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STEIN’S METHOD FOR STATIONARY DISTRIBUTIONS OF
MARKOV CHAINS AND APPLICATION TO ISING MODELS1

BY GUY BRESLER AND DHEERAJ NAGARAJ

Massachusetts Institute of Technology

We develop a new technique, based on Stein’s method, for comparing
two stationary distributions of irreducible Markov chains whose update rules
are close in a certain sense. We apply this technique to compare Ising models
on d-regular expander graphs to the Curie–Weiss model (complete graph) in
terms of pairwise correlations and more generally kth order moments. Con-
cretely, we show that d-regular Ramanujan graphs approximate the kth order
moments of the Curie–Weiss model to within average error k/

√
d (averaged

over size k subsets), independent of graph size. The result applies even in the
low-temperature regime; we also derive simpler approximation results for
functionals of Ising models that hold only at high temperatures.

1. Introduction. Markov random fields (MRFs) are widely used in a vari-
ety of applications as models for high-dimensional data. The primary reasons are
interpretability of the model, whereby edges between variables indicate direct in-
teraction, and efficiency of carrying out inference tasks such as computation of
marginals or posteriors. Both of these objectives are helped by sparsity of the
model: edges can more easily be assigned meaning if there are few of them, and
each update step in inference algorithms such as belief propagation or Gibbs sam-
pler require computation depending on the degrees of the nodes. (While each up-
date or iteration can be carried out more efficiently in a sparse model, it is not clear
how to compare the number of iterations needed. In general, carrying out inference
tasks is computationally hard even in bounded-degree models [33].)

This paper takes a first step toward understanding what properties of an MRF
with many edges can be captured by a model with far fewer edges. We focus on the
Ising model, the canonical binary pairwise graphical model. Originally introduced
by statistical physicists to study phase transitions in magnetic materials [7, 26],
these distributions capture rich dependence structure and are widely used in a va-
riety of applications including for modeling images, neural networks, voting data
and biological networks [3, 23, 32]. The Ising model assigns to each configuration
x ∈ {−1,+1}n probability

p(x) = 1

Z
exp
(

1

2
xᵀJx

)
,
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where J ∈ R
n×n is a symmetric matrix of interactions and the partition function Z

normalizes the distribution. The support of the interaction matrix J is represented
by a graph GJ = ([n],EJ ) with {i, j} ∈ EJ if and only if Jij �= 0. The Curie–
Weiss model at “inverse temperature” β is the Ising model on the complete graph
with all entries of the interaction matrix J equal to β

n
.

Sparsification of graphs [4, 34] has in recent years had a large impact in theo-
retical computer science. The notion of approximation in that literature is spectral:
given a graph with Laplacian L, the objective is to find a sparser graph with Lapla-
cian M such that xᵀLx ≈ xᵀMx for all x. The Ising model sufficient statistic,
xᵀJx, is thus approximately preserved by spectral graph sparsification, but it is
not clear how this translates to any sort of notion of nearness of the distributions
of corresponding Ising models, because of their inherent nonlinearity.

In this paper we initiate the study of the interplay between spectral approxima-
tion of graphs and Ising models by showing that low-order moments of the Curie–
Weiss model (Ising model on the complete graph with uniform edge-weights) are
accurately represented by expander graphs (which are spectral approximations of
the complete graph). As discussed in [5], low-order moments capture the proba-
bilistic content of a model relevant to the machine learning task of making pre-
dictions based on partial observations. Our main result shows that kth order mo-
ments in the Curie–Weiss model are approximated to average accuracy k/

√
d by

d-regular approximate Ramanujan graphs (and more generally to average accuracy
kε by ε-expander graphs).

THEOREM 1.1 (Informal version of Theorem 4.4). The kth order moments of
the Curie–Weiss model on n nodes with inverse temperature β are approximated
to within average error kC(β)/

√
d by an Ising model on a d-regular approximate

Ramanujan graph.

We note that random regular graphs are known to be approximately Ramanujan
with high probability. The proof is based on a coupling argument together with
the abstract comparison technique developed in this paper; in order to deal with
the low-temperature regime where Glauber dynamics mixes slowly, we use the
restricted dynamics studied in [27]. A much weaker bound can be obtained via the
Gibbs variational principle, and we outline that method in Section 9.

The techniques developed in the paper are likely to be of independent interest
because of their applicability to other models, but we do not pursue that here. We
frame our basic goal as that of comparing the expectations of a Lipschitz function
under two distributions, and to that end we prove a bound in terms of nearness
of Markov kernels with desired stationary distributions. Specifically, our main ab-
stract result, Theorem 3.1, is stated in terms of the Glauber dynamics for the two
distributions. We prove this theorem in Section 3. The technique is based on Stein’s
method, which we review briefly in Section 2 along with relevant background on
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the Glauber dynamics and the Poisson equation. For any distribution μ(·) over
{−1,1}n, we denote by μi(·|x(∼i)) the conditional distribution of the ith coordi-
nate when the value of every other coordinate (denoted by x(∼i)) is fixed.

THEOREM 1.2 (Short version of Theorem 3.1). Let μ and ν be probability
measures on � = {−1,+1}n. Let P be the kernel of Glauber dynamics with respect
to μ. Let f : � →R be any function and let h : {−1,1}n →R be a solution to the
Poisson equation h − Ph = f −Eμf . Then

(1) |Eμf −Eνf | ≤ Eν

(
1

n

n∑
i=1

∣∣�i(h)
∣∣ · ∥∥μi

(·|x(∼i))− νi

(·|x(∼i))∥∥
TV

)
,

where �i(h) is the discrete derivative of h along the coordinate i.

If P is contractive and f is Lipschitz, then we get a simplified bound, given in
Theorem 3.1. Aside from applying the technique to prove Theorem 4.4 on approx-
imation of Ising moments, we state a result in Section 4.3 comparing functionals
of an Ising model with a perturbed Ising model when one of them has sufficiently
weak interactions (specifically, we require a condition similar to, though slightly
weaker than, Dobrushin’s uniqueness condition).

REMARK 1.3. The same result as stated in Theorem 1.2, with a similar proof,
was discovered independently in [30]. Their main application is to compare ex-
ponential random graphs with Erdős–Rényi random graphs, whereas we use it to
compare Ising models to the Curie–Weiss model. For added transparency, we have
coordinated the submissions of our two papers.

We briefly outline the rest of the paper. Section 2 reviews Stein’s method, the
Poisson equation, Glauber dynamics, and motivates our technique. Section 3 states
and proves the main abstract result. Section 4 contains the application to Ising
models with weak interactions and our result on approximation of moments of
the Curie–Weiss model by those of Ising models on expanders. The proof of the
former is in Section 5 and of the latter in Sections 6 and 8.

We remark that several papers consider the problem of testing various prop-
erties of an Ising model from samples, such as whether the variables are jointly
independent, equal to a known Ising model, etc. [11, 12, 21]. The problem of test-
ing between dense and sparse Ising models is studied in [6].

2. Preliminaries.

2.1. Stein’s method. Stein’s method was first introduced by Charles Stein in
his famous paper [35] to prove distributional convergence of sums of random
variables to a normal random variable even in the presence of dependence. The
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method gives explicit Berry–Esseen-type bounds for various probability metrics.
The method has since been used to prove distributional convergence to a number
of distributions including the Poisson distribution [10], the exponential distribu-
tion [9, 19] and β distribution [14, 22]. See [31] for a survey of Stein’s method;
we give a brief sketch.

Consider a sequence of random variables Yn and a random variable X. Stein’s
method is a way prove distributional convergence of Yn to X with explicit upper
bounds on an appropriate probability metric (Kolmogorov–Smirnov, total varia-
tion, Wasserstein, etc.). This involves the following steps:

1. Find a characterizing operator A for the distribution of X, which maps func-
tions h over the state space of X to give another function Ah such that

E
[
A(h)(X)

]= 0.

Additionally, if EA(h)(Y ) = 0 for a large enough class of functions h, then Y
d= X.

Therefore, the operator A is called a “characterizing operator.”
2. For an appropriate class of functions F (depending on the desired probability

metric), one solves the Stein equation

Ah = f −Ef (X)

for arbitrary f ∈F .
3. By bounding |Ef (Yn) −Ef (X)| in terms of EA(h)(Yn), which is shown to

be tending to zero, it follows that Yn
d→ X.

The procedure above is often carried out via the method of exchangeable pairs
(as done in Stein’s original paper [35]; see also the survey by [31] for details).
An exchangeable pair (Yn,Y

′
n) is constructed such that Y ′

n is a small perturbation
from Yn (which can be a step in some reversible Markov chain). Bounding the
distance between X and Yn then typically reduces to bounding how far Y ′

n is from
Yn in expectation. Since reversible Markov chains naturally give characterizing
operators as well as “small perturbations,” we formulate our problem along these
lines.

2.2. Markov chains and the Poisson equation. In this paper, we only deal with
finite state reversible and irreducible Markov chains. Basic definitions and meth-
ods can be found in [28] and [2]. Henceforth, we use the notation in [28] for our
exposition on Markov chains. Let P be an irreducible Markov kernel and μ be its
unique stationary distribution. We denote by Eμ the expectation with respect to the
measure μ. It will be convenient to use functional analytic notation in tandem with
probability theoretic notation for expectation, for instance replacing Eg(X) for a
variable X ∼ μ by Eμg.

Given a function f : � → R, we consider the following equation called the
Poisson equation:

(2) h − Ph = f −Eμf.
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By definition of stationary distribution, Eμ(h − Ph) = 0. By uniqueness of the
stationary distribution, it is clear that for any probability distribution η over the
same state space as μ, Eη(h − Ph) = 0 for all h only if μ = η. Therefore, we will
use equation (2) as the Stein equation and the operator I − P as the characteriz-
ing operator for μ. The Poisson equation was used in [8] to show sub-Gaussian
concentration of Lipschitz functions of weakly dependent random variables using
a variant of Stein’s method.

