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STOCHASTIC REPRESENTATIONS FOR SOLUTIONS TO
PARABOLIC DIRICHLET PROBLEMS FOR NONLOCAL BELLMAN
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Georgia Institute of Technology

We prove a stochastic representation formula for the viscosity solution
of Dirichlet terminal-boundary value problem for a degenerate Hamilton–
Jacobi–Bellman integro-partial differential equation in a bounded domain.
We show that the unique viscosity solution is the value function of the asso-
ciated stochastic optimal control problem. We also obtain the dynamic pro-
gramming principle for the associated stochastic optimal control problem in
a bounded domain.

1. Introduction. Stochastic representation formulas establish natural connec-
tions between the study of stochastic processes, and partial differential equations
(PDEs) or integro-partial differential equations (integro-PDEs). First formulas of
this type appeared in the works of Feynman [14] and Kac [21]. Since then, the so-
called Feynman–Kac formula has been extended and generalized in different direc-
tions. Most notably, the dynamic programming principle and the theory of regular
and viscosity solutions established rigorous connection between stochastic optimal
control problems and fully nonlinear Hamilton–Jacobi–Bellman (HJB) equations,
thus providing representations for solutions to HJB equations as value functions
of the associated optimal control problems. Such techniques found applications in
many areas, such as finance, economics, physics, biology and engineering. Various
results on stochastic representation formulas for regular and viscosity solutions to
HJB and Isaacs PDEs in bounded and unbounded domains and their connections to
stochastic optimal control problems can be found, for instance, in [10, 15, 16, 22,
25–29, 33, 36, 43, 45–48] and the references therein. The literature on the subject
is huge.

There are also many existing results for integro-PDEs. Viscosity solutions to
HJB integro-PDEs and their stochastic representation formulas as value functions
of the associated stochastic optimal control problems were originally investigated
in [41, 42]. Stochastic optimal control of jump-diffusion processes and various re-
sults about the associated HJB equations are discussed in [35]. The presentation
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in [35] focuses more on applications, and is not always completely rigorous. A HJB
obstacle problem on the whole space R

n associated to the optimal stopping of a
controlled jump-diffusion process was studied in [38], where the value function
is proved to be the unique viscosity solution of the obstacle problem. However,
the proof of the dynamic programming principle is only sketched there and some
other arguments are left without full details. Stochastic optimal control problem
in the whole space, which also included control of jump diffusions, was consid-
ered in [13] and the dynamic programming principle was proved there. A spe-
cial two-dimensional HJB integro-PDE associated to an optimal control problem
with jump processes originating from mathematical finance was studied in [19].
The unique viscosity solution was identified as the value function, and the full
proof of the dynamic programming principle was presented. The Dirichlet prob-
lem for stable-like operators and corresponding stochastic representations were
studied in [2]. Stochastic representation formulas based on backward stochastic
differential equations for different types of integro-PDEs were obtained in [3, 9,
23, 34]. Value functions of stochastic differential games for jump diffusions, the
dynamic programming principle and the associated Isaacs equations were studied
in [6, 7, 9, 24]. There are many other related results. For instance, results for ob-
stacle problems for integro-PDEs related to optimal stopping and impulse control
problems with jump-diffusions can be found in [17, 40]. A time-inhomogeneous
Lévy model with discontinuous killing rates was investigated in [18], and stochas-
tic representation formulas for the associated integro-PDE was derived. Feynman–
Kac formulas for regime-switching jump-diffusion processes driven by Lévy pro-
cesses were also obtained in [49]. A proof of the dynamic programming principle
and the representation formula for a viscosity solution to a HJB integro-PDE in an
infinite dimensional Hilbert space is contained in [44].

In this article, we consider a stochastic optimal control problem for a gen-
eral class of time- and state-dependent controlled stochastic differential equations
(SDEs) driven by a general Lévy process. Our main focus is a stochastic represen-
tation formula for the unique viscosity solution to the Dirichlet terminal-boundary
value problem for the associated degenerate HJB integro-PDE (2.6)–(2.7) in a
bounded domain. This is a classical problem which is very technical and whose
full details are often omitted or overlooked, especially for problems in bounded do-
mains. We identify the unique viscosity solution to (2.6)–(2.7) as the value function
of the associated stochastic optimal control problem. We make mild assumptions
on the regularity of the domain and the nondegeneracy of the controlled diffusions
along the boundary to guarantee the existence of a continuous viscosity solution
and thus the continuity of the value function. These assumptions are needed to ap-
ply the integro-PDE results of [30]. Instead of proving directly the continuity of the
value function and the dynamic programming principle, we start with the viscos-
ity solution of the HJB integro-PDE, which can be obtained by Perron’s method,
and show that it must be the value function. Our method is similar to that of [15].
Similar methods have been also used for Isaacs equations and differential game
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problems in [24, 43]. We approximate our HJB integro-PDE by equations which
are nondegenerate, have finite control sets, more regular coefficients, and smooth
terminal-boundary values, and are considered on slightly enlarged domains. Such
equations have classical solutions for which the representation formulas can be
obtained. We then pass to the limits with various approximations. The main diffi-
culties come from the fact that we are dealing with a bounded region and hence we
need a lot of technical estimates involving the analysis of the behavior of stochastic
processes and their exit times. We also need precise knowledge about the behav-
ior of the viscosity solutions of the perturbed equations along the boundaries of
their domains, which are obtained by comparison theorems and the constructions
of appropriate viscosity subsolutions and supersolutions. We use regularity and
existence results from [30, 31]. The approximations using finite control sets, more
regular coefficients and smooth terminal-boundary values are needed to employ a
regularity theorem from [30]. Enlarged domains are used to handle exit time es-
timates. We remark that making the HJB integro-PDE nondegenerate by adding
a small Laplacian term to the equation corresponds to the introduction of another
independent Wiener process on the level of the stochastic control problem, and
hence to possible enlargement of the reference probability space. As a byproduct
of our method, we obtain the dynamic programming principle for the associated
stochastic optimal control problem. Moreover our method provides a fairly explicit
way to construct ε-optimal controls using approximating HJB equations.

The paper is organized as follows. Section 2 contains the setup of the prob-
lem and some preliminary estimates, which will be needed throughout the paper.
Section 3 establishes the stochastic representation formula and the dynamic pro-
gramming principle for the solution to the HJB integro-PDE terminal boundary
value problem (2.6)–(2.7). The results are first obtained in Section 3.1 for the clas-
sical solution to (2.6)–(2.7), and are then extended, in Section 3.2, to the viscosity
solution to (2.6)–(2.7) with a finite control set. Using various approximation argu-
ments, in Section 3.3, the representation formula and the dynamic programming
principle is finally proved for the viscosity solution to (2.6)–(2.7) when the con-
trol set is a general Polish space. Section 4 provides a construction of viscosity
sub/supersolutions to (2.6)–(2.7).

2. Preliminaries.

2.1. Setup and assumptions. Throughout this article, let T > 0 be a fixed ter-
minal time, let t ∈ [0, T ) be an arbitrary fixed time, and let d,m1,m2 ∈N be fixed
positive integers. Let O ⊂ R

d be a bounded domain. Let U be a Polish space
equipped with its metric dU . Let Q := [0, T ) × O , and let Q0 := [0, T ) ×R

d . Let
ν be a Lévy measure, that is, a measure on B(R

m2
0 ), where R

m2
0 := R

m2 \ {0}, such
that ∫

R
m2
0

(|z|2 ∧ 1
)
ν(dz) < +∞.
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We say that μ := (�,F ,F t
s ,P,W,L) is a generalized reference probability

space if it satisfies the following conditions:

• (�,F ,P) is a complete probability space, and {F t
s }s∈[t,T ] is a filtration of sub-

σ -fields of F satisfying the usual conditions;
• W is an m1-dimensional standard F t

s -Brownian motion on (�,F ,P);
• L is an m2-dimensional ν F t

s -Lévy process on (�,F ,P) independent of W .
That is, L is an F t

s -adapted stochastic process with P-a.s. cádlág trajectories,
such that for all t ≤ t1 ≤ t2 ≤ T , the random variable L(t2) − L(t1) is indepen-
dent of F t

t1
, and

E
(
ei(L(t2)−L(t1))·z)= e−(t2−t1)ψ(z), z ∈ R,

where

ψ(z) =
∫
R

m2
0

(
1 − eiz·y + 1{|y|<1}iz · y)ν(dy).

Note that we do not assume here that W(t) = 0 or L(t) = 0. The jump measure of
L (defined on B([t, T ])⊗B(R

m2
0 )) is denoted by N(ds, dz), with its compensated

measure Ñ(ds, dz) := N(ds, dz) − dsν(dz). For more details on Lévy processes,
we refer the reader to [1, 5, 37]. Finally, we denote by Aμ the set of all F t

s -
predictable U -valued processes on [t, T ], and let At :=⋃μAμ, where the union
is taken over all generalized reference probability spaces μ on [t, T ].

For any generalized reference probability space μ = (�,F ,F t
s ,P,W,L),

any control U ∈ Aμ, and any x ∈ R
d , consider an R

d -valued stochastic process
X(s; t, x), governed by the following controlled SDE:

X(s; t, x) = x +
∫ s

t
b
(
r,X(r; t, x),U(r)

)
dr

+
∫ s

t
σ
(
r,X(r; t, x),U(r)

)
dW(r)(2.1)

+
∫ s

t

∫
R

m2
0

γ
(
r,X(r−; t, x),U(r), z

)
Ñ(dr, dz), s ∈ [t, T ].

ASSUMPTION 2.1. Throughout this article, we make the following assump-
tions on the coefficients in the SDE system (2.1).

(i) γ : Q0 × U ×R
m2 →R

d is a measurable function.
(ii) b : Q0 × U → R

d and σ : Q0 × U → R
d×m1 are uniformly continuous

functions.
(iii) There exist a universal constant C > 0, a modulus of continuity � :R+ →

R
+ with limr→0 �(r) = �(0) = 0, and a Borel measurable function ρ :Rm2

0 →R

which is bounded on any bounded subset of Rm2
0 , and which satisfies

(a) inf|z|>r
ρ(z) > 0, ∀r > 0; (b) M :=

∫
R

m2
0

ρ2(z)ν(dz) < ∞,
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such that for any u,u1, u2 ∈ U , s ∈ [0, T ), (s1, y1), (s2, y2) ∈ Q0, and any z ∈R
m2
0 ,∣∣b(s, y1, u) − b(s, y2, u)

∣∣+ ∥∥σ(s, y1, u) − σ(s, y2, u)
∥∥

≤ C|y1 − y2|,∣∣γ (s1, y1, u1, z) − γ (s2, y2, u2, z)
∣∣

≤ Cρ(z)
(
�
(
dU (u1, u2) + |s1 − s2|)+ |y1 − y2|),∥∥|b|∥∥

L∞(Q0×U)
+ ∥∥‖σ‖∥∥

L∞(Q0×U)
≤ C,∥∥∣∣γ (·, ·, ·, z)∣∣∥∥

L∞(Q0×U)
≤ Cρ(z).

(2.2)

To avoid cumbersome notation, from now on, we will be writing ‖b‖
L∞(Q0×U)

,
‖σ‖

L∞(Q0×U)
, etc., for ‖|b|‖

L∞(Q0×U)
, ‖‖σ‖‖

L∞(Q0×U)
, etc., that is, we will be

omitting the inside norms in the notation for the supremum norms of vector and
matrix valued functions.

For any fixed t ∈ [0, T ) and any generalized reference probability space μ, let
H be the space of all F t

s -adapted càdlàg processes Y such that

‖Y‖H :=
(
E

(
sup

s∈[t,T ]
∣∣Y(s)

∣∣2))1/2
< ∞.

The next result provides the existence of a unique strong càdlàg solution to (2.1).
The proof is quite standard and is thus omitted here. The reader is referred to, for
example, [1], Section 6.2, [35], Section 1.3, or [44], where the proof of existence
in the case of a similar controlled SDE in a Hilbert space is provided.

