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ANOTHER LOOK INTO THE WONG–ZAKAI THEOREM FOR
STOCHASTIC HEAT EQUATION

BY YU GU1 AND LI-CHENG TSAI2

Carnegie Mellon University and Columbia University

For the heat equation driven by a smooth, Gaussian random potential:

∂tuε = 1

2
�uε + uε(ξε − cε), t > 0, x ∈R,

where ξε converges to a spacetime white noise, and cε is a diverging con-
stant chosen properly, we prove that uε converges in Ln to the solution of
the stochastic heat equation for any n ≥ 1. Our proof is probabilistic, hence
provides another perspective of the general result of Hairer and Pardoux (J.
Math. Soc. Japan 67 (2015) 1551–1604), for the special case of the stochastic
heat equation. We also discuss the transition from homogenization to stochas-
ticity.

1. Introduction and main result. The study of stochastic PDEs has wit-
nessed significant progress in recent years. Several theories have been developed
to make sense of singular equations with multiplication of distributions, see [12–
14, 18, 21] (and the references therein). One example is the Wong–Zakai theorem
for stochastic PDEs [7, 15, 16], which is an infinite dimensional analogue of [24–
26]. In this article, we revisit this problem for a special case: the Stochastic Heat
Equation (SHE) in one space dimension:

∂tU = 1

2
∂xxU + Uξ, t > 0, x ∈R,(1.1)

where ξ is a spacetime white noise, built on an underlying probability space
(�,F ,P).

The SHE (1.1) has played an important role in the study of directed polymers
and random growth phenomena. On the one hand, the solution of (1.1) gives the
partition function of a directed polymer in a noisy environment. On the other
hand, via the inverse Hopf–Cole transform, the equation (1.1) yields the celebrated
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Kardar–Parisi–Zhang equation [17], which describes the height function of a cer-
tain type of random growth phenomenon. Even though the physical phenomena
described by SHE goes to higher dimensions, we focus on one dimension here. In
fact, d = 2 and d > 2 corresponds to the so-called critical and supercritical cases,
and sit beyond any existing theory. There, however, has been works on the cases
(in d ≥ 2) where the noise is tuned down to zero suitably with a scaling parameter.
See [6, 9–11, 19].

Throughout this article, we fix a bounded continuous initial condition u0(x) ∈
Cb(R), and a mollifier φ ∈ C∞

c (R2;R+) with a unit total mass
∫

φ dt dx = 1.
Using this mollifier, we construct the mollified noise as

ξε(t, x) =
∫
R2

φε(t − s, x − y)ξ(s, y) dy ds,

φε(t, x) = 1

ε3 φ

(
t

ε2 ,
x

ε

)
.

(1.2)

Given the smooth function ξε , consider the equation

(1.3) ∂tuε = 1

2
∂xxuε + uε(ξε − cε), t > 0, x ∈ R.

For the analogous equation where ξε is white-in-time, regularized in space, and
interpreted in the Itô’s sense, Bertini and Cancrini [4] showed that, for cε = 0, the
solution uε converges to the solution of the SHE.

When the noise is regularized in both space and time, a nonzero, divergent con-
stant cε → ∞ arises. Our main result states that, for a suitable and explicit choice
of cε , which depends explicitly on φ, the solution uε of (1.3) converges pointwisely
in Ln(�) to the solution of SHE (1.1), for any n ≥ 1. It is a classical result that (1.1)
admits a unique (weak and mild) solution starting from U(0, x) = u0(x). Also, for
fixed ε > 0 and for almost every realization of ξε , it is standard (by Feynman–Kac
formula) to show that the PDE (1.3) admits a unique classical solution.

THEOREM 1.1. Let cε = c∗ε−1 + 1
2σ 2∗ with c∗, σ∗ given by (2.7) and (2.10).

Let uε and U denote the respective solutions of (1.3) and (1.1), both with initial
condition u0(x). Then, for any (t, x) ∈ R+ × R and n ≥ 1, the random variable
uε(t, x) converges in Ln(�) to U(t, x), that is,

E
[∣∣uε(t, x) − U(t, x)

∣∣n] → 0 as ε → 0.(1.4)

As mentioned earlier, analogs of Theorem 1.1 have already been established in
different settings. Hairer and Pardoux [16] established the Wong–Zakai theorem
for a general class of semi-linear equations on the torus, with the SHE being a
special case. This result was later extended to non-Gaussian noise by Chandra and
Shen [7], and the problem on the whole line R was studied by Hairer and Labbé
[15]. In a related direction, Bailleul, Bernicot and Frey [2] have studied similar
stochastic PDEs via paracontrolled calculus.



THE WONG–ZAKAI THEOREM FOR SHE 3039

All the aforementioned works build on the recently developed theory of regular-
ity structure and paracontrolled calculus [12, 14]. In this article, we present a more
probabilistic proof of Theorem 1.1. The proof is short, entirely contained within
the scope of classical stochastic analysis. This offers a different perspective of the
Wong–Zakai theorem for the SHE. For example, the renormalizing constant cε is
identified in terms of the first and second moments of certain additive functionals
of Brownian motions. See the discussion in Section 2.

