ , for 1

2 < α < 5
2 and β,γ > 0 as T ↓ 0.

We then have

(4.4) inf
σ̂

sup
T ∈G(R)

ET

(√
T | lnT |5/2

	
|σ̂ − σ |2

)
≥ c,

for some c > 0 and where σ̂ is any estimator of σ based on the option data
{κ̂T (ki)}i=1,...,N .

Under the conditions of Theorem 3, one can show that V̂t,T (ûT ) − Vt =
Op(

√
	

T 1/4 ). Comparing this result with the efficient rate of convergence in Theo-
rem 5 (in the special setting of that theorem), we see that V̂t,T (ûT ) is near rate-
optimal, that is, its rate convergence is slower than the optimal one only by a log
term.

5. Monte Carlo study. We now test the performance of the developed non-
parametric techniques on simulated data. In order to generate option data, we need
a parametric model for the risk-neutral dynamics of X. We use the following spec-
ification:

(5.1) Xt = X0 +
∫ t

0

√
Vs dWs +

∫ t

0

∫
R

(
ex − 1

)
μ̃(ds, dx),

with W being a Brownian motion and V having the dynamics

(5.2) dVt = 3.6(0.02 − Vt) dt − 0.1
√

Vt dWt + 0.2
√

0.75
√

Vt dW̃t ,

where W̃ is a Brownian motion orthogonal to W . The jump measure μ has a com-
pensator νt (x) dt ⊗ dx with νt given by

(5.3) νt (x) = c−Vt

e−20|x|

|x|0.5 1{x<0} + c+Vt

e−100|x|

|x|0.5 1{x>0}.

The specification in (5.1)–(5.3) belongs to the affine class of models ([22]) com-
monly used in empirical option pricing work. Consistent with existing empirical
evidence, the jumps have time-varying jump intensity. The jump size distribution
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TABLE 1
Monte Carlo jump parameter settings

Case c− c+

L 0.3058 × 103 1.7097 × 103

M 0.6177 × 103 3.4194 × 103

H 0.9174 × 103 5.1291 × 103

is like the one of a tempered stable process which is found to provide good fit to
observed option data. We set the model parameters in a way that results in option
prices similar to observed equity index options. In particular, the parameter speci-
fication of V implies average annualized volatility of around 15% (our unit of time
is 1 year) and negative correlation between the innovations in price and stochastic
volatility (also known as leverage effect).

The parameters of the jump distribution are set in a way that produces jump tail
behavior similar to that found in market index option data; see, for example, [5].
We consider three cases for c±. In each of them, the ratio of expected negative to
positive jump variation is 10 to 1, similar to what is found in the data. The differ-
ent cases are of low, medium and high value of the jump variation, corresponding
to total expected jump variation being 1

4 , 1
2 and 3

4 , respectively, of the expected
diffusive variation. The values of c± in the different cases are given in Table 1.
Finally, we set X0 = 2000 and draw V0 from the stationary distribution of Vt un-
der Q (which is Gamma distribution with shape and scale parameters of 3.6 and
0.02/3.6).

We continue next with specifying our option observation scheme. The strike
grid, strike range and the total number of options at a given point in time are cal-
ibrated to match roughly available S&P 500 index option data. In particular, we
set k = −8 × σATM

√
T , where we denote with σATM the Black–Scholes implied

volatility of the ATM option. We then set the strikes on an equidistant grid in incre-
ments of 5, exactly as for the available S&P 500 index option data. That is, we set
eki = eki−1 + 5 for i = 2, . . . ,N and where N = inf{i : ki > 2.5 × σATM

√
T }. This

way, we have approximately k = 2.5 × σATM
√

T . We add observation error to the
model-implied option prices equal to εi = 0.05 × Zi × κT (ki), where {Zi}i=1,...,N

is a sequence of i.i.d. standard normal random variables.
To implement the option-based volatility estimator V̂t,T (ûT ) on the simulated

data, we need to set ηT for the preliminary truncated volatility as well as u for the
adaptive characteristic exponent ûT in (3.24). Recall that ηT is a deterministic se-
quence converging to zero. We put ηT = T 0.51, which for T = 2/252 takes value
of approximately 0.085 and for T = 5/252 takes value of approximately 0.135.
Our choice for ηT is motivated by the maximum downward bias in the measure-
ment of volatility. By first-order Taylor expansion, in the case of no jumps, 3ηT is
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TABLE 2
Monte Carlo results: Bias and MAE. MAE stands for mean absolute error

Bias MAE Bias MAE Bias MAE

Case T = 2 days T = 3 days T = 5 days

u = √
2 ln(1/0.085)

L 0.0006 0.0034 0.0008 0.0034 0.0013 0.0035
M 0.0001 0.0034 0.0002 0.0031 0.0007 0.0030
H −0.0001 0.0031 −0.0002 0.0028 0.0001 0.0024

u = √
2 ln(1/0.1)

L 0.0005 0.0029 0.0004 0.0029 0.0008 0.0030
M 0.0000 0.0028 −0.0001 0.0027 0.0001 0.0026
H −0.0002 0.0026 −0.0005 0.0024 −0.0005 0.0022

equal approximately to the relative negative bias in the measurement of the spot
variance by T̂Vt,T (η̂T ).

Turning next to u, we would like to pick this constant as low as possible to
guard against the effect of the jumps while at the same time high enough so that
the estimation is not too noisy. We experiment with two values, u = √

2 ln(1/0.1)

and u = √
2 ln(1/0.085), which correspond to |EQ

t (eiu(xt+T −xt ))| having values of
0.1 and 0.085, respectively (recall from the discussion in Section 2 that for high

u we have |EQ
t (eiu(xt+T −xt ))| ≈ e−u2 Vt T

2 ). Finally, to guard against potential finite
sample distortions in the data-driven choice of u, if the above choice of ûT exceeds
ûmin = argminu∈[0,400]|f̂T (u)|, we set ûT equal to the latter.

The results from the Monte Carlo are summarized in Tables 2 and 3. Overall,
the performance of the option-based volatility estimator on the simulated data is
consistent with theory. The estimator is nearly unbiased and volatility is recovered
with good precision. The estimation tends to be a bit noisier for the shorted-dated
options. This is because the number of available options decreases with T . Also,
the precision of the estimator is lower for the higher of the two choices for u. This

TABLE 3
Monte Carlo results: coverage probability

Coverage rate Coverage rate

T = 2 days T = 3 days T = 5 days T = 2 days T = 3 days T = 5 days

Case 0.90 0.95 0.90 0.95 0.90 0.95 0.90 0.95 0.90 0.95 0.90 0.95

u = √
2 ln(1/0.085) u = √

2 ln(1/0.1)

L 0.90 0.92 0.85 0.90 0.82 0.86 0.90 0.93 0.88 0.91 0.84 0.89
M 0.91 0.95 0.90 0.92 0.86 0.90 0.92 0.95 0.91 0.94 0.90 0.93
H 0.93 0.95 0.91 0.93 0.89 0.91 0.94 0.96 0.92 0.96 0.91 0.95
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is expected as the characteristic function is harder to estimate for higher values of
its argument (in the sense of larger associated asymptotic variance).

We turn next to the performance of the confidence intervals based on our infer-
ence theory which we summarize in Table 3. For the case of u = √

2 ln(1/0.085),
we can notice some undercoverage which is most severe for maturity T = 5 and
the low jump variation scenario. As we mentioned above, for larger u, the pre-
cision of the estimation is somewhat lower. On the other hand, for the case of
u = √

2 ln(1/0.1), the coverage rates are close to the nominal ones for the various
Monte Carlo scenarios.

Overall, the results from the Monte Carlo reveal satisfactory performance of the
option-based nonparametric volatility estimation in empirically realistic settings.