THEOREM 2.2. Let Assumption 2.1 be satisfied and let U ∈ Aμ. Then, for
every x ∈ R

d , the SDE (2.1) admits a unique strong solution X(s; t, x) in the space
H. Moreover, there exists a constant K1 = K1(C,T ,M) > 0, depending on C, T ,
and M , such that

E

(
sup

s∈[t,T ]
∣∣X(s; t, x)

∣∣2)≤ K1
(
1 + |x|2).(2.3)

We notice that, when x ∈ O , which is a bounded subset of Rd , the right-hand
side of (2.3) is bounded by a constant independent of x. For any (t, x) ∈ Q0, let

τ(t, x) := inf
{
s ∈ [t, T ] : (s,X(s; t, x)

)
/∈ Q

}
,

with the convention that inf∅ = T . Throughout this article, when there is no con-
fusion of initial condition, we will skip the initial data (t, x) in the expressions
of SDE solutions and exit times, and write X(s) and τ instead of X(s; t, x) and
τ(t, x), respectively. Clearly,(

τ,X(τ)
) ∈ ∂npQ := ([0, T ) × Oc)∪ ({T } ×R

d).
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Define the cost functional as

Jμ(t, x;U) := E

(∫ τ(t,x)

t
�
(
s,X(s; t, x),U(s)

)
ds

+ 
(
τ(t, x),X

(
τ(t, x); t, x))).(2.4)

ASSUMPTION 2.3. Throughout this article, we make the following assump-
tions on � and  .

(i)  : Q0 →R is a bounded continuous function.
(ii) � : Q0 × U →R is a bounded uniformly continuous function.

We will consider the stochastic control problem by first taking the infimum of
the cost functional (2.4) over all U ∈ Aμ, that is,

Vμ(t, x) := inf
U∈Aμ

Jμ(t, x;U),(2.5)

and then by taking the infimum of (2.5) over all generalized reference probability
spaces, that is,

V (t, x) := inf
μ

Vμ(t, x) = inf
U∈At

Jμ(t, x;U).

The corresponding HJB equation is then given by

inf
u∈U
(
A uW(t, x) + �(t, x, u)

)= 0 in Q,(2.6)

with terminal-boundary condition

W(t, x) = (t, x), (t, x) ∈ ∂npQ,(2.7)

where

A uW(t, x) := ∂W

∂t
(t, x) + 1

2
tr
(
a(t, x, u)D2

xW(t, x)
)

+ b(t, x, u) · DxW(t, x)

+
∫
R

m2
0

(
W
(
t, x + γ (t, x, u, z)

)− W(t, x)

− DxW(t, x) · γ (t, x, u, z)
)
ν(dz),

(2.8)

and where a(t, x, u) := σ(t, x, u)σT (t, x, u).
We now introduce the assumptions about the bounded domain O . Since O

is bounded, Assumptions 2.1 and 2.3 are quite standard. However to apply the
integro-PDE results of [30], we will need extra conditions on O and σ , Assump-
tions 2.4 and 2.6. More precisely, these two assumptions allow to construct viscos-
ity sub/supersolutions of various approximating equations having uniform modu-
lus of continuity in Section 4. They are used to apply the existence and regularity



REPRESENTATIONS FOR NONLOCAL BELLMAN EQUATIONS 3277

FIG. 1. An η-prox-regular set.

results for solutions to our nonlocal HJB equations (see Theorem 3.5 and the dis-
cussion after the proof of Theorem 3.6) and to obtain uniform convergence of
solutions of various approximating equations (see Lemmas 3.8, 3.13 and 3.15).

For a set Õ ⊂ R
d , we define the proximal normal cone to Õ at x ∈ ∂Õ by

N(Õ, x) := {n ∈R
d : there exists � > 0, such that x ∈ P(Õ, x + �n)

}
,

where

P(Õ, y) =
{
z ∈ ∂Õ : inf

p∈Õ
|p − y| = |z − y|

}
.

The set Õ is said to be η-prox-regular for some η > 0 if, for any x ∈ ∂Õ and any
unit vector n ∈ N(Õ, x), we have

Bη(x + ηn) ∩ Õ = ∅,

where, and hereafter, Br(y) (respectively, Br(y)) denotes the open (respectively,
closed) ball in R

d centered at y with radius r > 0. We refer the reader to, for ex-
ample, [8, 11, 12, 39], for the properties of η-prox-regular sets. Figure 1 illustrates
an η-prox-regular set.

ASSUMPTION 2.4. Throughout this article, we assume that O is η-prox-
regular, for some fixed 0 < η < 1.

THEOREM 2.5. If O is η-prox-regular for some η > 0, then, for any 0 < δ <

η/2, the set Oδ := {y ∈ R
d : dist(y,O) < δ} satisfies the uniform exterior ball

condition with a uniform radius η/2, that is, for any x ∈ ∂Oδ , there exists yx ∈ Oc
δ ,

such that Bη/2(yx) ∩ Oδ = {x}.
PROOF. For any x ∈ ∂Oδ , there exists x̃ ∈ ∂O such that |x − x̃| = δ, and thus

x − x̃ ∈ N(O, x̃). Since O is η-prox-regular, we have x̃ ∈ Bη(x̃ +η(x − x̃)/δ)∩O

and Bη(x̃ + η(x − x̃)/δ) ∩ O = ∅. It is then easy to see that

Bη/2

(
x̃ +

(
η

2
+ δ

)
x − x̃

δ

)
∩ Oδ = {x},

which completes the proof. �
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Throughout this paper, we make the following parabolicity assumption along
the boundary ∂O .

ASSUMPTION 2.6. There exists a constant λ > 0 such that, for any x ∈ ∂O

and nx ∈ N(O,x),

nxσ(t, x, u)σT (t, x, u)nT
x ≥ λ for any t ∈ [0, T ) and u ∈ U .

Throughout the paper, we will use the following function spaces on cylindrical
regions Q = [a, b) × O, where a < b and O is an open subset of Rd . USC(Q)

(respectively, LSC(Q)) is the space of upper (respectively, lower) semi-continuous
functions on Q. C(Q) (respectively, C(Q)) is the space of continuous functions on
Q (respectively, Q). Lip(Q) denotes the space of Lipschitz continuous functions
on Q. C1,2(Q) is the space of functions ϕ : Q →R such that ϕ, ϕt , Dxϕ, and D2

xϕ

are continuous on Q. C1,2(Q) is the space of functions ϕ ∈ C1,2(Q) such that ϕ,
ϕt , Dxϕ, and D2

xϕ extend continuously to Q. C1+α/2,2+α(Q), where α ∈ (0,1), is
the space of functions ϕ ∈ C1,2(Q) such that

‖ϕ‖L∞(Q) + ‖ϕt‖L∞(Q) + ‖Dxϕ‖L∞(Q) + ∥∥D2
xϕ
∥∥
L∞(Q)

+ sup
(t,x),(s,y)∈Q
(t,x) �=(s,y)

(∣∣ϕ(t, x) − ϕ(s, y) − ϕt(s, y)(t − s)

− Dxϕ(s, y) · (x − y) − (x − y)T D2
xϕ(s, y)(x − y)/2

∣∣)(2.9)

/
((|t − s| + |x − y|2)1+α/2)

< ∞.

If ϕ ∈ C1+α/2,2+α(Q0) then ϕ, ϕt , Dxϕ, D2
xϕ extend continuously to Q0 and (2.9)

is satisfied with Q = Q0 replaced by Q = Q0. To emphasize that functions in
C1+α/2,2+α(Q0) are defined on Q0, we will denote this space by C1+α/2,2+α(Q0).
C

1+α/2,2+α
loc (Q) is the space of functions ϕ : Q →R such that, ϕ ∈ C1+α/2,2+α(Q̃)

for any cylindrical region Q̃ ⊂⊂ Q. Finally, the space USCb(Q) (respectively,
LSCb(Q), Cb(Q), Cb(Q), Lipb(Q), C

1,2
b (Q), C

1,2
b (Q)) consists of functions in

USC(Q) (respectively, LSC(Q), C(Q), C(Q), Lip(Q), C1,2(Q), C1,2(Q)) which
are bounded on their respective domains.

To conclude this subsection, we recall the definition of a viscosity solution to
(2.6).

DEFINITION 2.7. A function u ∈ USCb(Q
0) is a viscosity subsolution to (2.6)

if, whenever u − ϕ has a maximum over Q0 at (t, x) ∈ Q for some test function
ϕ ∈ C

1,2
b (Q0),

inf
u∈U
(
A uϕ(t, x) + �(t, x, u)

)≥ 0.
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A function u ∈ LSCb(Q
0) is a viscosity supersolution to (2.6) if, whenever u − ϕ

has a minimum over Q0 at (t, x) ∈ Q for some test function ϕ ∈ C
1,2
b (Q0),

inf
u∈U
(
A uϕ(t, x) + �(t, x, u)

)≤ 0.

A function u ∈ Cb(Q
0) is a viscosity solution to (2.6) if it is both a viscosity

subsolution and a viscosity supersolution to (2.6).

2.2. Preliminary estimates. In this subsection, we prove various estimates for
strong solutions to (2.1). The proofs of these results follow rather standard lines of
arguments however, since we could not find exact references, we equip them with
short proofs for completeness and for the reader’s convenience.

LEMMA 2.8. Let Assumption 2.1 be valid. For any (t, x) ∈ Q0, any general-
ized reference probability space μ = (�,F ,F t

s ,P,W,L), and any U ∈ Aμ, let
X(s; t, x) be the unique strong càdlàg solution to (2.1). Then, for any t ≤ �1 <

�2 ≤ T ,

E

(
sup

s∈[�1,�2]
∣∣X(s; t, x) − X(�1; t, x)

∣∣2)≤ K2(�2 − �1),

where K2 = K2(C,T ,M) > 0 is a constant depending on C, T and M .

PROOF. By Assumption 2.1, Cauchy–Schwarz and Burkholder–Davis–Gundy
inequalities, there exists a universal constant �1 > 0, such that, denoting X(s) =
X(s; t, x),

E

(
sup

s∈[�1,�2]
∣∣X(s) − X(�1)

∣∣2)

≤ 3E
(

sup
s∈[�1,�2]

∣∣∣∣∫ s

�1

b
(
r,X(r),U(r)

)
dr

∣∣∣∣2)

+ 3E
(

sup
s∈[�1,�2]

∣∣∣∣∫ s

�1

σ
(
r,X(r),U(r)

)
dW(r)

∣∣∣∣2)

+ 3E
(

sup
s∈[�1,�2]

∣∣∣∣∫ s

�1

∫
R

m2
0

γ
(
r,X(r−),U(r), z

)
Ñ(dr, dz)

∣∣∣∣2)

≤ 3TE

(∫ �2

�1

∣∣b(r,X(r),U(r)
)∣∣2 dr

)
+ 3�1E

(∫ �2

�1

∥∥σ (r,X(r),U(r)
)∥∥2

dr

)

+ 3�1E

(∫ �2

�1

∫
R

m2
0

∣∣γ (r,X(r−),U(r), z
)∣∣2ν(dz) dr

)
≤ 3C2(T + �1 + �1M)(�2 − �1).

Letting K2 := 3C2(T + �1 + �1M) completes the proof of the lemma. �
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Let b̃ : Q0 × U → R
d , σ̃ : Q0 × U → R

d×m1 , and γ̃ : Q0 × U × R
m2 → R

d .
For any generalized reference probability space μ = (�,F ,F t

s ,P,W,L), any
control process U ∈ Aμ, and any x ∈ R

d , consider another controlled SDE

X̃(s; t, x) = x +
∫ s

t
b̃
(
r, X̃(r; t, x),U(r)

)
dr

+
∫ s

t
σ̃
(
r, X̃(r; t, x),U(r)

)
dW(r)(2.10)

+
∫ s

t

∫
R

m2
0

γ̃
(
r, X̃(r−; t, x),U(r), z

)
Ñ(dr, dz), s ∈ [t, T ].

When the coefficient functions b̃, σ̃ , and γ̃ satisfy Assumption 2.1, for any μ =
(�,F ,F t

s ,P,W,L), U ∈ Aμ and x ∈ R
d , Theorem 2.2 ensures that there exists

a unique strong càdlàg solution X̃(s; t, x) to (2.10). For any (t, x) ∈ Q0, let

τ̃ (t, x) := inf
{
s ∈ [t, T ] : (s, X̃(s; t, x)

)
/∈ Q

}
.

LEMMA 2.9. Let the coefficient functions b̃, σ̃ and γ̃ satisfy Assump-
tion 2.1. For any (t, x) ∈ Q0, any generalized reference probability space μ =
(�,F ,F t

s ,P,W,L), and any U ∈ Aμ, let X̃(s; t, x) (respectively, X(s; t, x)) be
the unique strong càdlàg solution to (2.10) (respectively, (2.1)). Then, there exists
a constant K3 = K3(C,T ,M) > 0, depending only on C, T and M , such that

E

(
sup

s∈[t,T ]
∣∣X(s; t, x) − X̃(s; t, x)

∣∣2)
≤ K3

(‖b − b̃‖2
L∞(Q0×U)

+ ‖σ − σ̃‖2
L∞(Q0×U)

)
+ K3

∫
R

m2
0

∥∥γ (·, ·, ·, z) − γ̃ (·, ·, ·, z)∥∥2
L∞(Q0×U)

ν(dz).