A related question of interest concerns homogenization of

∂tuε = 1

2
∂xxuε + √

εuεξε.

For a general class of mixing random potentials, a homogenization result was es-
tablished by Pardoux and Piatnitski [22]. We show in the Appendix how our ap-
proach can be adopted to establish homogenization. In fact, we will establish a
homogenization result over a range of scales α ∈ [1,2), together with a Gaussian
fluctuation result within this range.

Outline and conventions. In Section 2, we use the Feynman–Kac formula to
analyze moments of uε(t, x). These formula are expressed in terms of function-
als of some auxiliary Brownian motions. We then establish various properties of
these functionals. In Section 3, we prove Theorem 1.1 using the results established
in Section 2. This is done by first showing that uε(t, x) is a Cauchy sequence in
L2(�), and then identifying the limit via a Wiener chaos expansion. In the Ap-
pendix, we will discuss the homogenization result, prove a central limit theorem,
and discuss the transition from the Edwards–Wilkinson to the SHE fluctuations.

Throughout the paper, we denote the Fourier transform of f by

f̂ (ξ) =
∫
R

f (x)e−iξx dx.

We use C(a1, . . .) to denote a generic, deterministic, finite constant that may
change from line to line, but depends only on the designated variables a1, . . . .
This is not to be confused with the renormalization constant cε . Also, we use
rε = (rε(t))t≥0 to denote a generic (random) process, that uniformly converges
to zero, that is,

sup
t∈R+

∣∣rε(t)∣∣ ≤ hε −→ 0 for some deterministic hε.(1.5)

2. Feynman–Kac formula and Brownian functionals. A main tool in this
article is the Feynman–Kac formula, which expresses the solution of the PDE (1.3)
as

(2.1) uε(t, x) = EB

[
u0

(
x + B(t)

)
exp

(∫ t

0
ξε

(
t − s, x + B(s)

)
ds − cεt

)]
.
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Here B(t) is a standard Brownian motion starting from the origin, indepen-
dent of the driving noise ξ . In fact, we will be considering several independent
Brownian motions. We expand the probability space (�,F ,P) to a larger one
(� × 
,F × FB,P ⊗ PB) to include several independent Brownian motions
B,B1,B2, . . . ,W,W1,W2, . . . , independent of ξ . We will use EB to denote the
expectation on 
. Also, we will often work with the marginal probability space
(�,F ,P) or (
,FB,PB).

Several functionals of the Brownian motions enter our analysis via (2.1). More
precisely, the nth moment of uε(t, x) is expressed in terms of functionals of Brow-
nian motions. We begin with the first moment. To this end, define the covariance
function

R(t, x) :=
∫
R2

φ(t − s, x − y)φ(−s,−y)ds dy,

Rε(t, x) := 1

ε3 R

(
t

ε2 ,
x

ε

)
= E

[
ξε(t, x)ξε(0,0)

]
.

It is clear that R is an even function. Recall that φ is compactly supported. Without
loss of generality, throughout this article we assume that φ is supported in (−1

2 , 1
2)

in t , that is, φ(t, ·) = 0, |t | ≥ 1
2 , and hence R(t, ·) = 0, |t | ≥ 1. With ξε(t, x) being

a Gaussian process, averaging over ξ in (2.1) gives

E
[
uε(t, x)

]
= EB

[
u0

(
x + B(t)

)
exp

(
1

2
E

[(∫ t

0
ξε

(
t − s, x + B(s)

)
ds

)2]
− cεt

)]
(2.2)

= EB

[
u0

(
x + B(t)

)
exp

(∫ t

0

∫ s

0
Rε

(
s − u,B(s) − B(u)

)
duds − cεt

)]
.

Before progressing to the formula for higher moments, let us use (2.2) to explain
how the renormalizing constant cε comes into play. To this end, take u0(x) = 1
for simplicity. In this case the solution U of the limiting SHE (1.1) satisfies
E[U(t, x)] = 1. For the convergence in (1.4) to hold, we must choose cε so that

EB

[
exp

(∫ t

0

∫ s

0
Rε

(
s − u,B(s) − B(u)

)
duds − cεt

)]
−→ 1 as ε → 0.

To this end, consider the centered double-integral process

(2.3)
Xε(t) :=

∫ t

0

∫ s

0
Rε

(
s − u,B(s) − B(u)

)
duds

−
∫ t

0

∫ s

0
EB

[
Rε

(
s − u,B(s) − B(u)

)]
duds.
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It is more convenient to express Xε in “microscopic” coordinates. That is, we use

the scaling property (ε−1B(ε2t))t≥0
law= (B(t))t≥0 to write

Xε(t)
law= Xmi

ε (t)

:= ε

∫ ε−2t

0

∫ s

0
R
(
s − u,B(s) − B(u)

)
duds

− ε

∫ ε−2t

0

∫ s

0
EB

[
R
(
s − u,B(s) − B(u)

)]
duds(2.4)

= ε

∫ ε−2t

0

(∫ s

0

(
R
(
u,B(s) − B(s − u)

)
−EB

[
R
(
u,B(s) − B(s − u)

)])
du

)
ds.

