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AFFINE VOLTERRA PROCESSES

BY EDUARDO ABI JABER∗,1, MARTIN LARSSON†,2 AND SERGIO PULIDO‡,3

Ecole Polytechnique∗, ETH Zurich†, ENSIIE and Université Paris-Saclay,
LaMME, UMR CNRS 8071‡

We introduce affine Volterra processes, defined as solutions of certain
stochastic convolution equations with affine coefficients. Classical affine
diffusions constitute a special case, but affine Volterra processes are nei-
ther semimartingales, nor Markov processes in general. We provide explicit
exponential-affine representations of the Fourier–Laplace functional in terms
of the solution of an associated system of deterministic integral equations
of convolution type, extending well-known formulas for classical affine dif-
fusions. For specific state spaces, we prove existence, uniqueness, and in-
variance properties of solutions of the corresponding stochastic convolution
equations. Our arguments avoid infinite-dimensional stochastic analysis as
well as stochastic integration with respect to non-semimartingales, relying in-
stead on tools from the theory of finite-dimensional deterministic convolution
equations. Our findings generalize and clarify recent results in the literature
on rough volatility models in finance.

1. Introduction. We study a class of d-dimensional stochastic convolution
equations of the form

(1.1) Xt = X0 +
∫ t

0
K(t − s)b(Xs) ds +

∫ t

0
K(t − s)σ (Xs) dWs,

where W is a multidimensional Brownian motion, and the convolution kernel
K and coefficients b and σ satisfy regularity and integrability conditions that
are discussed in detail after this Introduction. We refer to equations of the form
(1.1) as stochastic Volterra equations (of convolution type), and their solutions
are always understood to be adapted processes defined on some stochastic ba-
sis (�,F, (Ft )t≥0,P) satisfying the usual conditions. Stochastic Volterra equa-
tions have been studied by numerous authors; see, for example, Berger and Mizel
(1980a, 1980b), Coutin and Decreusefond (2001), Mytnik and Salisbury (2015),
Pardoux and Protter (1990), Protter (1985), Zhang (2010) among many others. In
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Theorem 3.4 and Theorem 3.6, we provide new existence results for (1.1) under
weak conditions on the kernel and coefficients.

We are chiefly interested in the situation where a(x) = σ(x)σ (x)� and b(x) are
affine of the form

(1.2)
a(x) = A0 + x1A

1 + · · · + xdAd,

b(x) = b0 + x1b
1 + · · · + xdbd,

for some d-dimensional symmetric matrices Ai and vectors bi . In this case, we
refer to solutions of (1.1) as affine Volterra processes. Affine diffusions, as studied
in Duffie, Filipović and Schachermayer (2003), are particular examples of affine
Volterra processes of the form (1.1) where the convolution kernel K ≡ I is constant
and equal to the d-dimensional identity matrix. In this paper, we do not consider
processes with jumps.

Stochastic models using classical affine diffusions are tractable because their
Fourier–Laplace transform has a simple form. It can be written as an exponential-
affine function of the initial state, in terms of the solution of a system of ordinary
differential equations, known as the Riccati equations, determined by the affine
maps (1.2). More precisely, let X be an affine diffusion of the form (1.1) with
K ≡ I . Then, given a d-dimensional row vector u and under suitable integrability
conditions, we have

(1.3) E
[
exp(uXT ) | Ft

]= exp
(
φ(T − t) + ψ(T − t)Xt

)
,

where the real-valued function φ and row-vector-valued function ψ satisfy the
Riccati equations

φ(t) =
∫ t

0

(
ψ(s)b0 + 1

2
ψ(s)A0ψ(s)�

)
ds,

ψ(t) = u +
∫ t

0

(
ψ(s)B + 1

2
A
(
ψ(s)

))
ds,

with A(u) = (uA1u�, . . . , uAdu�) and B = (b1 · · · bd). Alternatively, using the
variation of constants formula on X and ψ , one can write the Fourier–Laplace
transform as

(1.4)

E
[
exp(uXT ) | Ft

]
= exp

(
E[uXT | Ft ] + 1

2

∫ T

t
ψ(T − s)a

(
E[Xs | Ft ])ψ(T − s)� ds

)
.

For more general kernels K , affine Volterra processes are typically neither semi-
martingales, nor Markov processes. Therefore, one cannot expect a formula like
(1.3) to hold in general. However, we show in Theorem 4.3 below that, remarkably,
(1.4) does continue to hold, where now the function ψ solves the Riccati–Volterra
equation

(1.5) ψ(t) = uK(t) +
∫ t

0

(
ψ(s)B + 1

2
A
(
ψ(s)

))
K(t − s) ds.
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Furthermore, it is possible to express (1.4) in a form that is exponential-affine in
the past trajectory {Xs, s ≤ t}. This is done in Theorem 4.5.

For the state spaces Rd , Rd+, and R × R+, corresponding to the Volterra
Ornstein–Uhlenbeck, Volterra square-root and Volterra Heston models, we estab-
lish existence and uniqueness of global solutions of both the stochastic equation
(1.1) and the associated Riccati–Volterra equation (1.5), under general parame-
ter restrictions. For the state spaces Rd+ and R × R+, which are treated in The-
orem 6.1 and Theorem 7.1, this involves rather delicate invariance properties for
these equations. While standard martingale and stochastic calculus arguments play
an important role in several places, the key tools that allow us to handle the lack
of Markov and semimartingale structure are the resolvents of first and second kind
associated with the convolution kernel K . Let us emphasize in particular that no
stochastic integration with respect to non-semimartingales is needed. Furthermore,
by performing the analysis on the level of finite-dimensional integral equations, we
avoid the infinite-dimensional analysis used, for instance, by Mytnik and Salisbury
(2015). We also circumvent the need to study scaling limits of Hawkes processes
as in El Euch and Rosenbaum (2018, 2019), El Euch, Fukasawa and Rosenbaum
(2018).

Our motivation for considering affine Volterra processes comes from applica-
tions in financial modeling. Classical affine processes arguably constitute the most
popular framework for building tractable multifactor models in finance. They have
been used to model a vast range of risk factors such as credit and liquidity factors,
inflation and other macro-economic factors, equity factors and factors driving the
evolution of interest rates; see Duffie, Filipović and Schachermayer (2003) and
the references therein. In particular, affine stochastic volatility models, such as the
Heston (1993) model, are very popular.

However, a growing body of empirical research indicates that volatility fluc-
tuates more rapidly than Brownian motion, which is inconsistent with standard
semimartingale affine models. Fractional volatility models such as those by Bayer,
Friz and Gatheral (2016), Bennedsen, Lunde and Pakkanen Mikko (2016), Comte,
Coutin and Renault (2012), El Euch and Rosenbaum (2019), Gatheral, Jaisson
and Rosenbaum (2018), Guennoun et al. (2018) have emerged as compelling al-
ternatives, although tractability can be a challenge for these non-Markovian, non-
semimartingales models. Nonetheless, Guennoun et al. (2018) and El Euch and
Rosenbaum (2018, 2019) show that there exist fractional adaptations of the Hes-
ton model where the Fourier–Laplace transform can be found explicitly, modulo
the solution of a specific fractional Riccati equation. These models are of the affine
Volterra type (1.1) involving singular kernels proportional to tα−1. Our framework
subsumes and extends these examples.

The paper is structured as follows. Section 2 covers preliminaries on convolu-
tions and their resolvents, and in particular develops the necessary stochastic cal-
culus. Section 3 gives existence theorems for stochastic Volterra equations on Rd

and Rd+. Section 4 introduces affine Volterra processes on general state spaces and
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develops the exponential-affine transform formula. Sections 5 through 7 contain
detailed discussions for the state spaces Rd , Rd+, and R×R+, which correspond to
the Volterra Ornstein–Uhlenbeck, Volterra square-root and Volterra Heston mod-
els, respectively. Additional proofs and supporting results are presented in the Ap-
pendices. Our basic reference for the deterministic theory of Volterra equations is
the excellent book by Gripenberg, Londen and Staffans (1990).

Notation. Throughout the paper, we view elements of Rm and Cm = Rm+ iRm

as column vectors, while elements of the dual spaces (Rm)∗ and (Cm)∗ are viewed
as row vectors. For any matrix A with complex entries, A� denotes the (ordinary,
not conjugate) transpose of A. The identity matrix is written I . The symbol | · | is
used to denote the Euclidean norm on Cm and (Cm)∗, as well as the operator norm
on Rm×n. We write Sm for the symmetric m × m matrices. The shift operator �h

with h ≥ 0, maps any function f on R+ to the function �hf given by

�hf (t) = f (t + h).

If the function f on R+ is right continuous and of locally bounded variation,
the measure induced by its distributional derivative is denoted df , so that f (t) =
f (0) + ∫[0,t] df (s) for all t ≥ 0. By convention, df does not charge {0}.

2. Stochastic calculus of convolutions and resolvents. For a measurable
function K on R+ and a measure L on R+ of locally bounded variation, the con-
volutions K ∗ L and L ∗ K are defined by

(2.1)

(K ∗ L)(t) =
∫
[0,t]

K(t − s)L(ds),

(L ∗ K)(t) =
∫
[0,t]

L(ds)K(t − s)

for t > 0 whenever these expressions are well defined, and extended to t = 0 by
right continuity when possible. We allow K and L to be matrix-valued, in which
case K ∗ L and L ∗ K may not both be defined (e.g., due to incompatible matrix
dimensions), or differ from each other even if they are defined (e.g., if K and L

take values among noncommuting square matrices). If F is a function on R+, we
write K ∗ F = K ∗ (F dt), that is,

(2.2) (K ∗ F)(t) =
∫ t

0
K(t − s)F (s) ds.

Further details can be found in Gripenberg, Londen and Staffans (1990); see, in
particular, Definitions 2.2.1 and 3.2.1, as well as Theorems 2.2.2 and 3.6.1 for
a number of properties of convolutions. In particular, if K ∈ L1

loc(R+) and F is
continuous, then K ∗ F is again continuous.
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Fix d ∈ N and let M be a d-dimensional continuous local martingale. If K is
Rm×d -valued for some m ∈ N, the convolution

(2.3) (K ∗ dM)t =
∫ t

0
K(t − s) dMs

is well defined as an Itô integral for any t ≥ 0 that satisfies∫ t

0

∣∣K(t − s)
∣∣2 d tr〈M〉s < ∞.

In particular, if K ∈ L2
loc(R+) and 〈M〉s = ∫ s

0 au du for some locally bounded pro-
cess a, then (2.3) is well defined for every t ≥ 0. We always choose a version
that is jointly measurable in (t,ω). Just like (2.1)–(2.2), the convolution (2.3) is
associative, as the following result shows.

LEMMA 2.1. Let K ∈ L2
loc(R+,Rm×d) and let L be a Rn×m-valued measure

on R+ of locally bounded variation. Let M be a d-dimensional continuous local
martingale with 〈M〉t = ∫ t

0 as ds, t ≥ 0, for some locally bounded adapted pro-
cess a. Then

(2.4)
(
L ∗ (K ∗ dM)

)
t = (

(L ∗ K) ∗ dM
)
t

for every t ≥ 0. In particular, taking F ∈ L1
loc(R+) we may apply (2.4) with

L(dt) = F dt to obtain (F ∗ (K ∗ dM))t = ((F ∗ K) ∗ dM)t .

PROOF. By linearity, it suffices to take d = m = n = 1 and L a locally finite
positive measure. In this case,

(
L ∗ (K ∗ dM)

)
t =

∫ t

0

(∫ t

0
1{u<t−s}K(t − s − u)dMu

)
L(ds).

Since ∫ t

0

(∫ t

0
1{u<t−s}K(t − s − u)2 d〈M〉u

)1/2
L(ds)

≤ max
0≤s≤t

|as |1/2‖K‖L2(0,t)L
([0, t]),

which is finite almost surely, the stochastic Fubini theorem (see Veraar ((2012),
Theorem 2.2)), yields

(
L ∗ (K ∗ dM)

)
t =

∫ t

0

(∫ t

0
1{u<t−s}K(t − s − u)L(ds)

)
dMu

= (
(L ∗ K) ∗ dM

)
t ,

as required. �
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Under additional assumptions on the kernel K , one can find a version of the
convolution (2.3) that is continuous in t . We will use the following condition:

(2.5)

K ∈ L2
loc(R+,R) and there exists

γ ∈ (0,2] such that
∫ h

0
K(t)2 dt = O

(
hγ ) and∫ T

0

(
K(t + h) − K(t)

)2
dt = O

(
hγ ) for every T < ∞.

REMARK 2.2. Other conditions than (2.5) have appeared in the literature.
Decreusefond (2002) considers dM = σ dW defined on the Wiener space with
coordinate process W , and requires F �→ K ∗ F to be continuous from certain
Lp spaces to appropriate Besov spaces. Mytnik and Neuman (2012) assume K to
be a function of smooth variation and M to be a semimartingale. See also Wang
((2008), Theorem 1.3).

EXAMPLE 2.3. Let us list some examples of kernels that satisfy (2.5):

(i) Locally Lipschitz kernels K clearly satisfy (2.5) with γ = 1.
(ii) The fractional kernel K(t) = tα−1 with α ∈ (1

2 ,1) satisfies (2.5) with

γ = 2α − 1. Indeed, it is locally square integrable, and we have
∫ h

0 K(t)2 dt =
h2α−1/(2α − 1) as well as∫ T

0

(
K(t + h) − K(t)

)2
dt ≤ h2α−1

∫ ∞
0

(
(t + 1)α−1 − tα−1)2 dt,

where the constant on the right-hand side is bounded by 1
2α−1 + 1

3−2α
. Note that

the case α ≥ 1 falls in the locally Lipschitz category mentioned previously.
(iii) If K1 and K2 satisfy (2.5), then so does K1 + K2.
(iv) If K1 satisfies (2.5) and K2 is locally Lipschitz, then K = K1K2 satisfies

(2.5) with the same γ . Indeed, letting ‖K2
2‖∞,T denote the maximum of K2

2 over
[0, T ] and LipT (K2) the best Lipschitz constant on [0, T ], we have∫ h

0
K(t)2 dt ≤ ∥∥K2

2
∥∥∞,h

∫ h

0
K1(t)

2 dt = O
(
hγ )

and ∫ T

0

(
K(t + h) − K(t)

)2
dt ≤ 2

∥∥K2
2
∥∥∞,T +h

∫ T

0

(
K1(t + h) − K1(t)

)2
dt

+ 2‖K1‖2
L2(0,T )

LipT +h(K2)
2h2

= O
(
hγ ).
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(v) If K satisfies (2.5) and f ∈ L2
loc(R+), then f ∗ K satisfies (2.5) with the

same γ . Indeed, Young’s inequality gives∫ h

0
(f ∗ K)(t)2 dt ≤ ‖f ‖2

L1(0,h)
‖K‖2

L2(0,h)
= O

(
hγ )

and, using also the Cauchy–Schwarz inequality,∫ T

0

(
(f ∗ K)(t + h) − (f ∗ K)(t)

)2
dt

≤ 2T ‖f ‖2
L2(0,T +h)

‖K‖2
L2(0,h)

+ 2‖f ‖2
L1(0,T )

‖�hK − K‖2
L2(0,T )

= O
(
hγ ).