PROOF. We denote X(s) = X(s; t, x), X̃(s) = X̃(s; t, x). By Cauchy–
Schwarz and Burkholder–Davis–Gundy inequalities, there exists a universal con-
stant �2 > 0, such that for any � ∈ [t, T ],
E

(
sup

s∈[t,�]
∣∣X(s) − X̃(s)

∣∣2)

≤ 6TE

(∫ �

t

∣∣b(r,X(r),U(r)
)− b

(
r, X̃(r),U(r)

)∣∣2 dr

)

+ 6�2E

(∫ �

t

∥∥σ (r,X(r),U(r)
)− σ

(
r, X̃(r),U(r)

)∥∥2
dr

)

+ 6�2E

(∫ �

t

∫
R

m2
0

∣∣γ (r,X(r−),U(r), z
)− γ

(
r, X̃(r−),U(r), z

)∣∣2ν(dz) dr

)
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+ 6T 2‖b − b̃‖2
L∞(Q0×U)

+ 6�2T ‖σ − σ̃‖2
L∞(Q0×U)

+ 6�2T

∫
R

m2
0

∥∥γ (·, ·, ·, z) − γ̃ (·, ·, ·, z)∥∥2
L∞(Q0×U)

ν(dz).

Therefore, by Assumption 2.1(iii),

E

(
sup

s∈[t,�]
∣∣X(s) − X̃(s)

∣∣2)

≤ 6(T + �2)C
2(1 + M)

∫ �

t
E

(
sup

s∈[t,r]
∣∣X(s) − X̃(s)

∣∣2)dr

+ 6T (T + �2)
(‖b − b̃‖2

L∞(Q0×U)
+ ‖σ − σ̃‖2

L∞(Q0×U)

)
+ 6T (T + �2)

∫
R

m2
0

∥∥γ (·, ·, ·, z) − γ̃ (·, ·, ·, z)∥∥2
L∞(Q0×U)

ν(dz).

The result follows from Gronwall’s inequality with K3 := 6T (T + �2) ×
e6C2(1+M)(T +�3)T . �

The next lemma provides an estimate for the cost functions.

LEMMA 2.10. Let Assumptions 2.1 and 2.3 be satisfied. Let �̃ be a uni-
formly continuous real-valued function on Q0 × U , such that Dx�̃ is a bounded
continuous function on Q0 × U . For any (t, x) ∈ Q0, any generalized reference
probability space μ = (�,F ,F t

s ,P,W,L) and any control process U ∈ Aμ, let
X(s) := X(s; t, x) (respectively, X̃(s) := X̃(s; t, x)) be the unique strong càdlàg
solution to (2.1) (respectively, (2.10)). Then,

E

(∫ T

t

∣∣�(r,X(r),U(r)
)− �̃

(
r, X̃(r),U(r)

)∣∣dr

)
≤ (T − t)

[
‖� − �̃‖

L∞(Q0×U)

+ K4‖Dx�̃‖
L∞(Q0×U)

(
‖b − b̃‖

L∞(Q0×U)
+ ‖σ − σ̃‖

L∞(Q0×U)

+
(∫

R
m2
0

∥∥γ (·, ·, ·, z) − γ̃ (·, ·, ·, z)∥∥2
L∞(Q0×U)

ν(dz)

)1/2)]
,

where K4 = K4(C,T ,M) > 0 is a constant depending only on C, T and M .

PROOF. Note that for any s ∈ [t, T ],∣∣�(s,X(s),U(s)
)− �̃

(
s, X̃(s),U(s)

)∣∣
≤ ‖� − �̃‖

L∞(Q0×U)
+ ‖Dx�̃‖

L∞(Q0×U)
sup

s∈[t,T ]
∣∣X(s) − X̃(s)

∣∣.



3282 R. GONG, C. MOU AND A. ŚWIĘCH

So the result follows immediately from Lemma 2.9 and Cauchy–Schwarz inequal-
ity. �

3. Representation formulas and dynamic programming principle. This
section is devoted to the proof of the stochastic representation formulas and the
Dynamic Programming Principle. Recall that Assumptions 2.1, 2.3, 2.4 and 2.6
hold throughout the paper. For any (t, x) ∈ Q0, any generalized reference prob-
ability space μ = (�,F ,F t

s ,P,W,L), and any U ∈ Aμ, let X(s; t, x) be the
unique strong càdlàg solution to (2.1).

For any generalized reference probability space μ = (�,F ,F t
s ,P,W,L) and

any U ∈ Aμ, we choose an F t
s -stopping time θU , with θU ∈ [t, T ] P-a.s. Let Ãμ

be the collection of all such pairs (U, θU). We also define Ãt :=⋃μ Ãμ, where the
union is taken over all generalized reference probability spaces μ on [t, T ].

3.1. Smooth value function. We first establish the Dynamic Programming
Principle when there exists a classical solution to (2.6) with terminal-boundary
condition (2.7).

THEOREM 3.1. Let Assumptions 2.1 and 2.3 be satisfied. Let W ∈ C1,2(Q0)

be a solution to (2.6) with terminal-boundary condition (2.7). Then, we have

(3.1) W(t, x) = V (t, x) = Vμ(t, x), (t, x) ∈ Q,

for any generalized reference probability space μ, and

W(t, x) = inf
(U,θU )∈Ãμ

E

(∫ θU∧τ

t
�
(
s,X(s; t, x),U(s)

)
ds

+ W
(
θU ∧ τ,X(θU ∧ τ ; t, x)

))
.

(3.2)

PROOF. Since W ∈ C1,2(Q0), by Itô’s formula and (2.8), for any generalized
reference probability space μ, and any (U, θU) ∈ Ãμ,

W(t, x) = W
(
θU ∧ τ,X(θU ∧ τ)

)− ∫ θU∧τ

t
A U(s)W

(
s,X(s)

)
ds

−
∫ θU∧τ

t
DxW

(
s,X(s)

) · σ (s,X(s),U(s)
)
dW(s)

−
∫ θU∧τ

t

∫
R

m2
0

(
W
(
s,X(s−) + γ

(
s,X(s−),U(s), z

))
− W

(
s,X(s−)

))
Ñ(ds, dz).

(3.3)
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Taking the expectation of both sides of (3.3) gives

W(t, x) = E

(
W
(
θU ∧ τ,X(θU ∧ τ)

)− ∫ θU∧τ

t
A U(s)W

(
s,X(s)

)
ds

)
.

This, together with (2.6), yields

W(t, x) ≤ E

(
W
(
θU ∧ τ,X(θU ∧ τ)

)+ ∫ θU∧τ

t
�
(
s,X(s),U(s)

)
ds

)
.

To prove the reverse inequality, let us fix any κ > 0. Since W ∈ C1,2(Q0) and
�(·, ·, u) is uniformly continuous on Q0, uniformly for u ∈ U , there exists δ > 0
such that, for any t1, t2 ∈ [t, T ] and any x1, x2 ∈ O , with |t1 − t2| < δ and |x1 −
x2| < δ, we have∣∣A uW(t1, x1) + �(t1, x1, u) − A uW(t2, x2) − �(t2, x2, u)

∣∣< κ

2

for any u ∈ U .

(3.4)

Let M1 ∈ N be sufficiently large so that (T − t)/M1 < δ. We partition [t, T ] into
M1 subintervals [t0, t1], t0 = t , and (tj , tj+1], j = 1, . . . ,M1 − 1, of length (T −
t)/M1. Moreover, let O = O1 ∪ · · · ∪ OM2 , where O1, . . . ,OM2 are disjoint Borel
sets of diameter less than δ/2 and M2 ∈ N. For each k = 1, . . . ,M2, we fix xk ∈ Ok

arbitrarily. For each j = 0, . . . ,M1 − 1 and k = 1, . . . ,M2, since W satisfies (2.6),
there exists ujk ∈ U such that

A ujkW(tj , xk) + �(tj , xk, ujk) <
κ

2
.

Together with (3.4), for any (s, y) ∈ [tj , tj+1] × (Bδ(xk) ∩ O),

A ujkW(s, y) + �(s, y,ujk) < κ.(3.5)

Define ū = (ū0, . . . , ūM1−1) :Rd → UM1 by

ūj (y) :=
{
ujk, if y ∈ Ok,

u0, if y ∈ O
c
,

j = 0, . . . ,M1 − 1, k = 1, . . . ,M2,

where u0 ∈ U is arbitrarily fixed. We define a Markov control policy and the cor-
responding solution to (2.1), as follows. For s ∈ [t, t1], let X(s; t, x) be the unique
solution to (2.1) with control U(s) ≡ ū0(x). By induction, for j = 1, . . . ,M1 − 1,
assume that X(·; t, x) and U(·) have been constructed on [t, tj ]. For s ∈ (tj , tj+1],
let U(s) = ūj (X(tj ; t, x)), and let X(s; t, x) be the associated solution to

X(s, t, x) = X(tj ; t, x) +
∫ s

tj

b
(
r,X(r; t, x),U(r)

)
dr

+
∫ s

tj

σ
(
r,X(r; t, x),U(r)

)
dW(r)

+
∫ s

tj

∫
R

m2
0

γ
(
r,X(r−; t, x),U(s), z

)
Ñ(dr, dz).
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Thus, U(s) ≡ ū0(x) for s ∈ [t, t1] and, for j = 1, . . . ,M1 − 1,

U(s) = ujk if s ∈ (tj , tj+1] and

X(tj ; t, x) ∈ Ok, k = 1, . . . ,M2.
(3.6)

By (3.3), we have

W(t, x) = E

(∫ θU∧τ

t
�
(
s,X(s),U(s)

)
ds + W

(
θU ∧ τ,X(θU ∧ τ)

))

−E

(∫ θU∧τ

t

(
A U(s)W

(
s,X(s)

)+ �
(
s,X(s),U(s)

))
ds

)
.

(3.7)

For j = 0, . . . ,M1 − 1, let

�j :=
{
ω ∈ � : ∣∣X(s ∧ τ ∧ θU)(ω) − X(tj ∧ τ ∧ θU)(ω)

∣∣< δ

2
,

for all s ∈ [tj , tj+1]
}
.

By (3.5), (3.6), and the fact that |X(tj ) − xk| < δ/2 if X(tj ) ∈ Ok , for any s ∈
(tj , tj+1), s ≤ τ ∧ θU ,

A U(s)W
(
s,X(s)

)+ �
(
s,X(s),U(s)

)
< κ in �j .(3.8)

By Lemma 2.8, for some constant K5 > 0 depending only on C, T and M ,

P
(
�c

j

)= P

(
sup

s∈[tj ,tj+1]
∣∣X(s ∧ τ ∧ θU) − X(tj ∧ τ ∧ θU)

∣∣≥ δ

2

)
≤ 4K5

δ2 (tj+1 − tj ).

Hence, (3.8) leads to

E

(∫ θU∧τ

t

(
A U(s)W

(
s,X(s)

)+ �
(
s,X(s),U(s)

))
ds

)

=
M1−1∑
j=0

E

(∫ θU∧tj+1∧τ

tj∧τ

(
A U(s)W

(
s,X(s)

)+ �
(
s,X(s),U(s)

))
ds

)

≤ κ(T − t) +
M1−1∑
j=0

∥∥A uW + �
∥∥
L∞([t,T ]×O×U)(tj+1 − tj )P

(
�c

j

)

≤ κ(T − t) + ∥∥A uW + �
∥∥
L∞([t,T ]×O×U)

4K5(T − t)2

δ2M1
.

Since κ and M1 are arbitrary, this, together with (3.7), gives us

W(t, x) ≥ inf
(U,θU )∈Ãμ

E

(∫ θU∧τ

t
�
(
s,X(s),U(s)

)
ds + W

(
θU ∧ τ,X(θU ∧ τ)

))
,
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which completes the proof of (3.2). Finally, by choosing the constant stopping
times θU ≡ T in (3.2) and noting that (3.2) is independent of the choice of a gen-
eralized reference probability space, we obtain (3.1). �

We point out that the construction of almost optimal controls in the proof of
Theorem 3.1 applied to the case of Section 3.2, together with the uniform con-
vergence of the value functions for the approximating control problems, provides
a recipe how to construct ε-optimal controls for the original stochastic optimal
control problem associated with our equation.

3.2. Finite control sets. In this subsection, we assume that U is a finite set,
which will be relaxed later by an approximation argument. For any δ ∈ (0, η/2),
recall that Oδ = {y ∈ R

d : dist(y,O) < δ}. We define Qδ := [0, T ) × Oδ . In the
sequel, oξ (1) denotes any function of ξ ∈ R which converges to 0 as ξ → 0.