6. Empirical application. We next apply our nonparametric volatility proce-
dure on real data. Our sample covers the period 2016–2017 and the underlying
asset of the options in our analysis is the S&P 500 index. We use quotes on so-
called weekly options traded on CBOE options exchange (which are settled at the
end of the regular trading hours) recorded at market close on each Wednesday
which is not a holiday. We take the shortest to maturity available options on each
day with time to maturity between 2 and 5 business days. The median number of
strikes per date in our option data set is 54 while on more than 84% of the days the
time to maturity is 2 days. In addition to the options, we also make use of intraday
data on the E-mini S&P 500 futures contract (with maturity closest to expiration)
to construct return-based volatility estimates. The sampling frequency of the S&P
500 futures is 5 minutes which is sufficiently coarse to guard against the impact of
microstructure related issues.

The tuning parameters of the option-based volatility estimator are chosen ex-
actly as in the Monte Carlo (we use u = 0.1). For the return-based estimator, fol-
lowing common practice, we set the truncation level in a data-driven way. More
specifically, we set α and � in (3.30) to

(6.1) α = 3
√

RVt ∧ BVt and � = 0.49,

where

(6.2) RVt =
�tn�∑

i=�(t−1)n�+1

(
	n

i x
)2

, BVt = π

2

�tn�∑
i=�(t−1)n�+2

∣∣	n
i−1x

∣∣∣∣	n
i x

∣∣,
with RVt being the realized volatility and BVt being the Bipower Variation of [7,
10] over the trading day. The latter is a nonparametric jump-robust measure of
integrated volatility that is free of tuning parameters. Finally, our local window for
V̂

hf
t consists of kn = 48, 5-minute returns before market close (which is the time

when the option data is recorded).
In Figure 3, we plot the two spot volatility estimators. As seen from the fig-

ure, the two series are very close to each other on average. Indeed, the sample
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FIG. 3. Option and return based measures of volatility. The solid line corresponds to the option

based one,
√

V̂t,T (ûT ), and the stars to the one based on 5-minute returns of the underlying asset,√
V̂

hf
t . The x-axis ticks are at the beginning of the corresponding month.

median of the option-based volatility estimate is within 1.5% of that of the return-
based volatility estimator while the correlation between the two time series is 0.9.
At the same time, though, we can note that the volatility estimate from the high-
frequency data is significantly noisier. Indeed, the standard deviation of the return-
based volatility estimate is over 32% higher than that of its option-based counter-
part. In addition, the correlation between the first differences of the two estimators,
for which the measurement error plays bigger role, is only 0.6 (first differences are
used in the computation of measures of variation such as the quadratic variation).
Also, the efficiency gains offered by the option-based estimator (based on the es-
timated asymptotic variances) are particularly pronounced at the beginning of the
sample when the volatility was very high. This is to be expected as during such
episodes the separation of volatility from the realization of jumps from return data
is particularly challenging. Finally, V̂ mix

t in (3.33) that combines optimally the
option and return-based volatility estimators is very close to the former, with cor-
relation between V̂t,T (ûT ) and V̂ mix

t of over 0.99. This is due to the high weight
assigned to V̂t,T (ûT ) in forming V̂ mix

t , particularly in the high volatility period.
Overall, the empirical analysis reveals nontrivial gains in measuring spot volatil-

ity by the use of short-dated options. The newly-proposed nonparametric volatility
estimator should therefore greatly improve the precision in studying various fea-
tures of the volatility process, for example, the roughness of the volatility path
(see, e.g., [25]) as well as the presence of jumps in the volatility and their connec-
tion with those in the underlying price (see, e.g., [29] and [3]). Answering these
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questions regarding the volatility trajectory from return data alone is known to
be very difficult as the volatility is not directly observed and has to be filtered
out from the data. This can be particularly challenging in the presence of persis-
tent microstructure-related distortions in the high-frequency returns; see, for ex-
ample, the recent work of [17]. In addition, the option-based spot volatility esti-
mates should be of direct use for the purposes of volatility forecasting and risk
management where a more precise volatility proxy is known to provide efficiency
gains; see, for example, [2] in the case of volatility forecasting. In current work in
progress, I show this to be the case when using the newly-developed option-based
volatility estimator for forecasting the future volatility of various assets.

7. Proofs. In the proofs we will denote with Ct a finite-valued and Ft -adapted
random variable which might change from line to line. If the variable depends on
some parameter q , then we will use the notation Ct(q). Further, without loss of
generality, in the proofs, we will set Xt = 1 or equivalently xt = 0.

7.1. Decomposition, notation and auxiliary results. The jump part of the pro-
cess xt can be represented as an integral with respect to a Poisson random measure
under Q. In particular, using the so-called Grigelionis representation of the jump
part of a semimartingale (Theorem 2.1.2 of [27]) and upon suitably extending the
probability space, we can write

(7.1)
∫ t

0

∫
R

μ̃(ds, dx) ≡
∫ t

0

∫
E

δx(s, z)μ̃x(ds, dz),

where μx(ds, dz) is a Poisson measure on R+ × E with compensator dt ⊗ λ(dz)

for some sigma-finite measure λ on E, μ̃x is the martingale counterpart of μx , and
δx is a predictable and R-valued function on � ×R+ × E such that νt (z) dz is the
image of the measure λ(dz) under the map z → δx(t, z) on the set {z : δx(ω, t, z) �=
0}.

There are different choices for E and the function δx . For the analysis here, it
will be convenient to use E =R+ ×R and δx(t, z) = z21{z1≤νt (z2)} for z = (z1, z2),
with λ being the Lebesgue measure on E.

We proceed with introducing some notation that will be used throughout the
proofs. By noting that xt = 0, we can split xs into

xc
s =

∫ s

t
au du +

∫ s

t
σu dWu,

xd
s =

∫ s

t

∫
E

δx(u, z)μ̃x(du, dz), s ≥ t.

(7.2)

We now introduce two approximations for xs . The first is x̃s = x̃c
s + x̃d

s , where for
s ≥ t

(7.3) x̃c
s = at (s − t) + σt (Ws − Wt), x̃d

s =
∫ s

t

∫
E

δx(t, z)μ̃x(du, dz).
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The second approximation is given by xs = xc
s + xd

s , where for s ≥ t

xc
s = at (s − t) +

∫ s

t
σ uWu,

xd
s = x̃d

s , σ s = σt + ηt (Ws − Wt) + ηt (Ws − Wt).

(7.4)

The OTM option prices at time t associated with log-terminal value x̃t+T are de-
noted by κ̃T (k), the ones with log-terminal value of xt+T are denoted by κT (k),
and the ones with log-terminal value of σt (Wt+T − Wt) with κ̃c

T (k).

LEMMA 1. Suppose Assumptions A1–A3 hold. There exist Ft -adapted ran-
dom variables t > t and Ct > 0 that do not depend on k, k1, k2 and T , such that
for T < t we have

κT (k) ≤ CtT

⎧⎪⎪⎨⎪⎪⎩
e2k

e−k − 1
, if k < 0,

1

ek − 1
, if k > 0,

(7.5)

∣∣κT (k) − κT (k)
∣∣ ≤ Ct | lnT |T 3/2,(7.6)

∣∣κT (k) − κ̃T (k)
∣∣ ≤ Ct

(
T

3
2 ∨

(
T 3/2

|ek − 1| ∧ T

))
,(7.7)

κ̃T (k) ≤ Ct

(√
T ∧ T

|ek − 1|
)
,(7.8)

(7.9)

⎧⎪⎪⎨⎪⎪⎩
k < kl,t =⇒ κ̃T (k) ≤ Ct

e2k

(e−k−kl,t − 1)2
T , kl,t = −σt

√
T | lnT |,

k > kh,t =⇒ κ̃T (k) ≤ Ct

1

(ek−kh,t − 1)2
T , kh,t = σt

√
T | lnT |,

∣∣̃κT (k1) − κ̃T (k2)
∣∣ ≤ Ct

[(
T

k2
2

∧ 1
)

1{|k2|≤1} + T

k4
2

1{|k2|>1}
]∣∣ek1 − ek2

∣∣,(7.10)

∣∣κT (k1) − κT (k2)
∣∣ ≤ Ct

[(
T

k2
2

∧ 1
)

1{|k2|≤1} + T

k4
2

1{|k2|>1}
]∣∣ek1 − ek2

∣∣,(7.11)

where k1 < k2 < 0 or k1 > k2 > 0.