(vi) If K satisfies (2.5) and is locally bounded on (0,∞), then �ηK satisfies
(2.5) for any η > 0. Indeed, ‖�ηK‖2

L2(0,h)
= O(h) by local boundedness, and it is

immediate that∫ T

0

(
�ηK(t + h) − �ηK(t)

)2
dt ≤

∫ T +η

0

(
K(t + h) − K(t)

)2
dt = O

(
hγ ).

(vii) By combining the above examples we find that, for instance, exponentially
damped and possibly singular kernels like the Gamma kernel K(t) = tα−1e−βt for
α > 1

2 and β ≥ 0 satisfy (2.5).

LEMMA 2.4. Assume K satisfies (2.5) and consider a process X = K ∗(b dt +
dM), where b is an adapted process and M is a continuous local martingale with
〈M〉t = ∫ t

0 as ds for some adapted process a. Let T ≥ 0 and p > max{2,2/γ } be
such that supt≤T E[|at |p/2 + |bt |p] is finite. Then X admits a version which is
Hölder continuous on [0, T ] of any order α < γ/2 − 1/p. Denoting this version
again by X, one has

(2.6) E

[(
sup

0≤s<t≤T

|Xt − Xs |
|t − s|α

)p]
≤ c sup

t≤T

E
[|at |p/2 + |bt |p]

for all α ∈ [0, γ /2−1/p), where c is a constant that only depends on p, K , and T .
As a consequence, if a and b are locally bounded, then X admits a version which
is Hölder continuous of any order α < γ/2.

PROOF. For any p ≥ 2 and any s < t ≤ T < ∞, we have

|Xt − Xs |p ≤ 4p−1
∣∣∣∣∫ t

s
K(t − u)bu du

∣∣∣∣p
+ 4p−1

∣∣∣∣∫ s

0

(
K(t − u) − K(s − u)

)
bu du

∣∣∣∣p
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+ 4p−1
∣∣∣∣∫ t

s
K(t − u)dMu

∣∣∣∣p
+ 4p−1

∣∣∣∣∫ s

0

(
K(t − u) − K(s − u)

)
dMu

∣∣∣∣p
= 4p−1(I + II + III + IV).

Jensen’s inequality applied twice yields

I ≤ (t − s)p/2
(∫ t

s
K(t − u)2 du

)p/2−1 ∫ t

s
|bu|pK(t − u)2 du.

Taking expectations and changing variables, we obtain

(2.7) E[I] ≤ (t − s)p/2
(∫ t−s

0
K(u)2 du

)p/2
sup
u≤T

E
[|bu|p].

In a similar manner,

(2.8) E[II] ≤ T p/2
(∫ s

0

(
K(u + t − s) − K(u)

)2
du

)p/2
sup
u≤T

E
[|bu|p].

Analogous calculations relying also on the BDG inequalities applied to the contin-
uous local martingale {∫ r

0 K(t − u)dMu : r ∈ [0, t]} yield

(2.9)

E[III] ≤ CpE

[(∫ t

s
K(t − u)2au du

)p/2]

≤ Cp

(∫ t−s

0
K(u)2 du

)p/2
sup
u≤T

E
[|au|p/2]

and

(2.10) E[IV] ≤ Cp

(∫ s

0

(
K(u + t − s) − K(u)

)2
du

)p/2
sup
u≤T

E
[|au|p/2].

Combining (2.7)–(2.10) with (2.5) leads to

E
[|Xt − Xs |p]≤ c′ sup

u≤T

E
[|au|p/2 + |bu|p](t − s)γp/2,

where c′ is a constant that only depends on p, K , and T , but not on s or t . Ex-
istence of a continuous version as well as the bound (2.6) now follow from the
Kolmogorov continuity theorem; see Revuz and Yor ((1999), Theorem I.2.1).

Finally, if a and b are locally bounded, consider stopping times τn → ∞
such that a and b are bounded on [[0, τn]]. The process Xn = K ∗ (b1[[0,τn]] dt +
a1[[0,τn]] dW) then has a Hölder continuous version of any order α < γ/2 by the
first part of the lemma, and one has Xt = Xn

t almost surely on {t ≤ τn} for each t .
�
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Consider a kernel K ∈ L1
loc(R+,Rd×d). The resolvent, or resolvent of the sec-

ond kind, corresponding to K is the kernel R ∈ L1
loc(R+;Rd×d) such that

(2.11) K ∗ R = R ∗ K = K − R.4

The resolvent always exists and is unique, and a number of properties such as
(local) square integrability and continuity of the original kernel K are inherited
by its resolvent; see Gripenberg, Londen and Staffans ((1990), Theorems 2.3.1
and 2.3.5). Using the resolvent R, one can derive a variation of constants formula
as shown in the following lemma.

LEMMA 2.5. Let X be a continuous process, F : R+ → Rm a continuous
function, B ∈ Rd×d and Z = ∫

b dt + ∫ σ dW a continuous semimartingale with b

and σ continuous and adapted. Then

X = F + (KB) ∗ X + K ∗ dZ ⇐⇒ X = F − RB ∗ F + EB ∗ dZ,

where RB is the resolvent of −KB and EB = K − RB ∗ K .

PROOF. Assume that X = F + (KB)∗X +K ∗ dZ. Convolving this with RB

and using Lemma 2.1 yields

X − RB ∗ X = (F − RB ∗ F) + (KB − RB ∗ (KB)
) ∗ X + EB ∗ dZ.

The resolvent equation (2.11) states that KB − RB ∗ (KB) = −RB , so that

X = F − RB ∗ F + EB ∗ dZ.(2.12)

Conversely, assume that (2.12) holds. It follows from the resolvent equation (2.11)
that KB − (KB) ∗ RB = −RB and

(KB) ∗ EB = (KB) ∗ (K − RB ∗ K) = −RB ∗ K.

Hence, convolving both sides of (2.12) with KB and using Lemma 2.1 yields

X − (KB) ∗ X = F + (−RB − KB + (KB) ∗ RB

) ∗ F

+ (EB − (KB) ∗ EB

) ∗ dZ

= F + (EB + RB ∗ K) ∗ dZ

= F + K ∗ dZ,

which proves that X = F + (KB) ∗ X + K ∗ dZ. �

Another object related to K is its resolvent of the first kind, which is an Rd×d -
valued measure L on R+ of locally bounded variation such that

(2.13) K ∗ L = L ∗ K ≡ I ;
4Rather than (2.11), it is common to require K ∗R = R ∗K = R −K in the definition of resolvent.

We use (2.11) to remain consistent with Gripenberg, Londen and Staffans (1990).
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TABLE 1
Some kernels K and their resolvents R and L of the second and first kind. Here,

Eα,β(z) =∑∞
n=0

zn

(αn+β)
denotes the Mittag–Leffler function, and the constant c may be an

invertible matrix

K(t) R(t) L(dt)

Constant c ce−ct c−1δ0(dt)

Fractional c tα−1

(α)
ctα−1Eα,α(−ctα) c−1 t−α

(1−α)
dt

Exponential ce−λt ce−λte−ct c−1(δ0(dt) + λdt)

Gamma ce−λt tα−1

(α)
ce−λt tα−1Eα,α(−ctα) c−1 1

(1−α)
e−λt d

dt
(t−α ∗ eλt )(t) dt

see Gripenberg, Londen and Staffans ((1990), Definition 5.5.1). We recall that I

stands for the identity matrix. Some examples of resolvents of the first and second
kind are presented in Table 1. A resolvent of the first kind does not always exist.
When it does, it has the following properties, which play a key role in several of
our arguments.

LEMMA 2.6. Let X be a continuous process and Z = ∫
b dt + ∫ σ dW a con-

tinuous semimartingale with b, σ , and K ∗ dZ continuous and adapted. Assume
that K admits a resolvent of the first kind L. Then

(2.14) X − X0 = K ∗ dZ ⇐⇒ L ∗ (X − X0) = Z.

In this case, for any F ∈ L2
loc(R+,Cm×d) such that F ∗ L is right continuous and

of locally bounded variation, one has

(2.15) F ∗ dZ = (F ∗ L)(0)X − (F ∗ L)X0 + d(F ∗ L) ∗ X

up to dt ⊗ P-a.e. equivalence. If F ∗ dZ has a right-continuous version, then with
this version (2.15) holds up to indistinguishability.

PROOF. Assume X − X0 = K ∗ dZ. Apply L to both sides to get

L ∗ (X − X0) = L ∗ (K ∗ dZ) = (L ∗ K) ∗ dZ = I ∗ dZ = Z,

where the second equality follows from Lemma 2.1. This proves the forward im-
plication in (2.14). Conversely, assume L ∗ (X − X0) = Z. Then

I ∗ (X − X0) = (K ∗ L) ∗ (X − X0)

= K ∗ (L ∗ (X − X0)
)

= K ∗ Z

= K ∗ (I ∗ dZ)

= I ∗ (K ∗ dZ),
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using Gripenberg, Londen and Staffans ((1990), Theorem 3.6.1(ix)) for the second
equality and Lemma 2.1 for the last equality. Since both X − X0 and K ∗ dZ are
continuous, they must be equal.

To prove (2.15), observe that the assumption of right continuity and locally
bounded variation entails that

F ∗ L = (F ∗ L)(0) + d(F ∗ L) ∗ I.

Convolving this with K , using associativity of the convolution and (2.13), and
inspecting the densities of the resulting absolutely continuous functions, we get

F = (F ∗ L)(0)K + d(F ∗ L) ∗ K a.e.

Using (2.4) and the fact that K ∗ dZ = X − X0 by assumption, it follows that

F ∗ dZ = (F ∗ L)(0)K ∗ dZ + d(F ∗ L) ∗ (K ∗ dZ)

= (F ∗ L)(0)X − (F ∗ L)X0 + d(F ∗ L) ∗ X

holds dt ⊗ P-a.e., as claimed. The final statement is clear from right continuity of
F ∗ L and d(F ∗ L) ∗ X. �

3. Stochastic Volterra equations. Fix d ∈ N and consider the stochastic
Volterra equation (1.1) for a given kernel K ∈ L2

loc(R+,Rd×d), initial condition
X0 ∈ Rd and coefficients b : Rd → Rd and σ : Rd → Rd×m, where W is m-
dimensional Brownian motion. The equation (1.1) can be written more compactly
as

X = X0 + K ∗ (b(X)dt + σ(X)dW
)
.

We will always require the coefficients b and σ as well as solutions of (1.1) to be
continuous in order to avoid problems with the meaning of the stochastic integral
term. As for stochastic (ordinary) differential equations, we say that the stochastic
Volterra equation (1.1) admits a weak solution if there exists a stochastic basis
(�,F, (Ft )t≥0,P), satisfying the usual conditions and supporting a d-dimensional
Brownian motion W and an adapted continuous process X such that (1.1) holds.
In this case, by an abuse of terminology, we call X a weak solution of (1.1). We
call X a strong solution if in addition it is adapted to the filtration generated by W .

The following moment bound holds for any solution of (1.1) under linear growth
conditions on the coefficients.

LEMMA 3.1. Assume b and σ are continuous and satisfy the linear growth
condition

(3.1)
∣∣b(x)

∣∣∨ ∣∣σ(x)
∣∣≤ cLG

(
1 + |x|), x ∈ Rd,

for some constant cLG. Let X be a continuous solution of (1.1) with initial condi-
tion X0 ∈Rd . Then for any p ≥ 2 and T < ∞ one has

sup
t≤T

E
[|Xt |p]≤ c

for some constant c that only depends on |X0|, K|[0,T ], cLG, p and T .



3166 E. ABI JABER, M. LARSSON AND S. PULIDO

PROOF. Let τn = inf{t ≥ 0 : |Xt | ≥ n} ∧ T , and observe that

|Xt |p1{t<τn}

≤
∣∣∣∣X0 +

∫ t

0
K(t − s)

(
b(Xs1{s<τn}) ds + σ(Xs1{s<τn}) dWs

)∣∣∣∣p.
(3.2)

Indeed, for t ≥ τn the left-hand side is zero while the right-hand side is nonneg-
ative. For t < τn, the local behavior of the stochastic integral (see, e.g., Protter
((2004), Corollary of Theorem II.18)) implies that the right-hand side is equal to∣∣∣∣X0 +

∫ t

0
K(t − s)

(
b(Xs) ds + σ(Xs) dWs

)∣∣∣∣p.

This in turn equals |Xt |p since X is assumed to be a solution of (1.1). We deduce
that (3.2) holds.