Using Assumptions 2.1, 2.3, 2.4, 2.6, and Theorem 2.5, we can construct se-
quences of functions bn : Q0 × U → R

d , σn : Q0 × U → R
d×m1 , γn : Q0 × U ×

R
m2 →R

d , and �n : Q0 × U →R, n ∈ N, satisfying the following assumptions.

ASSUMPTION 3.2. (i) There exists a universal constant C̃ > 0, and for any
n ∈ N, there exists a constant C̃n > 0, depending only on n, such that for any
(t1, x1), (t2, x2) ∈ Q0, z ∈ R

m2 , and u ∈ U ,∣∣bn(t1, x1, u) − bn(t2, x2, u)
∣∣+ ∥∥σn(t1, x1, u) − σn(t2, x2, u)

∥∥
+ ∣∣�n(t1, x1, u) − �n(t2, x2, u)

∣∣
≤ C̃n

(|t1 − t2| + |x1 − x2|),∣∣γn(t1, x1, u, z) − γn(t2, x2, u, z)
∣∣≤ C̃nρ(z)

(|t1 − t2| + |x1 − x2|),
‖bn‖L∞(Q0×U)

+ ‖σn‖L∞(Q0×U)
+ ‖�n‖L∞(Q0×U)

≤ C̃,∥∥γn(·, ·, ·, z)
∥∥
L∞(Q0×U)

≤ C̃ρ(z).

(ii) As n → ∞,

max
(‖b − bn‖L∞(Q0×U)

,‖σ − σn‖L∞(Q0×U)
,‖� − �n‖L∞(Q0×U)

)= o1/n(1),∫
R

m2
0

∥∥γ (·, ·, ·, z) − γn(·, ·, ·, z)
∥∥2
L∞(Q0×U)

ν(dz) = o1/n(1),

‖Dx�n‖L∞(Q0×U)
· max

(‖b − bn‖L∞(Q0×U)
,‖σ − σn‖L∞(Q0×U)

)= o1/n(1),

‖Dx�n‖L∞(Q0×U)

(∫
R

m2
0

∥∥γ (·, ·, ·, z) − γn(·, ·, ·, z)
∥∥2
L∞(Q0×U)

ν(dz)

)1/2
= o1/n(1).
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(iii) For any sufficiently small δ > 0 and any x ∈ ∂Oδ , there exists a unit vector
nx,δ ∈ N(Oδ, x), such that Bη/2(x + ηnx,δ/2) ∩ Oδ = {x}. Moreover, for any t ∈
[0, T ], u ∈ U , and any n ∈ N large enough,

nx,δσn(t, x, u)σT
n (t, x, u)nT

x,δ ≥ λ

2
.

Next, for each arbitrarily fixed t ∈ [0, T ), we consider an extended generalized
reference probability space μ1 = (�,F ,F t

s ,P,W,W̃,L), where the probabil-
ity space is large enough to accommodate another standard d-dimensional F t

s -
Brownian motion W̃ , which is independent of W and L. Let Aμ1 be the collection
of all F t

s -predictable U -valued processes on μ1, and let Ae
t :=⋃μ1

Aμ1 , where
the union is taken over all extended generalized reference probability spaces μ1.

REMARK 3.3. If μ1 = (�,F ,F t
s ,P,W,W̃,L) is an extended generalized

reference probability space, then μ = (�,F ,F t
s ,P,W,L) is a generalized refer-

ence probability space, and clearly we have Aμ = Aμ1 . On the other hand, given
a generalized reference probability space μ = (�,F ,F t

s ,P,W,L), consider a
standard d-dimensional F̃ t

s -Brownian motion W̃ defined on a filtered probability
space (�̃, F̃ , F̃ t

s , P̃). For (ω, ω̃) ∈ �1 := � × �̃, let

W1(s)(ω, ω̃) = W(s)(ω), W2(s)(ω, ω̃) = W̃(s)(ω̃),

L1(s)(ω, ω̃) = L(s)(ω).

Then

μ1 := (�1,F ⊗ F̃ ,F t
1,s,P⊗ P̃,W1,W2,L1

)
,

where F ⊗ F̃ is the augmentation of the σ -field F ⊗ F̃ by the P ⊗ P̃ null

sets, and F t
1,s :=⋂r>s F t

s ⊗ F̃ t
s , is an extended generalized reference probability

space, and any element U ∈ Aμ can be regarded as an element in Aμ1 . Thus we
have Ae

t =At .

Let {εn}n∈N be a positive sequence of real numbers such that εn → 0,
as n → ∞. For any extended generalized reference probability space μ1 =
(�,F ,F t

s ,P,W,W̃,L), any U ∈ Aμ1 , any x ∈ R
d , and any n ∈ N, consider

an R
d -valued stochastic process Xn(s; t, x) which is the solution to the following

controlled SDE:

Xn(s; t, x) = x +
∫ s

t
bn

(
r,Xn(r; t, x),U(r)

)
dr

+
∫ s

t
σn

(
r,Xn(r; t, x),U(r)

)
dW(r) +

∫ s

t

√
εn dW̃(r)

+
∫ s

t

∫
R

m2
0

γn

(
r,Xn(r−; t, x),U(r), z

)
Ñ(dr, dz), s ∈ [t, T ].
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A similar argument as in Theorem 2.2 ensures that the above SDE has a unique
strong solution Xn(s; t, x) with P-a.s. càdlàg sample paths. For any δ ∈ (0, η/2)

and (t, x) ∈ Q0, let

τδ = τδ(t, x) := inf
{
s ∈ [t, T ] : X(s; t, x) /∈ Oδ/2

}
,

τδ,n = τδ,n(t, x) := inf
{
s ∈ [t, T ] : Xn(s; t, x) /∈ Oδ/2

}
,

with the convention inf∅= T .

LEMMA 3.4. Let Assumption 2.1 be satisfied. Let {bn}n∈N, {σn}n∈N and
{γn}n∈N be the sequences satisfying Assumption 3.2(i) and (ii). For any x ∈ O ,
let

Sδ,n = Sδ,n(t, x) :=
{
ω ∈ � : sup

�∈[t,T ]
∣∣X(� ∧ (τδ ∨ τδ,n); t, x)(ω)

− Xn

(
� ∧ (τδ ∨ τδ,n); t, x)(ω)

∣∣> δ

2

}
.

Then, we have

P(Sδ,n) → 0 as n → ∞.(3.9)

Moreover, for any ω ∈ Sc
δ,n,

τ(w) ∧ τδ,n(w) = τ(w).(3.10)

PROOF. Convergence (3.9) is a direct consequence of Lemma 2.9, Cheby-
shev’s inequality and Assumption 3.2(ii), while (3.10) follows from the definition
of Sδ,n. �

We first assume that  is more regular, that is,  ∈ C1+α/2,2+α(Q0) for some
α > 0. We will remove the regularity assumption on  at the end of this section.
We obtain the following existence, uniqueness and regularity theorem using a re-
sult proved in [30].

THEOREM 3.5. Let U be a finite set, and let Assumption 2.4 be valid. Let
{bn}n∈N, {σn}n∈N, {γn}n∈N and {�n}n∈N be the sequences satisfying Assump-
tion 3.2(i), and let  ∈ C1+α/2,2+α(Q0) for some α > 0 small enough. Then, there
exists a unique viscosity solution

Wδ,n ∈ C
1+α/2,2+α
loc (Qδ) ∩ Lipb

(
Q0
)

to

inf
u∈U
(
A u

n Wδ,n(t, x) + �n(t, x, u)
)= 0 in Qδ,(3.11)
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with terminal-boundary condition

Wδ,n(t, x) = (t, x), (t, x) ∈ ∂npQδ,

where for every u ∈ U ,

A u
n Wδ,n(t, x) := ∂Wδ,n

∂t
(t, x) + bn(t, x, u) · DxWδ,n(t, x)

+ 1

2
tr
((

an(t, x, u) + εnI
)
D2

xWδ,n(t, x)
)

+
∫
R

m2
0

(
Wδ,n

(
t, x + γn(t, x, u, z)

)− Wδ,n(t, x)

− DxWδ,n(t, x) · γn(t, x, u, z)
)
ν(dz),

and where an(t, x, u) := σn(t, x, u)σT
n (t, x, u).

PROOF. Since δ ∈ (0, η/2), by Theorem 2.5, Oδ satisfies the uniform exterior
ball condition with a uniform radius η/2. It is easy to verify that all the coefficients
bn, σn, γn and the boundary data  satisfy the same regularity and boundedness
conditions as required in [30], Theorem 5.3. Since an + εnI = σnσ

T
n + εnI ≥ εnI ,

the operator Au
n is uniformly parabolic in Qδ . The result follows immediately from

[30], Theorem 5.3. �

THEOREM 3.6. Under the assumptions of Theorem 3.5, for any x ∈R
d ,

Wδ,n(t, x) = inf
U∈Aμ1

E

(∫ τ(t,x)∧τδ,n(t,x)

t
�n

(
s,Xn(s; t, x),U(s)

)
ds

+ Wδ,n

(
τ(t, x) ∧ τδ,n(t, x),Xn

(
τ(t, x) ∧ τδ,n(t, x); t, x))).

PROOF. By Theorem 3.5, Wδ,n ∈ C
1+α/2,2+α
loc (Qδ) ∩ Lipb(Q

0) is a classical
solution to (3.11). Then, there exists a sequence of functions {Wδ,n,m}m∈N such that
Wδ,n,m ≡ Wδ,n in [0, T ]×�3δ/4, Wδ,n,m → Wδ,n uniformly in Q0 as m → ∞, and
Wδ,n,m ∈ C1+α/2,2+α([0, �] × R

d) for any fixed � ∈ (t, T ). We notice that Wδ,n,m

satisfies a different equation, which is

inf
u∈U
(
A u

n Wδ,n,m(t, x) + �n,m(t, x, u)
)= 0 in [0, T ) × Oδ/2,

where

�n,m(t, x, u)

= �n(t, x, u) +
∫
R

m2
0

(
Wδ,n

(
t, x + γn(t, x, u, z)

)
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− Wδ,n,m

(
t, x + γn(t, x, u, z)

))
ν(dz)

= �n(t, x, u) +
∫
{z∈Rm2

0 :|γn(t,x,u,z)|≥δ/4}
∣∣Wδ,n

(
t, x + γn(t, x, u, z)

)
− Wδ,n,m

(
t, x + γn(t, x, u, z)

)∣∣ν(dz).

Since Wδ,n,m ∈ C1+α/2,2+α([0, �]×R
d), applying Theorem 3.1 with θU = τδ,n∧�,

we have

Wδ,n,m(t, x) = inf
U∈Aμ1

E

(∫ τ∧τδ,n∧�

t
�n,m

(
s,Xn(s; t, x),U(s)

)
ds

+ Wδ,n,m

(
τ ∧ τδ,n ∧ �,Xn(τ ∧ τδ,n ∧ �; t, x)

))
.

We claim that �n,m → �n uniformly in Q0 × U . We first notice that

δ2

16C̃2

∫
{z∈Rm2

0 :C̃ρ(z)≥δ/4}
ν(dz) ≤

∫
{z∈Rm2

0 :C̃ρ(z)≥δ/4}
ρ2(z)ν(dz)

≤
∫
R

m2
0

ρ2(z)ν(dz),

where C̃ is from Assumption 3.2(i). Using the above inequality and Assump-
tion 3.2(i), we have for any (t, x, u) ∈ [0, T ) × Oδ/2 × U∫

{z∈Rm2
0 :|γn(t,x,u,z)|≥δ/4}

∣∣Wδ,n

(
t, x + γn(t, x, u, z)

)
− Wδ,n,m

(
t, x + γn(t, x, u, z)

)∣∣ν(dz)

≤
∫
{z∈Rm2

0 :C̃ρ(z)≥δ/4}
∣∣Wδ,n

(
t, x + γn(t, x, u, z)

)
− Wδ,n,m

(
t, x + γn(t, x, u, z)

)∣∣ν(dz)

≤ o1/m(1)

∫
{z∈Rm2

0 :C̃ρ(z)≥δ/4}
ν(dz) ≤ o1/m(1)

16C̃2

δ2

∫
R

m2
0

ρ2(z)ν(dz).

Letting m → ∞ in both sides of the dynamic programming equality we thus get

Wδ,n(t, x) = inf
U∈Aμ1

E

(∫ τ∧τδ,n∧�

t
�n

(
s,Xn(s; t, x),U(s)

)
ds

+ Wδ,n

(
τ ∧ τδ,n ∧ �,Xn(τ ∧ τδ,n ∧ �; t, x)

))
.