PROOF. All bounds but the last one are proved in Lemmas 2–7 of [37]. The
bound in (7.11) can be proved exactly as Lemma 7 of [37] using the integrability
assumptions in A2-r. �
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LEMMA 2. Suppose Assumptions A1–A3 hold. There exist Ft -adapted ran-
dom variables t > t and Ct > 0 that do not depend on k and T , such that for T < t

we have ∣∣̃κT (k) − κ̃c
T (k)

∣∣ ≤ CtT ,(7.12) ∣∣∣∣̃κc
T (k) − f

(
k − atT√

T σt

)√
T σt − (

ek − 1
)
�

(
k − atT√

T σt

)∣∣∣∣
≤ CtT if k ≤ 0,∣∣∣∣̃κc

T (k) − f

(
k − atT√

T σt

)√
T σt + (

ek − 1
)(

1 − �

(
k − atT√

T σt

))∣∣∣∣
≤ CtT if k > 0,

(7.13)

where f and � are the pdf and cdf, respectively, of a standard normal random
variable.

PROOF. We look only at the case k > 0, with the proof for the case k ≤ 0
being done in analogous way. First, we have∣∣∣∣ex̃t+T − ek

∣∣+ − ∣∣eσt (Wt+T −Wt) − ek
∣∣+∣∣ ≤ eσt (Wt+T −Wt)

∣∣eatT +x̃d
t+T − 1

∣∣.
From here, we can use the Ft -conditional independence of Wt+T − Wt and x̃d

t+T

and apply Lemma 1 of [37] to obtain the result in (7.12).
We continue with the bounds in (7.13). Direct calculation shows for k > 0,

κ̃c
T (k) = eatT +σ 2

t T /2
(

1 − �

(
k − atT√

T σt

− √
T σt

))
− ek

(
1 − �

(
k − atT√

T σt

))
.

From here, the result of (7.13) follows by using Taylor’s expansion and the fact
that the function f is bounded. �

7.2. Proof of Theorem 1. We introduce the following notation:

ft,T (u) = E
Q
t

(
eiu(xt+T −xt )

)
, f̃t,T (u) = E

Q
t

(
eiu(x̃t+T −x̃t )

)
.

Using Appendix 1 of [15], ft,T (u) equals the expression in (3.11). We further note
that by Lévy–Khintchine formula

(7.14) f̃t,T (u) = exp
(
iT uat − T

u2

2
Vt + T

∫
R

(
eiux − 1 − iux

)
νt (x) dx

)
.

We start the proof with establishing a bound for the difference ft,T (u)− f̃t,T (u).
In the proof, we will denote with ζt,T (u) a random variable that depends on u and
further satisfies ∣∣ζt,T (u)

∣∣ ≤ Ct

(|u|T 3/2 ∨ |u|4T 3),
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where Ct is Ft -adapted random variable that does not depend on u. This variable
can change from one line to another.

We first study the real part of the difference 
(ft,T (u) − f̃t,T (u)). Applying
Itô’s lemma, using the normalization xt = 0 and the integrability Assumption A2,
we have

E
Q
t

(
cos(uxt+T )

)− 1

= −E
Q
t

(∫ t+T

t
u sin(uxs)as ds + 1

2

∫ t+T

t
u2 cos(uxs)σ

2
s ds

)

+E
Q
t

(∫ t+T

t

∫
R

(
cos(uxs)

(
cos(uz) − 1

)
− sin(uxs)

(
sin(uz) − u sin(z)

))
νs(z) dz ds

)
.

We have an analogous expression for EQ
t (cos(ux̃t+T )) − 1. Then, using Assump-

tion A3 as well as EQ
t |xs − x̃s | ≤ CtT for s ∈ [t, t + T ] and Ct being Ft -adapted

random variable (which follows from using Doob’s inequality and A3), we can
write

E
Q
t

(
cos(uxt+T )

)− 1

= −E
Q
t

(∫ t+T

t
u sin(ux̃s)at ds + 1

2

∫ t+T

t
u2 cos(uxs)σ

2
s ds

)

+E
Q
t

(∫ t+T

t

∫
R

(
cos(ux̃s)

(
cos(uz) − 1

)
− sin(ux̃s)

(
sin(uz) − u sin(z)

))
νt (z) dz ds

)
+ ζt,T (u).

Therefore, we have

E
Q
t

(
cos(uxt+T )

)−E
Q
t

(
cos(ux̃t+T )

)
= 1

2
E
Q
t

(∫ t+T

t
u2(cos(ux̃s)σ

2
t − cos(uxs)σ

2
s

)
ds

)
+ ζt,T (u).

Using the proof of Lemma 3 in [37] as well as (3.9) of A3, we have EQ
t |xs − xs | ≤

CtT
3/2 for s ∈ [t, t + T ] and Ct being Ft -adapted random variable. In addition,

using assumptions A1–A3 and Doob’s inequality, we also have EQ
t |σs −σ s | ≤ CtT

for s ∈ [t, t + T ] and Ct as before. Using these results and the Cauchy–Schwarz
inequality, we can write

E
Q
t

(
cos(uxt+T )

)−E
Q
t

(
cos(ux̃t+T )

)
= 1

2
E
Q
t

(∫ t+T

t
u2(cos(ux̃s)σ

2
t − cos(uxs)σ

2
s

)
ds

)
+ ζt,T (u).

(7.15)
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Next, we can decompose

cos(uxs)σ
2
s − cos(ux̃s)σ

2
t

= (
cos(uxs) − cos(ux̃s)

)
σ 2

t + cos(uxs)(σ s − σt )
2

+ 2
(
cos(uxs) − cos(ux̃s)

)
(σ s − σt )σt + 2 cos(ux̃s)(σ s − σt )σt .

(7.16)

For the second and third terms on the right-hand side of the above equality, we can
use EQ

t (σ s −σt )
2 ≤ CtT and E

Q
t (xs − x̃s)

2 = E
Q
t (

∫ s
t (σ s −σt ) dWu)

2 ≤ CtT
2, for

s ∈ [t, t + T ] and Ct being Ft -adapted random variable as well as the Cauchy–
Schwarz inequality, and conclude

u2TE
Q
t (σ s − σt )

2 + u2T
∣∣EQ

t

[(
cos(uxs) − cos(ux̃s)

)
(σ s − σt )

]∣∣ = ζt,T (u).

For the forth term on the right-hand side of (7.16), we can decompose cos(ux̃s) =
cos(ux̃c

s ) cos(ux̃d
s ) − sin(ux̃c

s ) sin(ux̃d
s ). Then, using the symmetry of the density

of the standard normal distribution as well as the independence of W and W̃ , we
have

E
Q
t

(
cos

(
ux̃c

s

)
cos

(
ux̃d

s

)
(σ s − σt )

)
= − sin

(
uat (s − t)

)
E
Q
t

(
sin

(
uσt(Ws − Wt)

)
cos

(
ux̃d

s

)
(σ s − σt )

)
,

which is ζt,T (u) because E
Q
t |σ s − σt | ≤ Ct

√
T for s ∈ [t, t + T ]. Using the Ft -

conditional independence of x̃d
s and σ s − σt , we also have

E
Q
t

∣∣sin
(
ux̃c

s

)
sin

(
ux̃d

s

)
(σ s − σt )

∣∣ ≤ |u|EQ
t

(∣∣x̃d
s

∣∣|σ s − σt |)
= |u|EQ

t

∣∣x̃d
s

∣∣EQ
t |σ s − σt | = ζt,T (u).

Combining these bounds, we have

E
Q
t

(
cos(ux̃s)(σ s − σt )

) = ζt,T (u).