For the finite state, irreducible Markov chains we consider, solutions can be
easily shown to exist in the following way: The Markov kernel P can be written as
a finite stochastic matrix and functions over the state space as column vectors. We
denote the pseudo-inverse of the matrix I −P by (I −P)†, and one can verify that
h = (I − P)†(f −Eμf ) is a solution to (2). The solution to the Poisson equation
is not unique: if h(x) is a solution, then so is h(x) + a for any a ∈ R. We refer
to the review article by Makowski and Schwartz in [17] and references therein for
material on solution to the Poisson equation on finite state spaces.

We call the solution h given in the following lemma the principal solution of
the Poisson equation. See [17] for the proof.

LEMMA 2.1. Let the sequence of random variables (Xi)
∞
i=0 be a Markov

chain with transition kernel P . Suppose that P is a finite state irreducible Markov
kernel with stationary distribution μ. Then the Poisson equation (2) has the fol-
lowing solution:

h(x) =
∞∑
t=0

E
[
f (Xt) −Eμf |X0 = x

]
.

2.3. Glauber dynamics and contracting Markov chains. Given x ∈ � =
{−1,+1}n, let x(∼i) be the values of x except at the ith coordinate. For any prob-
ability measure p(·) over � such that p(x(∼i)) > 0, we let pi(·|x(∼i)) denote the
conditional distribution of the ith coordinate given the rest to be x(∼i). We also
denote by x(i,+) (and x(i,−)) the vectors obtained by setting the ith coordinate of
x to be 1 (and −1). For any real-valued function f over �, denote the discrete
derivative over the ith coordinate by �i(f ) := f (x(i,+)) − f (x(i,−)).

Given a probability measure p over a product space X n, the Glauber Dynamics
generated by p(·) is the following Markov chain:

1. Given current state X ∈X n, pick I ∈ [n] uniformly and independently.
2. Pick the new state X′ such that (X′)i = Xi for all i �= I .
3. The I th coordinate (X′)I is obtained by resampling according to the condi-

tional distribution pI (·|X(∼I )).

All the Glauber dynamics chains considered in this paper are irreducible, aperi-
odic, reversible and have the generating distribution as the unique stationary dis-
tribution.
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Denote the Hamming distance by dH (x, y) =∑n
i=1 1(xi �= yi). Consider two

Markov chains (Xt) and (Yt ) evolving according to the same Markov transition
kernel P and with different initial distributions. Let α ∈ [0,1). We call the Markov
kernel P α-contractive (with respect to the Hamming metric) if there exists a cou-
pling between the chains such that E[dH (Xt , Yt )|X0 = x,Y0 = y] ≤ αtdH (x, y)

for all t ∈N.

3. The abstract result. Given two real-valued random variables W1 and W2,
the 1-Wasserstein distance between their distributions is defined as

dW(W1,W2) = sup
g∈1-Lip

Eg(W1) −Eg(W2).

Here, the supremum is over 1-Lipschitz functions g : R→R.

THEOREM 3.1 (The abstract result). Let μ and ν be probability measures on
� = {−1,+1}n with Glauber dynamics kernels P and Q, respectively. Addition-
ally, let P be irreducible. Let f : � →R be any function and let h be a solution to
the Poisson equation (2). Then

(3) |Eμf −Eνf | ≤ Eν

(
1

n

n∑
i=1

∣∣�i(h)
∣∣ · ∥∥μi

(·|x(∼i))− νi

(·|x(∼i))∥∥
TV

)
.

Furthermore, if P is α-contractive and the function f is L-Lipschitz with respect
to the Hamming metric, then

(4) |Eμf −Eνf | ≤ L

(1 − α)
Eν

(
1

n

n∑
i=1

∥∥μi

(·|x(∼i))− νi

(·|x(∼i))∥∥
TV

)
.

If Zμ ∼ μ and Zν ∼ ν, then

(5) dW

(
f (Zμ), f (Zν)

)≤ L

(1 − α)
Eν

(
1

n

n∑
i=1

∥∥μi

(·|x(∼i))− νi

(·|x(∼i))∥∥
TV

)
.

PROOF. To begin, since ν is stationary for Q, Eνh = EνQh. Taking expecta-
tion with respect to ν in (2), we get

(6) Eν(Q − P)h = Eνf −Eμf.

By definition of the Glauber dynamics,

(Q − P)h = 1

n

n∑
i=1

(
h
(
x(i,+))νi

(
1|x(∼i))+ h

(
x(i,−))νi

(−1|x(∼i))

− h
(
x(i,+))μi

(
1|x(∼i))− h

(
x(i,−))μi

(−1|x(∼i)))(7)

= 1

n

n∑
i=1

�i(h)
(
νi

(
1|x(∼i))− μi

(
1|x(∼i))).

Combining (6) and (7), along with the triangle inequality, yields (3).
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To prove (4), it is sufficient to show that if f is L-Lipschitz and P is α-
contractive, then |�i(h)| ≤ L

1−α
. This we achieve using Lemma 2.1. Let (Xt), (Yt )

be Markov chains evolving with respect to the kernel P , coupled such that they are
α-contractive. Then

∣∣�i(h)(x)
∣∣=
∣∣∣∣∣

∞∑
t=0

E
[
f (Xt) − f (Yt )|X0 = x(i,+), Y0 = x(i,−)]∣∣∣∣∣

≤
∞∑
t=0

E
[
LdH (Xt , Yt )|X0 = x(i,+), Y0 = x(i,−)]

≤ L

∞∑
t=0

αt

= L

1 − α
.

Let g : R→R be any 1-Lipschitz function. Let hg be the solution to the Poisson
equation hg − Phg = g ◦ f −Eμ(g ◦ f ). To prove equation (5), it is sufficient (by
definition of Wasserstein distance) to show that for any 1-Lipschitz function g,
�i(hg) ≤ L

1−α
. By Lemma 2.1,

∣∣�i(hg)(x)
∣∣=
∣∣∣∣∣

∞∑
t=0

E
[
g ◦ f (Xt) − g ◦ f (Yt )|X0 = x(i,+), Y0 = x(i,−)]∣∣∣∣∣

≤
∞∑
t=0

E
[∣∣f (Xt) − f (Yt )

∣∣|X0 = x(i,+), Y0 = x(i,−)]

≤
∞∑
t=0

E
[
LdH (Xt , Yt )|X0 = x(i,+), Y0 = x(i,−)].

The bound from the previous display now gives the result. �

Roughly speaking, according to Theorem 3.1, if 1
n

∑n
i=1 ‖μi(·|x(∼i)) − νi(·|

x(∼i))‖TV is small and �i(h) is not too large, then Eμf ≈ Eνf . The quantity
�i(h) is assured to be small if f is Lipschitz and the chain is contractive, and this
gives us a bound on the Wasserstein distance. In our main application, we deal
with chains which are not contractive everywhere and we use the stronger bound
(3) to obtain results similar to (4) and (5).

4. Ising model and approximation results.

4.1. Ising model. We now consider the Ising model. The interaction matrix
J is a real-valued symmetric n × n matrix with zeros on the diagonal. Define the
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Hamiltonian HJ : {−1,1}n →R by

HJ (x) = 1

2
xᵀJx.

Construct the graph GJ = ([n],EJ ) with (i, j) ∈ E iff Jij �= 0. An Ising model
over graph GJ with interaction matrix J is the probability measure π over
{−1,1}n such that π(x) ∝ exp (HJ (x)). We call the Ising model ferromagnetic
if Jij ≥ 0 for all i, j .

For any simple graph G = ([n],E), there is associated a symmetric n × n adja-
cency matrix A(G) = (Aij ), where

Aij =
{

1 if (i, j) ∈ E,

0 otherwise.

Let Kn be the complete graph over n nodes; we will use A to denote its adjacency
matrix. The Curie–Weiss model at inverse temperature β > 0 is an Ising model
with interaction matrix β

n
A. It is known that the Curie–Weiss model undergoes

phase transition at β = 1 [16]. We henceforth denote by μ the Curie–Weiss model
at inverse temperature β .

We will compare Ising models on the complete graph to those on a d-regular
graph Gd = ([n],Ed) (i.e., every node has degree d). Let B denote the adjacency
matrix of Gd . Given inverse temperature β , we take ν to be the Ising model with
interaction matrix β

d
B .

4.2. Expander graphs. We recall that A is set to be the adjacency matrix of
Kn. The all-ones vector 1 = [1,1, . . . ,1]ᵀ is an eigenvector of A with eigenvalue
n−1. It is also an eigenvector of B with eigenvalue d . B has the following spectral
decomposition with vectors vi being mutually orthogonal and orthogonal to 1:

(8) B = d

n
11ᵀ +

n∑
i=2

λiviv
ᵀ
i .

Because of the degeneracy of the eigenspaces of A, we can write

(9) A = n − 1

n
11ᵀ +

n∑
i=2

viv
ᵀ
i .

Let ε ∈ (0,1). We call the graph Gd an ε-expander if the eigenvalues λ2, . . . , λn

of its adjacency matrix B satisfy |λi | ≤ εd . Henceforth, we assume that Gd is an
ε-expander. Then, from (8) and (9) we conclude that

(10)
∥∥∥∥βnA − β

d
B

∥∥∥∥
2
≤ β

(
ε + 1

n

)
.

Expanders have been extensively studied and used in a variety of applications.
There are numerous explicit constructions for expander graphs. A famous result by
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Alon and Boppana [29] shows that ε ≥ 2
√

d−1
d

for any d-regular graph. A family
of d-regular graphs with increasing number of nodes is called Ramanujan if ε

approaches 2
√

d−1
d

asymptotically. A d-regular graph over n nodes is said to be

δ-approximately Ramanujan if ε = 2
√

d−1+δ
d

. Friedman [18] shows that for every
δ > 0, a random d-regular graph is δ-approximately Ramanujan with probability
tending to 1 as n → ∞.

Our main result in Section 4.4 is a bound on the difference of low-order mo-
ments of μ and ν. Before discussing this, we warm up by applying our method to
Ising models in the contracting regime.