It remains to use Lemma 2.8 and let � → T to conclude the proof. �
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It is well known that, under Assumptions 2.1 and 2.3, comparison principle
holds for equation

inf
u∈U
(
A uWδ(t, x) + �(t, x, u)

)= 0 in Qδ,(3.12)

with the terminal-boundary condition

Wδ(t, x) = (t, x), (t, x) ∈ ∂npQδ.

Moreover, under Assumptions 2.4 and 2.6, the above parabolic Dirichlet problem
admits a unique viscosity solution Wδ ∈ Cb(Q0). The same results hold when Qδ

is replaced by Q. We refer the reader to, for example, [4], Theorem 3, and [20],
Theorem 3.1, for proofs of comparison principle, and to, for example, [31], Theo-
rem 3.2, and [32], Theorem 5.1, for proofs of the existence results.

For any (t, x) ∈ Q0, let

W̃δ(t, x) := lim
k→∞ sup

{
Wδ,n(s, y) : n ≥ k, s ∈ [0, T ] ∩

[
t − 1

k
, t + 1

k

]
,

y ∈ B1/k(x)

}
,

W̃ δ(t, x) := lim
k→∞ inf

{
Wδ,n(s, y) : n ≥ k, s ∈ [0, T ] ∩

[
t − 1

k
, t + 1

k

]
,

y ∈ B1/k(x)

}
.

LEMMA 3.7. Let the assumptions of Theorem 3.5 be satisfied. Let {bn}n∈N,
{σn}n∈N, {γn}n∈N and {�n}n∈N also satisfy Assumption 3.2(ii). Then, the function
W̃δ (respectively, W̃ δ) is a viscosity subsolution (respectively, supersolution) to
(3.12).

PROOF. We will only present the proof for W̃δ as the proof for W̃ δ is similar.
Suppose that W̃δ − ϕ has a maximum (equal to 0) over Q0 at some (t0, x0) ∈ Qδ ,
for a test function ϕ ∈ C

1,2
b (Q0). By appropriate approximation and modification

of ϕ, we can assume, without loss of generality, that the maximum is strict and

sup
(t,x)∈∂npQδ

(
W̃δ(t, x) − ϕ(t, x)

)= sup
(t,x)∈∂npQδ

(
(t, x) − ϕ(t, x)

)≤ c0 < 0,

for some constant c0 < 0. Hence, there exists a modulus of continuity �1 such
that, for any ε > 0,

sup
(t,x)∈Bc

ε (t0,x0)∩Q0

(
W̃δ(t, x) − ϕ(t, x)

)≤ −�1(ε) < 0.
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Next, for any (t, x) ∈ Qδ , by the definition of W̃δ , there exists k0(t, x) :=
k0(t, x; ε) ∈ N, such that for any n ≥ k0(t, x),

sup
s∈[0,T ],|s−t |≤1/k0(t,x)

|y−x|≤1/k0(t,x)

Wδ,n(s, y) − W̃δ(t, x) <
�1(ε)

4
.

Since ϕ ∈ C1,2(Q0), ϕ is uniformly continuous in [0, T ] × O1 with a modulus
of continuity �2. Hence, there exists η0 := η0(ε) > 0 such that, for any (t, x) ∈
Qδ \ Bε(t0, x0) and any n ≥ k0(t, x),

sup
s∈[0,T ],|s−t |≤(1/k0(t,x))∧η0

|y−x|≤(1/k0(t,x))∧η0

(
Wδ,n(s, y) − ϕ(s, y)

)

≤ sup
s∈[0,T ],|s−t |≤(1/k0(t,x))∧η0

|y−x|≤(1/k0(t,x))∧η0

(
Wδ,n(s, y) − W̃δ(t, x) + W̃δ(t, x)

− ϕ(t, x) + ϕ(t, x) − ϕ(s, y)
)

≤ �1(ε)

4
− �1(ε) + �2(η0) ≤ �1(ε)

4
− �1(ε) + �1(ε)

4

= −�1(ε)

2
.

Since Qδ \ Bε(t0, x0) is a compact set, and since {B(1/k(t,x))∧η0(t,

x)}(t,x)∈Qδ\Bε(t0,x0)
is a cover of Qδ \ Bε(t0, x0), there exist N = N(ε) ∈ N and

(si, yi) = (si(ε), yi(ε)) ∈ Qδ \ Bε(t0, x0), i = 1, . . . ,N , such that
{B(1/k(si ,yi ))∧η0(si, yi)}Ni=1 is a finite cover of Qδ \ Bε(t0, x0). Hence, for any
n ≥ max1≤i≤N k(si, yi) and any (t, x) ∈ Qδ \ Bε(t0, x0),

Wδ,n(t, x) − ϕ(t, x) ≤ −�1(ε)

2
.

Finally, by the definition of W̃δ , for any positive sequence {ε�}�∈N with ε� ↓ 0,
as � → ∞, there exists (t�, x�) ∈ Qδ ∩Bε�

(t0, x0) and n� ≥ max1≤i≤N(ε�) k(si(ε�),

yi(ε�)), where n� ↑ ∞ as � → ∞, such that

Wδ,n�
(t�, x�) − ϕ(t�, x�) = max

Q0

(
Wδ,n�

(t, x) − ϕ(t, x)
)
> −�1(ε�)

2
.

Therefore, we have

inf
u∈U
(
A u

n�
ϕ(t�, x�) + �n�

(t�, x�, u)
)≥ 0.

Letting � → ∞, we have

inf
u∈U
(
A uϕ(t0, x0) + �(t0, x0, u)

)≥ 0,

which completes the proof of the lemma. �
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LEMMA 3.8. Let U be a finite set, and let Assumptions 2.1, 2.3, 2.4 and 2.6
be valid. Let {bn}n∈N, {σn}n∈N, {γn}n∈N and {�n}n∈N be the sequences satisfy-
ing Assumption 3.2, and let  ∈ C1+α/2,2+α(Q0) for some α > 0. Then, both
(3.11) and (3.12) have the unique viscosity solutions Wδ,n and Wδ , respectively,
and ‖Wδ,n − Wδ‖L∞(Q0)

→ 0, as n → ∞.

PROOF. By Lemma 4.4 there exist functions ψδ and ψδ which are respectively
a viscosity subsolution and a viscosity supersolution to (3.11) and ψδ = ψδ = 

in ∂npQδ . We have ψδ ≤ Wδ,n ≤ ψδ , for any n ∈ N, by the comparison principle.

Next, since ψδ,ψ
δ ∈ C(Q0), it follows that ψδ ≤ W̃δ ≤ ψδ and ψδ ≤ W̃ δ ≤ ψδ . By

Lemma 3.7 and the comparison principle, we have W̃δ ≤ W̃ δ . By the definitions of
W̃δ and W̃ δ , we also have W̃δ ≥ W̃ δ . Hence, we obtain W̃ δ = W̃δ = Wδ ∈ C(Q0).

It is now standard to notice that ‖Wδ,n − Wδ‖L∞(Q0)
→ 0, as n → ∞. Oth-

erwise, there would exist an ε0 > 0, {nk}k∈N ⊂ N with nk ↑ ∞, as k → ∞, and
{(tk, xk)}k∈N ⊂ Qδ , such that∣∣Wδ,nk

(tk, xk) − Wδ(tk, xk)
∣∣> ε0.

Without loss of generality, we can assume that there exists (t0, x0) ∈ Qδ , such
that (tk, xk) → (t0, x0), as k → ∞. Letting k → ∞, we have either W̃δ(t0, x0) −
Wδ(t0, x0) ≥ ε0 or W̃ δ(t0, x0) − Wδ(t0, x0) ≤ −ε0, which contradicts with the fact
that W̃δ = W̃ δ = Wδ in Q0. �

The next result provides a representation formula for Wδ with a finite control
set.

THEOREM 3.9. Let U be a finite set, and let Assumptions 2.1, 2.3, 2.4, and 2.6
be valid. Let  ∈ C1+α/2,2+α(Q0) for some small α > 0. For each t ∈ [0, T ], let
μ1 = (�,F ,F t

s ,P,W,W̃,L) be an extended generalized reference probability
space and set μ = (�,F ,F t

s ,P,W,L). Then, for any x ∈ O ,

Wδ(t, x) = inf
U∈Aμ

E

(∫ τ(t,x)

t
�
(
s,X(s; t, x),U(s)

)
ds

+ Wδ

(
τ(t, x),X(τ ; t, x)

))
.

(3.13)

PROOF. Let {bn}n∈N, {σn}n∈N, {γn}n∈N and {�n}n∈N be sequences of func-
tions satisfying Assumption 3.2. By Theorem 3.1, we have

Wδ,n(t, x) = inf
U∈Aμ

E

(∫ τ(t,x)∧τδ,n(t,x)

t
�n

(
s,Xn(s; t, x),U(s)

)
ds

(3.14)

+ Wδ,n

(
τ(t, x) ∧ τδ,n(t, x),Xn

(
τ(t, x) ∧ τδ,n(t, x); t, x))).
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Notice that, by Assumption 3.2(i) and the construction of the HJB equation (3.11),
there exists a constant K > 0, independent of n, such that

sup
n∈N

‖�n‖L∞(Qδ×U) + sup
n∈N

‖Wδ,n‖L∞(Q0)
≤ K.

By Lemma 2.10 and Lemma 3.4, for any U ∈ Aμ,

E

(∣∣∣∣∫ τ∧τδ,n

t
�n

(
s,Xn(s),U(s)

)
ds −

∫ τ

t
�
(
s,X(s),U(s)

)
ds

∣∣∣∣)
≤ E

(∫ τ∧τδ,n

t

∣∣�n

(
s,Xn(s),U(s)

)− �
(
s,X(s),U(s)

)∣∣ds

+
∫ τ

τ∧τδ,n

∣∣�(s,X(s),U(s)
)∣∣ds

)
≤ (T − t)

[‖�n − �‖
L∞(Q0×U)

+ K4‖Dx�n‖L∞(Q0×U)

× (‖b − bn‖L∞(Q0×U)
+ ‖σ − σn‖L∞(Q0×U)

)]
+ K4(T − t)‖Dx�n‖L∞(Q0×U)

×
(∫

R
m2
0

∥∥γ (·, ·, ·, z) − γn(·, ·, ·, z)
∥∥2
L∞(Q0×U)

ν(dz)

)1/2

+E

(
1Sδ,n

∫ τ

τ∧τδ,n

∣∣�(s,X(s),U(s)
)∣∣ds

)
≤ o1/n(1).

Similarly, by Lemma 3.4 and Lemma 3.8, we also have

E
(∣∣Wδ,n

(
τ ∧ τδ,n,Xn(τ ∧ τδ,n) − Wδ

(
τ,X(τ)

)∣∣)
≤ E

(∣∣Wδ,n

(
τ ∧ τδ,n,Xn(τ ∧ τδ,n)

)− Wδ

(
τ ∧ τδ,n,Xn(τ ∧ τδ,n)

)∣∣)
+E

(∣∣Wδ

(
τ ∧ τδ,n,Xn(τ ∧ τδ,n)

)− Wδ

(
τ,X(τ)

)∣∣)
≤ ‖Wδ,n − Wδ‖L∞(Q0)

+E
(
1Sc

δ,n

∣∣Wδ

(
τ,Xn(τ)

)− Wδ

(
τ,X(τ)

)∣∣)
+ 2‖Wδ‖L∞(Q0)

P(Sδ,n)

≤ o1/n(1) +E
(∣∣Wδ

(
τ,Xn(τ)

)− Wδ

(
τ,X(τ)

)∣∣)
≤ o1/n(1) +E

(
�δ

(∣∣Xn(τ) − X(τ)
∣∣)),

where �δ is a (concave) modulus of continuity of Wδ in Q0. By Jensen’s inequality
and Lemma 2.9, we thus obtain

E
(∣∣Wδ,n

(
τ ∧ τδ,n,Xn(τ ∧ τδ,n) − Wδ

(
τ,X(τ)

)∣∣)≤ o1/n(1).

Therefore, (3.13) follows immediately by letting n → ∞ in (3.14). �
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REMARK 3.10. By almost the same arguments we can prove, under the as-
sumptions of Theorem 3.9, the following version of the Dynamic Programming
Principle

Wδ(t, x) = inf
(U,θU )∈Ãμ

E

(∫ θU∧τ

t
�
(
s,X(s; t, x),U(s)

)
ds

+ Wδ

(
θU ∧ τ,X(θU ∧ τ ; t, x)

))
,

for any generalized reference probability space μ = (�,F ,F t
s ,P,W,L) which

comes from an extended generalized reference probability space μ1 = (�,F ,F t
s ,

P,W,W̃,L), and any (t, x) ∈ Q.