Starting from (3.2), we argue as in the proof of Lemma 2.4. The Jensen and
BDG inequalities combined with the linear growth condition (3.1) yield that the
expectations fn(t) = E[|Xt |p1{t<τn}] satisfy the inequality

fn ≤ c′ + c′|K|2 ∗ fn

on [0, T ] for some constant c′ that only depends on |X0|, ‖K‖L2(0,T ), cLG,
p and T . Consider now the scalar nonconvolution kernel K ′(t, s) = c′|K(t −
s)|21s≤t . This is a Volterra kernel in the sense of Gripenberg, Londen and Staffans
((1990), Definition 9.2.1), and for any interval [u, v] ⊂ R+, Young’s inequality
implies that ∣∣∣∣∣∣K ′∣∣∣∣∣∣

L1(u,v) ≤ c′‖K‖L2(0,v−u),(3.3)

where ||| · |||L1(u,v) is defined in Gripenberg, Londen and Staffans ((1990), Def-
inition 9.2.2). Thus −K ′ is of type L1 on (0, T ). Next, we show that −K ′ ad-
mits a resolvent of type L1 on (0, T ) in the sense of Gripenberg, Londen and
Staffans ((1990), Definition 9.3.1). For v − u sufficiently small, the right-hand
side in (3.3) is smaller than 1, where |||K ′|||L1(u,v) < 1. We now apply Gripenberg,
Londen and Staffans ((1990), Corollary 9.3.14) to obtain a resolvent of type L1

on (0, T ) of −K ′, which we denote by R′. Since −K ′ is a convolution kernel,
so is R′. Since also −c′|K|2 is nonpositive, it follows from Gripenberg, Londen
and Staffans ((1990), Proposition 9.8.1) that R′ is also nonpositive. The Gronwall
type inequality in Gripenberg, Londen and Staffans ((1990), Lemma 9.8.2) then
yields fn(t) ≤ c′(1 − (R′ ∗ 1)(t)) ≤ c′(1 − (R′ ∗ 1)(T )) for t ∈ [0, T ]. Sending n

to infinity and using Fatou’s lemma completes the proof. �

REMARK 3.2. It is clear from the proof that the conclusion of Lemma 3.1
holds also for state and time-dependent predictable coefficients b(x, t,ω) and
σ(x, t,ω), provided they satisfy a linear growth condition uniformly in (t,ω), that
is, ∣∣b(x, t,ω)

∣∣∨ ∣∣σ(x, t,ω)
∣∣≤ cLG

(
1 + |x|), x ∈ Rd, t ∈ R+,ω ∈ �,

for some constant cLG.
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The following existence results can be proved using techniques based on classi-
cal methods for stochastic differential equations; the proofs are given in Section A.

THEOREM 3.3. Assume b and σ are Lipschitz continuous and the components
of K satisfy (2.5). Then (1.1) admits a unique continuous strong solution X for any
initial condition X0 ∈ Rd .

THEOREM 3.4. Assume that K admits a resolvent of the first kind, that the
components of K satisfy (2.5), and that b and σ are continuous and satisfy the
linear growth condition (3.1). Then (1.1) admits a continuous weak solution for
any initial condition X0 ∈ Rd .

REMARK 3.5. At the cost of increasing the dimension, (1.1) also covers the
superficially different equation X = X0 +K1 ∗ (b(X)dt)+K2 ∗ (σ (X)dW) where
the drift and diffusion terms are convolved with different kernels K1 and K2. In-
deed, if one defines

K̃ =
(
K1 K2
0 K2

)
, b̃(x, y) =

(
b(x)

0

)
, σ̃ (x, y) =

(
0 σ(x)

0 0

)
,

and obtains a solution Z = (X,Y ) of the equation Z = Z0 + K̃ ∗ (b̃(Z)dt +
σ̃ (Z)dW̃ ) in R2d , where Z0 = (X0,0) and W̃ = (W ′,W) is a 2d-dimensional
Brownian motion, then X is a solution of the original equation of interest. If K1
and K2 admit resolvents of the first kind L1 and L2, then

L̃ =
(
L1 −L1
0 L2

)
is a resolvent of the first kind of K̃ , and Theorem 3.4 is applicable.

Our next existence result is more delicate, as it involves an assertion about
stochastic invariance of the nonnegative orthant Rd+. This forces us to impose
stronger conditions on the kernel K along with suitable boundary conditions on
the coefficients b and σ . We note that any nonnegative and nonincreasing kernel
that is not identically zero admits a resolvent of the first kind; see Gripenberg,
Londen and Staffans ((1990), Theorem 5.5.5).

THEOREM 3.6. Assume that K is diagonal with scalar kernels Ki on the di-
agonal that satisfy (2.5) as well as

(3.4)

Ki is nonnegative, not identically zero, nonincreasing and

continuous on (0,∞), and its resolvent of the first kind Li

is nonnegative and nonincreasing in the sense that

s �→ Li

([s, s + t]) is nonincreasing for all t ≥ 0.
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Assume also that b and σ are continuous and satisfy the linear growth condition
(3.1) along with the boundary conditions

xi = 0 implies bi(x) ≥ 0 and σi(x) = 0,

where σi(x) is the ith row of σ(x). Then (1.1) admits an Rd+-valued continuous
weak solution for any initial condition X0 ∈ Rd+.

EXAMPLE 3.7. If Ki is completely monotone on (0,∞) and not identically
zero, then (3.4) holds due to Gripenberg, Londen and Staffans ((1990), Theo-
rem 5.5.4). Recall that a function f is called completely monotone on (0,∞) if it is
infinitely differentiable there with (−1)kf (k)(t) ≥ 0 for all t > 0 and k = 0,1, . . . .
This covers, for instance, any constant positive kernel, the fractional kernel tα−1

with α ∈ (1
2 ,1), and the exponentially decaying kernel e−βt with β > 0. Moreover,

sums and products of completely monotone functions are completely monotone.

PROOF OF THEOREM 3.6. Define coefficients bn and σn by

bn(x) = b
((

x − n−1)+), σ n(x) = σ
((

x − n−1)+),
and let Xn be the solution of (1.1) given by Theorem 3.4, with b and σ replaced
by bn and σn. Note that bn and σn are continuous, satisfy (3.1) with a common
constant and converge to b(x+) and σ(x+) locally uniformly. Lemmas A.1 and A.2
therefore imply that, along a subsequence, Xn converges weakly to a solution X

of the stochastic Volterra equation

Xt = X0 +
∫ t

0
K(t − s)b

(
X+

s

)
ds +

∫ t

0
K(t − s)σ

(
X+

s

)
dWs.

It remains to prove that X is Rd+-valued, and hence a solution of (1.1). For this, it
suffices to prove that each Xn is Rd+-valued.

Dropping the superscript n, we are thus left with the task of proving the theorem
under the stronger condition that, for some fixed n ∈ N,

(3.5) xi ≤ n−1 implies bi(x) ≥ 0 and σi(x) = 0.

Define Z = ∫
b(X)dt + ∫

σ(X)dW . For any h > 0 and i ∈ {1, . . . , d}, we have
the identity

(3.6) Xi,t+h = Xi,0 + (Ki ∗ dZi)t+h = Xi,0 + (�hKi ∗ dZi)t + Yt , t ≥ 0,

where we define

Yt =
∫ ∞

0
1(t,t+h](s)Ki(t + h − s) dZi,s, t ≥ 0.

Since �hKi satisfies (2.5) due to Example 2.3(vi), Lemma 2.4 shows that �hKi ∗
dZi has a continuous version. Thus so does Y , and these are the versions used in
(3.6).
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We claim that for any stopping time τ we have, on {τ < ∞}, the almost sure
equality

(3.7) Yτ =
∫ ∞

0
1(τ,τ+h](s)Ki(τ + h − s) dZi,s .

Note that the stochastic integral on the right-hand side is well defined, since the
integrand 1(τ,τ+h](s)Ki(τ +h−s) defines a predictable and Zi-integrable process.
We prove (3.7) in the case where τ is bounded by some T ≥ 0, and assuming
that bi = 0 so that dZi = σi(X)dW . The general case then follows easily. If τ

takes finitely many values, the identity (3.7) holds due to the local behavior of
the stochastic integral. Suppose now τ ≤ T is arbitrary. For k ∈ N, let τk be the
stopping time given as the minimum of T and the smallest multiple of 2−k greater
than τ . Then τk takes finitely many values and 0 ≤ τk − τ ≤ 2−k . For all k ∈ N

such that 2−k < h, we have the bound

E

[∫ T +h

0

∣∣1(τk,τk+h](s)Ki(τk + h − s)

− 1(τ,τ+h](s)Ki(τ + h − s)
∣∣2∣∣σi(Xs)

∣∣2 ds

]

≤
(∫ h

h−2−k
Ki(u)2 du +

∫ 2−k

0
Ki(u)2 du

+
∫ h

0

(
Ki(u) − Ki

(
u + 2−k))2 du

)
E
[

sup
s≤T +h

∣∣σi(Xs)
∣∣2].

The right-hand side is finite and tends to zero as k → ∞ due to Lemmas 2.4
and 3.1 and the dominated convergence theorem. Thus by the Itô isometry,∫∞

0 1(τk,τk+h](s)Ki(τk +h−s) dZi,s converges in L2 to the right-hand side of (3.7)
as k → ∞. Since Yt is continuous in t , we deduce that (3.7) holds, as claimed.

Define the stopping time

τi = inf{t ≥ 0 : Xi,t < 0}.
Applying (3.6) and (3.7) with this stopping time yields, for any fixed h > 0,

(3.8)
Xi,τi+h = Xi,0 + (�hKi ∗ dZi)τi

+
∫ ∞

0
1(τi ,τi+h](s)Ki(τi + h − s) dZi,s

on {τi < ∞}. We claim that

(3.9) (�hKi ∗ Li)(t) is nondecreasing in t.

Indeed, using that Ki ∗ Li ≡ 1 we have

(�hKi ∗ Li)(t) =
∫
[0,t]

Ki(t + h − u)Li(du)
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= 1 −
∫
(t,t+h]

Ki(t + h − u)Li(du)

= 1 −
∫
(0,h]

Ki(h − u)Li(t + du)

and, therefore, for any s ≤ t ,

(�hKi ∗ Li)(t) − (�hKi ∗ Li)(s)

=
∫
(0,h]

Ki(h − u)
(
Li(s + du) − Li(t + du)

)
.

This is nonnegative since Ki is nonnegative and Li nonincreasing, proving (3.9).
Furthermore, since Ki is nonincreasing and Li nonnegative we obtain

(3.10) 0 ≤ (�hKi ∗ Li)(t) ≤ (Ki ∗ Li)(t) = 1.

Since �hKi is continuous and of locally bounded variation on R+, it follows that
�hKi ∗ Li is right continuous and of locally bounded variation. Moreover, as re-
marked above, �hKi ∗ dZi has a continuous version. Thus (2.15) in Lemma 2.6,
along with (3.9)–(3.10) and the fact that Xi,t ≥ 0 for t ≤ τi , yield

Xi,0 + (�hKi ∗ dZi)τi
= (

1 − (�hKi ∗ Li)(τi)
)
Xi,0

+ (�hKi ∗ Li)(0)Xi,τi

+ (d(�hKi ∗ Li) ∗ Xi

)
τi

≥ 0.

In view of (3.8), it follows that

(3.11) Xi,τi+h ≥
∫ ∞

0
1(τi ,τi+h](s)Ki(τi + h − s)

(
bi(Xs) ds + σi(Xs) dWs

)
on {τi < ∞}.

Next, for every ε > 0, define the event

Aε = {
bi(Xs) ≥ 0 and σi(Xs) = 0 for all s ∈ [τi, τi + ε)

}
.

We now argue that

(3.12) P
({τi < ∞} ∩ Aε

)= 0.

Indeed, on {τi < ∞} ∩ Aε , the local behavior of the stochastic integral and (3.11)
yield Xi,τi+h ≥ 0 for each fixed h ∈ (0, ε). Then, almost surely, this holds simulta-
neously for all h ∈ Q∩ (0, ε), and, by continuity, simultaneously for all h ∈ (0, ε).
On the other hand, by definition of τi , on {τi < ∞} one has Xi,τi+h < 0 for some
h ∈ (0, ε). We deduce (3.12).

Finally, by (3.5) and continuity of X, we have P(
⋃

ε∈Q∩(0,1) Aε) = 1. In view of
(3.12), it follows that τi = ∞ almost surely. Since i was arbitrary, X is Rd+-valued
as desired. �
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4. Affine Volterra processes. Fix a dimension d ∈ N and a kernel K ∈
L2

loc(R+,Rd×d). Let a : Rd → Sd and b : Rd →Rd be affine maps given by

(4.1)
a(x) = A0 + x1A

1 + · · · + xdAd,

b(x) = b0 + x1b
1 + · · · + xdbd

for some Ai ∈ Sd and bi ∈ Rd , i = 0, . . . , d . To simplify notation, we introduce
the d × d matrix

B =
(
b1 · · · bd

)
,

and for any row vector u ∈ (Cd)∗ we define the row vector

A(u) = (
uA1u�, . . . , uAdu�).

Let E be a subset of Rd , which will play the role of state space for the process
defined below, and assume that a(x) is positive semidefinite for every x ∈ E. Let
σ : Rd → Rd×d be continuous and satisfy σ(x)σ (x)� = a(x) for every x ∈ E.
For instance, one can take σ(x) = √

π(a(x)), where π denotes the orthogonal
projection onto the positive semidefinite cone, and the positive semidefinite square
root is understood.

DEFINITION 4.1. An affine Volterra process (with state space E) is a contin-
uous E-valued solution X of (1.1) with a = σσ� and b as in (4.1). In this paper,
we always take X0 deterministic.

Setting K ≡ I , we recover the usual notion of an affine diffusion with state
space E; see, for example, Filipović (2009). Even in this case, existence and
uniqueness is often approached by first fixing a state space E of interest, and
then studying conditions on (a, b) under which existence and uniqueness can be
proved; see, for example, Cuchiero et al. (2011), Duffie, Filipović and Schacher-
mayer (2003), Krühner and Larsson (2018), Spreij and Veerman (2012). A key goal
is then to obtain explicit parameterizations that can be used in applications. In later
sections, we carry out this analysis for affine Volterra processes with state space
Rd , Rd+, and R × R+. In the standard affine case, more general results are avail-
able. Spreij and Veerman (2010) characterize existence and uniqueness of affine
jump-diffusions on closed convex state spaces, while Abi Jaber, Bouchard and Il-
land (2019) provide necessary and sufficient first-order geometric conditions for
existence of affine diffusions on general closed state spaces. We do not pursue
such generality here for affine Volterra processes.