4.3. Approximation of Ising models under Dobrushin-like condition. In The-
orem 4.2 below, we use the fact that Ising models contract when the interactions
are weak enough to prove bounds on the Wasserstein distance between functionals
of two Ising models. Given x, y ∈ �, let �x,y denote the column vector with el-
ements 1

2 |xi − yi | = 1(xi �= yi). Let |L| be the matrix with entries (|L|)ij = |Lij |
equal to the absolute values of entries of L. The Ising model with interaction ma-
trix L is then said to satisfy the Dobrushin-like condition if ‖(|L|)‖2 < 1. Essen-
tially the same condition was used in [25] and [8]. This contrasts with the classical
Dobrushin condition, which requires that ‖(|L|)‖∞ < 1 [15, 20, 37]. In both the
Curie–Weiss model with interaction matrix β

n
A and the Ising model on d-regular

graph with interaction matrix β
d
B , the Dobrushin-like condition as well as the clas-

sical Dobrushin condition are satisfied if and only if β < 1.

REMARK 4.1. We state these conditions in terms of the Ising interaction
matrix, but in general they use the so-called dependence matrix. We briefly de-
scribe the connection. Given a measure π over �, the matrix D = (dij ) is a
dependence matrix for π if for all x, y ∈ �, ‖πi(·|x(∼i)) − πi(·|y(∼i))‖TV ≤∑n

j=1 dij1(xj �= yj ). The measure π satisfies the Dobrushin condition with de-
pendence matrix D if ‖D‖∞ < 1. If π is an Ising model with interaction matrix J ,
then πi(xi = 1|x(∼i)) = 1

2(1 + tanhJ
ᵀ
i x) (here J

ᵀ
i is the ith row of J ). Therefore,

‖πi(·|x(∼i)) − πi(·|y(∼i))‖TV = 1
2 | tanhJ

ᵀ
i x − tanhJ

ᵀ
i y| ≤∑n

j=1 |Jij |1(xj �= yj )

and we can consider |J | as the dependence matrix.

For a ∈ (R+)n, let f : � →R be any function such that ∀x, y ∈ �,

∣∣f (x) − f (y)
∣∣≤ n∑

i=1

ai1(xi �= yi) = aᵀ�x,y.

We call such a function f an a-Lipschitz function.

THEOREM 4.2. Let a ∈ (R+)n and let f : � → R be an a-Lipschitz func-
tion. If an interaction matrix L (with corresponding Ising measure πL) satisfies
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the Dobrushin-like condition, then for any other interaction matrix M (with cor-
responding Ising measure πM ),

|EπL
f −EπM

f | ≤ ‖a‖2
√

n

2(1 − ‖(|L|)‖2)
‖L − M‖2.

The proof, given in Section 5, uses ideas from Section 4.2 in [8], which proves
results on concentration of Lipschitz functions of weakly dependent random vari-
ables.

A simple consequence of this theorem is that when ‖(|L|)‖2 < 1, the Ising
model is stable in the Wasserstein distance sense under small changes in inverse
temperature.

COROLLARY 4.3. Let M = (1 + ε)L. Then, for any a-Lipschitz function,

|EπL
f −EπM

f | ≤ ε‖a‖2
√

n
‖L‖2

2(1 − ‖(|L|)‖2)
.

If f is 1
n

-Lipschitz in each coordinate, then ‖a‖2 = 1√
n

(typical statistics like
magnetization fall into this category). We conclude that for such functions

|EπL
f −EπM

f | ≤ ε‖L‖2

2(1 − ‖(|L|)‖2)
.

4.4. Main result on approximation of Ising model moments. Let ρij = Eμxixj

and ρ̃ij = Eνx
ixj denote the pairwise correlations in the two Ising models μ and ν.

It follows from Griffith’s inequality [24] for ferromagnetic Ising models that for
any i and j ,

0 ≤ ρij ≤ 1 and 0 ≤ ρ̃ij ≤ 1.

If two Ising models have the same pairwise correlations for every i, j ∈ [n], then
they are identical. For an Ising model η with interaction matrix J , it is also not
hard to show that if there are no paths between nodes i and j in the graph GJ , then
xi and xj are independent and Eη[xixj ] = 0. We refer to [36] for proofs of these

statements. We conclude that
(n

2

)−1∑
ij |ρij − ρ̃ij | defines a metric on the space of

Ising models over n nodes.
For positive even integers k, we denote the kth order moments for i1, . . . , ik ∈

[n] by

ρ(k)[i1, . . . , ik] = Eμ

(
k∏

s=1

xis

)

and similarly for ρ̃(k)[i1, . . . , ik], but with μ replaced by ν. For a set R =
{i1, . . . , ik}, we write ρ(k)[R] in place of ρ(k)[i1, . . . , ik]. (We consider only even
k, since odd moments are zero for Ising models with no external field.)
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Using Theorem 3.1, we show the following approximation result on nearness of
moments of the Curie–Weiss model and those of the Ising model on a sequence of
regular expanders.

THEOREM 4.4. Let A be the adjacency matrix of the complete graph and let
B be the adjacency matrix of a d-regular ε-expander, both on n nodes. Let the
inverse temperature β > 1 be fixed, and consider the Ising models with interaction
matrices β

n
A and β

d
B , with moments ρ and ρ̃ as described above. There exist

positive constants ε0(β) and C(β) depending only on β such that if ε < ε0(β),
then for any even positive integer k < n,

1(n
k

) ∑
R∈[n]
|R|=k

∣∣ρ(k)[R] − ρ̃(k)[R]∣∣≤ kC(β)

(
ε + 1

n

)
.

In particular,

1(n
2

) ∑
ij

|ρij − ρ̃ij | < 2C(β)

(
ε + 1

n

)
.

For approximately Ramanujan graphs, ε = ( 1√
d
). By choosing a random d-

regular graph, which is approximately Ramanujan with high probability, we can
obtain arbitrarily accurate approximation of moments by choosing d sufficiently
large. If we care only about moments up to some fixed order k̄, our result says
that one can take any d = �(k̄2) in order to obtain the desired approximation,
completely independent of the size of the graph.

The structure of the approximating graph Gd is important. To see this, let the
graph Gd be the disjoint union of n

d
cliques each with d nodes, a poor spectral

sparsifier of the complete graph Kn. Consider the Ising model with interaction
matrix β

d
A(Gd). This graph is not an expander since it is not connected. If i and j

are in different cliques, there is no path between i and j in Gd . Therefore, ρ̃ij = 0.
We conclude that only O(d

n
) fraction of the pairs (i, j) have correlation ρ̃ij > 0.

Since β > 1, it follows by standard analysis for the Curie–Weiss model that ρij >

c1(β) > 0 (see [16]). Therefore,

1(n
2

) ∑
ij

|ρij − ρ̃ij | ≥ 1(n
2

) ∑
ij

(ρij − ρ̃ij )

≥ c1(β) − O

(
d

n

)
.

Here, we have used the fact that ρ̃ij ≤ 1. It follows that if β > 1 and d = o(n), then
the left-hand side cannot be made arbitrarily small.

The case 0 ≤ β < 1 is trivial in the sense that the average correlation is very
small in both models and hence automatically well matched.
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PROPOSITION 4.5. Consider the same setup as Theorem 4.4, but with 0 ≤
β < 1. Then both

∑
i �=j ρij = O(n) and

∑
i �=j ρ̃ij = O(n), and hence(

n

2

)−1∑
j

∑
i<j

|ρij − ρ̃ij | ≤
(
n

2

)−1∑
j

∑
i<j

(ρij + ρ̃ij ) = O

(
1

n

)
.

PROOF. To start, note that

∑
i �=j

ρij = Eμ

(
n∑

i=1

xi

)2

− n = varμ

(
n∑

i=1

xi

)
− n and(11)

∑
i �=j

ρ̃ij = Eν

(
n∑

i=1

xi

)2

− n = varν

(
n∑

i=1

xi

)
− n.(12)

Thus, it suffices to show that the variances on the right-hand sides are O(n). In
the equations above, varη(f ) refers to variance of f with respect to measure η.
We bound the variance for the measure μ and identical arguments can be used to
bound the variance with respect to ν.

Whenever β < 1, from the proof of Theorem 15.1 in [28], we conclude that
Glauber dynamics for both these models is 1 − 1−β

n
contracting. Let (λi)

|�|
i=1 be

the eigenvalues of P . We let |λ| := sup{1 − |λi | : λi �= 1,1 ≤ i ≤ |�|}. From
Theorem 13.1 in [28], it follows that the spectral gap, 1 − |λ| ≥ 1−β

n
. For any

function f : � → R, the Poinćare inequality for P bounds the variance under the
stationary measure as varμ(f ) ≤ 1

2(1 − |λ|)−1E(f, f ), where the Dirichlet form

E(f, f ) :=∑x,y∈�(f (x) − f (y))2P(x, y)μ(x) (see Section 13.3 in [28]). The
Poinćare inequality then becomes

varμ(f ) ≤ 1

2(1 − |λ|)
∑

x,y∈�

(
f (x) − f (y)

)2
P(x, y)μ(x)

≤ n

2(1 − β)

∑
x,y∈�

(
f (x) − f (y)

)2
P(x, y)μ(x).

(13)

Since P is the Glauber dynamics, P(x, y) > 0 only when x and y differ in
at most one coordinate. When we take f (x) = ∑i x

i , then |f (x) − f (y)| ≤ 2
whenever P(x, y) > 0. Plugging this into equation (13) yields

varμ

(∑
i

xi

)
≤ 2n

1 − β
= O(n),

and similarly varν(
∑

i x
i) = O(n). �

5. Monotone coupling and proof of Theorem 4.2.

5.1. Glauber dynamics for Ising models and monotone coupling. We special-
ize our previous discussion of the Glauber dynamics in Section 2.3 to an Ising
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model with interaction matrix J . Let J
ᵀ
i denote the ith row of J . Given the cur-

rent state x ∈ � = {−1,1}n, the Glauber dynamics produces the new state x′ as
follows:

Choose I ∈ [n] uniformly at random. Construct the next state x′ as (x′)i = xi

for i �= I and set independently

(
x′)I =

⎧⎪⎪⎨
⎪⎪⎩

1 with probability
1

2
+ 1

2
tanhJ

ᵀ
I x,

−1 with probability
1

2
− 1

2
tanhJ

ᵀ
I x.