Since R(u, x) = 0 whenever |u| ≥ 1, the u-integral in (2.4) goes over u ∈ [0,1] for
all s ≥ 1. Dropping those values of s < 1 in the integral gives

Xmi
ε (t) = ε

∫ ε−2t

1
X (s) ds + rε(t),(2.5)

where, recall that, rε(t) denotes a generic process satisfying (1.5),

X (s) :=
∫ ∞

0
R
(
u,B(s) − B(s − u)

)
du − c∗,(2.6)

c∗ := EB

[∫ ∞
0

R
(
u,B(u)

)
du

]
= EB

[∫ 1

0
R
(
u,B(s) − B(s − u)

)
du

]
,(2.7)

and we take B to be a two-sided Brownian motion in (2.6)–(2.7) so that the result-
ing expression is defined for all s ≥ 0 (including s ∈ [0,1]). It is straightforward
to verify that{

X (s)
}
s≥0 is stationary in s, bounded, EB

[
X (s)

] = 0,(2.8)

with
(
X (s)

)
s≥s0

,
(
X (s)

)
s≤s′

0
being independent whenever s0 − s′

0 ≥ 1.(2.9)

Thus it is natural to expect Xε(t) to converges to σ∗W(t), with W being a standard
Brownian motion, and

σ 2∗ := 2EB

[∫ ∞
0

X (s)X (0) ds

]
.(2.10)

In light of these discussions, we find that cε := c∗ε−1 + 1
2σ 2∗ (as in Theorem 1.1)

is the reasonable choice in order for uε to converge to the solution U to the SHE.

REMARK 2.1. The constants c∗ and σ 2∗ , defined in (2.7) and (2.10), can also
be expressed in terms of integrals involving the covariance function R and the heat
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kernel. For example,

c∗ =
∫ ∞

0
EB

[
R
(
u,B(u)

)]
du =

∫ ∞
0

∫
R

R(u, x)
1√
2πu

e− x2
2u dx du.

Also, the process Xε(t) can be expressed as

Xε(t) =
∫ t

0

∫ s

0
Rε

(
s − u,B(s) − B(u)

)
duds − c∗t

ε
+ rε(t).

With Xε(t) and σ∗ defined in the preceding, we rewrite the formula (2.2) in a
more compact form as

E
[
uε(t, x)

] = EB

[
u0

(
x + B(t)

)
exp

(
Xε(t) − 1

2
σ 2∗ t + rε(t)

)]
.(2.11)

Similar calculations give formulas of higher moments:

E
[
uε(t, x)n

]
= EB

[
n∏

j=1

u0
(
x + Bj(t)

)
exp

(
n∑

j=1

(
Xj,ε(t) − 1

2
σ 2∗ t + rε(t)

)
(2.12)

+ ∑
1≤i<j≤n

Yi,j,ε(t)

)]
.

Here B1, . . . ,Bn are independent Brownian motions; the process Xj,ε(t) is ob-
tained by replacing B with Bj in (2.3); and Yi,j,ε(t) is given by

Yi,j,ε(t) :=
∫ t

0

∫ t

0
Rε

(
s − u,Bi(s) − Bj(u)

)
ds du.(2.13)

Indeed, (Xj,ε(t))t≥0
law= (Xε(t))t≥0. Likewise, writing Yε(t) := Y1,2,ε(t), we have

(Yi,j,ε(t))t≥0
law= (Yε(t))t≥0, for all i < j .

We will also need to consider E[uε1(t, x)uε2(t, x)], that is, the second moment
calculated at different values of ε. A similar calculation gives the formula

E
[
uε1(t, x)uε2(t, x)

]
= EB

[ 2∏
j=1

u0
(
x + Bj(t)

)
exp(Yε1,ε2(t)(2.14)

+
2∑

j=1

(
Xj,εj

(t) − 1

2
σ 2∗ t + rεj

(t)

)]
,
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where

Yε1,ε2(t) :=
∫ t

0

∫ t

0
Rε1,ε2

(
s − u,B1(s) − B2(u)

)
ds du,

Rε1,ε2(t, x) :=
∫
R2

φε1(t − s, x − y)φε2(−s,−y)ds dy(2.15)

= E
[
ξε1(t, x)ξε2(0,0)

]
.

2.1. Exponential moments. We first establish bounds on exponential moments
of Xε(t) and Yε1,ε2(t).

PROPOSITION 2.2. For any λ, t > 0, we have

sup
ε∈(0,1)

EB

[
eλXε(t)

] + sup
ε1,ε2∈(0,1)

EB

[
eλYε1,ε2 (t)] < ∞.

PROOF. For Xε(t), we appeal to the microscopic coordinates, using (2.4)–
(2.5) to write

Xε(t)
law= Xmi

ε (t) = ε

∫ ε−2t

1
X (s) ds + rε(t) = ε

∫ [ε−2t]
1

X (s) ds + rε(t).