Finally, for the first term on the right-hand side of (7.16) using the independence
of W and W̃ and integration by parts, we can write

E
Q
t

(
cos(uxs) − cos(ux̃s)

)
= −E

Q
t

(
sin(ux̃s) sin(uxs − ux̃s)

)+ ζt,T (u)

= −uE
Q
t

(
sin(ux̃s)(xs − x̃s)

)+ ζt,T (u)

= −u

2
ηtE

Q
t

(
sin(ux̃s)(Ws − Wt)

2)+ ζt,T (u)

= −u

2
ηtE

Q
t

(
sin

(
uσt(Ws − Wt)

)
(Ws − Wt)

2)+ ζt,T (u) = ζt,T (u),

where for the last two equalities we have made use of the Ft -conditional indepen-
dence of x̃c

s and x̃d
s as well as the symmetry of the density of the standard normal
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distribution. Altogether we get that EQ
t (

∫ t+T
t u2(cos(uxs)σ

2
s − cos(ux̃s)σ

2
t ) ds) is

ζt,T (u). Combining this result with (7.15), we have

(7.17) 
(
ft,T (u) − f̃t,T (u)

) = ζt,T (u).

Turning to �(ft,T (u) − f̃t,T (u)), by making use of EQ
t |xt+T − x̃t+T | ≤ CtT , we

have

(7.18)
∣∣EQ

t

(
sin(uxt+T )

)−E
Q
t

(
sin(ux̃t+T )

)∣∣ ≤ Ct |u|T .

The results in (7.17) and (7.18), together with the rate condition for the sequence
uT in (3.15), imply


(
ft,T (uT )

)− 
(
f̃t,T (uT )

) = Op(T ),

�(ft,T (uT )
)− �(f̃t,T (uT )

) = Op(
√

T ).
(7.19)

From (7.14), we also have

(7.20) 
(
f̃t,T (uT )

) = Op(1), �(f̃t,T (uT )
) = Op(

√
T ).

From here, using Taylor’s expansion, we have

(7.21) 
(
ln
(
ft,T (uT )

))− 
(
ln
(
f̃t,T (uT )

)) = Op(T ).

Furthermore, for r being the constant in Assumption A2-r, we have

(7.22)
∣∣∣∣
(

ln
(
f̃t,T (uT )

))+ T
u2

T

2
σ 2

t

∣∣∣∣ ≤ 2T |uT |r
∫
R

|x|rνt (x) dx.

Altogether, we have

(7.23) − 2

T u2
T


(
ln
(
ft,T (uT )

))− σ 2
t = Op

(
ur−2

T

)
.

We next decompose f̂t,T (uT ) − ft,T (uT ) = ∑3
j=1 f̂

(j)
t,T , where f̂

(j)
t,T = −(u2

T +
iuT )T f

(j)

t,T and

f
(1)

t,T = 1

T

N∑
j=2

e(iuT −1)kj−1εj−1	j,

f
(2)

t,T = 1

T

N∑
j=2

∫ kj

kj−1

(
e(iuT −1)kj−1κT (kj−1) − e(iuT −1)kκT (k)

)
dk,

f
(3)

t,T = − 1

T

∫ k

−∞
e(iuT −1)kκT (k) dk − 1

T

∫ ∞
k

e(iuT −1)kκT (k) dk.

Using the bounds of Lemma 1 and Assumption A5 for the observation error, we
have

(7.24) f
(1)

t,T = Op

( √
	

T 1/4

)
, f

(2)

t,T = Op

(
	√
T

| lnT |
)
.
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Turning to f
(3)

t,T , using integration by parts and Lemma 1, we get∫ k

−∞
e(iuT −1)kκT (k) dk = i

uT

∫ k

−∞
e(iuT −1)k(κ ′

T (k) − κT (k)
)
dk

− i

uT

e(iuT −1)kκT (k).

(7.25)

Using Lebesgue dominated convergence and the integrability conditions in As-
sumption A2, we have

κ ′
T (k) = ekQt (xt+T < k) = ekQt

(
e−xt+T − 1 < e−k − 1

)
≤ Cte

k T

(e−k − 1)3 , k < 0.
(7.26)

From here by application of Lemma 1, we obtain
∫ k
−∞ e(iuT −1)kκT (k) dk =

Op(u−1
T T e−2|k|). Exactly the same analysis can be done for the second integral

in f
(3)

t,T , and thus altogether we have

(7.27) f
(3)

t,T = Op

(
u−1

T e−2(|k|∧|k|)).
Combining the bounds in (7.23), (7.24) and (7.27), using Taylor’s expansion and

the rate condition in (3.15) as well as the conditions for the asymptotic behavior of
T , 	, k and k in the theorem, we have (3.16).

7.3. Proof of Theorem 2. We set fη(x) = e−ηx2
x2 for η ≥ 0, and we denote

(7.28) ηT = ηT

T

1

QVt

,

which is an Ft -adapted random variable. Using Appendix 1 of [15], for every
finite-valued, nonnegative and Ft -adapted random variable η, we have

(7.29) E
Q
t

(
fη(x̃t+T − x̃t )

) =
∫ ∞
−∞

hη(k)κ̃T (k) dk.

We will first show that EQ
t (f0(x̃t+T − x̃t )) and E

Q
t (fηT

(x̃t+T − x̃t )) are close to
QVt and Vt , respectively. Applying Itô’s lemma, taking expectations and using the
integrability conditions of Assumption A2-r, we have

E
Q
t

(
fη(x̃t+T − x̃t )

)
= atE

Q
t

(∫ T

0
f ′

η(x̃t+s − x̃t ) ds

)
+ Vt

2
E
Q
t

(∫ T

0
f ′′

η (x̃t+s − x̃t ) ds

)

+E
Q
t

(∫ T

0

∫
R

(
fη(x̃t+s − x̃t + z) − fη(x̃t+s − x̃t )

− f ′
η(x̃t+s − x̃t )z

)
dsνt (z) dz

)
,

(7.30)
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for any Ft -adapted η. Using then the fact that (which follows by (7.3) and the
integrability conditions in A2-r)

(7.31)
∣∣EQ

t (x̃t+s − x̃t )
∣∣ ≤ CtT for s ∈ [t, t + T ],

we have

(7.32)
∣∣∣∣ 1

T
E
Q
t

(
f0(x̃t+T − x̃t )

)− Vt −
∫
R

z2νt (z) dz

∣∣∣∣ = Op(T ).

Next, for some constant C that does not depend on η and x, we have for η ∈ R+
and x ∈R, ∣∣f ′

η(x)
∣∣ ≤ C|x| and

∣∣f ′′
η (x) − 2

∣∣ ≤ Cηx2,(7.33) ∣∣fη(x + z) − fη(x) − f ′
η(x)z − fη(z)

∣∣
≤ C

(|x||z| + η|x|2|z|2 + η|x|3|z| + e− η
2 |z|2 |z|2).(7.34)

Using the above bounds and (7.30), the inequality |x|e−|x|2 ≤ C, the fact that∫
R |z|νt (z) dz < ∞ (due to A2-r), the bound E

Q
t (|x̃s − x̃t |2 ∨ |x̃s − x̃t |3) ≤ CtT

for s ∈ [t, t + T ], as well as the integrability assumptions in A2-r, we have, for ηT

in (7.28),

(7.35)
∣∣∣∣ 1

T
E
Q
t

(
fηT

(x̃t+T − x̃t )
)− Vt

∣∣∣∣ = Op

(√
T ∨ ηT T ∨ 1√

ηT

)
.

Given the results in (7.32) and (7.35), to prove the claims of Theorem 2, we
need to show the asymptotic negligibility of Q̂Vt,T − 1

T

∫∞
−∞ h0(k)κ̃T (k) dk and

T̂Vt,T (η̂T ) − 1
T

∫∞
−∞ hηT

(k)κ̃T (k) dk.
First, using the bounds of Lemma 1 and Assumption A5 for the observation

error, we can easily conclude

(7.36) Q̂Vt,T − 1

T

∫ ∞
−∞

h0(k)κT (k) dk = Op

( √
	

T 1/4 ∨ e−2(|k|∨k)(|k| ∨ k
))

.