We refer to [28] for an introduction to mixing of Glauber dynamics for the Ising
model. This Markov chain has been studied extensively and it can be shown that
it mixes in O(n logn) time (and is contracting for the “monotone coupling” de-
scribed below) for high temperature under the Dobrushin–Shlosman condition [1]
and under Dobrushin-like condition [25].

We now describe the monotone coupling used in the proof of Theorem 4.2. Let
Xt and Yt be Glauber dynamics chains for the Ising model πJ with interaction
matrix J . Let P J denote the corresponding kernel. For both chains Xt and Yt ,
we choose the same random index I and generate an independent random vari-
able ut ∼ unif([0,1]). Set XI

t+1 (resp., Y I
t+1) to 1 iff ut ≤ (πJ )I (1|X(∼I )

t ) (resp.,

ut ≤ (πJ )I (1|Y (∼I )
t )). In the case when the entries of J are all positive (i.e., ferro-

magnetic interactions), one can check that for the coupling above, if X0 ≥ Y0 then
Xt ≥ Yt a.s. We note that since J need not be ferromagnetic in the case considered
in Theorem 4.2, we cannot ensure that Xt ≥ Yt a.s. if X0 ≥ Y0. (Here, ≥ is the
entrywise partial order.)

5.2. Auxiliary lemma. Before proceeding with the proof of Theorem 4.2, we
prove the following lemma that relates the quantity we wish to bound to the spec-
tral norm of Ising interaction matrices.

LEMMA 5.1. Let f1(x), . . . , fn(x) be any real valued functions over � and
define the vector vf (x) = [f1, . . . , fn(x)]ᵀ. Let πL and πM denote Ising models
with interaction matrices L and M , respectively. Then

1

n

n∑
i=1

∣∣fi(x)
∣∣ · ∥∥(πL)i

(·|x(∼i))− (πM)i
(·|x(∼i))∥∥

TV ≤ ‖L − M‖2
‖vf ‖2

2
√

n
.

In particular, when L = β
n
A (i.e, πL(·) = μ(·), the Curie–Weiss model at inverse

temperature β) and M = β
d
B (i.e., πM(·) = ν(·), where ν(·) is the Ising model

defined in Section 4.1) then

1

n

n∑
i=1

∣∣fi(x)
∣∣ · ∥∥μi

(·|x(∼i))− νi

(·|x(∼i))∥∥
TV ≤
∥∥∥∥βnA − β

d
B

∥∥∥∥
2

‖vf ‖2

2
√

n
.
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PROOF. The proof follows from the 1-Lipschitz property of the tanh(·) func-
tion. Let L

ᵀ
i denote the ith row of L. We recall that (πL)i(1|x(∼i)) = 1

2(1 +
tanhL

ᵀ
i x). There exist ci(x) ∈ {−1,1} such that the following holds, where we

use the notation v
ᵀ
cf (x) = [c1(x)f1(x), . . . , cn(x)fn(x)]:

1

n

n∑
i=1

∣∣fi(x)
∣∣ · ∥∥(πL)i

(·|x(∼i))− (πM)i
(·|x(∼i))∥∥

TV

= 1

2n

n∑
i=1

∣∣fi(x)
∣∣ · ∣∣tanh

(
L
ᵀ
i x
)− tanh

(
M

ᵀ
i x
)∣∣

≤ 1

2n

n∑
i=1

∣∣fi(x)
∣∣ · ∣∣(Lᵀ

i − M
ᵀ
i

)
x
∣∣

= 1

2n

n∑
i=1

ci(x)fi(x)
(
L
ᵀ
i − M

ᵀ
i

)
x

= 1

2n
v
ᵀ
cf (x)(L − M)x

≤ 1

2n
‖x‖2‖L − M‖2‖vcf ‖2

= ‖L − M‖2
‖vf ‖2

2
√

n
. �

5.3. Proof of Theorem 4.2. Let h be the solution of the Poisson equation

h − P Lh = f −EπL
f.

In order to apply Theorem 3.1, we bound the quantity

∣∣�i(h)(x)
∣∣=|

∞∑
t=0

E
[
f (Xt) − f (Yt )|X0 = x(i,+), Y0 = x(i,−)]|

≤
∞∑
t=0

E

[
n∑

i=1

ai1
(
Xi

t �= Y i
t

)|X0 = x(i,+), Y0 = x(i,−)

]
(14)

=
∞∑
t=0

E
[
aᵀ�Xt,Yt |X0 = x(i,+), Y0 = x(i,−)].

The equation above holds for all couplings between Xt and Yt . We choose the
monotone coupling as described in Section 5.1. We recall that (πL)i(1|x∼i ) =
1
2(1+ tanhL

ᵀ
i x). From the definition of Glauber dynamics and monotone coupling,
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it follows that

E
[
1
(
Xi

t �= Y i
t

)|Xt−1 = x,Yt−1 = y
]

=
(

1 − 1

n

)
1(xi �= yi) + 1

2n

∣∣tanhL
ᵀ
i x − tanhL

ᵀ
i y
∣∣.

If c is an n-dimensional column vector with positive entries, then

E
[
cᵀ�Xt+1,Yt+1 |Xt = x,Yt = y

]= E

[
n∑

i=1

ci1
(
Xi

t+1 �= Y i
t+1
)∣∣∣Xt = x,Yt = y

]

≤
n∑

i=1

(
1 − 1

n

)
aᵀ�x,y

+ 1

2n

n∑
i=1

ai

∣∣tanhL
ᵀ
i x − tanhL

ᵀ
i y
∣∣

≤ cᵀ
[(

1 − 1

n

)
I + 1

n
|L|
]
�x,y

= cᵀG�x,y,

where G := (1− 1
n
)I + 1

n
|L|. Clearly, ‖G‖2 < 1, and hence

∑∞
t=0 Gt = (I −G)−1.

Using the tower property of conditional expectation to apply the above inequality
recursively, we conclude that

E
[
cᵀ�Xt+1,Yt+1 |X0 = x(i,+), Y0 = x(i,−)]≤ cᵀGt+1�x(i,+),x(i,−) .

Plugging the equation above into (14) gives

∣∣�i(h)(x)
∣∣≤ aᵀ

[ ∞∑
t=0

Gt

]
�x(i,+),x(i,−) = aᵀ(I − G)−1�x(i,+),x(i,−)

= [aᵀ(I − G)−1]i .
Recall that θ := ‖(|L|)‖2 < 1, which implies that√√√√ n∑

i=1

�i(h)2 ≤
√√√√ n∑

i=1

([
aᵀ(I − G)−1

]i)2 = ∥∥aᵀ(I − G)−1∥∥
2

≤ ‖a‖2
∥∥(I − G)−1∥∥

2

≤ ‖a‖2
1

1 − ‖G‖2

= ‖a‖2
n

1 − θ
.
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We invoke Lemma 5.1 and Theorem 3.1 to complete the proof:

|EπL
f −EπM

f | ≤ EπM

√√√√ n∑
i=1

�i(h)2 ‖L − M‖2

2
√

n

≤ ‖a‖2
√

n

2(1 − θ)
‖L − M‖2.

6. Ideas in the proof of Theorem 4.4.

6.1. Overview. In this section, we overview the main ideas behind the proof
of Theorem 4.4, which bounds the average difference in kth order moments in the
Curie–Weiss model μ and the d-regular Ising model ν.

Let k be any even positive integer such that k < n. For every R ⊂ [n] such that
|R| = k, let CR ∈ {−1,1} and define the function fC : � →R

(15) fC(x) = 1

2k
(n
k

) ∑
R⊂[n]
|R|=k

CR

∏
i∈R

xi.

We suppress the subscript C in fC . Clearly, f (x) = f (−x), that is, f is symmetric.
Moreover, a calculation shows that f is 1

n
-Lipschitz with respect to the Hamming

metric. That is, for arbitrary x, y ∈ �, |f (x) − f (y)| ≤ 1
n

∑n
i=1 1(xi �= yi), which

implies that |f (x) − f (y)| ≤ 1 for any x, y ∈ �. In Section 8, we will bound the
quantity |Eμf −Eνf | uniformly for any choice of {CR}, which in turn relates the
moments ρ and ρ̃ (defined in Section 4.4) since

sup
CR

|Eμf −Eνf | = 1

2k
(n
k

) ∑
R⊂[n]
|R|=k

∣∣ρ(k)[R] − ρ̃(k)[R]∣∣.

Let P be the kernel of the Glauber dynamics of the Curie–Weiss model at in-
verse temperature β > 1. By Theorem 3.1, bounding |Eμf − Eνf | reduces to
bounding Eν |�i(h)| for the specific function h obtained by solving the Poisson
equation (I − P)h = f −Eμf .

By Lemma 2.1, we can write h in terms of the expectation of a sum over time-
steps for Glauber chains Xt and Yt to obtain

h(x) − h(y) = E

[ ∞∑
t=0

f (Xt) − f (Yt )|X0 = x,Y0 = y

]
(16)

from which we get

∣∣�i(h)(x0)
∣∣=
∣∣∣∣∣

∞∑
t=0

E
[(

f (Xt) − f (Yt )
)|X0 = x

(i,+)
0 , Y0 = x

(i,−)
0

]∣∣∣∣∣.
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By selecting x0 ∼ ν, this yields a method for bounding Eν |�i(h)| via coupling Xt

and Yt .
We now briefly overview the steps involved in bounding Eν |�i(h)|. Let m∗ be

the unique positive solution to s = tanhβs.

Step 1: For a good enough expander, m(x) := 1
n

∑
i x

i concentrates exponen-
tially near m∗ and −m∗ under measure ν. We show this in Lemma 6.1. The sub-
sequent analysis is separated into two cases depending on whether or not m(x0) is
close to m∗.