In view of the finite range property (2.9) of X , we decompose

Xmi
ε (t) = ε

∑
k∈Ieven

X̃k + ε
∑

k∈Iodd

X̃k,

where X̃k := ∫ k+1
k X (s) ds, and Ieven := {1 ≤ k ≤ [ε2t] − 1, even}, and Iodd :=

{1 ≤ k ≤ [ε2t] − 1, odd}. This gives

EB

[
eλXε(t)

] = EB

[
eλrε(t) exp

(
λε

∑
k∈Ieven

X̃k

)
exp

(
λε

∑
k∈Iodd

X̃k

)]

≤ C(λ, t)

√√√√EB

[
exp

(
2λε

∑
k∈Ieven

X̃k

)]
EB

[
exp

(
2λε

∑
k∈Iodd

X̃k

)]

= C(λ, t)

√ ∏
k≤[t/ε2]−1

EB

[
e2λεX̃k

]
.

By (2.8), we know that X̃k is stationary with zero mean and is also uniformly
bounded since R ∈ C∞

c , so∏
k≤[t/ε2]−1

EB

[
e2λεX̃k

] = (
EB

[
e2λεX̃1

])[t/ε2]−1 ≤ C(λ, t).
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From this we conclude the desired exponential moment bound on Xε(t):

sup
ε∈(0,1)

EB

[
eλXε(t)

] ≤ C(λ, t) < ∞.

We now turn to Yε1,ε2(t). Denoting by R̂ε1,ε2 the Fourier transform of Rε1,ε2 in
the x-variable, we express Yε1,ε2(t) via Fourier transform as

Yε1,ε2(t) =
∫
[0,t]2

(∫
R

(2π)−1R̂ε1,ε2(s − u, ξ)eiξ(B1(s)−B2(u)) dξ

)
ds du.

Note that Yε1,ε2 ≥ 0, so from the above expression we calculate the nth moment of
Yε1,ε2(t) as

EB

[
Yε1,ε2(t)

n] =
∫
[0,t]2n×Rn

n∏
j=1

(
(2π)−1R̂ε1,ε2(sj − uj , ξj )

)
(2.16)

×EB

[
n∏

j=1

eiξjB1(sj )

]
EB

[
n∏

j=1

e−iξjB2(uj )

]
ds dudξ.

Let us first focus on the integral over u ∈ [0, t]n. We write∫
[0,t]n

n∏
j=1

R̂ε1,ε2(sj − uj , ξj )EB

[
n∏

j=1

e−iξjB2(uj )

]
du

=
∫
[0,t]n×Rn

n∏
j=1

Rε1,ε2(sj − uj , xj )e
−iξj xjEB

[
n∏

j=1

e−iξjB2(uj )

]
dudx.

The exponents are purely imaginary. We hence bound those exponentials by 1 in
absolute value, and use 0 ≤ ∫

[0,t]×R
Rε1,ε2(s − u,x) dudx ≤ 1 to get∣∣∣∣∣

∫
[0,t]n

n∏
j=1

R̂ε1,ε2(uj − sj , ξj )EB

[
n∏

j=1

e−iξjB2(uj )

]
du

∣∣∣∣∣ ≤ 1.

Inserting this into (2.16) gives

EB

[
Yε1,ε2(t)

n] ≤ (2π)−n
∫
[0,t]n×Rn

EB

[
n∏

j=1

eiξjB1(sj )

]
ds dξ.(2.17)

The last integral in (2.17) is in fact the nth moment of Brownian localtime at the
origin. More precisely, let L(t, x;B) denote the localtime process of a Brownian
motion B , it is a standard result that

(2π)−n
∫
[0,t]n×Rn

EB

[
n∏

j=1

eiξjB1(sj )

]
ds dξ = EB

[
L(t,0;B1)

n].(2.18)
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Informally speaking, this formula is obtained by interpreting L(t,0;B1) as∫ t
0 δ(B1(s)) ds, where δ(·) denotes the Dirac function, and taking Fourier trans-

form, similarly to the preceding. The prescribed informal procedure is rigorously
implemented by taking a sequence approximating the Dirac function. We omit the
details here as the argument is standard.

Now, combine (2.17)–(2.18), and sum over n ≥ 0. We arrive at

EB

[
eλYε1,ε2 (t)] ≤ EB

[
eλL(t,0;B1)

]
.

As the Brownian localtime has finite exponential moments, that is, E[eλL(t,0;B1)] <

∞ for any λ, t > 0, we obtain the desired exponential moment bound on Yε1,ε2(t):

sup
ε1,ε2∈(0,1)

EB

[
eλYε1,ε2 (t)] ≤ C(λ, t) < ∞.

This completes the proof. �

2.2. Weak convergence. In this section, we derive the distributional limit of
Xj,ε and Yε1,ε2 . First, since the covariance function Rε1,ε2(t, x) converges to Dirac
function δ(t)δ(x), we expect the process Yε1,ε2(t) (defined in (2.15)) to converge
to the mutual intersection localtime of B1 and B2. More precisely, recalling that
L(t, x;B) denote the localtime process of a Brownian motion B , we define the
mutual intersection localtime of B1 and B2 as

(2.19) �(t) := L(t,0;B1 − B2).