3.3. General control sets. In this subsection, we consider the general con-
trol space, that is, U is a Polish space. Let {vi}i∈N be a countable dense sub-
set of U . For each n ∈ N, let Un := {v1, . . . , vn}, and for each extended gener-
alized reference probability space μ1 = (�,F ,F t

s ,P,W,W̃,L), we set μ =
(�,F ,F t

s ,P,W,L), and let An
μ be the collection of all F t

s -predictable Un-
valued processes on [t, T ]. For any Un ∈ An

μ and any x ∈ R
d , we denote by

Xn(s; t, x) the unique strong càdlàg solution to

Xn(s; t, x) = x +
∫ s

t
b
(
r,Xn(r; t, x),Un(r)

)
dr

+
∫ s

t
σ
(
r,Xn(r; t, x),Un(s)

)
dW(s)(3.15)

+
∫ s

t

∫
R

m2
0

γ
(
r,Xn(r−; t, x),Un(s), z

)
Ñ(dr, dz), s ∈ [t, T ].

For any δ ∈ (0, η/2) and (t, x) ∈ Q0,

τ δ,n = τ δ,n(t, x) := inf
{
s ∈ [t, T ] : Xn(s; t, x) /∈ Oδ/2

}
,

with the convention inf∅ = T .

LEMMA 3.11. Let Assumptions 2.1 and 2.3 be satisfied. Let μ1 = (�,F ,F t
s ,

P,W,W̃,L) be an extended generalized reference probability space, and let
μ = (�,F ,F t

s ,P,W,L). For any U ∈ Aμ, there exists a sequence of control
processes {Unk

}k∈N, where Unk
∈Ank

μ for each k ∈ N, such that for any x ∈ R
d ,

E

(∫ T

t

∣∣�(s,X(s; t, x),Unk
(s)
)− �

(
s,X(s; t, x),U(s)

)∣∣2 ds

)
= o1/k(1), k → ∞.

(3.16)

Moreover,

E

(
sup

�∈[t,T ]
∣∣X(�; t, x) − Xnk

(�; t, x)
∣∣2)= o1/k(1), k → ∞.(3.17)
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PROOF. By Assumption 2.1(ii)(iii) and Assumption 2.3(ii), for each k ∈ N,
there exists δk > 0, such that for any u1, u2 ∈ U with dU (u1, u2) ≤ δk ,

∣∣b(s, y,u1) − b(s, y,u2)
∣∣+ ∥∥σ(s, y,u1) − σ(s, y,u2)

∥∥≤ 1

k
,(3.18)

∣∣γ (s, y,u1, z) − γ (s, y,u2, z)
∣∣≤ ρ(z)

k
,(3.19)

∣∣�(s, y,u1) − �(s, y,u2)
∣∣≤ 1

k
,(3.20)

for any (s, y) ∈ [t, T ] × R
d and any z ∈ R

m2
0 . Next, since {vi}i∈N is a countable

dense subset of U , clearly, U ⊂⋃i∈N Bδk
(vi). It follows that, for any U ∈ Aμ, we

have [t, T ] × � ⊂⋃i∈N U−1(Bδk
(vi)). Thus, there exists an increasing sequence

of integers {nk}k∈N, with nk ↑ ∞ as k → ∞, such that, defining for each k ∈ N,
Ak := ([t, T ] × �) \⋃nk

i=1 U−1(Bδk
(vi)), we have

Leb ⊗ P(Ak) ≤ 1

k
.

Fix any arbitrary element u0 ∈ U . For each k ∈N, define the control policy Unk
via

Unk
(s)(ω) =

⎧⎪⎪⎨⎪⎪⎩
vi if U(s)(ω) ∈ Bδk

(vi)
∖(i−1⋃

j=1

Bδk
(vj )

)
, i = 1, . . . , nk,

u0 otherwise.

Clearly, for each k ∈ N, Unk
∈ Ank

μ , and

dU
(
Unk

(s)(ω),U(s)(ω)
)≤ δk for (s,ω) ∈ ([t, T ] × �

) \ Ak.

Hence, by (3.20),

E

(∫ T

t

∣∣�(s,X(s; t, x),Unk
(s)
)− �

(
s,X(s; t, x),U(s)

)∣∣2 ds

)

≤ E

(∫ T

t

∣∣�(s,X(s; t, x),Unk
(s)
)− �

(
s,X(s; t, x),U(s)

)∣∣21Ak
ds

)

+E

(∫ T

t

∣∣�(s,X(s; t, x),Unk
(s)
)− �

(
s,X(s; t, x),U(s)

)∣∣21Ac
k
ds

)
≤ 4‖�‖2

L∞(Q0×U)
· Leb ⊗ P(Ak) + T

k2 ≤ 4

k
‖�‖2

L∞(Q0×U)
+ T

k2 .

Letting k → ∞ in the last inequality above completes the proof of (3.16).
Moreover, for any x ∈ R

d , s ∈ [t, T ], k ∈ N, by Burkholder–Davis–Gundy and
Cauchy–Schwarz inequalities, there exists a universal constant �1 > 0 such that,
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setting X(s) = X(s; t, x),Xnk
(s) = Xnk

(s; t, x),

E

(
sup

�∈[t,s]
∣∣X(�) − Xnk

(�)
∣∣2)

≤ 3TE

(∫ s

t

∣∣b(r,X(r),U(r)
)− b

(
r,Xnk

(r),Unk
(r)
)∣∣2 dr

)
+ 3�1E

(∫ s

t

∥∥σ (r,X(r),U(r)
)− σ

(
r,Xnk

(r),Unk
(r)
)∥∥2

dr

)
+ 3�1E

(∫ s

t

∫
R

m2
0

∣∣γ (r,X(r),U(r), z
)

− γ
(
r,Xnk

(r),Unk
(r), z

)∣∣2ν(dz) dr

)
.

By Assumption 2.1(iii) and (3.18),

E

(∫ s

t

∣∣b(r,X(r),U(r)
)− b

(
r,Xnk

(r),Unk
(r)
)∣∣2 dr

)
≤ 3E

(∫ s

t

∣∣b(r,X(r),U(r)
)− b

(
r,Xnk

(r),U(r)
)∣∣2 dr

)
+ 3E

(∫ s

t

∣∣b(r,Xnk
(r),U(r)

)− b
(
r,Xnk

(r),Unk
(r)
)∣∣21Ak

dr

)
+ 3E

(∫ s

t

∣∣b(r,Xnk
(r),U(r)

)− b
(
r,Xnk

(r),Unk
(r)
)∣∣21Ac

k
dr

)
≤ 3C2

∫ s

t
E
(∣∣X(r) − Xnk

(r)
∣∣2)dr + 12T ‖b‖2

L∞(Q0×U)
Leb ⊗ P(Ak) + 3T

k2

≤ 3C2
∫ s

t
E

(
sup

�∈[t,r]
∣∣X(�) − Xnk

(�)
∣∣2)dr + 12C2T

k
+ 3T

k2 .

Similarly, by Assumption 2.1(iii) and (3.18) again,

E

(∫ s

t

∥∥σ (r,X(r),U(r)
)− σ

(
r,Xnk

(r),Unk
(r)
)∥∥2

dr

)

≤ 3C2
∫ s

t
E

(
sup

�∈[t,r]
∣∣X(�) − Xnk

(�)
∣∣2)dr + 12C2T

k
+ 3T

k2 ,

and by Assumption 2.1(iii) and (3.19),

E

(∫ s

t

∫
R

m2
0

∣∣γ (r,X(r),U(r), z
)− γ

(
r,Xnk

(r),Unk
(r), z

)∣∣2ν(dz) dr

)

≤ 3C2M

∫ s

t
E

(
sup

�∈[t,r]
∣∣X(�) − Xnk

(�)
∣∣2)dr + 12C2MT

k
+ 3MT

k2 .
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Therefore, we obtain

E

(
sup

�∈[t,s]
∣∣X(�) − Xnk

(�)
∣∣2)

≤ 9C2(T + �1)(2 + M)

(∫ s

t
E

(
sup

�∈[t,r]
∣∣X(�) − Xnk

(�)
∣∣2)dr + 4C2T

k
+ T

k2

)
,

and (3.17) follows immediately from Gronwall’s inequality. �

Let  ∈ C1+α/2,2+α(Q0) for some small α > 0. From the arguments after the
proof of Theorem 3.6, under Assumptions 2.1, 2.3, 2.4 and 2.6, we know that the
equation

inf
u∈Un

(
A uWδ,n(t, x) + �(t, x, u)

)= 0 in Qδ,(3.21)

with terminal-boundary condition

Wδ,n(t, x) = (t, x), (t, x) ∈ ∂npQδ,(3.22)

admits a unique viscosity solution Wδ,n ∈ Cb(Q0). Moreover, the functions
{Wδ,n}n∈N are uniformly bounded by the construction in [31], Theorem 3.2. Sim-
ilarly,

inf
u∈U
(
A uŴδ(t, x) + �(t, x, u)

)= 0 in Qδ,(3.23)

with terminal-boundary condition (3.22), admits a unique viscosity solution Ŵδ ∈
Cb(Q0). Notice that the existence results in [30] allow for a general (infinite) con-
trol space U .

For any (t, x) ∈ Q0, let

Wδ(t, x) := lim
k→∞ sup

{
Wδ,n(s, y) : n ≥ k, s ∈ [0, T ] ∩

[
t − 1

k
, t + 1

k

]
,

y ∈ B1/k(x)

}
,

W
δ
(t, x) := lim

k→∞ inf
{
Wδ,n(s, y) : n ≥ k, s ∈ [0, T ] ∩

[
t − 1

k
, t + 1

k

]
,

y ∈ B1/k(x)

}
.

LEMMA 3.12. Let Assumptions 2.1, 2.3, 2.4 and 2.6 be valid. Let  ∈
C1+α/2,2+α(Q0) for some α > 0. Then Wδ (respectively, W

δ
) is a viscosity subso-

lution (respectively, supersolution) to (3.23).
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PROOF. The proof is similar to the proof of Lemma 3.7, and we only sketch
it for Wδ . If Wδ − ϕ has a strict global maximum over Q0 (equal to 0) at some
(t0, x0) ∈ Qδ for some test function ϕ ∈ C

1,2
b (Q0), repeating the arguments from

the proof of Lemma 3.7, we obtain for any positive sequence {ε�}�∈N, with ε� ↓ 0
as � → ∞, points (t�, x�) ∈ Qδ ∩ Bε�

(t0, x0) and n� ∈ N, satisfying n� ↑ ∞ as
� → ∞, such that

inf
u∈Un�

(
A uϕ(t�, x�) + �(t�, x�, u)

)≥ 0.

Letting � → ∞ completes the proof of the lemma. �

The following result is an analog to Lemma 3.8 above. The proof is very similar
to that of Lemma 3.8, and is thus omitted.

LEMMA 3.13. let Assumptions 2.1, 2.3, 2.4 and 2.6 be valid, and let  ∈
C1+α/2,2+α(Q0) for some α > 0. Then, both (3.21) and (3.23) have the unique
viscosity solutions Wδ,n and Ŵδ , respectively, and ‖Wδ,n − Ŵδ‖L∞(Q0)

→ 0, as
n → ∞.

The following theorem provides a representation formula for Ŵδ .

THEOREM 3.14. Let Assumptions 2.1, 2.3, 2.4 and 2.6 be valid, and let  ∈
C1+α/2,2+α(Q0) for some α > 0. Let t ∈ [0, T ), let μ1 = (�,F ,F t

s ,P,W,W̃,L)

be an extended generalized reference probability space, and set μ = (�,F ,F t
s ,P,

W,L). Then, for any x ∈ O ,

Ŵδ(t, x) = inf
U∈Aμ

E

(∫ τ(t,x)

t
�
(
s,X(s; t, x),U(s)

)
ds

+ Ŵδ

(
τ(t, x),X

(
τ(t, x); t, x))).(3.24)

PROOF. For any η > 0, there exists Uη ∈Aμ, such that

E

(∫ τη

t
�
(
s,Xη(s),Uη(s)

)
ds + Ŵδ

(
τη,Xη(τη)))

≤ inf
U∈Aμ

E

(∫ τ

t
�
(
s,X(s),U(s)

)
ds + Ŵδ

(
τ,X(τ)

))+ η,

(3.25)

where Xη(s) = Xη(s; t, x) is the unique strong càdlàg solution to (2.1) with con-
trol process Uη, and where (with inf∅= T )

τη = τη(t, x) := inf
{
s ∈ [t, T ] : Xη(s; t, x) /∈ O

}
.
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By Lemma 3.11, there exists a sequence of increasing integers {nk}k∈N, and a
corresponding sequence of control processes {Uη

nk }k∈N, where for each k ∈ N,
U

η
nk ∈ Ank

μ , such that,

E

(
sup

�∈[t,T ]
∣∣X(� ∧ τη ∧ τ

η
δ,nk

)− X
η

nk

(
� ∧ τη ∧ τ

η
δ,nk

)∣∣2)= o1/k(1), k → ∞,

where X
η

nk
(s; t, x) is the unique strong càdlàg solution to (3.15) with control pro-

cess U
η
nk , and where (with inf∅= T )

τ
η
δ,nk

= τ
η
δ,nk

(t, x) := inf
{
s ∈ [t, T ] : Xη

nk
(s; t, x) /∈ Oδ/2

}
.