Step 2: Theorem 3.1 requires specifying a Markov kernel; because the Glauber
dynamics on the Curie–Weiss model mixes slowly when β > 1, we instead use the
restricted (a.k.a. censored) Glauber dynamics, which restricts the Glauber dynam-
ics to states with majority of +1 coordinates and mixes quickly. We justify this
change with Lemma 6.4.

Step 3: Whenever m(x) is not close to m∗, we show in Lemma 6.5 that
|�i(h)(x)| is at most polynomially large in n. This is achieved via coupling Xt

and Yt in (16) and makes use of fast mixing of the chain.
Step 4: Whenever m(x) is near enough to m∗, the restricted Glauber dynamics

(and Glauber dynamics) for the Curie–Weiss model is contracting for a certain
coupling. Using methods similar to the ones used in the proof of Theorem 4.2 in
the contracting case, we conclude that |�i(h)|(x) must be small if m(x) is close
to m∗. We show this in Section 7 via Lemmas 7.2, 7.3 and Theorem 7.5.

Step 5: Section 8 combines these statements to bound Eν |�i(h)| and prove
Theorem 4.4.

6.2. Concentration of magnetization. Recall that m∗ is the largest solution to
the equation tanhβs = s. If β ≤ 1, then m∗ = 0 and if β > 1, then m∗ > 0. Recall
the magnetization m(x) := 1

n

∑n
i=1 xi . Whenever it is clear from context, we denote

m(x) by m.

LEMMA 6.1. For every δ ∈ (0,1), there exists c(δ) > 0 and ε0(δ) > 0 such
that for all ε-expanders Gd with ε < ε0,

ν
({∣∣m − m∗∣∣> δ

}∩ {∣∣m + m∗∣∣> δ
})≤ C1(β)e−c(δ)n.

The proof is essentially the same as the proof of concentration of magnetization
in the Curie–Weiss model, but with a few variations. We defer the proof to the
Appendix.

6.3. Restricted Glauber dynamics. Glauber dynamics for the Curie–Weiss
model is well understood and it can be shown to mix in O(n logn) time when

β < 1, O(n
3
2 ) time when β = 1, and takes exponentially long to mix when β > 1

(see [27] and references therein). Here, the mixing time is with respect to the total
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variation distance from the stationary distribution. The reason for exponentially
slow mixing is that it takes exponential time for the chain to move from the posi-
tive phase to the negative phase and vice versa. The restricted Glauber dynamics,
described next, removes this barrier.

Define �+ = {x ∈ � : ∑i x
i ≥ 0}. [27] and [13] considered a censored/ re-

stricted version of Glauber dynamics for the Curie–Weiss model where the chain
is restricted to the positive phase �+. Let X̂t be an instance of restricted Glauber
dynamics and let X′ be obtained from X̂t via one step of normal Glauber dy-
namics. If X′ ∈ �+, then the restricted Glauber dynamics updates to X̂t+1 = X′.
Otherwise X′ /∈ �+ and we flip all the spins, setting X̂t+1 = −X′.

The restricted Glauber dynamics X̂t with initial state X̂0 ∈ �+ can be obtained
from the normal Glauber dynamics also in a slightly different way. Let Xt be a
Glauber dynamics chain with X0 = X̂0 ∈ �+, and let

X̂t =
{
Xt if Xt ∈ �+,

−Xt if Xt /∈ �+.

Whenever we refer to restricted Glauber dynamics, we assume that it is generated
as a function of the regular Glauber dynamics in this way.

If μ is the stationary measure of the original Glauber dynamics, then the unique
stationary measure for the restricted chain is μ+ over �+, given by

(17) μ+(x) =
{

2μ(x) if m(x) > 0,

μ(x) if m(x) = 0.

Similarly, we define ν+ over �+ by

(18) ν+(x) =
{

2ν(x) if m(x) > 0,

ν(x) if m(x) = 0.

It follows by symmetry that if f : � →R is any function such that f (x) = f (−x),
then

Eμf = Eμ+f and Eνf = Eν+f.

It was shown in [27] that restricted Glauber dynamics for the Curie–Weiss
model mixes in O(n logn) time for all β > 1.

THEOREM 6.2 (Theorem 5.3 in [27]). Let β > 1. There is a constant c(β) > 0
so that tmix(n) ≤ c(β)n logn for the Glauber dynamics restricted to �+.

REMARK 6.3. It follows from the proof of the theorem above that there ex-
ists a coupling of the restricted Glauber dynamics such that the chains starting at
any two distinct initial states will collide in expected time c(β)n logn. More con-
cretely, let X̂t and Ŷt be two instances of restricted Glauber dynamics such that
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X̂0 = x ∈ �+ and Ŷ0 = y ∈ �+. Let τ0 = inf{t : X̂t = Ŷt }. There exists a coupling
between the chains such that

sup
x,y∈�+

E[τ0|X̂0 = x, Ŷ0 = y] ≤ c(β)n logn.

and X̂t = Ŷt a.s. ∀t ≥ τ0.

6.4. Solution to Poisson equation for restricted dynamics. The next lemma
follows easily from the definitions and we omit its proof.

LEMMA 6.4. Let f : � →R be a symmetric function, that is, for every x ∈ �,
f (x) = f (−x). Let P be the kernel of the Glauber dynamics for the Curie–Weiss
model at inverse temperature β and let P̂ be the kernel for the corresponding re-
stricted Glauber dynamics over �+ with stationary measure μ+. Then the Poisson
equations

1. h(x) − (Ph)(x) = f (x) −Eμf ,
2. ĥ(x) − (P̂ ĥ)(x) = f (x) −Eμ+f

have principal solutions h and ĥ such that h(x) = ĥ(x) for every x ∈ �+ and
h(x) = ĥ(−x) for every x ∈ � \ �+. In particular, h is symmetric.

By Lemma 6.4, it is sufficient to solve the Poisson equation, and to bound
Eν |�i(h)|, for the restricted Glauber dynamics. Based on Lemmas 2.1 and 6.4
we have the following naive bound on the solution of the Poisson equation.

LEMMA 6.5. Let f : � →R be a symmetric function such that for any x, y ∈
�, it holds that: |f (x) − f (y)| ≤ K . Let h be the solution to the Poisson equation
h − Ph = f −Eμf . Then, for any x, y ∈ �, |h(x) − h(y)| ≤ KC(β)n logn.

PROOF. By Lemma 6.4, h is symmetric and we can without loss of generality
assume that x ∈ �+. Now, we may work with ĥ instead, since

(19) h(x) − h(y) =
{
ĥ(x) − ĥ(y) if y ∈ �+,

ĥ(x) − ĥ(−y) if y ∈ � \ �+.

Let x, y ∈ �+ and start two restricted Glauber dynamics Markov chains for the
Curie–Weiss model X̂t and Ŷt with initial states X̂0 = x and Ŷ0 = y. Recall the
definition τ0 = inf{t : X̂t = Ŷt } from Remark 6.3. We couple X̂t and Ŷt accord-
ing to Remark 6.3 and use the bound for coupling time, E[τ0|X̂0 = x, Ŷ0 = y] ≤
C(β)n logn. By Lemma 2.1, we can write ĥ in terms of the expectation of a sum
to obtain

ĥ(x) − ĥ(y) = E

[ ∞∑
t=0

f (X̂t ) − f (Ŷt )|X̂0 = x, Ŷ0 = y

]
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≤ K ·E
[ ∞∑

t=0

1(X̂t �= Ŷt )|X̂0 = x, Ŷ0 = y

]

= K ·E[τ0|X̂0 = x, Ŷ0 = y]
≤ KC(β)n logn,

completing the proof. �

The lemma above gives a rough bound of the form |�i(h)(x)| ≤ KC(β)n logn

for all x ∈ �. In the next section, we improve the bound for x such that m(x) is
close to m∗ via a more delicate coupling argument.

7. Coupling argument.

7.1. Coupling for improved bound on �i(h). For x, y ∈ �, we write x ≥ y iff
xi ≥ yi for every i ∈ [n]. We recall the monotone coupling from Section 5.1. If the
current states are X and Y , we update the states to X′ and Y ′ respectively as fol-
lows: we choose the same random index I ∼ unif([n]). For all j �= I , set (X′)j =
Xj and (Y ′)j = Y j . Generate an independent random variable ut ∼ unif([0,1]).
Set (X′)I (and (Y ′)I ) to 1 iff ut ≤ μI (1|X(∼i)) (and ut ≤ μI (1|Y (∼i))). For ferro-
magnetic Ising models when the update rule above is used, X′ ≥ Y ′ almost surely
if X ≥ Y .

We will shortly describe the coupling we use for the restricted Glauber dynam-
ics, but we need to first record some useful properties of g(s) = tanhβs − s which
follow from elementary calculus.

LEMMA 7.1. Let β > 1 and consider the function g(s) = tanhβs − s for s ∈
[0,1]. Denote by m∗ the strictly positive root of g. Then g is concave, g(0) = 0,
g′(0) = β − 1 > 0, g′(m∗) := −γ ∗ < 0, and also:

1. For every m > m∗, g′(m) < −γ ∗ and
2. There are s1, s2 ∈ (0,1) with s1 < s2 < m∗ and g′(s2) < g′(s1) < −1

2γ ∗.

We fix values s1 and s2 as given in the lemma (see Figure 1 to understand the
significance of the various quantities defined above). The scalar s indexes the val-
ues of magnetization. The restricted Glauber dynamics for the Curie–Weiss model
contracts whenever the magnetization value is in the red region, that is, where the
slope of g(s) is negative. Lemma 6.1 shows that under measure ν(·), the magneti-
zation concentrates in the blue region.