PROPOSITION 2.3. For any fixed t > 0, Yε1,ε2(t) → �(t) in L2(
), as
ε1, ε2 → 0.

PROOF. Instead of directly proving the convergence of Yε1,ε2(t), let us first
consider a modified process Ỹε1,ε2(t) where B1 and B2 are evaluated at the same
time:

Ỹε1,ε2(t) :=
∫ t

0

∫ t

0
Rε1,ε2

(
s − u,B1(s) − B2(s)

)
ds du,

and show that Ỹε1,ε2(t) converges to �(t) in L2(
). To this end, set

Fε1,ε2(s) :=
∫ t

0
Rε1,ε2

(
s − u,B1(s) − B2(s)

)
du, s ∈ [0, t].

In the preceding double-integral expression of Ỹε1,ε2(t), divide the range of in-
tegration over s into subintervals depending on its distance from 0 and to t . We
rewrite the expression as

Ỹε1,ε2(t) =
∫ t

0
Fε1,ε2(s)

(
1(ε2

1+ε2
2,t−ε2

1−ε2
2)(s) + 1[0,ε2

1+ε2
2](s) + 1[t−ε2

1−ε2
2,t](s)

)
ds.
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Recall that φ(t, ·) = 0, |t | ≥ 1
2 . This gives Rε1,ε2(s − u, ·) = 0 for all |s − u| ≥

ε2
1 + ε2

2. Consequently, for s ∈ (ε2
1 + ε2

2, t − ε2
1 − ε2

2) we have

Fε1,ε2(s) =
∫
R

Rε1,ε2

(
s − u,B1(s) − B2(s)

)
du.

Further setting �(x) := ∫
R

φ(t, x) dt , �ε(x) := ε−1�(ε−1x), and �ε1,ε2(x) :=∫
�ε1(x − y)�ε2(−y)dy, we rewrite the last expression as

Fε1,ε2(s) = �ε1,ε2

(
B1(s) − B2(s)

)
.

On the other hand, we also have |Fε1,ε2(s)| ≤ �ε1,ε2(B1(s) − B2(s)), for all s ∈
[0, t]. This takes into account those values of s /∈ (ε2

1 + ε2
2, t − ε2

1 − ε2
2), thereby

giving

Ỹε1,ε2(t) =
∫ t−ε2

1−ε2
2

ε2
1+ε2

2

�ε1,ε2

(
B1(s) − B2(s)

)
ds + rε1,ε2(t),(2.20)

where rε1,ε2(t) is a remainder term satisfying∣∣rε1,ε2(t)
∣∣ ≤ ∫ t

0
�ε1,ε2

(
B1(s) − B2(s)

)(
1[0,ε2

1+ε2
2](s) + 1[t−ε2

1−ε2
2,t](s)

)
ds.

Now, for any interval [a, b] ⊂ [0,∞), by the definition of the localtime,∫ b

a
�ε1,ε2

(
B1(s) − B2(s)

)
ds

=
∫
R

�ε1,ε2(x)
(
L(b, x;B1 − B2) − L(a, x;B1 − B2)

)
dx

(2.21)
=

∫
R2

�(x)�(−y)
(
L(b, ε1x + ε2y;B1 − B2)

− L(a, ε1x + ε2y;B1 − B2)
)
dx dy.

For almost every realization of B1 − B2, the function x �→ L(t, x;B1 − B2) is
continuous and compactly supported, and the function t �→ L(t, x;B1 − B2) is in-
creasing and continuous. Thus, from (2.20)–(2.21) and the fact that

∫
�dx = 1,

we conclude that Ỹε1,ε2(t) → �(t) = L(t,0;B1 − B2) almost surely as ε1, ε2 → 0.
Further, the same calculations (via Fourier transform) as in the proof of Proposi-
tion 2.2 yields that

sup
ε1,ε2

EB

[
eλỸε1,ε2 (t)] ≤ EB

[
eλL(t,0;B1)

]
< ∞.

This property leverages the preceding almost sure convergence into a convergence
in L2(
):

EB

[(
Ỹε1,ε2(t) − �(t)

)2] −→ 0 as ε1, ε2 → 0.(2.22)
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Given (2.22), it remains to show that Yε1,ε2(t)− Ỹε1,ε2(t) → 0 in L2(
). We will
actually prove the following result: for any choice of Z1,Z2 ∈ {Yε1,ε2(t), Ỹε1,ε2(t)},
as ε1, ε2 → 0,

EB[Z1Z2] −→ (2π)−2
∫
[0,t]2

∫
R2

EB

[
eiξ(B1(s)−B2(s))

(2.23)
× eiξ ′(B1(s

′)−B2(s
′))]dξ dξ ′ ds ds′.