In addition, using Itô’s lemma as well as Assumptions A1–A3, we have

(7.37)
∣∣EQ

t

(
f0(xt+T − xt )

)−E
Q
t

(
f0(x̃t+T − x̃t )

)∣∣ = Op(T
√

T ).

The bounds in (7.36)–(7.37) together with (7.32) establish the consistency of
Q̂Vt,T . We continue with T̂Vt,T (η̂T ). For its analysis, we first introduce the set

� =
{
ω : |Q̂Vt,T − QVt | ≤ 1

5
QVt

}
.

We will further make use of two algebraic inequalities. For η ∈ R+, a ∈ R+ with
|a − η| ≤ η

4 , and k ∈ R, we have∣∣hη(k)
∣∣ ≤ Ce−k− η

2 k2(|k| ∨ 1
)
,(7.38) ∣∣ha(k) − hη(k)

∣∣ ≤ C|a − η|k2e−k− η
2 k2(

k2 ∨ 1 + η2k4),(7.39)

for some C that does not depend on η, a and k (recall that xt = 0).
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Using the bounds of Lemma 1 and Assumption A5 for the observation error
as well as (7.32) and (7.36), we have for T being below some F (0)

t -adapted and
positive random variable ζt (so that P(T > ζt ) → 0 as T → 0)

(7.40) P
(
�c|T < ζt

) ≤ Ct

	√
T

and, therefore, 1(�c) is Op( 	√
T
). Further, using the inequality in (7.38), the

bounds of Lemma 1 as well as Assumption A5 for the observation error, we have
T̂Vt,T (η̂T ) − T̂Vt,T (ηT ) = Op(1). Therefore, altogether

(7.41)
(
T̂Vt,T (η̂T ) − T̂Vt,T (ηT )

)
1{�c} = Op

(
	√
T

)
.

Next, since on the set � we have |η̂T −ηT | ≤ ηT

4 for T small enough, we can apply
(7.39) and bound∣∣T̂Vt,T (η̂T ) − T̂Vt,T (ηT )

∣∣1{�}
≤ CtηT |Q̂Vt,T − QVt,T |

× 1

T 2

N∑
j=1

k2
j−1e

−kj−1− ηT
2 k2

j−1
(
k2
j−1 ∨ 1 + η2

T k4
j−1

)
κ̂T (kj−1)	j ,

(7.42)

for some finite-valued Ct > 0 (note that because of A1 we have QVt,T > 0). Using
the bounds of Lemma 1 and Assumption A5 for the observation error, we have

(7.43)
1

T 2

N∑
j=1

k2
j−1e

−kj−1− ηT
2 k2

j−1
(
k2
j−1 ∨ 1 + η2

T k4
j−1

)
κ̂T (kj−1)	j = Op(1),

and taking into account the bounds for Q̂Vt,T in (7.32) and (7.36), we have alto-
gether (

T̂Vt,T (η̂T ) − T̂Vt,T (ηT )
)
1{�}

= Op

(
ηT

√
	

T 1/4 ∨ ηT

√
T ∨ ηT e−2(|k|∨k)(|k| ∨ k

))
.

(7.44)

We continue next with T̂Vt,T (ηT ) − 1
T

∫∞
−∞ hηT

(k)κT (k) dk which we split into

T̂V(1)
t,T , T̂V(2)

t,T and T̂V(3)
t,T defined as

T̂V(1)
t,T = 1

T

N∑
j=2

hηT
(kj−1)εj−1	j,
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T̂V(2)
t,T = 1

T

N∑
j=2

∫ kj

kj−1

(
hηT

(kj−1)κT (kj−1) − hηT
(k)κT (k)

)
dk,

T̂V(3)
t,T = − 1

T

∫ k1

−∞
hηT

(k)κT (k) dk − 1

T

∫ ∞
kN

hηT
(k)κT (k) dk.

Using Assumption A5 and the bounds of Lemma 1, we have

(7.45) E
(
T̂V(1)

t,T |F (0))2 = Op

(
	√
T

)
, T̂V(3)

t,T = Op

(
e
−(k2∧k

2
) 1

4QVt

ηT
T
)
.

For T̂V(2)
t,T we make use of the following algebraic inequality:∣∣hη(k2) − hη(k1)

∣∣ ≤ Ct |k2 − k1|e|k2|− η
2 k2

2
(
1 + |k2|η)(1 + k2

2 + η2k4
2
)
,(7.46)

for |k1| ≤ 1
2 |k2| and where Ct is a finite-valued Ft -adapted random variable that

does not depend on k1, k2 and η. Using this inequality, (7.38) as well as Lemma 1,
we get

(7.47) T̂V(2)
t,T = Op

(
	√
T

)
.

Combining the bounds in (7.45) and (7.47), we have altogether (the bound below
is not sharp and can be further relaxed)

T̂Vt,T (ηT ) − 1

T

∫ ∞
−∞

hηT
(k)κT (k) dk

= Op

( √
	

T 1/4 ∨ e−2(|k|∧|k|)(|k| ∧ |k|)).

(7.48)

This result, together with (7.35), (7.41) and (7.44) as well as

(7.49) E
Q
t

∣∣fηT
(xt+T − xt ) − fηT

(x̃t+T − x̃t )
∣∣ ≤ CtT

3/2,

implies the consistency of T̂Vt,T (η̂T ).

7.4. Proof of Theorem 3. We use the notation in (7.2). Using the result in
(7.23) in the proof of Theorem 1, the fact that ûT is Ft -adapted, the consistency
of T̂Vt,T (η̂T ) for Vt from Theorem 2 as well as the strict positivity of Vt from
Assumption A1, we have

(7.50) − 2

T û2
T


(
ln
(
ft,T (ûT )

))− σ 2
t = Op

(
T 1−r/2).

We denote

ŭT = u√
T

1√
T̂Vt,T (ηT )

, uT = u√
T

1√
Vt

.



3624 V. TODOROV

Using the fact that ft,T (u) equals the expression in (3.11), we then decompose

f̂t,T (ûT ) − ft,T (ûT ) = ∑4
j=1 f̂

(j)
t,T , where f̂

(j)
t,T = −(û2

T + iûT )T f
(j)

t,T and

f
(1)

t,T = 1

T

N∑
j=2

e(iuT −1)kj−1εj−1	j,

f
(2)

t,T = 1

T

N∑
j=2

(
e(iûT −1)kj−1 − e(iuT −1)kj−1

)
εj−1	j,

f
(3)

t,T = 1

T

N∑
j=2

∫ kj

kj−1

(
e(iûT −1)kj−1κT (kj−1) − e(iûT −1)kκT (k)

)
dk,

f
(4)

t,T = − 1

T

∫ k

−∞
e(iûT −1)kκT (k) dk − 1

T

∫ ∞
k

e(iûT −1)kκT (k) dk.

We analyze each of the terms in the above decomposition. We start with f
(2)

t,T . We
denote

(7.51) ξ̂t,T (u) = 1

T

N∑
j=2

e
( iu√

T
√

Vt
−1)kj−1

εj−1	j, u ∈ R.