By Remark 3.10, we have

Wδ,nk
(t, x) ≤ E

(∫ τη∧τ
η
δ,nk

t
�
(
s,X

η

nk
(s),Uη

nk
(s)
)
ds

+ Wδ,nk

(
τη ∧ τ

η
δ,nk

,X
η

nk

(
τη ∧ τ

η
δ,nk

)))
.

(3.26)

We need to take the limits in both sides of (3.26), first as k → ∞ (for fixed
η > 0) and then η → 0. We have

E

(∣∣∣∣∫ τη∧τ
η
δ,nk

t
�
(
s,X

η

nk
(s),Uη

nk
(s)
)
ds −

∫ τη

t
�
(
s,Xη(s),Uη(s)

)
ds

∣∣∣∣)

≤ E

(∫ τη∧τ
η
δ,nk

t

∣∣�(s,Xη

nk
(s),Uη

nk
(s)
)− �

(
s,Xη(s),Uη

nk
(s)
)∣∣ds

)

+E

(∫ τη∧τ
η
δ,nk

t

∣∣�(s,Xη(s),Uη
nk

(s)
)− �

(
s,Xη(s),Uη(s)

)∣∣ds

)

+E

(∫ τη

τη∧τ
η
δ,nk

∣∣�(s,Xη(s),Uη(s)
)∣∣ds

)
.

By Assumption 2.3(ii) and Lemma 3.11, for fixed η > 0, as k → ∞,

E

(∫ τη∧τ
η
δ,nk

t

∣∣�(s,Xη

nk
(s),Uη

nk
(s)
)− �

(
s,Xη(s),Uη

nk
(s)
)∣∣ds

)
= o1/k(1),

E

(∫ τη∧τ
η
δ,nk

t

∣∣�(s,Xη(s),Uη
nk

(s)
)− �

(
s,Xη(s),Uη(s)

)∣∣ds

)
= o1/k(1).

Moreover, using a similar argument as in the proof of Lemma 3.4, if we set

Sη

δ,k :=
{
ω ∈ � : sup

�∈[t,T ]
∣∣Xη(� ∧ (τη ∨ τ

η
δ,nk

))
(ω)

− X
η

nk

(
� ∧ (τη ∨ τ

η
δ,nk

))
(ω)
∣∣> δ

2

}
,
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then

τη(ω) ∧ τ
η
δ,nk

(ω) = τη(ω), for all ω ∈ (Sη

δ,k

)c
,(3.27)

and by (3.17) and Chebyshev’s inequality,

P
(
Sη

δ,k

)→ 0 as k → ∞.(3.28)

Hence,

E

(∫ τη

τη∧τ
η
δ,nk

∣∣�(s,Xη(s),Uη(s)
)∣∣ds

)

= E

(∫ τη

τη∧τ
η
δ,nk

∣∣�(s,Xη(s),Uη(s)
)∣∣1Sη

δ,k
ds

)
≤ T ‖�‖

L∞(Q0×U)
P
(
Sη

δ,k

)→ 0 as k → ∞.

Therefore, we obtain that, as k → ∞,

E

(∣∣∣∣∫ τη∧τ
η
δ,nk

t
�
(
s,X

η

nk
(s),Uη

nk
(s)
)
ds

−
∫ τη

t
�
(
s,Xη(s),Uη(s)

)
ds

∣∣∣∣)= o1/k(1).

(3.29)

Next, by Lemma 3.13,

E
(∣∣Wδ,nk

(
τη ∧ τ

η
δ,nk

,X
η

nk

(
τη ∧ τ

η
δ,nk

))− Ŵδ

(
τη,Xη(τη))∣∣)

≤ E
(∣∣Wδ,nk

(
τη ∧ τ

η
δ,nk

,X
η

nk

(
τη ∧ τ

η
δ,nk

))
− Ŵδ

(
τη ∧ τ

η
δ,nk

,X
η

nk

(
τη ∧ τ

η
δ,nk

))∣∣)
+E

(∣∣Ŵδ

(
τη ∧ τ

η
δ,nk

,X
η

nk

(
τη ∧ τ

η
δ,nk

))− Ŵδ

(
τη,Xη(τη))∣∣)

≤ ‖Wδ,nk
− Ŵδ‖L∞(Q0)

+E
(∣∣Ŵδ

(
τη ∧ τ

η
δ,nk

,X
η

nk

(
τη ∧ τ

η
δ,nk

))− Ŵδ

(
τη,Xη(τη))∣∣)

= o1/k(1) +E
(∣∣Ŵδ

(
τη ∧ τ

η
δ,nk

,X
η

nk

(
τη ∧ τ

η
δ,nk

))− Ŵδ

(
τη,Xη(τη))∣∣),

k → ∞.

Moreover, by (3.17), (3.27), (3.28), and the uniform continuity of Ŵδ on Q0,

E
(∣∣Ŵδ

(
τη ∧ τ

η
δ,nk

,X
η

nk

(
τη ∧ τ

η
δ,nk

))− Ŵδ

(
τη,Xη(τη))∣∣)

= E
(∣∣Ŵδ

(
τη ∧ τ

η
δ,nk

,X
η

nk

(
τη ∧ τ

η
δ,nk

))− Ŵδ

(
τη,Xη(τη))∣∣1Sη

δ,k

)
+E

(∣∣Ŵδ

(
τη ∧ τ

η
δ,nk

,X
η

nk

(
τη ∧ τ

η
δ,nk

))− Ŵδ

(
τη,Xη(τη))∣∣1(Sη

δ,k)
c

)
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≤ 2‖Ŵδ‖L∞(Q0)
P
(
Sη

δ,k

)+E
(∣∣Ŵδ

(
τη,X

η

nk

(
τη))− Ŵδ

(
τη,Xη(τη))∣∣)

≤ o1/k(1) +E
(
�δ

(∣∣Xη

nk

(
τη)− Xη(τη)∣∣))

≤ o1/k(1) + �δ

(
E
(∣∣Xη

nk

(
τη)− Xη(τη)∣∣))= o1/k(1), k → ∞,

where �δ is a concave modulus of continuity of Ŵδ in Q0. Therefore, we obtain

E
(∣∣Wδ,nk

(
τη ∧ τ

η
δ,nk

,X
η

nk

(
τη ∧ τ

η
δ,nk

))
− Ŵδ

(
τη,Xη(τη))∣∣)= o1/k(1), k → ∞.

(3.30)

Combining Lemma 3.13, (3.25), (3.29) and (3.30), and taking limits, as k → ∞,
in both sides of (3.26), we thus have

Ŵδ(t, x) ≤ E

(∫ τη

t
�
(
s,Xη(s),Uη(s)

)
ds + Ŵδ

(
τη,Xη(τη)))

≤ inf
U∈Aμ

E

(∫ τ

t
�
(
s,X(s),U(s)

)
ds + Ŵδ

(
τ,X(τ)

))+ η.

Since η > 0 is arbitrary, this implies

Ŵδ(t, x) ≤ inf
U∈Aμ

E

(∫ τ

t
�
(
s,X(s),U(s)

)
ds + Ŵδ

(
τ,X(τ)

))
.

On the other hand, by Remark 3.10,

Wδ,nk
(t, x) = inf

Unk
∈Ank

μ

(∫ τ

t
�
(
s,Xnk

(s),Unk
(s)
)
ds + Wδ,nk

(
τ,Xnk

(τ )
))

≥ inf
U∈Aμ

(∫ τ

t
�
(
s,X(s),U(s)

)
ds + Wδ,nk

(
τ,X(τ)

))
.

Letting k → ∞ above and using Lemma 3.13 provides the reverse inequality, and
hence completes the proof of the theorem. �

LEMMA 3.15. Let Assumptions 2.1, 2.3, 2.4 and 2.6 be valid, and let  ∈
C1+α/2,2+α(Q0) for some α > 0. Let W be the viscosity solution to (2.6) with
terminal-boundary condition (2.7). Then

‖W − Ŵδ‖L∞(Q0)
= oδ(1) as δ → 0.

PROOF. In view of Lemma 4.4, there exist a uniformly continuous viscosity
subsolution ψδ and a uniformly continuous viscosity supersolution ψ

δ
to (3.23)

such that ψ
δ = ψδ =  on ∂npQδ , where the modulus of continuity of ψ

δ
and ψδ

are independent of δ. Therefore, since  ∈ C1+α/2,2+α(Q0), we have

aδ := sup
(t,x)∈Qδ∩∂npQ

∣∣Ŵδ(t, x) − W(t, x)
∣∣= oδ(1) as δ → 0.
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Since Ŵδ − aδ and Ŵδ + aδ are viscosity solutions to (2.6), and since

Ŵδ − aδ ≤ W ≤ Ŵδ + aδ on ∂npQ,

the lemma follows immediately from the comparison principle. �

We can now state a representation formula for W with smooth terminal-
boundary condition and a general control set.

THEOREM 3.16. Let Assumptions 2.1, 2.3, 2.4 and 2.6 be valid, and let  ∈
C1+α/2,2+α(Q0) for some α > 0. Let W be the viscosity solution to (2.6) with
terminal-boundary condition (2.7). Let t ∈ [0, T ], let μ1 = (�,F ,F t

s ,P,W,W̃,

L) be an extended generalized reference probability space, and set μ = (�,F ,

F t
s ,P,W,L). Then, for any x ∈ O ,

W(t, x) = inf
U∈Aμ

E

(∫ τ(t,x)

t
�
(
s,X(s; t, x),U(s)

)
ds

+ W
(
τ(t, x),X

(
τ(t, x); t, x))).(3.31)

PROOF. The result follows by taking δ → 0 in (3.24) and using Lemma 3.15.
�

Finally, we show that  ∈ C1+α/2,2+α(Q0) is not needed for establishing the
representation formula for W . In fact, we only need Assumption 2.3(i).

THEOREM 3.17. Let Assumptions 2.1, 2.3, 2.4 and 2.6 be valid. Let W be the
viscosity solution to (2.6) with terminal-boundary condition (2.7). Let t ∈ [0, T ],
let μ1 = (�,F ,F t

s ,P,W,W̃,L) be an extended generalized reference probabil-
ity space, and set μ = (�,F ,F t

s ,P,W,L). Then, (3.31) holds for any x ∈ O .

PROOF. For each n ∈ N, let n ∈ C1+α/2,2+α(Q0), for some small α > 0, be
such that n →  uniformly in Q0 as n → ∞. Also, for each n ∈ N, let Wn be
the viscosity solution to (2.6) with W = n on ∂npQ. By Theorem 3.16,

Wn(t, x) = inf
U∈Aμ

E

(∫ τ(t,x)

t
�
(
s,X(s; t, x),U(s)

)
ds

+ Wn

(
τ(t, x),X

(
τ(t, x); t, x))).

A comparison argument like the one used to prove Lemma 3.15 ensures that Wn →
W uniformly in Q0 as n → ∞. Taking limits on both sides of the above quality, as
n → ∞, completes the proof. �

We conclude this section with a remark and a corollary.
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REMARK 3.18. Straightforward modifications of arguments of this section
also establish the following version of the Dynamic Programming Principle. If the
assumptions of Theorem 3.17 are satisfied, t ∈ [0, T ] and a generalized reference
probability space μ is as in Theorem 3.17, then for any x ∈ O

W(t, x) = inf
(U,θU )∈Ãμ

E

(∫ θU∧τ

t
�
(
s,X(s; t, x),U(s)

)
ds

+ W
(
θU ∧ τ,X(θU ∧ τ ; t, x)

))
.

COROLLARY 3.19. Under the assumptions of Theorem 3.17, for any (t, x) ∈
Q,

W(t, x) = inf
(U,θU )∈At

E

(∫ θU∧τ

t
�
(
s,X(s; t, x),U(s)

)
ds

+ W
(
θU ∧ τ,X(θU ∧ τ ; t, x)

))
.

In particular, taking θU = T for every U , we obtain that, for any (t, x) ∈ Q,

W(t, x) = inf
U∈At

E

(∫ τ

t
�
(
s,X(s; t, x),U(s)

)
ds + W

(
τ,X(τ ; t, x)

))
.