Once this is done, expanding E[(Yε1,ε2(t) − Ỹε1,ε2(t))
2] into four terms, and pass-

ing to the limit complete the proof.
The proof for all cases of Z1,Z2 ∈ {Yε1,ε2(t), Ỹε1,ε2(t)} is the same, and we take

Z1 = Z2 = Yε1,ε2(t) as an example. As in the proof of Proposition 2.2, we express
Yε1,ε2(t) via Fourier transform as

Yε1,ε2(t)

=
∫
[0,t]2

(∫
R

(2π)−1R̂ε1,ε2(s − u, ξ)eiξ(B1(s)−B2(u)) dξ

)
ds du

=
∫
[0,t]2

(∫
R2

(
2πε2

1ε
2
2
)−1

φ̂

(
s − u − w

ε2
1

, ε1ξ

)
φ̂

(−w

ε2
2

,−ε2ξ

)

× eiξ(B1(s)−B2(u)) dξdw

)
ds du,

where φ̂ denotes the Fourier transform of φ in the x-variable. Squaring the last
expression and taking expectation gives

EB

[
Yε1,ε2(t)

2] =
∫
[0,t]2

Gε1,ε2

(
s, s′)ds ds′,

where

Gε1,ε2

(
s, s′)

:=
∫
[0,t]2

∫
R4

(
2πε2

1ε
2
2
)−2

φ̂

(
s − u − w

ε2
1

, ε1ξ

)
φ̂

(−w

ε2
2

,−ε2ξ

)
(2.24)

× φ̂

(
s′ − u′ − w′

ε2
1

, ε1ξ
′
)
φ̂

(−w′

ε2
2

,−ε2ξ
′
)

×EB

[
eiξ(B1(s)−B2(u))eiξ ′(B1(s

′)−B2(u
′))]dξ dξ ′ dw dw′ dudu′.

Fix (s, s′) ∈ (0, t)2. Recall that φ̂(t, ·) = 0 whenever |t | ≥ 1
2 , and note that, with

(s, s′) ∈ (0, t)2 being fixed, the conditions (t − s), (t − s′), s, s′ ≥ 1
2(ε2

1 + ε2
2) hold

for all small enough ε1, ε2. Consequently, in the last expression of Gε1,ε2(s, s
′),

for all ε1, ε2 small enough, the integration domain of u, u′ can be (and is) replaced
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[0, t]2 �→R
2. A change of variables in this case yields

Gε1,ε2

(
s, s′)

=
∫
R6

(2π)−2φ̂(u, ε1ξ)φ̂(−w,−ε2ξ)φ̂
(
u′, ε1ξ

′)φ̂(−w′,−ε2ξ
′)

(2.25)
×EB

[
eiξ(B1(s)−B2(s−ε2

1u−ε2
2w))

× eiξ ′(B1(s
′)−B2(s

′−ε2
1u′−ε2

2w′))]dξ dξ ′ dw dw′ dudu′.
Observe that the expectation in the above expression has Gaussian tails in ξ ,
ξ ′, so by the dominated convergence theorem and the fact that

∫
φ̂(u,0) du =∫

φ dudx = 1, we obtain

(2.26) Gε1,ε2

(
s, s′) −→ (2π)−2

∫
R2

EB

[
eiξ(B1(s)−B2(s))eiξ ′(B1(s

′)−B2(s
′))]dξ dξ ′,

pointwisely in (0, t)2. To achieve (2.23), we need to upgrade the pointwise conver-
gence of (2.26) to convergence in L1([0, t]2). To this end, with |φ̂(·, ξ)| ≤ φ̂(·,0),
we bound∣∣Gε1,ε2

(
s, s′)∣∣ ≤ ∫

R6

(
2πε2

1ε
2
2
)−2

φ̂

(
s − u − w

ε2
1

,0
)
φ̂

(−w

ε2
2

,0
)

× φ̂

(
s′ − u′ − w′

ε2
1

,0
)
φ̂

(−w′

ε2
2

,0
)

×EB

[
eiξB1(s)eiξ ′B1(s

′)]dξ dξ ′ dw dw′ dudu′.
After integrating in w, w′, u, u′ on the RHS of the last integral, we have∣∣Gε1,ε2

(
s, s′)∣∣ ≤ (2π)−2

∫
R2

EB

[
eiξB1(s)eiξ ′B1(s

′)]dξ dξ ′

≤ C√
(s ∧ s′)|s − s′| ∈ L1([0, t]2).

Given this, the dominated convergence theorem upgrades (2.26) into a convergence
in L1([0, t]2). This gives (2.23) and hence completes the proof. �

We next turn to the distributional limit of X1,ε and X2,ε (defined in (2.3)). Here-
after, we use ⇒ to denote the weak convergence of probability laws in a designated
space, and endow the space C[0,∞) with the topology of uniform convergence
over compact subsets of [0,∞).