Assuming that an affine Volterra process is given, one can however make state-
ments about its law. In the present section, we develop general results in this di-
rection. We start with a formula for the conditional mean. This is an immediate
consequence of the variation of constants formula derived in Lemma 2.5.
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LEMMA 4.2. Let X be an affine Volterra process. Then for all t ≤ T ,

(4.2)
E[XT | Ft ] =

(
I −

∫ T

0
RB(s) ds

)
X0 +

(∫ T

0
EB(s) ds

)
b0

+
∫ t

0
EB(T − s)σ (Xs) dWs,

where RB is the resolvent of −KB and EB = K − RB ∗ K . In particular,

E[XT ] =
(
I −

∫ T

0
RB(s) ds

)
X0 +

(∫ T

0
EB(s) ds

)
b0.

PROOF. Since X = X0 + (KB) ∗ X + K ∗ (b0 dt + σ(X)dW), Lemma 2.5
yields

X = (I − RB ∗ I )X0 + EB ∗ (b0 dt + σ(X)dW
)
.

Consider the local martingale Mt = ∫ t
0 EB(T − s)σ (Xs) dWs , t ∈ [0, T ]. Its

quadratic variation satisfies

E
[∣∣〈M〉T

∣∣]≤ ∫ T

0

∣∣EB(T − s)
∣∣2E[∣∣σ(Xs)

∣∣2]ds

≤ ‖EB‖L2(0,T ) max
s≤T

E
[∣∣σ(Xs)

∣∣2],
which is finite by Lemma 3.1. Thus M is a martingale, so taking Ft -conditional
expectations completes the proof. �

The first main result of this section is the following theorem, which expresses
the conditional Fourier–Laplace functional of an affine Volterra process in terms
of the conditional mean in Lemma 4.2 and the solution of a quadratic Volterra
integral equation, which we call a Riccati–Volterra equation.

THEOREM 4.3. Let X be an affine Volterra process and fix some T < ∞,
u ∈ (Cd)∗, and f ∈ L1([0, T ], (Cd)∗). Assume ψ ∈ L2([0, T ], (Cd)∗) solves the
Riccati–Volterra equation

(4.3) ψ = uK +
(
f + ψB + 1

2
A(ψ)

)
∗ K.

Then the process {Yt ,0 ≤ t ≤ T } defined by

Yt = Y0 +
∫ t

0
ψ(T − s)σ (Xs) dWs

− 1

2

∫ t

0
ψ(T − s)a(Xs)ψ(T − s)� ds,

(4.4)

Y0 = uX0 +
∫ T

0

(
f (s)X0 + ψ(s)b(X0) + 1

2
ψ(s)a(X0)ψ(s)�

)
ds(4.5)
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satisfies

(4.6)

Yt = E
[
uXT + (f ∗ X)T | Ft

]
+ 1

2

∫ T

t
ψ(T − s)a

(
E[Xs |Ft ])ψ(T − s)� ds

for all 0 ≤ t ≤ T . The process {exp(Yt ),0 ≤ t ≤ T } is a local martingale and, if it
is a true martingale, one has the exponential-affine transform formula

(4.7) E
[
exp
(
uXT + (f ∗ X)T

) | Ft

]= exp(Yt ), t ≤ T .

Referring to (4.7) as an exponential-affine transform formula is motivated by the
fact that Yt depends affinely on the conditional expectations E[Xs | Ft ]. We show
in Theorem 4.5 below that under mild additional assumptions on K , Yt is actually
an affine function of the past trajectory {Xs, s ≤ t}. Before proving Theorem 4.3,
we give the following lemma.

LEMMA 4.4. The Riccati–Volterra equation (4.3) is equivalent to

(4.8) ψ = uEB +
(
f + 1

2
A(ψ)

)
∗ EB,

where EB = K − RB ∗ K and RB is the resolvent of −KB .

PROOF. Assume (4.8) holds. Using the identity EB ∗ (BK) = −RB ∗ K , we
get

ψ − ψ ∗ (BK) = u(EB + RB ∗ K) +
(
f + 1

2
A(ψ)

)
∗ (EB + RB ∗ K),

which is (4.3). Conversely, assume (4.3) holds. With R̃B being the resolvent of
−BK , we obtain

ψ − ψ ∗ R̃B = u(K − K ∗ R̃B) +
(
f + 1

2
A(ψ)

)
∗ (K − K ∗ R̃B) − ψ ∗ R̃B.

To deduce (4.8), it suffices to prove K ∗ R̃B = RB ∗K . Equivalently, we show that
for each T < ∞, there is some σ > 0 such that

(4.9)
(
e−σ tK

) ∗ (e−σ t R̃B

)= (
e−σ tRB

) ∗ (e−σ tK
)

on [0, T ],
where e−σ t is shorthand for the function t �→ e−σ t . It follows from the defini-
tions that e−σ tRB is the resolvent of −e−σ tKB , and that e−σ t R̃B is the resol-
vent of −e−σ tBK ; see Gripenberg, Londen and Staffans ((1990), Lemma 2.3.3).
Choosing σ large enough that ‖e−σ tKB‖L1(0,T ) < 1 we get, as in the proof of
Gripenberg, Londen and Staffans ((1990), Theorem 2.3.1),

e−σ tRB = −∑
k≥1

(
e−σ tKB

)∗k and e−σ t R̃B = −∑
k≥1

(
e−σ tBK

)∗k
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on [0, T ]. Since B does not depend on t(
e−σ tKB

)∗k ∗ (e−σ tK
)= (

e−σ tK
) ∗ (e−σ tBK

)∗k
, k ≥ 1.

This readily implies (4.9), as required. �

PROOF OF THEOREM 4.3. Let Ỹt be defined by the right-hand side of (4.6) for
0 ≤ t ≤ T . We first prove that Ỹ0 = Y0. A calculation using the identity va(x)v� =
vA0v� + A(v)x and the definition (4.5) of Y0 yields

(4.10)

Ỹ0 − Y0 = uE[XT − X0] + (f ∗E[X − X0])(T )

+
(

1

2
A(ψ) ∗E[X − X0]

)
(T ) − (ψ ∗ (b0 + BX0

))
(T ),

where E[X − X0] denotes the function t �→ E[Xt − X0] = E[Xt − X0 | F0]. This
function satisfies

E[X − X0] = K ∗ (b0 + BE[X]),
as can be seen by taking expectations in (1.1) and applying the Fubini theorem
thanks to Lemma 3.1. Consequently,

1

2
A(ψ) ∗E[X − X0] = 1

2
A(ψ) ∗ K ∗ (b0 + BE[X])

= (
ψ − uK − (f + ψB) ∗ K

) ∗ (b0 + BE[X])
= ψ ∗ (b0 + BE[X])− uE[X − X0]

− (f + ψB) ∗E[X − X0].
Substituting this into (4.10) yields Ỹ0 − Y0 = 0, as required.

We now prove that Ỹ = Y . In the remainder of the proof, we let C denote a
quantity that does not depend on t , and may change from line to line. Using again
the identity va(x)v� = vA0v� + A(v)x, we get

Ỹt = C + uE[XT | Ft ] +
∫ T

0

(
f + 1

2
A(ψ)

)
(T − s)E[Xs | Ft ]ds

− 1

2

∫ t

0
ψ(T − s)a(Xs)ψ(T − s)� ds.

Lemma 4.2, the stochastic Fubini theorem (see Veraar ((2012), Theorem 2.2)) and
a change of variables yield∫ T

0

(
f + 1

2
A(ψ)

)
(T − s)E[Xs | Ft ]ds

= C +
∫ T

0

(
f + 1

2
A(ψ)

)
(T − s)

∫ t

0
1{r<s}EB(s − r)σ (Xr) dWr ds
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= C +
∫ t

0

(∫ T

r

(
f + 1

2
A(ψ)

)
(T − s)EB(s − r) ds

)
σ(Xr) dWr

= C +
∫ t

0

((
f + 1

2
A(ψ)

)
∗ EB

)
(T − r)σ (Xr) dWr,

where the application of the stochastic Fubini theorem in the second equality is
justified by the fact that∫ T

0

(∫ t

0

∣∣∣∣(f + 1

2
A(ψ)

)
(T − s)1{r<s}EB(s − r)σ (Xr)

∣∣∣∣2 dr

)1/2
ds

≤ max
0≤s≤T

∣∣σ(Xs)
∣∣‖EB‖L2(0,T )

∥∥∥∥f + 1

2
A(ψ)

∥∥∥∥
L1(0,T )

< ∞.

Since E[XT | Ft ] = C + ∫ t
0 EB(T − r)σ (Xr) dWr by Lemma 4.2, we arrive at

Ỹt = C +
∫ t

0

(
uEB +

(
f + 1

2
A(ψ)

)
∗ EB

)
(T − r)σ (Xr) dWr

− 1

2

∫ t

0
ψ(T − s)a(Xs)ψ(T − s)� ds.

Evaluating this equation at t = 0, we find that the quantity C appearing on the
right-hand side is equal to Ỹ0, which we already proved is equal to Y0. Due to
Lemma 4.4 and the definition (4.4) of Yt , we then obtain that Ỹ = Y .

The final statements are now straightforward. Indeed, (4.4) shows that Y + 1
2〈Y 〉

is a local martingale, so that exp(Y ) is a local martingale by Itô’s formula. In the
true martingale situation, the exponential-affine transform formula then follows
upon observing that YT = uXT + (f ∗ X)T by (4.6). �

In the particular case f ≡ 0 and t = 0, Theorem 4.3 yields two different expres-
sions for the Fourier–Laplace transform of X,

E
[
euXT

]= exp
(
E[uXT ] + 1

2

∫ T

0
ψ(T − t)a

(
E[Xt ])ψ(T − t)� dt

)
(4.11)

= exp
(
φ(T ) + χ(T )X0

)
,(4.12)

where φ and χ are defined by

φ′(t) = ψ(t)b0 + 1

2
ψ(t)A0ψ(t)�, φ(0) = 0,(4.13)

χ ′(t) = ψ(t)B + 1

2
A
(
ψ(t)

)
, χ(0) = u.(4.14)

If K admits a resolvent of the first kind L, one sees upon convolving (4.3) by L and
using (2.13) that χ = ψ ∗ L; see also Example 4.7 below. Note that (4.13)–(4.14)
reduce to the classical Riccati equations when K ≡ I , since in this case L = δ0I ,
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and hence ψ = χ . While the first expression (4.11) does exist in the literature
on affine diffusions in the classical case K ≡ I (see Spreij and Veerman ((2010),
Proposition 4.2)), the second expression (4.12) is much more common.

In the classical case, one has a conditional version of (4.12), namely

E
[
euXT | Ft

]= exp
(
φ(T − t) + ψ(T − t)Xt

)
.

This formulation has the advantage of showing clearly that the right-hand side
depends on Xt in an exponential-affine manner. In the general Volterra case, the
lack of Markovianity precludes such a simple form, but using the resolvent of the
first kind it is still possible to obtain an explicit expression that is exponential-
affine in the past trajectory {Xs, s ≤ t}. Note that this property is not at all obvious
either from (4.7) or from the expression

E
[
euXT | Ft

]= E
(
Y0 +

∫
ψ(T − s)σ (Xs) dWs

)
t

,

which follows directly from (4.4)–(4.5) and where E denotes stochastic exponen-
tial. The second main result of this section directly leads to such an exponential-
affine representation under mild additional assumptions on K .

THEOREM 4.5. Assume K is continuous on (0,∞), admits a resolvent of the
first kind L, and that one has the total variation bound

(4.15) sup
h≤T

‖�hK ∗ L‖TV(0,T ) < ∞

for all T ≥ 0. Then the following statements hold:

(i) With the notation and assumptions of Lemma 4.2, the matrix function

�h = �hEB ∗ L − �h(EB ∗ L)

is right continuous and of locally bounded variation on [0,∞) for every h ≥ 0,
and the conditional expectation (4.2) is given by

(4.16) E[XT | Ft ] = (I ∗EB)(h)b0 + (�hEB ∗L)(0)Xt −�h(t)X0 + (d�h ∗X)t

with h = T − t .
(ii) With the notation and assumptions of Theorem 4.3, the scalar function

πh = �hψ ∗ L − �h(ψ ∗ L)

is right continuous and of bounded variation on [0, T − h] for every h ≤ T − t ,
and the process Y in (4.6) is given by

(4.17) Yt = φ(h) + (�hf ∗ X)t + (�hψ ∗ L)(0)Xt − πh(t)X0 + (dπh ∗ X)t

with h = T − t and

φ(h) =
∫ h

0

(
ψ(s)b0 + 1

2
ψ(s)A0ψ(s)�

)
ds.
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PROOF. (i): We wish to apply Lemma 2.6 with F = �hEB for any fixed h ≥ 0,
so we first verify its hypotheses. Throughout the proof, we will use the following
identity for shifted convolutions:

(4.18) �h(f ∗ g)(t) = (�hf ∗ g)(t) + (f ∗ �tg)(h).

Applying the shift operator �h to the identity EB = K − RB ∗ K and using (4.18)
leads to

�hEB(t) = �hK(t) − (�hRB ∗ K)(t) − (RB ∗ �tK)(h).

Convolving with L and using the Fubini theorem yields

(�hEB ∗ L)(t) = (�hK ∗ L)(t) −
∫ t+h

h
RB(s) ds

−
∫ h

0
RB(h − s)(�sK ∗ L)(t) ds.

Owing to (4.15), we get the bound

(4.19) sup
h≤T

‖�hEB ∗ L‖TV(0,T ) < ∞,

and using continuity of K on (0,∞) we also get that �hEB ∗L is right continuous
on R+. In particular, in view of the identity

(4.20) EB ∗ L = I − RB ∗ I,

we deduce that �h is right continuous and of locally bounded variation as stated.
Now, observe that EB = K −RB ∗K is continuous on (0,∞), since this holds for
K and since RB and K are both in L2

loc. Moreover, Example 2.3(iii) and (v) imply
that the components of EB satisfy (2.5). As a result, Example 2.3(vi) shows that
the components of �hEB satisfy (2.5) for any h ≥ 0. Fix h = T − t and define

Z =
∫

b(X)dt +
∫

σ(X)dW.