PROOF. The corollary follows from Remarks 3.3 and 3.18. �

4. Construction of viscosity sub/supersolutions. In this section, we con-
struct continuous sub/supersolutions to various equations. We will only discuss
the case of equation (2.6) with all details since the construction for other equa-
tions is the same as they satisfy the same uniform conditions. The construction
of sub/supersolutions is very similar, and essentially is the same as that in [30] in
many respects. We present it here for the sake of completeness.

We begin with a preliminary lemma for which we need the following assump-
tion.

ASSUMPTION 4.1. (i) O ⊂ R
d is a bounded domain which satisfies the uni-

form exterior ball condition with a uniform radius rO > 0. That is, for any x ∈ ∂O ,
there exists yx ∈ Oc, such that BrO (yx) ∩ O = {x}.

(ii) There exists a constant λO > 0 such that, for any x ∈ ∂O , t ∈ [0, T ], and
any u ∈ U ,

(yx − x)

|yx − x| σ(t, x, u)σT (t, x, u)
(yx − x)T

|yx − x| ≥ λO .

By Theorem 2.5, under Assumptions 2.4 and 2.6, O = Oδ satisfies Assump-
tion 4.1 with some rO and λO independent of δ. Also O = O satisfies Assump-
tion 4.1.
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LEMMA 4.2. Let O be a bounded domain with smooth boundary ∂O . Let
� : Q0 × U → R, b : Q0 × U → R

d , and σ : Q0 × U → R
d×m1 be bounded,

and let γ : Q0 × U × R
m2 → R

d be B(Rm2)-measurable with respect to z and
satisfy (2.2). Let Assumption 4.1 be valid. Then, there exist δ0 ∈ (0,1), κ > 0, and
a Lipschitz function ψ :Rd → [0,∞) satisfying

ψ = 0 on Oc; ψ ≥ κ on O−δ0; ψ ∈ C2(O \ O−δ0),

where O−δ0 := {x ∈ O : dist(x, ∂O) > δ0}, such that for any (t, x) ∈ (0, T ) × (O \
O−δ0) and u ∈ U ,

A uψ(t, x) ≤ −κ,

where the generator A u is given by (2.8).

PROOF. Let dO(x) = dist(x,Oc), x ∈ R
d . Since O has a smooth boundary,

let δ1 > 0 be such that dO(·) ∈ C2(D2δ1), where, for any r > 0, Dr := {x ∈ O :
dO(x) < r}. Let

β(t) :=
∫
{Cρ(z)≥t}

ρ(z)ν(dz),

�(t) :=
∫ t

0
2 exp

(
−Ls − L

∫ s

0
β(θ) dθ

)
ds − t, t ≥ 0,

where C > 0 is given in (2.2), and where L > 0 will be determined later. Clearly,
from the above construction, there exists a constant t0 = t0(C,L;ρ) > 0, depend-
ing on the constants C and L as well as the function ρ, such that for any t ∈ (0, t0),
�′(t) ≥ 1/2. Letting δ2 := min(t0, δ1)/2, we define ψ :Rd →R via

ψ(x) :=
{
�
(
dO(x)

)
if dO(x) < δ2,

�(δ2) if dO(x) ≥ δ2,

and set δ0 < δ2/4 to be chosen later. It is easy to see that ψ = 0 on Oc, and that ψ

is a Lipschitz function on R
d with Lipschitz constant 1. Moreover, it follows from

the above definition of ψ that there exists a constant κ ∈ (0,1), such that ψ ≥ κ

on O−δ0 , and that ψ ∈ C2(O \ O−δ0). For any x ∈ O \ O−δ0 , we have

Dψ(x) = �′(dO(x)
)
DdO(x),

D2ψ(x) = �′(dO(x)
)
D2dO(x) + �′′(dO(x)

)
DdO(x) ⊗ DdO(x).

Since dO(·) ∈ C2(D2δ1), ‖D2dO‖L∞(Dδ1 ) < ∞. In the rest of the proof, we will
denote by K any generic constant (the constant K may vary from one expression
to another). Notice however that the constant K will not depend L. We choose
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δ0 > 0 sufficiently small so that, by Assumption 4.1(ii), for any u ∈ U and (t, x) ∈
(0, T ) × (O \ O−δ0),

1

2
tr
(
a(t, x, u)D2ψ(x)

)≤ K + λO

2
�′′(dO(x)

)
,∣∣b(t, x, u) · Dψ(x)

∣∣≤ K,

(4.1)

where we used the fact that �′′(t) ≤ 0, for any t ≥ 0, in the first inequality above.
Moreover, for any fixed u ∈ U and (t, x) ∈ (0, T ) × (O \ O−δ0),∫

R
m2
0

(
ψ
(
x + γ (t, x, u, z)

)− ψ(x) − Dψ(x) · γ (t, x, u, z)
)
ν(dz)

=
∫
|γ (t,x,u,z)|≤dO (x)

(
ψ
(
x + γ (t, x, u, z)

)− ψ(x)

− Dψ(x) · γ (t, x, u, z)
)
ν(dz)(4.2)

+
∫
|γ (t,x,u,z)|>dO(x)

(
ψ
(
x + γ (t, x, u, z)

)− ψ(x)

− Dψ(x) · γ (t, x, u, z)
)
ν(dz).

Since �′′(t) ≤ 0 for any t ≥ 0, using (2.2), we have∫
|γ (t,x,u,z)|≤dO (x)

(
ψ
(
x + γ (t, x, u, z)

)− ψ(x)

− Dψ(x) · γ (t, x, u, z)
)
ν(dz)

=
∫
|γ (t,x,u,z)|≤dO (x)

∫ 1

0
(1 − α)

γ (t, x, u, z)D2ψ
(
x + αγ (t, x, u, z)

)
γ T (t, x, u, z) dαν(dz)

≤ K

∫
|γ (t,x,u,z)|≤dO (x)

∣∣γ (t, x, u, z)
∣∣2ν(dz)

≤ K

∫
R

m2
0

ρ2(z)ν(dz) ≤ K.

(4.3)

Furthermore, since ψ is a Lipschitz function in R
d , by (2.2) again, we have∫

|γ (t,x,u,z)|>dO(x)

(
ψ
(
x + γ (t, x, u, z)

)− ψ(x)

− Dψ(x) · γ (t, x, u, z)
)
ν(dz)

≤
∫
Cρ(z)>dO (x)

∣∣ψ(x + γ (t, x, u, z)
)− ψ(x)(4.4)

− Dψ(x) · γ (t, x, u, z)
∣∣ν(dz)
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≤ K

∫
Cρ(z)>dO (x)

ρ(z)ν(dz) = Kβ
(
dO(x)

)
.

Therefore, by combining (4.1)–(4.4), for any u ∈ U and (t, x) ∈ (0, T )×(O \Oδ0),
we have

A uψ(t, x) ≤ λO

2
�′′(dO(x)

)+ K
(
β
(
dO(x)

)+ 1
)

≤ −λO

2
L
(
β
(
dO(x)

)+ 1
)
�′(dO(x)

)+ K
(
β
(
dO(x)

)+ 1
)

≤ −L

4
λO
(
β
(
dO(x)

)+ 1
)+ K

(
β
(
dO(x)

)+ 1
)

≤ −β
(
dO(x)

)− 1 ≤ −1 < −κ,

where we set L = 4(K + 1)/λO . �

LEMMA 4.3. Let  ∈ C1+α/2,2+α(Q0), and let Assumptions 2.1, 2.3, 2.4 and
2.6 be valid. Then, there exist a uniformly continuous viscosity subsolution ψ and
a uniformly continuous viscosity supersolution ψ to (2.6) such that, ψ = ψ = 

on ∂npQ, and such that the modulus of continuity of ψ and ψ only depends on
various absolute constants, η,λ and  .

PROOF. We first consider the case  = 0. We extend our nonlocal parabolic
equation by ut + λ�u = 0 on [0, T ) × Oc. We note that by Assumptions 2.4 and
2.6, O = O satisfies Assumption 4.1 with rO = η and λO = λ. Now, by the bound-
edness of O , there exists a sufficiently large constant R0 such that, for any x ∈ ∂O ,
we have O ⊂ BR0−1(yx) \ Bη(yx). By Lemma 4.2, applied in BR0(yx) \ Bη(yx),
there are δ0 > 0, κ > 0, and a nonnegative Lipschitz function ψx on R

d with Lips-
chitz constant 1, such that ψx = 0 on Bc

R0
(yx)∪Bη(yx), ψx ≥ κ on O \Bη+δ0(yx),

ψx ∈ C2(O ∩ Bη+δ0(yx)) and, for any (s, y) ∈ [0, T ) × (O ∩ Bη+δ0(yx)),

inf
u∈U
(
A uψx(s, y) + �(s, y,u)

)≤ −κ.

It follows from the construction that the constants δ0, κ are independent of x ∈ ∂O .
We take a sufficiently large constant K5 > 1 such that K5κ ≥ T (‖�‖

L∞(Q0×U)
+

1). It follows from the construction of the function ψx that K5ψx is a viscosity su-
persolution to (2.6) in [0, T ) × (O ∩ Bη+δ0(yx)) and (‖�‖

L∞(Q0×U)
+ 1)(T − s)

is a viscosity supersolution to (2.6) in Q.
We define ψ̃x(s, y) := min{(‖�‖

L∞(Q0×U)
+ 1)(T − s),K5ψx(y)}. Then,

ψ̃x(s, x) = 0 for any s ∈ [0, T ), ψ̃x(T , y) = 0 for any y ∈ R
d , ψ̃x ≥ 0 on Q0

and

sup
x∈∂O

(
‖Dyψ̃x‖L∞(Q0)

+
∥∥∥∥∂ψ̃x

∂s

∥∥∥∥
L∞(Q0)

)
< +∞.

It is easy to see that ψ̃x is a viscosity supersolution to (2.6) in Q.
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We define ψ̃(s, y) := infx∈∂O ψ̃x(s, y). Then ψ̃ is a nonnegative viscosity su-
persolution to (2.6) in Q, ψ̃(s, y) = 0 for any (s, y) ∈ [0, T )× ∂O , and ψ̃(T , y) =
0 for any y ∈ R

d . Therefore,

ψ(s, y) :=
{
ψ̃(s, y) if (s, y) ∈ Q,

0 if (s, y) ∈ ∂npQ

is a viscosity supersolution of (2.6) in Q and ψ = 0 on ∂npQ.

We now consider the general case when  is an arbitrary C1+α/2,2+α(Q0) func-
tion. Consider the following HJB equation

inf
u∈U
(
A uV (s, y) + �̃(s, y, u)

)= 0 in Q,(4.5)

with terminal-boundary condition

V (s, y) = 0 on ∂npQ,(4.6)

where

�̃(s, y, u) := �(s, y,u) + A u(s, y).

Since  ∈ C1+α/2,2+α(Q0), it follows that �̃ : Q0 × U → R is bounded. By
the first part of the proof, we know that there is a supersolution ψ to (4.5) with
terminal-boundary condition (4.6). We now define ψ := ψ +  . Then ψ is a vis-
cosity supersolution to (2.6) with ψ =  on ∂npQ.

Similarly, we can construct a viscosity subsolution to (2.6) with ψ =  on
∂npQ. �

LEMMA 4.4. Let  ∈ C1+α/2,2+α(Q0). Let Assumptions 2.1, 2.3, 2.4 and 2.6
be valid. Let {bn}n∈N, {σn}n∈N, {γn}n∈N and {�n}n∈N be the sequences satisfying
Assumption 3.2. Then, there exists δ4 > 0 such that, for any δ ∈ (0, δ4), there exists
a uniformly continuous viscosity subsolution ψδ and a uniformly continuous vis-
cosity supersolution ψδ to (3.11) and to (3.12), such that ψδ = ψδ =  on ∂npQδ .
Moreover, for any δ ∈ (0, δ4), there exists a uniformly continuous viscosity sub-
solution ψδ and a uniformly continuous viscosity supersolution ψ

δ
to (3.21) and

to (3.23), such that ψ
δ = ψδ =  on ∂npQδ . The modulus of continuity of ψδ ,

ψδ , ψ
δ

and ψδ only depend on various absolute constants, η, λ and  (and are
independent of the parameters n and δ there).

PROOF. We note that Assumptions 2.4, 2.6 and 3.2 imply that O = Oδ satis-
fies Assumption 4.1 for sufficiently small δ > 0, and with rO = η/2 and λO = λ/2.
We then construct the functions ψδ , ψδ , ψ

δ
and ψδ as in the proof of Lemma 4.3.

�
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