Taking into account the F (0)-conditional independence of the observation errors
and applying Lemma 1, we have for some sufficiently small T

(7.52) E
(∣∣̂ξt,T (u)

∣∣2|F (0)) ≤ Ct

	√
T

,

where Ct is F (0)
t -adapted random variable that does not depend on u. Further,

by application of the Burkholder–Gundy–Davis inequality and the algebraic in-
equality |∑j ai |p ≤ ∑

i |ai |p for p ∈ (0,1], as well as the boundedness of the
trigonometric functions, we have for some ι ∈ (0,1)

E
(∣∣̂ξt,T (u) − ξ̂t,T (v)

∣∣2+ι|F (0))
≤ Ct |u − v|1+ι

N∑
j=2

e−(2+ι)kj−1
|kj−1|1+ι

T 5/2+3ι/2

∣∣κT (kj−1)
∣∣2+ι

	2+ι
j ,

u, v ∈ R,

(7.53)

where Ct is F (0)
t -adapted random variable that does not depend on u and v. From

here, for T sufficiently small so that the bounds of Lemma 1 apply, we get

(7.54) E
(∣∣̂ξt,T (u) − ξ̂t,T (v)

∣∣2+ι|F (0)) ≤ Ct |u − v|1+ι

(
	√
T

)1+ι

| lnT |,
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and here again Ct is F (0)
t -adapted random variable that does not depend on u

and v. Since by the rate conditions of the theorem, 	/
√

T → 0, we can apply

Theorem 12.3 of [13] and conclude that T 1/4√
	

ξ̂t,T (u) is F (0)
t -conditionally tight in

the space of continuous functions of u for any arbitrary bounded interval on R.
Using the established tightness result, we can apply Theorem 8.2 of [13] and con-
clude that for arbitrary small ε > 0 and η > 0, we have for T below some value
and for some δ > 0 (both being F (0)

t -adapted)

(7.55) P

(
T 1/4
√

	
sup

|u−u|≤δ

∣∣̂ξt,T (u) − ξ̂t,T (u)
∣∣ ≥ ε

∣∣∣F (0)

)
≤ η,

where u is the constant used in defining ûT in (3.24). Now, if we have a sequence
û which F (0)-conditionally converges in probability to u, then we can pick T

sufficiently small, such that

(7.56) P
(|û − u| > δ|F (0)) ≤ η.

In turn, for T smaller than the values for which the above two results hold, we
have

(7.57) P

(
T 1/4
√

	

∣∣̂ξt,T (û) − ξ̂t,T (u)
∣∣ ≥ ε

∣∣∣F (0)

)
≤ 2η.

Therefore,

(7.58) ξ̂t,T (û) − ξ̂t,T (u) = op

( √
	

T 1/4

)
.

Applying this result with û = u

√
Vt

T̂Vt,T (η̂T )
and taking into account that from

the proof of Theorem 2, we have that T̂Vt,T (η̂T ) converges in probability F (0)-
conditionally to Vt , we get

(7.59) f
(2)

t,T = op

( √
	

T 1/4

)
.

Next, using the bounds of Lemma 1 as well as the consistency result for T̂Vt,T (η̂T )

of Theorem 2, we have

(7.60) f
(4)

t,T = Op

(
	√
T

| lnT |
)
, f

(5)

t,T = Op

(
e−2(|k|∧|k|)).

Overall, taking into account the rate condition in (3.28), we have

(7.61)
4∑

j=2

f̂
(j)
t,T = op

( √
	

T 1/4

)
.
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We are left with f
(1)

t,T . First, using Assumption A5 and the bounds of Lemma 1, we
have

(7.62) E
((
f

(1)

t,T

)2|F (0))+E
((�f

(1)

t,T

)2|F (0)) ≤ Ct

	√
T

.

Using again Assumption A5 for the observation errors and the bounds of Lemma 1,
we have

E

((

f

(1)

t,T �f
(1)

t,T

)� (

f

(1)

t,T �f
(1)

t,T

) ∣∣∣F (0)

)
= Vt,T ,(7.63)

1

T 4E

(
N∑

j=2

e−4kj−1ε4
j−1	

4
j

∣∣∣F (0)

)
= Op

(
	

3

T 3/2

)
,(7.64)

where Vt,T is 2 × 2 matrix with elements given as follows:

Vlm
t,T = 1

T 2

N∑
j=2

χlm(uT kj−1)e
−2kj−1σ 2

t,j−1κ
2
T (kj−1)	

2
j ,

with χlm(x) = cos2(x) for l = m = 1, χlm(x) = sin2(x) for l = m = 2 and
χlm(x) = cos(x) sin(x) for l = 1 and m = 2. Therefore,

E

⎛⎝(T u2
T 
f

(1)

t,T − T uT �f
(1)

t,T

T uT 
f
(1)

t,T + T u2
T �f

(1)

t,T

)(
T u2

T 
f
(1)

t,T − T uT �f
(1)

t,T

T uT 
f
(1)

t,T + T u2
T �f

(1)

t,T

)� ∣∣∣F (0)

⎞⎠
= Ct,T (uT ),

(7.65)

where for u ∈ R we denote (recall the notation in (3.26))

Ct,T (u) =
N∑

j=2

ζj−1(u)ζj−1(u)�e−2kj−1σ 2
t,j−1κ

2
T (kj−1)	

2
j .

Further, since ft,T (uT ) is F (0)-adapted, if we set

χt,T = 
ft,T (uT )

|ft,T (uT )|2
(
T u2

T 
f
(1)

t,T − T uT �f
(1)

t,T

)
+ �ft,T (uT )

|ft,T (uT )|2
(
T uT 
f

(1)

t,T + T u2
T �f

(1)

t,T

)
,

we have for V T
χ = E(χ2

t,T |F (0))

V T
χ = 1

|ft,T (uT )|4
(
ft,T (uT )�ft,T (uT )

)
× Ct,T (uT )

(
ft,T (uT )�ft,T (uT )
)�

.

(7.66)
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Using (7.19) and (7.62), we have

V T
χ = u4

V 2
t

1

|ft,T (uT )|4
(
ft,T (uT )�ft,T (uT )

)
× Vt,T

(
ft,T (uT )�ft,T (uT )
)� + Op(	)

= u4

TV2
t

1

|ft,T (uT )|2
N∑

j=2

cos2
(

ukj−1√
T σt

− ψt,T

)

× e−2kj−1σ 2
t,j−1κ

2
T (kj−1)	

2
j + Op(	),

(7.67)

where we use the notation

ψt,T = uat

√
T

σt

+ T

∫
R

(
sin

(
ux√
T σt

)
− ux√

T σt

)
νt (x) dx.

Note that, given Assumption A2-r, we have |ψt,T | ≤ Ct

√
T . If we denote with V

T

χ

the expression in the second line of (7.67), then by using Assumption A5 as well
as the bounds of Lemmas 1 and 2, we have

V
T

χ ≥ Ct	

T 2

∑
j :|kj−1|≤

√
T

cos2(uT kj−1 − ψt,T )κ2
T (kj−1)	j

≥ Ct	

T 2

∑
j :|kj−1|≤

√
T

cos2(uT kj−1 − ψt,T )κ̃c
T (kj−1)

2	j + Op(	)

≥ Ct	

T 2

∫ √
T

−√
T

cos2(uT k − ψt,T )κ̃c
T (k)2 dk + Op

(
	 ∨ 	

2

T

)
.

From here, using Lemma 2 and by a change of the variable of integration, we
further have

V
T

χ ≥ Ct	√
T

∫ 1

−1
cos2

(
uk

σt

− ψt,T

)(
f

(
k

σt

)
− |k|

σt

�

(
−|k|

σt

))2
dk

+ Op

(
	 ∨ 	

2

T

)
.

(7.68)

We note that the function f (k)−|k|�(−|k|) is strictly positive obtaining its maxi-
mum at k = 0 and decaying to zero in the tails. Therefore, for T sufficiently small,√

T

	
V T

χ is bounded from below by an Ft -adapted and positive-valued random vari-

able. This shows that 	√
T

is the sharp order of magnitude of V T
χ (and not an upper

bound for it).
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Using (7.64) and (7.66)–(7.68) as well as the F (0)-conditional independence of
the observation errors from Assumption A5, we can apply Theorem VIII.5.7 of
[28] and get

(7.69)
χt,T√
V T

χ

L−s−→ N (0,1),

where in the limit result above the notation L− s means convergence that is stable
in law, and further the limit is defined on an extension of the original probability
space and independent of F .

From the bounds on the terms {f (j)

t,T }j=1,...,5 as well as the asymptotic negligi-
bility of T̂Vt,T (η̂T ) − Vt by Theorem 2, we have


(
f̂t,T (ûT )

)
/
(

ft,T (uT )
) P−→ 1 and �(f̂t,T (ûT )

)− �(ft,T (uT )
) P−→ 0.