It follows from Lemma 2.4 that �hEB ∗ dZ has a continuous version. Lemma 2.6
with F = �hEB yields

�hEB ∗ dZ = (�hEB ∗ L)(0)X − (�hEB ∗ L)X0 + d(�hEB ∗ L) ∗ X.

Moreover, rearranging (4.2) and using (4.20) gives

E[XT | Ft ] = (EB ∗ L)(T )X0 + (EB ∗ I )(h)b0 + (�hEB ∗ (dZ − BX dt)
)
t .

Combining the previous two equalities and using the definition of �h yields

E[XT | Ft ] = (EB ∗ I )(h)b0 + (�hEB ∗ L)(0)Xt − �h(t)X0

+ ((d(�hEB ∗ L) − �hEBB dt
) ∗ X

)
t .
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The definition of EB and the resolvent equation (2.11) show that EBB = −RB ,
which in combination with (4.20) gives EBB dt = d(EB ∗ L). Thus (4.16) holds
as claimed. This completes the proof of (i).

(ii): Recall that Lemma 4.4 gives ψ = uEB + G(ψ) ∗ EB where

G(ψ) = f + 1

2
A(ψ).

Manipulating this equation and using the identity (4.18) gives

�hψ(t) = u�hEB(t) + (G(ψ) ∗ �tEB

)
(h) + (G(�hψ) ∗ EB

)
(t).

Convolving with L and using Fubini yields

(4.21)
(�hψ ∗ L)(t) = u(�hEB ∗ L)(t) + (G(ψ) ∗ (�•EB ∗ L)(t)

)
(h)

+ (G(�hψ) ∗ EB ∗ L
)
(t),

where (�•EB ∗ L)(t) denotes the function s �→ (�sEB ∗ L)(t). Similarly,

�h(ψ ∗ L)(t) = u�h(EB ∗ L)(t) + (G(ψ) ∗ �•(EB ∗ L)(t)
)
(h)

+ (G(�hψ) ∗ EB ∗ L
)
(t).

Computing the difference between the previous two expressions gives

(4.22) πh(t) = u�h(t) + (G(ψ) ∗ �•(t)
)
(h).

In combination with (4.19) and (4.20), as well as the properties of �h that we have
already proved, it follows that πh is right continuous and of bounded variation as
stated. Now, using Fubini we get

(4.23) E
[
(f ∗ X)T | Ft

]= (�T −t f ∗ X)t +
∫ T −t

0
f (s)E[XT −s | Ft ]ds.

Combining (4.6), (4.16) and (4.23), we obtain after some computations

Yt = (�T −t f ∗ X)t + 1

2

∫ T −t

0
ψ(s)A0ψ(s)� ds

+
(
u(I ∗ EB)(T − t) +

∫ T −t

0
G
(
ψ(s)

)
(I ∗ EB)(T − t − s) ds

)
b0

+
(
u(�T −tEB ∗ L)(0) +

∫ T −t

0
G
(
ψ(s)

)
(�T −t−sEB ∗ L)(0) ds

)
Xt

−
(
u�T −t (t) +

∫ T −t

0
G
(
ψ(s)

)
�T −t−s(t) ds

)
X0

+ u(d�T −t ∗ X)t +
∫ T −t

0
G
(
ψ(s)

)
(d�T −t−s ∗ X)t ds

= I + II + III + IV + V.

(4.24)
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Here,

I + II = (�T −t f ∗ X)t + 1

2

∫ T −t

0
ψ(s)A0ψ(s)� ds

+ ((uEB + G(ψ) ∗ EB

)
b0 ∗ 1

)
(T − t)

= (�T −t f ∗ X)t + φ(T − t).

(4.25)

As a result of (4.20), EB ∗L is continuous on R+, where (G(�hψ)∗EB ∗L)(0) =
0. Evaluating (4.21) at t = 0 thus gives

(4.26) III = (�T −tψ ∗ L)(0)Xt .

As a consequence of (4.22),

(4.27) IV = −πT −t (t)X0.

Finally, it follows from (4.22) that dπh = ud�h + μh, where μh(dt) = (G(ψ) ∗
d�•(dt))(h). Since for any bounded function g on [0, t], we have∫

[0,t]
g(r)μh(dr) =

∫ h

0
G
(
ψ(s)

)(∫ t

0
g(r) d�h−s(dr)

)
ds,

we obtain

(4.28) V = (dπT −t ∗ X)t .

Combining (4.24)–(4.28) yields (4.17) and completes the proof. �

REMARK 4.6. Consider the classical case K ≡ I . Then L(dt) = Iδ0(dt),
RB(t) = −BeBt , and EB(t) = eBt . Therefore, (�hEB ∗ L)(t) = eB(t+h) =
�h(EB ∗ L)(t), so that (4.16) reduces to the well-known expression

E[XT | Ft ] = eB(T −t)Xt +
∫ T −t

0
eBsb0 ds.

In addition, in (4.17) the correction πh vanishes so that, if f ≡ 0, the expression
for Yt reduces to the classical form φ(T − t) + ψ(T − t)Xt .

EXAMPLE 4.7 (Fractional affine processes). Let K = diag(K1, . . . ,Kd),
where

Ki(t) = tαi−1

(αi)

for some αi ∈ (1
2 ,1]. Then L = diag(L1, . . . ,Ld) with Li(dt) = t−αi

(1−αi)
dt if αi <

1, and Li(dt) = δ0(dt) if αi = 1. It follows that χi = ψi ∗ Li = I 1−αiψi , where
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I 1−αi denotes the Riemann–Liouville fractional integral operator. Hence, (4.3) and
(4.13) reduce to the following system of fractional Riccati equations:

φ′ = ψb0 + 1

2
ψA0ψ�, φ(0) = 0,

Dαiψi = fi + ψbi + 1

2
ψAiψ�, i = 1, . . . , d, I 1−αψ(0) = u,

where Dαi = d
dt

I 1−αi is the Riemann–Liouville fractional derivative. Moreover,
for t = 0, (4.7) reads

E
[
euXT +(f ∗X)T

]= exp
(
φ(T ) + I 1−αψ(T )X0

)
,

where we write I 1−αψ = (I 1−α1ψ1, . . . , I
1−αd ψd). This generalizes the expres-

sions in El Euch and Rosenbaum (2018, 2019). Notice that the identity Lαi
∗Kαi

≡
1 is equivalent to the identity Dαi (Iαi f ) = f .

5. The Volterra Ornstein–Uhlenbeck process. The particular specification
of (4.1) where A1 = · · · = Ad = 0, so that a ≡ A0 is a constant symmetric positive
semidefinite matrix, yields an affine Volterra process with state space E = Rd that
we call the Volterra Ornstein–Uhlenbeck process. It is the solution of the equation

Xt = X0 +
∫ t

0
K(t − s)

(
b0 + BXs

)
ds +

∫ t

0
K(t − s)σ dWs,

where σ ∈ Rd×d is a constant matrix with σσ� = A0. Here, existence and unique-
ness is no issue. Indeed, Lemma 2.6 with T = t yields the explicit formula

Xt =
(
I −

∫ t

0
RB(s) ds

)
X0 +

(∫ t

0
EB(s) ds

)
b0 +

∫ t

0
EB(t − s)σ dWs,

where RB is the resolvent of −KB and EB = K − RB ∗ K . In particular, Xt

is Gaussian. Furthermore, the solution of the Riccati–Volterra equation (4.3) is
obtained explicitly via Lemma 4.4 as

ψ = uEB + f ∗ EB.

The quadratic variation of the process Y in (4.4) is given by

〈Y 〉t =
∫ t

0
ψ(T − s)σσ�ψ(T − s)� ds,

and is in particular deterministic. The martingale condition in Theorem 4.3 is thus
clearly satisfied, and the exponential-affine transform formula (4.7) holds for any
T < ∞, u ∈ (Cd)∗, and f ∈ L1([0, T ], (Cd)∗).
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6. The Volterra square-root process. We now consider affine Volterra pro-
cesses whose state space is the nonnegative orthant E = Rd+. We let K be diagonal
with scalar kernels Ki ∈ L2

loc(R+,R) on the diagonal. The coefficients a and b in
(4.1) are chosen so that A0 = 0, Ai is zero except for the (i, i) element which is
equal to σ 2

i for some σi > 0, and

(6.1) b0 ∈ Rd+ and Bij ≥ 0 for i �= j.

The conditions on a and b are the same as in the classical situation K ≡ I , in
which case they are necessary and sufficient for (1.1) to admit a Rd+-valued so-
lution for every initial condition X0 ∈ Rd+. With this setup, we obtain an affine
Volterra process that we call the Volterra square-root process. It is the solution of
the equation

(6.2)
Xi,t = Xi,0 +

∫ t

0
Ki(t − s)bi(Xs) ds

+
∫ t

0
Ki(t − s)σi

√
Xi,s dWi,s, i = 1, . . . , d.

The Riccati–Volterra equation (4.3) becomes

(6.3)
ψi(t) = uiKi(t) +

∫ t

0
Ki(t − s)

(
fi(s) + ψ(s)bi + σ 2

i

2
ψi(s)

2
)

ds,

i = 1, . . . , d.

The following theorem is our main result on Volterra square-root processes.

THEOREM 6.1. Assume each Ki satisfies (2.5) and the shifted kernels �hKi

satisfy (3.4) for all h ∈ [0,1]. Assume also that (6.1) holds.

(i) The stochastic Volterra equation (6.2) has a unique in law Rd+-valued con-
tinuous weak solution X for any initial condition X0 ∈ Rd+. For each i, the paths
of Xi are Hölder continuous of any order less than γi/2, where γi is the constant
associated with Ki in (2.5).

(ii) For any u ∈ (Cd)∗ and f ∈ L1
loc(R+, (Cd)∗)) such that

Reui ≤ 0 and Refi ≤ 0 for all i = 1, . . . , d,

the Riccati–Volterra equation (6.3) has a unique global solution ψ ∈ L2
loc(R+,

(Cd)∗), which satisfies Reψi ≤ 0, i = 1, . . . , d . Moreover, the exponential-affine
transform formula (4.7) holds with Y given by (4.4)–(4.6).

EXAMPLE 6.2. A sufficient condition for Ki to satisfy the assumptions of
Theorem 6.1 is that it satisfies (2.5) and is completely monotone and not identically
zero; see Example 3.7. This covers in particular the gamma kernel tα−1e−βt with
α ∈ (1

2 ,1] and β ≥ 0.
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PROOF. Thanks to (6.1) and the form of σ(x), Theorem 3.6 yields a Rd+-
valued continuous weak solution X of (6.2) for any initial condition X0 ∈ Rd+. The
stated path regularity then follows from the last statement of Lemma 2.4.

Next, the existence, uniqueness, and nonpositivity statement for the Riccati–
Volterra equation (6.3) is proved in Lemma 6.3 below. Thus in order to apply
Theorem 4.3 to obtain the exponential-affine transform formula, it suffices to argue
that ReYt is bounded above on [0, T ], since exp(Y ) is then bounded, and hence a
martingale. This is done using Theorem 4.5, and we start by observing that

πr
h,i(t) = −

∫ h

0
ψr

i (h − s)Li(t + ds), t ≥ 0,

where πh = �hψ ∗L−�h(ψ ∗L) and we write πr
h = Reπh and ψr = Reψ . Due

to the assumption (3.4) on Li and since −ψr
i ≥ 0, it follows that πr

h,i is nonnegative
and nonincreasing.

As in the proof of Theorem 3.6, each Ki satisfies (3.9) and (3.10). This implies
that the total variation bound (4.15) holds, so that Theorem 4.5(ii) yields

ReYt = Reφ(h) + (Re�hf ∗ X)t + (�hψ
r ∗ L

)
(0)Xt

− πr
h(t)X0 + (dπr

h ∗ X
)
t ,

where h = T − t and, since A0 = 0,

φ(h) =
∫ h

0
ψ(s)b0 ds.

Observe that ψr, (�hψ
r ∗ L)(0), Re�hf , −πr

h, and dπr
h all have nonpositive

components. Since b0 and X take values in Rd+ we thus get

ReYt ≤ 0.

Thus exp(Y ) is bounded, where Theorem 4.3 is applicable and the exponential-
affine transform formula holds.

It remains to prove uniqueness in law for X. The law of X is determined by the
Laplace transforms E[exp(−∑n

i=1 λiXti )] with n ∈ N, λi ∈ (Rd)∗ with nonneg-
ative components, and ti ≥ 0. Uniqueness thus follows since these Laplace trans-
forms are approximated by the quantities E[exp((f ∗X)T )] as f ranges through all
(Rd)∗-valued continuous functions f with nonpositive components, and T ranges
through R+. �

LEMMA 6.3. Assume K is as in Theorem 6.1. Let u ∈ (Cd)∗ and f ∈
L1

loc(R+, (Cd)∗) satisfy

Reui ≤ 0 and Refi ≤ 0 for all i = 1, . . . , d.

Then the Riccati–Volterra equation (6.3) has a unique global solution ψ ∈
L2

loc(R+, (Cd)∗), and this solution satisfies Reψi ≤ 0, i = 1, . . . , d .
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PROOF. By Theorem B.1, there exists a unique noncontinuable solution
(ψ,Tmax) of (6.3). Let ψr and ψ i denote the real and imaginary parts of ψ . They
satisfy the equations

ψr
i = (Reui)Ki + Ki ∗

(
Refi + ψrbi + σ 2

i

2

((
ψr

i

)2 − (ψ i
i

)2))
,

ψ i
i = (Imui)Ki + Ki ∗ (Imfi + ψ ibi + σ 2

i ψr
i ψ

i
i

)
on [0, Tmax). Moreover, on this interval, −ψr

i satisfies the linear equation

χi = −(Reui)Ki + Ki ∗
(
−Refi + χbi + σ 2

i

2

((
ψ i

i

)2 + χiψ
r
i

))
.