PROPOSITION 2.4. As ε → 0,

(2.27) (B1,B2, �,X1,ε,X2,ε) =⇒ (B1,B2, �, σ∗W1, σ∗W2) in
(
C[0,∞)

)5
,

where W1, W2 are standard Brownian motions independent of (B1,B2), and σ∗ ∈
(0,∞) is given in (2.10).
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PROOF. The proof consists of two steps.
Step 1: Instead of showing (2.27) directly, let us first establish

(2.28) (B1,B2,X1,ε,X2,ε) =⇒ (B1,B2, σ∗W1, σ∗W2) in
(
C[0,∞)

)4
.

To this end, we appeal to microscopic coordinates. That is, with Xmi
ε,j given in (2.4)

(with B replaced by Bj ), we have

(2.29)

(
B1(t),B2(t),X1,ε(t),X2,ε(t)

)
t≥0

law= (
εB1

(
ε−2t

)
, εB2

(
ε−2t

)
,Xmi

1,ε(t),X
mi
2,ε(t)

)
t≥0.

We begin by writing Xmi
j,ε in terms of stochastic integrals. Let Dj,r denote the

Malliavin derivative with respect to dBj (r) on (
,FB,PB), and let Fj (r) denote
the canonical filtration of Bj . The Clark–Ocone formula [20], Proposition 1.3.14,
states that (with Xmi

j,ε(t) having zero mean)

Xmi
j,ε(t) = ε

∫ ε−2t

0
Zj,ε(r, t) dBj (r),

Zj,ε(r, t)(r, t) := ε−1
E
[
Dj,rX

mi
j,ε(t)|Fj (r)

]
.

A direct calculation yields

Dj,rX
mi
j,ε(t) = ε

∫ ε−2t

0

∫ s

0
∂xR

(
s − u,Bj (s) − Bj(u)

)
duds1{u≤r<s},

so

(2.30) Zj,ε(r, t) =
∫ ε−2t

r

∫ r

0
EB

[
∂xR

(
s − u,Bj (s) − Bj(u)

)|Fj (r)
]
duds.

The function ∂xR(s, x) vanishes for all |s| ≥ 1 (because R does), so by defining

Z̃j (r) := 1{r ≥ 1}
(2.31)

×
∫ r+1

r

∫ r

r−1
EB

[
∂xR

(
s − u,Bj (s) − Bj(u)

)|Fj (r)
]
duds,

we have Zj,ε(r, t) = Z̃j (r), for all r ∈ [1, ε−2t − 1]. The latter is preferred for our
purpose, because it does not depend on t . In particular, the analogous integrated
process:

t �−→ X̃mi
j,ε(t) := ε

∫ ε−2t

0
Z̃j (r) dBj (r)

is a martingale (unlike Xmi
j,ε(t), which is not due to the t-dependence of Zj,ε(r, t)).

Also, for each t ∈ R+, the L2(
)-distance between X̃mi
j,ε and Xmi

j,ε vanishes as
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ε → 0:

EB

[∣∣X̃mi
j,ε(t) − Xmi

j,ε(t)
∣∣2] = ε2

∫ ε−2t

0
EB

[∣∣Zj,ε(r, t) − Z̃j (r)
∣∣2]dr

(2.32)
≤ Cε2.

Given this, let us focus on the modified process X̃mi
j,ε instead of Xmi

j,ε .

Now, consider the C([0,∞),R4)-valued process

Mε(t) = (
Mj,ε(t)

)4
j=1 := (

εB1
(
ε−2t

)
, εB2

(
ε−2t

)
, X̃mi

1,ε(t), X̃
mi
2,ε(t)

)
.

It is a continuous martingale, with cross-variance

〈Mi,ε,Mj,ε〉(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, for (i, j) = (1,2), (3,4), (1,4), (2,3),

ε2
∫ ε−2t

0
Z̃i (s) ds, for (i, j) = (1,3), (2,4),

t, for (i, j) = (1,1), (2,2),

ε2
∫ ε−2t

0
Z̃2

i (s) ds, for (i, j) = (3,3), (4,4).

Further, straightforward calculations from the expression (2.31) gives, with ∂xR

being an odd function in x, EB[Z̃i (s)] = 0 and EB[Z̃2
i (s)] = (σ ′∗)2, for all s ≥ 1,

where (
σ ′∗

)2 := EB

[
Z̃2

i (1)
]

(2.33)

= EB

[
EB

[∫ 2

1

∫ 1

0
∂xR

(
s − u,Bj (s) − Bj(u)

)
duds|Fj (1)

]2]
.

Calculating the conditional expectation in (2.31) gives

Z̃j (r) = 1{r ≥ 1}
∫ r+1

r

∫ r

r−1
R̃
(
s, r, u,Bj (r) − Bj(u)

)
duds,

where R̃(s, r, u, x) := ∫
R

q(s−r, x−y)∂yR(s−u,y) dy, and q(t, x) := 1√
2πt

e− x2
2t

denotes the standard heat kernel. From this expression, it is readily check that
(Z̃i (s))s≥1 is bounded, stationary and has a finite range of dependence similar
to (2.9). In particular, the process {Bj(r) − Bj(u) : u ∈ [r − 1, r]}r≥0 is ergodic.
Consequently, Birkhoff’s Ergodic theorem applied to (Z̃i (s))s≥1 and {Z̃2

i (s)}s≥1
gives

ε2
∫ ε−2t

0
Z̃i (s) ds −→ 0, ε2

∫ ε−2t

0
Z̃2

i (s) ds −→ (
σ ′∗

)2
t,

almost surely as ε → 0, for any fixed t ∈ R+. Given these properties, the martin-
gale central limit theorem [8], Theorem 1.4, page 339, yields that