Let the set Sn := {−1,−1 + 2
n
, . . . ,+1} (that is, the set of all possible values of

m(x)). For any s ∈ [−1,1], define 〈s〉 := supSn ∩ [−1, s].
The coupling: Let x0 ∈ �+ be an arbitrary point such that m(x0) ≥ 2

n
. Consider

two restricted Glauber chains X̂t and Ŷt for the Curie–Weiss model, with stationary
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FIG. 1. g(s) for β = 1.2.

measure μ+, such that X̂0 = x
(i,+)
0 ∈ �+ and Ŷ0 = x

(i,−)
0 ∈ �+. We define τ1 =

inf{t : m(Ŷt ) = 〈s1〉} and use the following coupling between X̂t and Ŷt :

1. If m(x0) ≤ 〈s2〉, we couple them as in Remark 6.3.
2. If m(x0) > 〈s2〉 and t ≤ τ1, monotone couple X̂t and Ŷt . If X̂τ1 = Ŷτ1 , couple

them so that X̂t = Ŷt for t > τ1. Since X̂0 ≥ Ŷ0, the monotone coupling ensures
that X̂t ≥ Ŷt for t ≤ τ1.

3. If X̂τ1 �= Ŷτ1 , then for t > τ1, we couple them as in Remark 6.3.

Suppose that x0 ∈ �+ is such that m(x0) > 〈s2〉. The coupling above is con-
structed to give a better bound on |�i(h)(x0)| than in Lemma 6.5. The intuition
behind it is that whenever m(X̂t ) ≥ 〈s1〉 and m(Ŷt ) ≥ 〈s1〉 (i.e., when t ≤ τ1), the
chains are contracting under the monotone coupling. This is shown in Lemma 7.2
and used in Lemma 7.3 to bound |�i(h)(x0)| in terms of ρK + P(τ1 < K) (where
ρ = 1 − ( 1

n
) is the contraction coefficient and K is any integer). This proof is a

generalization of the proof of Theorem 4.2.
To use this bound, we need to show that P(τ1 < K) is small, that is, the walk

usually takes a long time to hit 〈s1〉. This is shown in Lemma 7.4 as a consequence
of m(Ŷt ) being a birth-death process with positive drift when it is between 〈s1〉 and
〈s2〉.

Define

(20) τcoup =
{

0 if X̂τ1 = Ŷτ1,

inf{t : X̂t = Ŷt } − τ1 otherwise.
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LEMMA 7.2. Let x0 ∈ � be such that m(x0) ≥ s2 + 2
n

. Let f be symmetric and
1
n

-Lipschitz in each coordinate. Let γ ∗ > 0 be as in Lemma 7.1. Define the chains

Ŷt and X̂t as defined above, and let ρ := (1 − γ ∗(n−1)

2n2 ). Then the following hold:

1. E[|f (X̂t ) − f (Ŷt )|1(t ≤ τ1)|X̂0 = x
(i,+)
0 , Ŷ0 = x

(i,−)
0 ] ≤ 1

n
ρt

2. P(X̂τ1 �= Ŷτ1 |τ1 ≥ K) ≤ ρK

P(τ1≥K)
.

PROOF. Let 1 ≤ t ≤ τ1. By the Lipschitz property of f and monotone cou-
pling between the chains,

∣∣f (X̂t ) − f (Ŷt )
∣∣≤ 1

n

n∑
i=1

1
(
X̂i

t �= Ŷ i
t

)
(21)

= 1

2n

n∑
i=1

∣∣X̂i
t − Ŷ i

t

∣∣

= 1

2n

n∑
i=1

X̂i
t − Ŷ i

t

= 1

2

(
m(X̂t ) − m(Ŷt )

)
.(22)

Let mi := 1
n

∑
j �=i x

j so that

μi

(
1|x(∼i))= 1

2
+ 1

2
tanh(βmi).

Note that
∑n

i=1 mi = (n − 1)m. By monotonicity of the coupling and definition of
τ1, mi(X̂t−1) ≥ mi(Ŷt−1) ≥ s1 almost surely, and we assume in what follows that
xt−1 and yt−1 satisfy mi(xt−1) ≥ mi(yt−1) ≥ s1. Conditioning on whether or not
an update occurs at a location in which xt−1 and yt−1 differ, we obtain

E
[
m(X̂t ) − m(Ŷt )|X̂t−1 = xt−1, Ŷt−1 = yt−1

]
= m(xt−1) − m(yt−1) − 1

n2

n∑
i=1

(
xi
t−1 − yi

t−1
)

+ 1

n2

n∑
i=1

(
tanh
(
βmi(xt−1)

)− tanh
(
βmi(yt−1)

))

= m(xt−1) − m(yt−1) − 1

n(n − 1)

n∑
i=1

(
mi(xt−1) − mi(yt−1)

)

+ 1

n2

n∑
i=1

(
tanh
(
βmi(xt−1)

)− tanh
(
βmi(yt−1)

))
(23)
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≤ m(xt−1) − m(yt−1) + 1

n2

n∑
i=1

g
(
mi(xt−1)

)− g
(
mi(yt−1)

)

≤ m(xt−1) − m(yt−1) − γ ∗

2n2

n∑
i=1

(
mi(xt−1) − mi(yt−1)

)

=
(

1 − γ ∗(n − 1)

2n2

)(
m(xt−1) − m(yt−1)

)
= ρ
(
m(xt−1) − m(yt−1)

)
.

Here, we have used the properties of g stated in Lemma 7.1. Therefore, for t ≤ τ1,
Mt = ρ−t (m(X̂t ) − m(Ŷt )) is a positive supermartingale with respect to the filtra-
tion Ft = σ(X̂0, Ŷ0, X̂1, Ŷ1, . . . , X̂t , Ŷt ) and τ1 is a stopping time. By the optional
stopping theorem, we conclude that

2

n
= E[M0]
≥ E[Mt∧τ1]
≥ E
[
ρ−t (m(X̂t ) − m(Ŷt )

)
1(t ≤ τ1)

]
.

Thus, E[(m(X̂t ) − m(Ŷt ))1(t ≤ τ1)] ≤ 2ρt

n
. We use (22) to complete the proof of

the first part of the lemma.
Turning to the second part, using the fact that ρ < 1 gives

2

n
= E[M0]
≥ E[Mτ1]
= E
[
ρ−τ1
(
m(X̂τ1) − m(Ŷτ1)

)]
≥ E
[
ρ−K(m(X̂τ1) − m(Ŷτ1)

)|τ1 ≥ K
]
P(τ1 ≥ K)

(24)

By monotone coupling, we know that X̂τ1 �= Ŷτ1 iff m(X̂τ1) − m(Ŷτ1) ≥ 2
n

. There-
fore, using Markov’s inequality and (24) we conclude that

P(X̂τ1 �= Ŷτ1 |τ1 ≥ K) = P

(
m(X̂τ1) − m(Ŷτ1) ≥ 2

n
|τ1 ≥ K

)

≤ n ·E[(m(X̂τ1) − m(Ŷτ1))|τ1 ≥ K]
2

≤ ρK

P(τ1 ≥ K)
.

�
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LEMMA 7.3. Let x0 ∈ � be such that m(x0) ≥ s2 + 2
n

. Let X̂t , Ŷt , f , ρ and h

be as defined above. Then for every K ∈ N,

∣∣�i(h)(x0)
∣∣≤ 1

n

1

1 − ρ
+ C(β)n logn

[
ρK + P(τ1 < K)

]
.

PROOF. For the sake of brevity, only in this proof, we implicity assume the
conditioning X̂0 = x

(i,+)
0 and Ŷ0 = x

(i,−)
0 whenever the expectation operator is

used. Expanding the principal solution to the Poisson equation yields

∣∣�i(h)(x0)
∣∣=
∣∣∣∣∣

∞∑
t=0

E
[(

f (X̂t ) − f (Ŷt )
)]∣∣∣∣∣

≤
∞∑
t=0

E
[∣∣f (X̂t ) − f (Ŷt )

∣∣]

=
∞∑
t=0

E
[∣∣f (X̂t ) − f (Ŷt )

∣∣(1(t ≤ τ1) + 1(t > τ1)
)]

(25)

≤
∞∑
t=0

ρt

n
+

∞∑
t=0

E
[∣∣f (X̂t ) − f (Ŷt )

∣∣1(t > τ1)
]

= 1

n

1

1 − ρ
+

∞∑
t=0

E
[∣∣f (X̂t ) − f (Ŷt )

∣∣1(t > τ1)
]
.

Here, we have used Lemma 7.2 in the second to last step. By definition of the
coupling, if X̂τ1 = Ŷτ1 , then f (X̂t ) − f (Ŷt ) = 0 for all t > τ1. Further, |f (X̂t ) −
f (Ŷt )| ≤ 1(t ≤ τcoup + τ1) (since |f (x) − f (y)| ≤ 1). Given K ∈ N, we conclude
that

∞∑
t=0

E
[∣∣f (X̂t ) − f (Ŷt )

∣∣1(t > τ1)
]

≤ E[τcoup]
= ∑

x,y∈�+
E[τcoup|X̂τ1 = x, Ŷτ1 = y] · P(X̂τ1 = x, Ŷτ1 = y)

≤ C(β)n logn
∑

x,y∈�+
1(x �= y)P(X̂τ1 = x, Ŷτ1 = y)

= C(β)n lognP(X̂τ1 �= Ŷτ1)(26)

= C(β)n lognP(X̂τ1 �= Ŷτ1 |τ1 ≥ K)P(τ1 ≥ K)

+ C(β)n lognP(X̂τ1 �= Ŷτ1 |τ1 < K)P(τ1 < K)
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≤ C(β)n logn
[
P(X̂τ1 �= Ŷτ1 |τ1 ≥ K)P(τ1 ≥ K) + P(τ1 < K)

]
≤ C(β)n logn

[
ρK + P(τ1 < K)

]
.

Here, we have used Theorem 6.2 in the second inequality and Lemma 7.2 in the
last inequality. By (25) and (26), we conclude the result. �

Lemma 7.3 bounds |�i(h)| in terms of P(τ1 < K). We upper bound this proba-
bility in the following lemma.

LEMMA 7.4. Let x0 ∈ � be such that m(x0) ≥ 〈s2〉 + 2
n

. For every integer K ,

P(τ1 < K) ≤ K2 exp
(−c1(β)n

)
.

Here, c1(β) > 0 is a constant that depends only on β .