Due to (6.1) and since Reu and Ref both have nonpositive components, The-
orem C.2 yields ψr

i ≤ 0, i = 1, . . . , d . Next, let g ∈ L2
loc([0, Tmax), (R

d)∗) and
h, � ∈ L2

loc(R+, (Rd)∗) be the unique solutions of the linear equations

gi = | Imui |Ki + Ki ∗ (| Imfi | + gbi + σ 2
i ψr

i gi

)
,

hi = | Imui |Ki + Ki ∗ (| Imfi | + hbi),
�i = (Reui)Ki + Ki ∗

(
Refi + �bi − σ 2

i

2
h2

i

)
.

These solutions exist on [0, Tmax) thanks to Corollary B.3. We now perform mul-
tiple applications of Theorem C.2. The functions g ± ψ i satisfy the equations

χi = 2(Imui)
±Ki + Ki ∗ (2(Imfi)

± + χbi + σ 2
i ψr

i χi

)
on [0, Tmax), so |ψ i

i | ≤ gi on [0, Tmax) for all i. Similarly, h − g satisfies the equa-
tion

χi = Ki ∗ (χbi − σ 2
i ψr

i gi

)
on [0, Tmax), so gi ≤ hi on [0, Tmax). Finally, ψr − � satisfies the equation

χi = Ki ∗
(
χbi + σ 2

i

2

((
ψr

i

)2 + h2
i − (ψ i

i

)2))
,

on [0, Tmax), so �i ≤ ψr
i on [0, Tmax). In summary, we have shown that

�i ≤ ψr
i ≤ 0 and

∣∣ψ i
i

∣∣≤ hi on [0, Tmax) for i = 1, . . . , d.

Since � and h are global solutions, and thus have finite norm on any bounded
interval, this implies that Tmax = ∞ and completes the proof of the lemma. �
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7. The Volterra Heston model. We now consider an affine Volterra process
with state space R×R+, which can be viewed as a generalization of the classical
Heston (1993) stochastic volatility model in finance, and which we refer to as
the Volterra Heston model. We thus take d = 2 and consider the process X =
(logS,V ), where the price process S and its variance process V are given by

(7.1)
dSt

St

=√
Vt

(√
1 − ρ2 dW1,s + ρ dW2,s

)
, S0 ∈ (0,∞),

and

(7.2) Vt = V0 +
∫ t

0
K(t − s)

(
κ(θ − Vs) ds + σ

√
Vs dW2,s

)
,

with kernel K ∈ L2
loc(R+,R), a standard Brownian motion W = (W1,W2), and

parameters V0, κ, θ, σ ∈ R+ and ρ ∈ [−1,1]. Here, the notation has been adapted
to comply with established conventions in finance. Weak existence and unique-
ness of V follows from Theorem 6.1 under suitable conditions on K . This in turn
determines S. Moreover, observe that the log-price satisfies

logSt = logS0 −
∫ t

0

Vs

2
ds +

∫ t

0

√
Vs

(√
1 − ρ2 dW1,s + ρ dW2,s

)
.

Therefore, the process X = (logS,V ) is indeed an affine Volterra process with
diagonal kernel diag(1,K) and coefficients a and b in (4.1) given by

A0 = A1 = 0, A2 =
(

1 ρσ

ρσ σ 2

)
,

b0 =
(

0
κθ

)
, B =

⎛⎝0 −1

2
0 −κ

⎞⎠ .

The Riccati–Volterra equation (4.3) takes the form

ψ1 = u1 + 1 ∗ f1,(7.3)

ψ2 = u2K + K ∗
(
f2 + 1

2

(
ψ2

1 − ψ1
)− κψ2 + 1

2

(
σ 2ψ2

2 + 2ρσψ1ψ2
))

.(7.4)

THEOREM 7.1. Assume K satisfies (2.5) and the shifted kernels �hK satisfy
(3.4) for all h ∈ [0,1].

(i) The stochastic Volterra equation (7.1)–(7.2) has a unique in law R×R+-
valued continuous weak solution (logS,V ) for any initial condition (logS0,V0) ∈
R×R+. The paths of V are Hölder continuous of any order less than γ /2, where
γ is the constant associated with K in (2.5).
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(ii) Let u ∈ (C2)∗ and f ∈ L1
loc(R+, (C2)∗)) be such that

Reψ1 ∈ [0,1], Reu2 ≤ 0 and Ref2 ≤ 0,

where ψ1 is given by (7.3). Then the Riccati–Volterra equation (7.4) has a unique
global solution ψ2 ∈ L2

loc(R+,C∗), which satisfies Reψ2 ≤ 0. Moreover, the
exponential-affine transform formula (4.7) holds with Y given by (4.4)–(4.6).

(iii) The process S is a martingale.

PROOF. As already mentioned above, part (i) follows directly from Theo-
rem 6.1 along with the fact that S is determined by V . Part (iii) is proved in
Lemma 7.3 below. The existence, uniqueness, and nonpositivity statement for the
Riccati–Volterra equation (7.4) is proved in Lemma 7.4 below. Thus in order to
apply Theorem 4.3 to obtain the exponential-affine transform formula, it suffices
to argue that exp(Y ) is a martingale. This is done using Theorem 4.5 and part (iii).
As the argument closely parallels that of the proof of Theorem 6.1, we only pro-
vide an outline. We use the notation of Theorem 4.5 and Theorem 6.1, in particular
πh and πr

h = Reπh, and let L be the resolvent of the first kind of K . Theorem 4.5
is applicable and gives

(7.5)

ReYt = ψr
1(h) logSt + (Re�hf1 ∗ logS)t + Reφ(h)

+ (�hψ
r
2 ∗ L

)
(0)Vt + (Re�hf2 ∗ V )t

− πr
h,2(t)V0 + (dπr

h,2 ∗ V
)
t ,

where h = T − t and

φ(h) = κθ

∫ h

0
ψ2(s) ds.

Since ψr
1 ∈ [0,1], integration by parts yields

ψr
1(h) logSt + (Re�hf1 ∗ logS)t = ψr

1(T ) logS0 +
∫ t

0
ψr

1(T − s) d logSs

≤ ψr
1(T ) logS0 + Ut − 1

2
〈U〉t ,

where

Ut =
∫ t

0
ψr

1(T − s)
√

Vs

(√
1 − ρ2 dW1,s + ρ dW2,s

)
.

This observation and inspection of signs and monotonicity properties applied to
(7.5) show that∣∣exp(Yt )

∣∣= exp(ReYt ) ≤ S
ψr

1(T )

0 exp
(
Ut − 1

2
〈U〉t

)
,

where the right-hand side is a true martingale by Lemma 7.3. Thus exp(Y ) is a
true martingale, Theorem 4.3 is applicable, and the exponential-affine transform
formula holds. �
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EXAMPLE 7.2 (Rough Heston model). In the fractional case K(t) = t1−α

(α)
with

α ∈ (1
2 ,1), we recover the rough Heston model introduced and studied by El Euch

and Rosenbaum (2018, 2019). Theorem 7.1 generalizes some of their main results.
For instance, with the notation of Example 4.7 and using that L(dt) = t−α

(1−α)
dt ,

we have

χ = (
ψ1, I

1−αψ2
)
,

which yields the full Fourier–Laplace functional with integrated log-price and vari-
ance,

E
[
exp
(
u1 logST + u2VT + (f1 ∗ logS)T + (f2 ∗ V )T

)]
= exp

(
φ(T ) + ψ1(T ) logS0 + I 1−αψ2(T )V0

)
,

where ψ1 is given by (7.3), and φ and ψ2 solve the fractional Riccati equations

φ′ = κθψ2, φ(0) = 0,

Dαψ2 = f2 + 1

2

(
ψ2

1 − ψ1
)+ (ρσψ1 − κ)ψ2 + σ 2

2
ψ2

2 , I 1−αψ2(0) = u2.

We now proceed with the lemmas used in the proof of Theorem 7.1.

LEMMA 7.3. Let g ∈ L∞(R+,R) and define

Ut =
∫ t

0
g(s)

√
Vs

(√
1 − ρ2 dW1,s + ρ dW2,s

)
).

Then the stochastic exponential exp(Ut − 1
2〈U〉t ) is a martingale. In particular, S

is a martingale.

PROOF. Define Mt = exp(Ut − 1
2〈U〉t ). Since M is a nonnegative local mar-

tingale, it is a supermartingale by Fatou’s lemma, and it suffices to show that
E[MT ] ≥ 1 for any T ∈ R+. To this end, define stopping times τn = inf{t ≥
0 : Vt > n} ∧ T . Then Mτn is a uniformly integrable martingale for each n by
Novikov’s condition, and we may define probability measures Qn by

dQn

dP
= Mτn.

By Girsanov’s theorem, the process dWn
t = dW2,t − 1{t≤τn}ρg(t)

√
Vt dt is Brow-

nian motion under Qn, and we have

V = V0 + K ∗ ((κθ − (κ − ρσg1[[0,τn]])V
)
dt + σ

√
V dWn).

Let γ be the constant appearing in (2.5) and choose p > 2 sufficiently large that
γ /2−1/p > 0. Observe that the expression κθ − (κ −ρσg(t)1{t≤τn(ω)})v satisfies



AFFINE VOLTERRA PROCESSES 3187

a linear growth condition in v, uniformly in (t,ω). Therefore, due to Lemma 3.1
and Remark 3.2, we have the moment bound

sup
t≤T

EQn

[|Vt |p]≤ c

for some constant c that does not depend on n. For any real-valued function f ,
write

|f |C0,α(0,T ) = sup
0≤s<t≤T

|f (t) − f (s)|
|t − s|α

for its α-Hölder seminorm. We then get

Qn(τn < T ) ≤ Qn
(
sup
t≤T

Vt > n
)

≤Qn(V0 + |V |C0,0(0,T ) > n
)

≤
(

1

n − V0

)p

EQn

[|V |p
C0,0(0,T )

]
≤
(

1

n − V0

)p

c′

for a constant c′ that does not depend on n, using Lemma 2.4 with α = 0 for the
last inequality. We deduce that

EP[MT ] ≥ EP[MT 1{τn=T }] = Qn(τn = T ) ≥ 1 −
(

1

n − V0

)p

c′,

and sending n to infinity yields EP[MT ] ≥ 1. This completes the proof. �

LEMMA 7.4. Assume K is as in Theorem 7.1. Let u ∈ (C2)∗ and f ∈
L1

loc(R+, (C2)∗)) be such that

Reψ1 ∈ [0,1], Reu2 ≤ 0 and Ref2 ≤ 0,

with ψ1 given by (7.3). Then the Riccati–Volterra equation (7.4) has a unique
global solution ψ2 ∈ L2

loc(R+,C∗), which satisfies Reψ2 ≤ 0.

PROOF. The proof parallels that of Lemma 6.3. For any complex number z,
we denote by zr and zi the real and imaginary parts of z. We rewrite equation (7.4)
for ψ2 as

(7.6) ψ2 = u2K + K ∗
(
f2 + 1

2

(
ψ2

1 − ψ1
)+ (ρσψ1 − κ)ψ2 + σ 2

2
ψ2

2

)
.
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By Theorem B.1, there exists a unique noncontinuable solution (ψ2, Tmax) of (7.6).
The functions ψr

2 and ψ i
2 satisfy the equations

ψr
2 = ur

2K + K ∗
(
f r

2 + 1

2

((
ψr

1
)2 − ψr

1 − (ψ i
1
)2)− ρσψ i

1ψ
i
2

− σ 2

2

(
ψ i

2
)2 + (ρσψr

1 − κ
)
ψr

2 + σ 2

2

(
ψr

2
)2)

,

ψ i
2 = ui

2K + K ∗
(
f i

2 + 1

2

(
2ψr

1ψ i
1 − ψ i

1
)

+ ρσψ i
1ψ

r
2 + (ρσψr

1 − κ + σ 2ψr
2
)
ψ i

2

)
on [0, Tmax). After some rewriting, we find that on [0, Tmax), −ψr

2 satisfies the
linear equation

χ = −ur
2K + K ∗

(
−f r

2 + 1

2

(
ψr

1 − (ψr
1
)2 + (1 − ρ2)(ψ i

1
)2)

+ (σψ i
2 + ρψ i

1)
2

2
−
(
ρσψr

1 − κ + σ 2

2
ψr

2

)
χ

)
.

Due to (6.1) and since ψr
1, |ρ| ∈ [0,1], and f r

2 and ur
2 are nonpositive, Theorem C.2

yields ψr
2 ≤ 0 on [0, Tmax).

Now, if σ = 0, then (7.6) is a linear Volterra equation, and thus admits a unique
global solution ψ2 ∈ L2

loc(R+,C∗) by Corollary B.3. Therefore, it suffices to con-
sider the case σ > 0.

Following the proof of Lemma 6.3, we let g ∈ L2
loc([0, Tmax), (R)∗) and h, � ∈

L2
loc(R+, (R)∗) be the unique solutions of the linear equations

g = ∣∣ui
2
∣∣K + ∣∣ρσ−1ui

1
∣∣

+ K ∗
(∣∣∣∣ρσ−1(L ∗ f i

1
)+ f i

2 + ψ i
1

2

(
2
(
1 − ρ2)ψr

1 − 1 + 2κρ

σ

)∣∣∣∣
+ (ρσψr

1 − κ + σ 2ψr
2
)
g

)
,

h = ∣∣ui
2
∣∣K + ∣∣ρσ−1ui

1
∣∣

+ K ∗
(∣∣∣∣ρσ−1(L ∗ f i

1
)+ f i

2 + ψ i
1

2

(
2
(
1 − ρ2)ψr

1 − 1 + 2κρ

σ

)∣∣∣∣
+ (ρσψr

1 − κ
)
h

)
,

� = ur
2K + K ∗

(
f r

2 + 1

2

((
ψr

1
)2 − ψr

1 − (ψ i
1
)2)− ∣∣ρσψ i

1
∣∣(h + ∣∣ρψ i

1σ
−1∣∣)

− σ 2

2

(
h + ∣∣ρψ i

1σ
−1∣∣)2 + (ρσψr

1 − κ
)
�

)
.
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These solutions exist on [0, Tmax) thanks to Corollary B.3. We now perform mul-
tiple applications of Theorem C.2. The functions g ± (ψ i

2 + (ρψ i
1σ

−1)) satisfy the
equations

χ = 2
(
ui

2
)±

K + 2
(
ρσ−1ui

1
)±

+ K ∗
(

2
(
ρσ−1(L ∗ f i

1
)+ f i

2 + ψ i
1

2

(
2
(
1 − ρ2)ψr

1 − 1 + 2κρ

σ

))±

+ (ρσψr
1 − κ + σ 2ψr

2
)
χ

)
on [0, Tmax), so that 0 ≤ |ψ i

2 + (ρψ i
1σ

−1)| ≤ g on [0, Tmax). Similarly, the function
h − g satisfies the equation

χ = K ∗ (−σ 2ψr
2g + (ρσψr

1 − κ
)
χ
)

on [0, Tmax), so that g ≤ h on [0, Tmax). This yields |ψ i
2| ≤ h + |ρψ i

1σ
−1| on

[0, Tmax). Finally, the function ψr
2 − � satisfies the linear equation

χ = K ∗
(∣∣ρσψ i

1
∣∣(h + ∣∣ρψ i

1σ
−1∣∣)− ρσψ i

1ψ
i
2

+ σ 2

2

((
h + ∣∣ρψ i

1σ
−1∣∣)2 − (ψ i

2
)2 + (ψr

2
)2)+ (ρσψr

1 − κ
)
χ

)
on [0, Tmax), so that � ≤ ψr

2 ≤ 0 on [0, Tmax). Since h and � are global solutions,
and thus have finite norm on any bounded interval, this implies that Tmax = ∞ and
completes the proof of the lemma. �

We conclude this section with a remark on an alternative variant of the Volterra
Heston model in the spirit of Comte, Coutin and Renault (2012), Guennoun et al.
(2018).