Therefore, by an application of delta method from the convergence result in (7.69)
and upon taking into account (7.67) and (7.68) as well as (7.61), we get

Avar
(
V̂t,T (uT )

)−1/2 2

T u2
T

(
(
ln
(
f̂t,T (ûT )

))− 
(
ln
(
ft,T (ûT )

)))
L−s−→ N (0,1),

(7.70)

where Avar(V̂t,T (uT )) denotes the analogous expression as Âvar(V̂t,T (ûT )) in
which Ĉt,T (ûT ) is replaced with Ct,T (uT ), f̂t,T (ûT ) with ft,T (uT ) and ûT with
uT . We would like to extend the above result to

Âvar
(
V̂t,T (ûT )

)−1/2 2

T û2
T

(
(
ln
(
f̂t,T (ûT )

))− 
(
ln
(
ft,T (ûT )

)))
L−s−→ N (0,1).

(7.71)

For this, we need to show that Avar(V̂t,T (uT ))/Âvar(V̂t,T (ûT ))
P−→ 1 and

ûT /uT
P−→ 1. Given the asymptotic negligibility of T̂Vt,T (η̂T ) − Vt and


(f̂t,T (ûT ))/
(ft,T (uT ))
P−→ 1 and �(f̂t,T (ûT )) − �(ft,T (uT ))

P−→ 0 (estab-

lished above), we only need to show that Ĉt,T (ûT ) − Ct,T (uT ) = op( 	√
T
). First,

using the bounds in Lemma 1 as well as Assumption A5 for the observation error,
we have Ĉt,T (ûT ) − Ĉt,T (uT ) = Op(αT

	√
T
) where T̂Vt,T (η̂T ) − Vt = Op(αT ).

Second, for Ĉt,T (uT ) − Ct,T (uT ) we can use Assumption A5 for the observation
error and apply the Burkholder–Davis–Gundy inequality and conclude Ĉt,T (uT )−
Ct,T (uT ) = op( 	√

T
). Thus, altogether, Ĉt,T (ûT ) − Ct,T (uT ) = op( 	√

T
), and from

here the result in (7.71) follows. Combining this result with (7.50) and taking into
account the rate condition in (3.28), we have the convergence result (3.29) of the
theorem.
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7.5. Proof of Theorem 4. Under Assumption A6 and our rate condition for kn,
the conditions of Theorem 13.3.3 of [27] are satisfied. Therefore, we can apply
this theorem and a counterpart to Theorem 9.3.2 of [27] for fourth-power local
truncated variations, and get

(7.72)
V̂

hf
t − Vt√

Âvar(V̂ hf
t,T )

L−s−→ Z,

with Z being a standard normal random variable defined on an extension of
the original probability space and independent from F . Lets denote Zn

1 =
V̂t,T (uT )−Vt√
Avar(V̂t,T (uT ))

and Zn
2 =

√
kn(V̂

hf
t −Vt )√

2V̂
hf
t

, where Avar(V̂t,T (u)) is defined as in the

proof of Theorem 3 above and as in that proof we set uT = u√
T

1√
Vt

. From the

proof of Theorem 3, we have V̂t,T (ûT )−Vt√
Âvar(V̂t,T (ûT ))

−Zn
1 = op(1), and hence to prove the

result of Theorem 4 we need to establish the joint convergence of (Zn
1 ,Zn

2 ).
We further denote with Z1 and Z2 two independent standard normal variables,

which are defined on an extension of the original probability space and indepen-
dent of F , and with g and h two bounded continuous functions on R. Now, using

our results from the proof of Theorem 3 for the term f
(1)

t,T , we can apply Theo-
rem VIII.5.25 of [28] (using Assumption A5 for the observation errors and the
separability of F (0)) and conclude that

(7.73) E
(
g
(
Zn

1
)|F (0)) −→ E

(
g(Z1)

)
, a.s.

and, therefore, since g and h are bounded functions

(7.74) E
((
E
(
g
(
Zn

1
)|F (0))−E

(
g(Z1)

))
h
(
Zn

2
)) −→ 0.

Therefore, using (7.72), we have for every bounded random variable Y on F,

(7.75) E
(
Yg

(
Zn

1
)
h
(
Zn

2
)) −→ E(Y )E

(
g(Z1)

)
E
(
h(Z2)

)
,

and this establishes (Zn
1 ,Zn

2 )
L−s−→ (Z1,Z2).

7.6. Proof of Theorem 5. Since T ↓ 0, it is no restriction to assume T < t , for
t being the random variable of Lemmas 1 and 2, and we will do so in the proof
without further mention. We will further define with C some positive constant
which can change from line to line and depends on R in (4.2). Finally, we will use
the notation an � bn and an � bn to mean the respective inequality up to a constant
independent of the parameter n.

The idea of the proof is to perturb locally σ and then derive the order of magni-
tude of the Kullback–Leibler divergence of the resulting two probability distribu-
tions of the observed option prices. Applying Theorem 2.2 in [45], we then have

(7.76) inf
σ̂

sup
T ∈G(R)

ET

(√
T | lnT |5/2

	
|σ̂ − σ |2

)
≥ V (α),
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where α is an upper bound on the Kullback–Leibler divergence of two probability
distributions in G(R) with diffusive volatilities σ (1) and σ (2) such that |σ (1) −
σ (2)| =

√
	

T 1/4| lnT |5/4 and |a(1) − a(2)| ≤ |σ (1) − σ (2)|, and V (α) is some strictly
positive function of α.

The KL divergence between the probability measures for the observed noisy
option prices, corresponding to T with σ (1) and σ (2) and the same ν, both of
which belong to G(R), is given by

KL
(
σ (1), σ (2)) =

N∑
i=1

(κT ,1(ki) − κT,2(ki))
2

2(κT ,2(ki) ∨ T )2

+ 1

2

N∑
i=1

((
κT,1(ki) ∨ T

κT,2(ki) ∨ T

)2
− 1

− ln
(

κT,1(ki) ∨ T

κT,2(ki) ∨ T

)2)
,

(7.77)

where the option prices corresponding to σ (j) are denoted by OT,j (k), for j = 1,2.
In order to analyze the KL divergence, we will first establish lower and upper

bounds on κT,1(k) and κT,2(k). In what follows, we will use the notation of Sec-
tion 7.2. For Q ∈ G(R), we can decompose

κT (k) = κ̃c
T (k) +E

Q
t

[(
ext+T − ek)+1{μ([t,t+T ]×R)≥1}

]
−E

Q
t

[(
exc

t+T − ek)+1{μ([t,t+T ]×R)≥1}
]
,

(7.78)

for k > 0 and a similar decomposition holds for the case k ≤ 0. Then using the
independence of xc

t+T and xd
t+T (recall x is a Lévy process under Q), the fact

that F(R) < ∞ (recall notation in (4.1)) as well as Hölder’s inequality and the
integrability assumptions for ν in (4.2), we have

(7.79)
∣∣κT (k) − κ̃c

T (k)
∣∣ ≤ CT,

for some positive constant C which does not depend on k and T , and is a continu-
ous function of σ .

We will henceforth concentrate on the case k ≤ 0 with the other case k > 0 being
treated analogously. Now, we can make use of Lemma 2, and hence it suffices to
look at

(7.80) f

(
k − aT√

T σ

)√
T σ + (

ek − 1
)
�

(
k − aT√

T σ

)
.

We have −x�(x) ∼ f (x) for x ↓ −∞, and using this fact and Taylor’s expansion,
we have

(7.81)
∣∣∣∣κT (k) − f

(
k − aT√

T σ

)√
T σ − k�

(
k − aT√

T σ

)∣∣∣∣ ≤ CT,
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for some positive constant C which does not depend on k and T , and is a continu-
ous function of σ . The function f (x) + x�(x) is increasing with value at zero of
f (0) > 0 and limx↓−∞(f (x) + x�(x)) = 0. Furthermore, we have

(7.82) lim
x↓−∞

f (x) + x�(x)

f (x)/x2 = 1.