The proof, which we defer to Appendix A.2, is by coupling the magnetization
chain to an appropriate birth-death chain and using hitting time results for birth-
death chains.

THEOREM 7.5. If m(x0) ≥ 〈s2〉+ 2
n

, then there are constants c and c′ depend-
ing only on β such that

∣∣�i(h)(x0)
∣∣≤ 4

γ ∗
(
1 + c · exp

(−c′n
))

.

PROOF. By Lemma 7.3, we have for every positive integer K ,

∣∣�i(h)(x0)
∣∣≤ 1

n

1

1 − ρ
+ C(β)n logn

[
ρK + P(τ1 < K)

]
.

Clearly, for n ≥ 2,

1

n

1

1 − ρ
≤ 4

γ ∗ .

By Lemma 7.4, P(τ1 < K) ≤ K2 exp (−c1(β)n), and we take K ≥ Cn2. �

We are now ready to prove Theorem 4.4.

8. Proof of Theorem 4.4. We use all the notation developed in Section 6. Let
h be the solution to the Poisson equation (I − P)h = f − Eμf with f defined in
(15) at the beginning of Section 6. It follows by Theorem 3.1 and Lemma 5.1 to
show that

(27) |Eμf −Eνf | ≤
∥∥∥∥βnA − β

d
B

∥∥∥∥
2
Eν

‖v�(h)‖2

2
√

n
,
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where v�(h) := (�1(h), . . . ,�n(h))ᵀ. By Jensen’s inequality,

Eν‖v�(h)‖ = Eν

√√√√ n∑
i=1

�i(h)2 ≤
√√√√ n∑

i=1

Eν�i(h)2.(28)

Now, using Lemmas 6.4 and 6.5 and Theorem 7.5 we conclude

∣∣�i(h)(x)
∣∣≤
⎧⎪⎨
⎪⎩

4

γ ∗
(
1 + on(1)

)
if
∣∣m(x)

∣∣≥ 〈s2〉 + 2/n,

C(β)n logn otherwise.

We take 0 < δ(β) < m∗ − 〈s2〉 − 2
n

to be dependent only on β . By Lemma 6.1,
there exists ε0 such that if ε < ε0, then for some c(δ) > 0,

ν+(∣∣m − m∗∣∣> δ
)≤ e−c(δ)n.

By Lemma 6.4, �i(h)2 is a symmetric function of x. Therefore,

Eν�i(h)2 = Eν+�i(h)2

≤ 16

(γ ∗)2

(
1 + o(1)

)+ v+(∣∣m − m∗∣∣> δ
)
C(β)2n2 log2 n

≤ 16

(γ ∗)2

(
1 + o(1)

)+ e−c(δ)nC(β)2n2 log2 n

= 16

(γ ∗)2

(
1 + o(1)

)
.

(29)

We note that by picking CR = sgn(ρ(k)[R] − ρ̃(k)[R]), we obtain that

1(n
k

) ∑
R⊂[n]
|R|=k

∣∣ρ(k)[R] − ρ̃(k)[R]∣∣= 2k|Eμf −Eνf |.

The equation above along with (28), (29) and (27), implies

1(n
k

) ∑
R⊂[n]
|R|=k

∣∣ρ(k)[R] − ρ̃(k)[R]∣∣= 2k|Eμf −Eνf |

≤ 2k

∥∥∥∥βnA − β

d
B

∥∥∥∥
2
Eν

‖v�(h)‖2

2
√

n

≤ k√
n
β

(
ε + 1

n

)√∑
i

Eν

(
�i(h)

)2

≤ 4
kβ

γ ∗
(
1 + on(1)

)(
ε + 1

n

)
,

which completes the proof.
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9. Comparison to naive bounds. Using the symmetry inherent in the Curie–
Weiss model, we sketch another method to obtain an inequality similar (but much
weaker) to the one in Theorem 4.4. We do not give the proofs of the results be-
low. All of them can be proved using definitions and standard techniques. Let
DSKL(μ;ν) = DKL(μ‖ν) + DKL(ν‖μ) denote the symmetric KL-divergence be-
tween measures μ and ν.

LEMMA 9.1. DKL(ν‖μ) ≤ DSKL(μ;ν) ≤ n‖β
n
A − β

d
B‖2.

Let X ∼ μ and X′ ∼ μ such that they are independent of each other. Define
m2(X,X′) := 1

n

∑n
i=1 Xi(X′)i

LEMMA 9.2. For the Curie–Weiss model at any fixed temperature,

logEμ expλ
(
m2 − (m∗)2)≤ O(logn) + C1(β)λ2

2n

and

logEμ⊗μ expλ
(
m2

2 − (m∗)4)≤ O(logn) + C2(β)

2n
λ2.

Here, C1(β) and C2(β) are positive constants that depend only on β .

Consider the set of probability distributions over �×�, S = {M : M � μ⊗μ}.
Let f : � × � → R be defined by f (x, x ′) = m2

2 − (m∗)4. By Gibbs’ variational
principle,

logEμ⊗μ expλf = sup
M∈S

λEMf − DKL
(
M||μ ⊗ μ

)
.

Taking M = ν⊗ν (where DKL(ν⊗ν‖μ⊗μ) = 2DKL(ν‖μ)) and using Lemma 9.2,
we conclude that

λEν⊗νf − 2D
(
ν||μ)≤ C logn + C2

2n
λ2.

Letting λ = nEν⊗νf
C2

, we conclude that

|Eν⊗νf | = O

(√
logn

n
+
√

DKL(ν||μ)

n

)
.

and taking M = μ ⊗ μ (where DKL(μ ⊗ μ‖μ ⊗ μ) = 0) we conclude that

|Eμ⊗μf | = O

(√
logn

n

)
.

Therefore,

(30) |Eμ⊗μf −Eν⊗νf | = O

(√
logn

n
+
√

DKL(ν||μ)

n

)
.
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By similar considerations, taking g(x) = m2 − (m∗)2, we conclude that

(31)
∣∣Eν[g] −Eμ[g]∣∣= O

(√
logn

n
+
√

DKL(ν||μ)

n

)
.

For the Curie–Weiss model, by symmetry, ρij = ρ (the same for all i �= j ).
Clearly,

Eμm2 = 1

n
+ 2

n2

∑
i �=j

ρ,

Eνm
2 = 1

n
+ 2

n2

∑
i �=j

ρ̃ij ,

Eμ⊗μm2
2 = 1

n
+ 2

n2

∑
i �=j

ρ2,

Eν⊗νm
2
2 = 1

n
+ 2

n2

∑
i �=j

ρ̃2
ij .

Therefore,∑
i �=j

(ρij − ρ̃ij )
2 =∑

i �=j

ρ̃2
ij + ρ2 − 2ρ

(∑
i �=j

ρ̃ij

)

=∑
i �=j

ρ̃2
ij + ρ2 − 2ρ

(∑
i �=j

ρ + n2

2

(
Eνm

2 −Eμm2))

=∑
i �=j

ρ̃2
ij − ρ2 − n2(

Eνm
2 −Eμm2))

= n2

2

(
Eν⊗νm

2
2 −Eμ⊗μm2

2
)− n2(

Eνm
2 −Eμm2)

≤ n2|Eμ⊗μf −Eν⊗νf | + n2|Eμg −Eνg|.
Using the equation above and equations (30) and (31) and Lemma 9.1, we conclude
that

(32)
1(n
2

) ∑
i �=j

(ρij − ρ̃ij )
2 ≤ O

(√
logn

n
+
√∥∥∥∥βnA − β

d
B

∥∥∥∥
2

)
.

When ε = o(
logn

n
), the equation above reduces to

1(n
2

) ∑
i �=j

(ρij − ρ̃ij )
2 ≤ O(

√
ε).

This is similar to the result in Theorem 4.4 but weaker by a 4th power.
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APPENDIX A: PROOFS OF LEMMAS

A.1. Proof of Lemma 6.1.

PROOF. The proof follows the standard proof of concentration of magnetiza-
tion for the Curie–Weiss model, but with a slight modification to account for the
spectral approximation. Let γ ∈ Sn := {m(x) : x ∈ �}. By Mγ , we denote the set
{x ∈ � : m(x) = γ }. Note that |Mγ | = ( n

n
1+γ

2

)
and |Sn| = n + 1.

We define

Zγ = ∑
x∈Mγ

e
β
2d

xᵀBx

and

Z =∑
x∈�

e
β
2d

xᵀBx = ∑
γ∈Sn

Zγ ,

and for any U ⊂ Sn,

ZU = ∑
x:m(x)∈U

e
β
2d

xᵀBx = ∑
γ∈U

Zγ .

Clearly,

β

2n
xᵀAx − 1

2

∥∥∥∥βnA − β

d
B

∥∥∥∥xᵀx ≤ β

2d
xᵀBx ≤ β

2n
xᵀAx + 1

2

∥∥∥∥βnA − β

d
B

∥∥∥∥xᵀx.

Using the identities β
2n

xᵀAx = βn
2 (m2 − 1

n
) and xᵀx = n, as well as (10), we con-

clude that
βn

2

(
m2 − ε − 2

n

)
≤ dβ

2n
xᵀBx ≤ βn

2

(
m2 + ε

)
,

which implies that(
n

n
1+γ

2

)
exp

βn

2

(
γ 2 − ε − 2

n

)
≤ Zγ ≤

(
n

n
1+γ

2

)
exp

βn

2

(
γ 2 + ε

)
.

Let H : [0,1] → R be the binary Shannon entropy. Stirling’s approximation gives
that

enH(
1+γ

2 )

√
2n

≤
(

n

n
1+γ

2

)
≤ enH(

1+γ
2 )

and we conclude that
β

2
γ 2 + H

(
1 + γ

2

)
− β

2
ε + O

(
logn

n

)

≤ logZγ

n
≤ β

2
γ 2 + H

(
1 + γ

2

)
+ β

2
ε + O

(
logn

n

)
.
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Using the equation above, for any U ⊂ Sn

logZU

n
≤ log

(
|U |max

γ∈U
Zγ

)

= log |U |
n

+ max
γ∈U

logZγ

n

≤ max
γ∈U

[
β

2
γ 2 + H

(
1 + γ

2

)]
+ β

2
ε + O

(
logn

n

)
.