EXAMPLE 7.5. Let K̃ denote a scalar locally square integrable non-negative
kernel. Consider the following variant of the Volterra–Heston model:

dSt = St

√
Ṽt dBt , S0 ∈ (0,∞),

dVt = κ(θ − Vt) dt + σ
√

Vt dB⊥
t , V0 ≥ 0,

Ṽt = Ṽ0 + (K̃ ∗ V )t ,

where B and B⊥ are independent Brownian motions. Since K̃ is nonnegative, one
readily sees that there exists a unique strong solution taking values in R×R2+. The
3-dimensional process X = (logS,V, Ṽ ) is an affine Volterra process with

K = diag(1,1, K̃), b0 =
⎛⎝ 0

κθ

0

⎞⎠ , B =

⎛⎜⎜⎝0 0 −1

2
0 −κ 0
0 1 0

⎞⎟⎟⎠ ,
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A0 = 0, A1 = 0, A2 = diag
(
0, σ 2,0

)
, A3 = diag(1,0,0).

The Riccati–Volterra equation (4.3) reads

ψ ′
1 = f1, ψ1(0) = u1,

ψ ′
2 = f2 + ψ3 − κψ2 + σ 2

2
ψ2

2 , ψ2(0) = u2,

ψ3 = u3K̃ + K̃ ∗
(
f3 + 1

2
ψ1(ψ1 − 1)

)
.

Under suitable conditions, the solution exists and is unique, and the process eY

with Y given by (4.4)–(4.6) is a true martingale. Hence by Theorem 4.3 the
exponential-affine transform formula (4.7) holds. We omit the details. In partic-
ular, for f ≡ 0 we get, using Example 4.7,

χ(t) = (ψ ∗ L)(t) =
(
u1,ψ2(t), u3 + (u2

1 − u1)t

2

)
and

E
[
eu1 logST +u2VT +u3ṼT

]
= exp

(
φ(T ) + u1 logS0 + ψ2(T )V0 +

(
u3 + (u2

1 − u1)T

2

)
Ṽ0

)
,

where φ and ψ2 solve

φ′ = κθψ2, φ(0) = 0,

ψ ′
2 = u3K̃ + K̃ ∗ (u2

1 − u1)

2
− κψ2 + σ 2

2
ψ2

2 , ψ2(0) = u2.

Setting K̃ = tα−1

(α)
and u2 = 0, this formula agrees with Guennoun et al. ((2018),

Theorem 2.1). If B and B⊥ are correlated, one loses the affine property, as high-
lighted in Guennoun et al. ((2018), Remark 2.2).

APPENDIX A: PROOFS OF THEOREMS 3.3 AND 3.4

PROOF OF THEOREM 3.3. The proof parallels that of Marinelli, Prévôt and
Röckner ((2010), Theorem 2.3), using a contraction mapping principle. Suppose
that p > max{2,2/γ }, with γ as in (2.5). For T ≥ 0, consider all processes X on
[0, T ] that satisfy

‖X‖p,T = sup
t≤T

E
[|Xt |p]1/p

< ∞,
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and are continuous in Lp in the sense that lims→t E[|Xt − Xs |p] = 0 for all
t ∈ [0, T ]. We let Hp,T denote the space of all such X, modulo the equivalence
relation obtained by identifying processes that are versions of each other. One read-
ily verifies that (Hp,T ,‖ · ‖p,T ) is a Banach space. Thanks to Peszat and Zabczyk
((2007), Proposition 3.21), every element X ∈ Hp,T admits a predictable repre-
sentative, again denoted by X. Below we always work with such representatives.

We first prove the existence of a unique solution to (1.1) in Hp,T . To this end,
we consider the following family of norms on Hp,T :

‖X‖p,T ,λ := sup
t≤T

E
[∣∣e−λtXt

∣∣p]1/p
, λ > 0.

For every X ∈ Hp,T , define a new process T X by

T X = X0 + K ∗ (b(X)dt + σ(X)dW
)
.

Lemma 2.4 and the linear growth properties of b and σ imply that ‖T X‖p,T < ∞
and T X is continuous in Lp . Thus T X lies in Hp,T . Now, since the norms ‖ · ‖p,T

and ‖ · ‖p,T ,λ are equivalent, it is enough to find λ > 0 such that the T defines a
contraction on (Hp,T ,‖ · ‖p,T ,λ). That is, we look for λ > 0 and M < 1 such that

(A.1) ‖T X − T Y‖p,T ,λ ≤ M‖X − Y‖p,T ,λ, X,Y ∈ Hp,T .

For t ≤ T and λ > 0, we have∣∣e−λt ((T X)t − (T Y)t
)∣∣p

≤ 2p−1
∣∣∣∣∫ t

0
e−λ(t−s)K(t − s)e−λs(b(Xs) − b(Ys)

)
ds

∣∣∣∣p
+ 2p−1|

∫ t

0
e−λ(t−s)K(t − s)e−λs(

(
σ(Xs) − σ(Ys)

)
dWs |p.

Arguing as in the proof of Lemma 2.4, an application of the Jensen and BDG
inequalities combined with the Lipschitz property of b and σ yields

‖T X − T Y‖p
p,T ,λ ≤ c

(∫ T

0
e−2λu

∣∣K(u)
∣∣2 du

)p/2
‖X − Y‖p

p,T ,λ

for some constant c depending only on p, T , and the Lispchitz constant for b

and σ . Since
∫ T

0 e−2λu|K(u)|2 du → 0 as λ → ∞ by the dominated convergence
theorem, there exists λ > 0 such that (A.1) holds.

Let X be the unique fixed point in Hp,T of the map T . Lemma 2.4 implies that
X has a continuous version. This version is a strong solution of (1.1) on [0, T ].
By virtue of Lemmas 2.4 and 3.1, all continuous solutions of (1.1) on [0, T ] are
fixed points in Hp,T of the map T , which implies uniqueness. Since T ≥ 0 was
arbitrary, it follows that (1.1) has a unique strong solution on [0,∞). �
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LEMMA A.1. Fix an initial condition X0 ∈ Rd and a constant cLG. Let X
denote the set of all continuous processes X that solve (1.1) for some continuous
coefficients b and σ satisfying the linear growth bound (3.1) with the given con-
stant cLG. Then X is tight, meaning that the family {law of X : X ∈ X } of laws on
C(R+;Rd) is tight.

PROOF. Let X ∈ X be any solution of (1.1) for some continuous b and σ satis-
fying the linear growth bound (3.1). Lemma 3.1 implies that supu≤T E[|b(Xu)|p]
and supu≤T E[|σ(Xu)|p] are bounded above by a constant that only depends on
|X0|, ‖K‖L2(0,T ), cLG, p, and T . Therefore, since the components of K satisfy
(2.5), we may apply Lemma 2.4 to obtain

E

[(
sup

0≤s<t≤T

|Xt − Xs |
|t − s|α

)p]
≤ c

for all α ∈ [0, γ̄ /2 − 1/p), where γ̄ is the smallest of the constants γ appearing
in (2.5) for the components of K , and where c is a constant that only depends on
|X0|, ‖K‖L2(0,T ), cLG, p and T , but not on s or t , nor on the specific choice of
X ∈ X . Choosing p > 2 so that γ̄ p/2 > 1, and using that closed Hölder balls are
compact in C([0, T ];Rd) by the Arzelà–Ascoli theorem, it follows that X is tight
in C(R+;Rd). �

LEMMA A.2. Assume that K admits a resolvent of the first kind L. For each
n ∈ N, let Xn be a weak solution of (1.1) with b and σ replaced by some continu-
ous coefficients bn and σn that satisfy (3.1) with a common constant cLG. Assume
that bn → b and σn → σ locally uniformly for some coefficients b and σ , and that
Xn ⇒ X for some continuous process X. Then X is a weak solution of (1.1).

PROOF. Lemma 2.6 yields the identity

L ∗ (Xn − X0
)= ∫

bn(Xn)dt +
∫

σn(Xn)dW.

Moreover, Gripenberg, Londen and Staffans ((1990), Theorem 3.6.1(ii) and Corol-
lary 3.6.2(iii)) imply that the map

F �→ L ∗ (F − F(0)
)

is continuous from C(R+;Rd) to itself. Using also the locally uniform conver-
gence of bn and σn, the continuous mapping theorem shows that the martingales

Mn =
∫

σn(Xn)dW = L ∗ (Xn − X0
)− ∫ bn(Xn)dt

converge weakly to some limit M , that the quadratic variations 〈Mn〉 = ∫
σn ×

σn�(Xn)dt converge weakly to
∫

σσ�(X)dt , and that
∫

bn(Xn)dt converge
weakly to

∫
b(X)dt .



AFFINE VOLTERRA PROCESSES 3193

Consider any s < t , m ∈ N, any bounded continuous function f : Rm → R,
and any 0 ≤ t1 ≤ · · · ≤ tm ≤ s. Observe that the moment bound in Lemma 3.1 is
uniform in n since the Xn satisfy the linear growth condition (3.1) with a common
constant. Using Billingsley ((1999), Theorem 3.5), one then readily shows that

E
[
f (Xt1, . . . ,Xtm)(Mt − Ms)

]= lim
n→∞E

[
f
(
Xn

t1
, . . . ,Xn

tm

)(
Mn

t − Mn
s

)]= 0,

and similarly for the increments of Mn
i Mn

j − 〈Mn
i ,Mn

j 〉. It follows that M is a
martingale with respect to the filtration generated by X with quadratic variation
〈M〉 = ∫

σσ�(X)dt . This carries over to the usual augmentation. Enlarging the
probability space if necessary, we may now construct a d-dimensional Brownian
motion W such that M = ∫

σ(X)dW .
The above shows that L ∗ (X − X0) = ∫

b(X)dt + ∫
σ(X)dW . The converse

direction of Lemma 2.6 then yields X = X0 + K ∗ (b(X)dt + σ(X)dW), that is,
X solves (1.1) with the Brownian motion W . �

PROOF OF THEOREM 3.4. Using Hofmanová and Seidler ((2012), Proposi-
tion 1.1), we choose Lipschitz coefficients bn and σn that satisfy the linear growth
bound (3.1) with cLG replaced by 2cLG, and converge locally uniformly to b and
σ as n → ∞. Let Xn be the unique continuous strong solution of (1.1) with b and
σ replaced by bn and σn; see Theorem 3.3. Due to Lemma A.1 the sequence {Xn}
is tight, so after passing to a subsequence we have Xn ⇒ X for some continuous
process X. The result now follows from Lemma A.2. �

APPENDIX B: LOCAL SOLUTIONS OF VOLTERRA
INTEGRAL EQUATIONS

Fix a kernel K ∈ L2
loc(R+,Rd×d) along with functions g : R+ → Cd and

p : R+ ×Cd →Cd , and consider the Volterra integral equation

(B.1) ψ = g + K ∗ p(·,ψ).

A noncontinuable solution of (B.1) is a pair (ψ,Tmax) with Tmax ∈ (0,∞] and ψ ∈
L2

loc([0, Tmax),C
d), such that ψ satisfies (B.1) on [0, Tmax) and ‖ψ‖L2(0,Tmax)

= ∞
if Tmax < ∞. If Tmax = ∞ we call ψ a global solution of (B.1). With some abuse of
terminology, we call a noncontinuable solution (ψ,Tmax) unique if for any T ∈ R+
and ψ̃ ∈ L2([0, T ],Cd) satisfying (B.1) on [0, T ], we have T < Tmax and ψ̃ = ψ

on [0, T ].
THEOREM B.1. Assume that g ∈ L2

loc(R+,Cd), p(·,0) ∈ L1
loc(R+,Cd), and

that for all T ∈ R+ there exist a positive constant �T and a function �T ∈
L2([0, T ],R+) such that

(B.2)

∣∣p(t, x) − p(t, y)
∣∣≤ �T (t)|x − y|

+ �T |x − y|(|x| + |y|), x, y ∈ Cd, t ≤ T .
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The Volterra integral equation (B.1) has a unique noncontinuable solution
(ψ,Tmax). If g and p are real-valued, then so is ψ .

REMARK B.2. If K ∈ L2+ε
loc for some ε > 0, then it is possible to apply

Gripenberg, Londen and Staffans ((1990), Theorem 12.4.4) with p = 2 + ε to get
existence.

PROOF. We focus on the complex-valued case; for the real-valued case, sim-
ply replace Cd by Rd below. We first prove that a solution exists for small times.
Let ρ ∈ (0,1] and ε > 0 be constants to be specified later, and define

Bρ,ε = {
ψ ∈ L2([0, ρ],Cd) : ‖ψ‖L2(0,ρ) ≤ ε

}
.