Therefore, for some ε ∈ (0,1), there exists large in absolute value x∗ < 0 such that
for x < x∗, we have

(7.83) (1 − ε)
f (x)

x2 ≤ f (x) + x�(x) ≤ (1 + ε)
f (x)

x2 .

As a result, we have the following lower bounds for Q ∈ G(R):

κT (k) ∨ T ≥ C1

[
f

(
k − aT√

T σ

)
T 3/2

|k|2 ∨ T

]
, for k < x∗σ

√
T + aT ,

κT (k) ∨ T ≥ C2

√
T , for k ∈ [

x∗σ
√

T + aT ,0
]
,

(7.84)

and we note that x∗ does not depend on σ while the constants 1 ≥ C1 > 0 and
C2 > 0 do. We similarly have the upper bounds for Q ∈ G(R):

κT (k) ≤ C1

[
f

(
k − aT√

T σ

)
T 3/2

|k|2 ∨ T

]
, for k < x∗σ

√
T + aT ,

κT (k) ≤ C2
√

T , for k ∈ [
x∗σ

√
T + aT ,0

]
,

(7.85)

for some finite constants C1 > 0 and C2 > 0 which depend on σ . We note that C1,
C2, C1 and C2 remain bounded both from below and above for Q ∈ G(R). Further,
for T sufficiently small, we have

(7.86)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
k < −√

2T σ

√
ln(1/

√
T ) =⇒ f

(
k − aT√

T σ

)
T 3/2

|k|2 < T,

k > −√
2T σ =⇒ f

(
k − aT√

T σ

)
T 3/2

|k|2 > T.

As a result, for two risk-neutral probability laws Q ∈ G(R) with the same ν and
|σ (1) − σ (2)| ≤ CT η (and |a(1) − a(2)| ≤ |σ (1) − σ (2)|) with some positive η > 0,
we have

k ∈ (−√
2T σ (1)

√
ln(1/

√
T ),−√

2T σ (2))
=⇒ 1 − ι < f

(
k − a(1)T√

T σ (1)

)/
f

(
k − a(2)T√

T σ (2)

)
< 1 + ι,

(7.87)

for some ι ∈ (0,1) and where without loss of generality we have assumed σ (1) ≤
σ (2). Therefore,

(7.88) 0 < R ≤ κT,1(k) ∨ T

κT,2(k) ∨ T
≤ R < ∞,

for some R and R that depend on R.
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Given this bound and using second-order Taylor expansion, we have

(7.89) KL
(
σ (1), σ (2))� N∑

i=1

(κT ,1(ki) − κT,2(ki))
2

κT,2(ki)2 ∨ T 2 .

To proceed further, we need to analyze the difference κT,1(k)−κT,2(k). By looking
separately at the sets at which there is no jump in x on the interval [t, t + T ] and
on which there is, we have∣∣κT,1(k) − κT,2(k)

∣∣
≤ ∣∣̃κc

T ,1(k) − κ̃c
T ,2(k)

∣∣
+ 2EQ

t

[(
exd

t+T ∨ 1
)∣∣ex

(c,1)
t+T − ex

(c,2)
t+T

∣∣1{μ([t,t+T ],R)≥1}
](7.90)

and, therefore, taking into account the independence of xc
t+T and xd

t+T as well as
ν(R) < ∞ and the tail decay of ν, we have

(7.91)
∣∣κT,1(k) − κT,2(k)

∣∣ ≤ ∣∣̃κc
T ,1(k) − κ̃c

T ,2(k)
∣∣+ CT 3/2∣∣σ (1) − σ (2)

∣∣.
In what follows, we consider the case k ≤ 0 with k > 0 analyzed in a similar way.
Direct calculation yields for k ≤ 0:

(7.92) κ̃c
T (k) = ek�

(
k − aT√

T σ

)
− eaT −σ 2T/2�

(
k − aT√

T σ
− √

T σ

)
and, therefore, using Taylor’s expansion, we can make the follow decomposition
κ̃c
T (k) = ∑6

j=1 A
(j)
T (k) where with the shorthand kT = k−aT√

T σ
, we denote

A
(1)
T (k) = σ

√
T
[
kT �(kT ) + f (kT )

]
, A

(2)
T (k) = aT �(kT ),(7.93)

A
(3)
T (k) = 1

2
f ′(kT )σ 2T , A

(4)
T (k) = (

ek − 1 − k
)
�(kT ),(7.94)

A
(5)
T (k) = −(

eaT −σ 2T/2 − 1
)
�(kT − σ

√
T ),(7.95)

and A
(6)
T (k) is such that we have

(7.96)
∣∣A(6)

T (k)
∣∣ ≤ CT 3/2(|kT − σ

√
T |2 ∨ 1

)
f (kT ).

For l = 1,2, we denote with kT,l and A
(j)
T ,l(k) the counterparts of kT and A

(j)
T (k)

where a and σ are replaced with a(l) and σ (l). Using Taylor’s expansion and the
monotonicity of f and �, we then have for k ≤ 0∣∣A(1)

T ,1(k) − A
(1)
T ,2(k)

∣∣ ≤ C
√

T
(
kT,1�(kT,1) + f (kT,1)

)∣∣σ (1) − σ (2)
∣∣

+ C
√

T

( |k|√
T

∨ √
T

)
(7.97)
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× �(kT,1 ∨ kT,2)
∣∣σ (1) − σ (2)

∣∣,∣∣A(2)
T ,1(k) − A

(2)
T ,2(k)

∣∣ ≤ CT

( |k|√
T

∨ √
T

)
f (kT,1 ∨ kT,2)

∣∣σ (1) − σ (2)
∣∣,(7.98)

∣∣A(3)
T ,1(k) − A

(3)
T ,2(k)

∣∣ ≤ CT

( |k|√
T

∨ |k|3
T 3/2 ∨ √

T

)
(7.99)

× f (kT,1 ∨ kT,2)
∣∣σ (1) − σ (2)

∣∣,∣∣A(4)
T ,1(k) − A

(4)
T ,2(k)

∣∣ ≤ C
(|k|2 ∧ |k|)( |k|√

T
∨ √

T

)
(7.100)

× f (kT,1 ∨ kT,2)
∣∣σ (1) − σ (2)

∣∣,∣∣A(5)
T ,1(k) − A

(5)
T ,2(k)

∣∣ ≤ CT

( |k|√
T

∨ √
T

)
f (kT,1 ∨ kT,2)

∣∣σ (1) − σ (2)
∣∣,(7.101)

and these bounds continue to hold for k > 0. Using them, the lower bounds for
κT (k) derived earlier, the fact that −x

∫ x
−∞ f 2(u) du ∼ f 2(x) for x ↓ −∞, the

asymptotic behavior of �(x) and f (x) + x�(x) for x ↓ −∞, and splitting the
summations below into two sums according to whether |k| is above or below√

2T σ (2)
√

ln(1/
√

T ), we have

(7.102)
5∑

j=1

N∑
i=1

|A(j)
T ,1(ki) − A

(j)
T ,2(ki)|2

κT,2(ki)2 ∨ T 2 �
√

T

	
η2

T | lnT |5/2,

and further

(7.103)
N∑

i=1

|A(6)
T ,1(ki) − A

(6)
T ,2(ki)|2

κT,2(ki)2 ∨ T 2 � T 5/2

	
| lnT |9/2.

Therefore, taking into account also the bound in (7.90), we have

(7.104)
N∑

i=1

|κT,1(ki) − κT,2(ki)|2
κT,2(ki)2 ∨ T 2 �

√
T

	
η2

T | lnT |5/2 + T 5/2

	
| lnT |9/2,

where we denote ηT = σ (1) − σ (2). Evaluating the above bounds with ηT =√
	

T 1/4| lnT |5/4 (and making use of the fact that α < 5/2 by assumption), we get the
result of the theorem.
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