Here, we have used the fact that |U | ≤ |Sn| = n + 1. Similarly,

logZ

n
= log

∑
γ∈Sn

Zγ

n

≥ max
γ∈Sn

logZγ

n

≥ max
γ∈Sn

[
β

2
γ 2 + H

(
1 + γ

2

)]
− β

2
ε + O

(
logn

n

)
.

Define Uδ = Sn \ ([m∗ − δ,m∗ + δ] ∪ [−m∗ − δ,−m∗ + δ]) and Vδ = [0,1] \
([m∗ − δ,m∗ + δ] ∪ [−m∗ − δ,−m∗ + δ]). Clearly,

ν
({∣∣m(x) − m∗∣∣> δ

}∩ {∣∣m(x) + m∗∣∣> δ
})= ν

(
m(x) ∈ Uδ

)
is the probability to be bounded. We get

logν(m(x) ∈ Uδ)

n

= logZUδ

n
− logZ

n

≤ max
γ∈Uδ

[
β

2
γ 2 + H

(
1 + γ

2

)]
− max

γ∈Sn

[
β

2
γ 2 + H

(
1 + γ

2

)]

+ βε + O

(
logn

n

)

= sup
γ∈Vδ

[
β

2
γ 2 + H

(
1 + γ

2

)]
− sup

γ∈[0,1]

[
β

2
γ 2 + H

(
1 + γ

2

)]

+ βε + O

(
logn

n

)
.

(33)

Here, we have used the properties of H(·) to show that

sup
γ∈Vδ

[
β

2
γ 2 + H

(
1 + γ

2

)]
= max

γ∈Uδ

[
β

2
γ 2 + H

(
1 + γ

2

)]
+ O

(
logn

n

)
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and

sup
γ∈[0,1]

[
β

2
γ 2 + H

(
1 + γ

2

)]
= max

γ∈Sn

[
β

2
γ 2 + H

(
1 + γ

2

)]
+ O

(
logn

n

)
.

It can be shown by simple calculus that for β > 1, the function β
2 γ 2 + H(

1+γ
2 )

has (all of) its global maxima at m∗ and −m∗. Since Vδ = [0,1] \ ([m∗ − δ,m∗ +
δ] ∪ [−m∗ − δ,−m∗ + δ]), using the continuity of the function, we conclude that
for some c0(δ) > 0,

sup
γ∈Vδ

[
β

2
γ 2 + H

(
1 + γ

2

)]
− sup

γ∈[0,1]

[
β

2
γ 2 + H

(
1 + γ

2

)]
< −c0(δ) < 0.

Choosing ε small enough so that εβ <
c0(δ)

2 , and using equation (33), we conclude
that

ν
({∣∣m(x) − m∗∣∣> δ

}∩ {∣∣m(x) + m∗∣∣> δ
})≤ exp

(
−c0(δ)n

2
+ O(logn)

)

and the statement of the lemma follows. �

A.2. Proof of Lemma 7.4. For the Curie–Weiss model, one can check that
the Glauber dynamics also induces a Markov chain over the magnetization. For
m ∈ (0,1), the probability that m → m − 2

n
is

(
1 + m

2

)(1 − tanh (βm + β
n
)

2

)
=: p−(m)

and probability that m → m + 2
n

is

(
1 − m

2

)(1 + tanh (βm − β
n
)

2

)
=: p+(m).

At any step, this chain can only change the value of magnetization by 2
n

. By

hypothesis, we start the restricted Glauber dynamics chain such that Ŷ0 = x
(i,−)
0

with m(x0) ≥ 〈s2〉 + 2
n

. Therefore, m(Ŷ0) ≥ 〈s2〉. Recall that, by definition of τ1,

m(Ŷτ1) = 〈s1〉. Clearly, there exists t < τ1 such that m(Ŷt ) = 〈s2〉. That is, to reach
a state with magnetization of 〈s1〉, the chain must first hit a state with magnetiza-
tion 〈s2〉. Therefore, P(τ1 < K|Ŷ0 = x

(i,−)
0 ) is maximized when m(Ŷ0) = 〈s2〉 and

we restrict our attention to this case.
Now, it is easy to show that when m ∈ {〈s1〉, 〈s1〉 + 2

n
, . . . , 〈s2〉 + 2

n
}, p−

p+ ≤
α(β) < 1 for n large enough. This allows us to compare our chain to the fol-
lowing birth-death Markov chain (Ni)

∞
i=0 over the state space X := {〈s1〉, 〈s1〉 +

2
n
, . . . , 〈s2〉 + 2

n
} with N0 = 〈s2〉. Denote the transition matrix of the birth-death

chain by � and let r = |X |. By our definition of s2 and s1, it is clear that r ≥ c(β)n
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for some constant c(β) > 0. We pick n large enough so that r ≥ 2. Define the
transition probabilities for m ∈X , m �= 〈s1〉 and m �= 〈s2〉 + 2

n
as follows:

�

(
m,m + 2

n

)
= �

(
〈s1〉, 〈s1〉 + 2

n

)
= 1

1 + α
,

�

(
m,m − 2

n

)
= �

(
〈s2〉 + 2

n
, 〈s2〉
)

= α

1 + α
,

�
(〈s1〉, 〈s1〉)= α

1 + α
,

�

(
〈s2〉 + 2

n
, 〈s2〉 + 2

n

)
= 1

1 + α
.

We couple the walk � with the magnetization chain as follows:

1. Let mt be the magnetization chain started such that m0 = 〈s2〉. Let ti be the
ith time such that mti �= mti+1 and mti ∈ {〈s1〉, 〈s1〉 + 2

n
, . . . , 〈s2〉 + 2

n
}. Clearly,

ti ≥ i and the set {ti : i ≥ 0} is infinite a.s.
2. Let Ni+1 = Ni − 1 if mti = mti+1 − 2

n
.

3. If mti = mti+1 + 2
n

, then

Ni+1 =
{
Ni − 1 w.p. γ (mti ),

Ni + 1 w.p. 1 − γ (mti ),

where γ (mti ) = p+(mti
)+p−(mti

)

p+(mti
)

( α
1+α

− p−(mti
)

p+(mti
)+p−(mti

)
).

4. The coupling above ensures that Ni ≤ mti a.s whenever ti ≤ τ1.

Let τ ′
1 := inf{t : Nt = 〈s1〉}. It follows from the coupling argument above that

for any K ∈ N,

(34) P(τ1 ≤ K) ≤ P
(
τ ′

1 ≤ K
)
.

For every k ∈ N, define hitting time Tk as the time taken by the birth-death
chain (Ni) to hit the set {〈s1〉, 〈s2〉 + 2

n
} for the kth time. By irreducibility of this

Markov chain, it is clear that Tk < ∞ a.s. for every k. Let Ai := {NTi
= 〈s1〉} and

η := inf{i : NTi
= 〈s1〉}. Clearly, τ ′

1 ≥ η a.s. Therefore,

(35) P(τ1 ≤ K) ≤ P
(
τ ′

1 ≤ K
)≤ P(η ≤ K).

LEMMA A.1. P(τ1 ≤ K) ≤ K2
P(A1).

PROOF. From equation (35),

P(τ1 ≤ K) ≤ P(η ≤ K).
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From the definition of η and Ai , we have

{η ≤ K} =
K⋃

i=1

Ai.

Therefore,

(36) P(τ1 ≤ K) ≤ P

(
K⋃

i=1

Ai

)
≤

K∑
i=1

P(Ai).

We first prove by induction that

(37) P(Ai) ≤ iP(A1).

This is trivially true for i = 1. Suppose it is true for some i. Then

P(Ai+1) = P(Ai+1|Ai)P(Ai) + P
(
Ai+1|Ac

i

)
P
(
Ac

i

)
≤ P(Ai) + P

(
Ai+1|Ac

i

)
≤ P(Ai) + P(A1)

≤ (i + 1)P(A1),

completing the induction. Here, we have used the fact that conditioned on the
event Ac

i , the walk after Ti is the same as the walk starting from 〈s2〉 + 2
n

whereas
the original walk at time t = 0 starts from 〈s2〉. Therefore, P(NTi+1 = 〈s1〉|Ac

i ) ≤
P(NT1 = 〈s1〉), which is the same as P(Ai+1|Ac

i ) ≤ P(A1). Combining equation
(37) with equation (36), we arrive at the conclusion of Lemma A.1. �

For the sake of convenience, we rename the states of X to be elements in
{0, . . . , r −1} with the same ordering (i.e., 〈s1〉 → 0, 〈s1〉+ 2

n
→ 1, . . . , 〈s2〉+ 2

n
→

r − 1). Let p = 1
1+α

denote the probability of moving from state m to m + 1 and
1−p denote the probability of moving from m to m−1. Let Pm be the probability
that the Markov chain starting at state m hits r − 1 before it hits 0. The following
lemma is a classic result about biased Gambler’s ruin Markov chain. We assume
that n is large enough so that r ≥ 2.

LEMMA A.2. 1 − Pr−2 = P(A1) ≤ (
1−p
p

)r−2 = αr−2.

PROOF. We have the following set of recursion equations: P0 = 0, Pr−1 = 1
and for all 0 < i < r − 1, Pm = pPm+1 + (1 − p)Pm−1. One can check that the
unique solution to this set of equations is

Pm = (
1−p
p

)m − 1

(
1−p
p

)r−1 − 1
= αm − 1

αr−1 − 1
.
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By definition of the event A1,

1 − Pr−2 = P(A1)

= αr−2 1 − α

1 − αr−1

≤ αr−2. �

From Lemmas A.1 and A.2, we conclude that

P(τ1 ≤ K) ≤ K2αr−2.

As shown above, r −2 ≥ c(β)n for constant c(β) > 0 and α = α(β) < 1. There-
fore, for some constant c1(β) > 0,

P(τ1 ≤ K) ≤ K2 exp
(−c1(β)n

)
,

and this completes the proof.
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