Consider the map F acting on elements ψ ∈ Bρ,ε by

F(ψ) = g + K ∗ p(·,ψ).

We write ‖ ·‖q = ‖·‖Lq(0,ρ) for brevity in the following computations. The growth
condition (B.2) along with the Young, Cauchy–Schwarz and triangle inequalities
yield for ψ, ψ̃ ∈ Bρ,ε ,∥∥F(ψ)

∥∥
2 ≤ ‖g‖2 + ‖K‖2

∥∥p(·,ψ)
∥∥

1

≤ ‖g‖2 + ‖K‖2
(∥∥p(·,0)

∥∥
1 + ‖�1‖2‖ψ‖2 + �1‖ψ‖2

2
)

(B.3)

≤ ‖g‖2 + ‖K‖2
(∥∥p(·,0)

∥∥
1 + ‖�1‖L2(0,1)ε + �1ε

2)
and ∥∥F(ψ) − F(ψ̃)

∥∥
2 ≤ ‖K‖2

(‖�1‖2 + �1
(‖ψ‖2 + ‖ψ̃‖2

))‖ψ − ψ̃‖2

≤ ‖K‖2
(‖�1‖L2(0,1) + 2�1ε

)‖ψ − ψ̃‖2.

Choose ε > 0 so that 1 + ε
2 + ‖�1‖L2(0,1)ε + �1ε

2 < 2 and ε(‖�1‖L2(0,1) +
2�1ε) < 2. Then choose ρ > 0 so that ‖g‖2 ∨ ‖K‖2 ∨ ‖p(·,0)‖1 ≤ ε/2. This
yields ∥∥F(ψ)

∥∥
2 ≤ ε

2

(
1 + ε

2
+ ‖�1‖L2(0,1)ε + �1ε

2
)

≤ ε

and ∥∥F(ψ) − F(ψ̃)
∥∥

2 ≤ κ‖ψ − ψ̃‖2, κ = ε

2

(‖�1‖L2(0,1) + 2�1ε
)
< 1.

Thus F maps Bρ,ε to itself and is a contraction there, so Banach’s fixed-point
theorem implies that F has a unique fixed point ψ ∈ Bρ,ε , which is a solution of
(B.1).

We now extend this to a unique noncontinuable solution of (B.1). Define the set

J = {
T ∈ R+ : (B.1) has a solution ψ ∈ L2([0, T ],Cd) on [0, T ]}.
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Then 0 ∈ J , and if T ∈ J and 0 ≤ S ≤ T , then S ∈ J . Thus J is a nonempty
interval. Moreover, J is open in R+. Indeed, pick T ∈ J , let ψ be a solution on
[0, T ], and set

h(t) = g(T + t) +
∫ T

0
K(T + t − s)p

(
s,ψ(s)

)
ds, t ≥ 0,

which lies in L2
loc(R+,Cd) by a calculation similar to (B.3). By what we already

proved, the equation

χ = h + K ∗ p(· + T ,χ)

admits a solution χ ∈ L2([0, ρ],Cd) on [0, ρ] for some ρ > 0. Defining ψ(t) =
χ(t − T ) for t ∈ (T , T + ρ], one verifies that ψ solves (B.1) on [0, T + ρ]. Thus
T + ρ ∈ J , so J is open in R+, and hence of the form J = [0, Tmax) for some
0 < Tmax ≤ ∞ with Tmax /∈ J . This yields a noncontinuable solution (ψ,Tmax).

It remains to argue uniqueness. Pick T ∈ R+ and ψ̃ ∈ L2([0, T ],Cd) satis-
fying (B.1) on [0, T ]. Then T ∈ J , so T < Tmax. Let S be the supremum of
all S′ ≤ T such that ψ̃ = ψ on [0, S′]. Then ψ̃ = ψ on [0, S] (almost every-
where, as elements of L2). If S < T , then for ρ > 0 sufficiently small we have
0 < ‖ψ − ψ̃‖L2(0,S+ρ) ≤ 1

2‖ψ − ψ̃‖L2(0,S+ρ), a contradiction. Thus S = T , and
uniqueness is proved. �

COROLLARY B.3. Let K ∈ L2
loc(R+,Cd×d), F ∈ L2

loc(R+,Cd) and G ∈
L2

loc(R+,Cd×d). Suppose that p : R+ ×Cd → Cd is a Lipschitz continuous func-
tion in the second argument such that p(·,0) ∈ L2

loc(R+,Cd). Then the equation

χ = F + K ∗ (Gp(·, χ)
)

has a unique global solution χ ∈ L2
loc(R+,Cd). Moreover, if K and F are contin-

uous on [0,∞) then χ is also continuous on [0,∞) and χ(0) = F(0).

PROOF. Theorem B.1 implies the existence and uniqueness of a non-contin-
uable solution (χ,Tmax). If K and F are continuous on [0,∞), then this solution
is continuous on [0, Tmax) with χ(0) = F(0). To prove that Tmax = ∞, observe
that

(B.4) |χ | ≤ |F | + |K| ∗ (|G|(∣∣p(·,0)
∣∣+ �|χ |))

for some positive constant �. Define the scalar nonconvolution Volterra ker-
nel K ′(t, s) = �|K(t − s)||G(s)|1s≤t . This is a Volterra kernel in the sense of
Gripenberg, Londen and Staffans ((1990), Definition 9.2.1) and∫ T

0

∫ T

0
1s≤t

∣∣K(t − s)
∣∣2∣∣G(s)

∣∣2 ds dt ≤ ‖K‖2
L2(0,T )

‖G‖2
L2(0,T )

(B.5)

for all T > 0, by Young’s inequality. Thus by Gripenberg, Londen and Staffans
((1990), Proposition 9.2.7(iii)), K ′ is of type L2

loc; see Gripenberg, Londen and
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Staffans ((1990), Definition 9.2.2). In addition, it follows from Gripenberg, Londen
and Staffans ((1990), Corollary 9.3.16) that −K ′ admits a resolvent of type L2

loc in
the sense of Gripenberg, Londen and Staffans ((1990), Definition 9.3.1), which we
denote by R′. Since −K ′ is nonpositive, it follows from Gripenberg, Londen and
Staffans ((1990), Proposition 9.8.1) that R′ is also nonpositive. The Gronwall type
inequality in Gripenberg, Londen and Staffans ((1990), Lemma 9.8.2) and (B.4)
then yield

(B.6)
∣∣χ(t)

∣∣≤ f ′(t) −
∫ t

0
R′(t, s)f ′(s) ds

for t ∈ [0, Tmax], where

f ′(t) = ∣∣F(t)
∣∣+ ∫ t

0

∣∣K(t − s)
∣∣∣∣G(s)

∣∣∣∣p(s,0)
∣∣ds.

Since the function on the right-hand side of (B.6) is in L2
loc(R+,R) due to

Gripenberg, Londen and Staffans ((1990), Theorem 9.3.6), we conclude that
Tmax = ∞. �

APPENDIX C: INVARIANCE RESULTS FOR VOLTERRA
INTEGRAL EQUATIONS

LEMMA C.1. Fix T < ∞. Let u ∈Cd , G ∈ L2([0, T ],Cd×d), as well as Fn ∈
L2([0, T ],Cd) and Kn ∈ L2([0, T ],Cd×d) for n = 0,1,2, . . . . For each n, there
exists a unique element χn ∈ L2([0, T ],Cd×d) such that

χn = Fn + Kn ∗ (Gχn).
Moreover, if Fn → F 0 and Kn → K0 in L2(0, T ), then χn → χ0 in L2(0, T ).

PROOF. For any K ∈ L2([0, T ],Cd×d), define K ′(t, s) = K(t − s)G(s)1s≤t .
Arguing as in the proof of Corollary B.3, K ′ is a Volterra kernel of type L2 on
(0, T ) since (B.5) still holds by Young’s inequality. In particular,

(C.1)
∣∣∣∣∣∣K ′∣∣∣∣∣∣

L2(0,T ) ≤ ‖K‖L2(0,T )‖G‖L2(0,T ),

where ||| · |||L2(0,T ) is defined in Gripenberg, Londen and Staffans ((1990), Defini-
tion 9.2.2). Invoking once again Gripenberg, Londen and Staffans ((1990), Corol-
lary 9.3.16), −K ′ admits a resolvent R′ of type L2 on (0, T ). Due to Gripenberg,
Londen and Staffans ((1990), Theorem 9.3.6), the unique solution in L2(0, T ) of
the equation

χ(t) = F(t) +
∫ t

0
K ′(t, s)χ(s) ds, t ∈ [0, T ],
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for a given F ∈ L2([0, T ],Cd), is

χ(t) = F(t) −
∫ t

0
R′(t, s)F (s) ds, t ∈ [0, T ].

This proves the existence and uniqueness statement for the χn. Next, assume
Fn → F 0 and Kn → K0 in L2(0, T ). Applying (C.1) with K = Kn − K0

shows that (K ′)n → (K ′)0 with respect to the norm ||| · |||L2(0,T ). An application
of Gripenberg, Londen and Staffans ((1990), Corollary 9.3.12) now shows that
χn → χ0 in L2(0, T ) as claimed. �

THEOREM C.2. Assume K ∈ L2
loc(R+,Rd×d) is diagonal with scalar ker-

nels Ki on the diagonal. Assume each Ki satisfies (2.5) and the shifted kernels
�hKi satisfy (3.4) for all h ∈ [0,1]. Let u, v ∈ Rd , F ∈ L1

loc(R+,Rd) and G ∈
L2

loc(R+,Rd×d) be such that ui, vi ≥ 0, Fi ≥ 0, and Gij ≥ 0 for all i, j = 1, . . . , d

and i �= j . Then the linear Volterra equation

(C.2) χ = Ku + v + K ∗ (F + Gχ)

has a unique solution χ ∈ L2
loc(R+,Rd) with χi ≥ 0 for i = 1, . . . , d .

PROOF. Define kernels Kn = K(· + n−1) for n ∈ N, which are diagonal with
scalar kernels on the diagonal that satisfy (3.4). Example 2.3(vi) shows that the
scalar kernels on the diagonal of Kn also satisfy (2.5). Lemma C.1 shows that
(C.2) (resp., (C.2) with K replaced by Kn) has a unique solution χ (resp., χn), and
that χn → χ in L2(R+,Rd). Therefore, we can suppose without loss of generality
that K is continuous on [0,∞) with Ki(0) ≥ 0. To show that χ takes values in
Rd+, it is therefore enough to consider the case where K is continuous on [0,∞)

with Ki(0) ≥ 0 for all i.
For x ∈ Rd , define b(x) = F + Gx. For all positive n, Corollary B.3 implies

that there exists a unique solution χn ∈ L2
loc(R+,Rd) of the equation

χn = Ku + v + K ∗ b
((

χn − n−1)+),
and that χn is continuous on [0,∞) with χn

i (0) = Ki(0)ui + vi ≥ 0 for i =
1, . . . , d . We claim that χn is Rd+ valued for all n. Indeed, arguing as in the proof
of Theorem 3.6, we can show that if Li denotes the resolvent of the first kind of
Ki , then (�hKi ∗ Li)(t) is right continuous, nonnegative, bounded by 1 and non-
decreasing in t for any h ≥ 0. Fix n and define Z = ∫

b((χn − n−1)+) dt . The
argument of Lemma 2.6 shows that for all h ≥ 0 and i = 1, . . . , d ,

(C.3)

�hKi ∗ dZi = (�hKi ∗ Li)(0)Ki ∗ dZi + d(�hKi ∗ Li) ∗ Ki ∗ dZi

= (�hKi ∗ Li)(0)χn
i + d(�hKi ∗ Li) ∗ χn

i

− ui

(
(�hKi ∗ Li)(0)Ki + d(�hKi ∗ Li) ∗ Ki

)
)

− vi�hKi ∗ Li.
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Convolving the quantity d(�hKi ∗Li)∗Ki first by Li , then by Ki , and comparing
densities of the resulting absolutely continuous functions, we deduce that

d(�hKi ∗ Li) ∗ Ki = �hKi − (�hKi ∗ Li)(0)Ki a.e.

Plugging this identity into (C.3) yields

(C.4)
�hKi ∗ dZi = (�hKi ∗ Li)(0)χn

i + d(�hKi ∗ Li) ∗ χn
i

− ui�hKi − vi�hKi ∗ Li.

Define τ = inf{t ≥ 0 : χn
t /∈ Rd+} and assume for contradiction that τ < ∞. Then

χn(τ + h) = �hK(τ)u + v + (K ∗ dZ)τ+h

= �hK(τ)u + v + (�hK ∗ dZ)τ +
∫ h

0
K(h − s) dZτ+s

(C.5)

for any h ≥ 0. By definition of τ , the identities (C.4) and (C.5) imply

χn
i (τ + h) ≥

∫ h

0
Ki(h − s)bi

((
χn(τ + s) − n−1)+)ds, i = 1, . . . , d.

As in the proof of Theorem 3.6, these inequalities lead to a contradiction. Hence
τ = ∞ and χn is Rd+-valued for all n.

To conclude that χ is Rd+-valued, it suffices to prove that χn converges to χ in
L2([0, T ],Rd) for all T ∈R+. To this end, we write

χ − χn = K ∗ (G(χn − (χn − n−1)+)+ G
(
χ − χn)),

from which we infer∣∣χ − χn
∣∣≤ √

d

n
|K| ∗ |G| + |K| ∗ (|G|∣∣χ − χn

∣∣).
The same argument as in the proof of Corollary B.3 shows that

(C.6)
∣∣χ − χn

∣∣≤ √
d

n

(
F ′ −

∫ ·
0

R′(·, s)F ′(s) ds

)
,

where R′ is the nonpositive resolvent of type L2
loc of K ′(t, s) = |K(t − s)||G(s)| ×

1s≤t , and F ′ = |K| ∗ |G|. Since the right-hand side of (C.6) is in L2
loc(R+,R) in

view of Gripenberg, Londen and Staffans ((1990), Theorem 9.3.6), we conclude
that χn converges to χ in L2([0, T ],Rd) for all T ∈ R+. �
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