M ⇒ (
B1,B2, σ

′∗W1, σ
′∗W2

)
,
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in (C[0,∞))4. This together with (2.29) and (2.32) gives(
B1(t),B2(t),X1,ε(t),X2,ε(t)

)
(2.34)

=⇒ (
B1(t),B2(t), σ

′∗W1(t), σ
′∗W2(t)

)
in fdd.

Given (2.34), it now suffices to establish the tightness of (B1,B2,X1,ε,X2,ε) in
(C[0,∞))4, and show that (σ ′∗)2 = σ 2∗ . The first step is to appeal to microscopic
coordinates. Using (2.4)–(2.5) we write

Xj,ε(t)
law= Xmi

j,ε(t) = ε

∫ ε−2t

1
Xj (s) ds + rε(t).

Given the properties (2.8)–(2.9) of Xj , a classical functional central limit theorem;
see, for example, [5], pages 178–179, asserts that

Xj,ε =⇒ σ∗Wj in C[0,∞).(2.35)

To apply the result in [5], a ϕ-mixing condition needs to be checked ([5], equa-
tion (20.65)). This is clearly satisfied in our case because Xj has a finite range
of dependence. The convergence in (2.35) in particular implies the tightness of
(B1,B2,X1,ε,X2,ε). Further, comparing (2.34)–(2.35), we see that σ 2∗ = (σ ′∗)2

must hold. (Alternatively, it is possibly to show σ 2∗ = (σ ′∗)2 by calculations from
the expressions (2.10) and (2.33).) We thus conclude (2.28).

Step 2: Having established (2.28), our next goal is to extend the convergence
result to include the localtime process �. First, Tanaka’s formula gives

2�(t) = ∣∣B1(t) − B2(t)
∣∣ − ∫ t

0
sgn

(
B1(s) − B2(s)

)
d(B1 − B2)(s).

Had it been the case that the RHS were a continuous function of B1 − B2, the de-
sired result (2.27) would follow immediately from (2.28). We show in Lemma 2.5
that, in fact, the stochastic integral

∫ t
0 sgn(B1(s) − B2(s))d(B1 − B2)(s) is well-

approximated by a sequence of continuous functions of B1 − B2. That is, there
exists a sequence {fn}n≥1 ⊂ C(C[0,∞);C[0,∞)) such that

(2.36)
∥∥∥∥∫ ·

0
sgn

(
B1(s) − B2(s)

)
d(B1 − B2)(s) − fn(B1 − B2)

∥∥∥∥
C[0,∞)

−→ 0

in probability, as n → ∞. Now, fix arbitrary bounded and continuous g :
(C[0,∞))3 → R and h : (C[0,∞))2 → R, and consider test functions of the type
g ⊗ h ∈ (C[0,∞))5 →R. It is known that the linear span of functions of this type
is dense in C((C[0,∞))5;R). Hence, proving (2.27) amounts to proving

(2.37) EB

[
g(B1,B2, �)h(X1,ε,X2,ε)

] −→ EB

[
g(B1,B2, �)h(σ∗W1, σ∗W2)

]
,

as ε → 0. Set 2�n(t) := |B1(t) − B2(t)| − fn(B)(t). Since fn is continuous, for
each fixed n, from (2.28) we have

EB

[
g(B1,B2, �n)h(X1,ε,X2,ε)

] −→ EB

[
g(B1,B2, �n)h(σ∗W1, σ∗W2)

]
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as ε → 0. On the other hand, with g being bounded and continuous, by (2.36), we
have

EB

[∣∣g(B1,B2, �n) − g(B1,B2, �)
∣∣] → 0,

as n → ∞. From these the desired result (2.37) follows. The proof is complete.
�

LEMMA 2.5. The claim (2.36) holds for a sequence

{fn}n≥1 ⊂ C
(
C[0,∞);C[0,∞)

)
.

PROOF. Set B(t) := B1(t) − B2(t) and U(t) := ∫ t
0 sgn(B(s)) dB(s) to sim-

plify the notation. We begin by constructing the continuous function fn. Set
ζ(x) := x1{|x| ≤ 1} + sgn(x)1{|x| > 1}, ζn(x) := ζ(n1/4x), and define

fn(y)(t) :=
∫ t

0

∞∑
k=0

ζn

(
y

(
k

n

))
1[ k

n
, k+1

n
)
(s) dy(s)

:=
∞∑

k=0

ζn

(
y

(
k

n

))(
y

(
k + 1

n
∧ t

)
− y

(
k

n
∧ t

))
.

Indeed, fn is continuous for each fixed n. Fix an arbitrary T > 0. Using Doob’s
L2-martingale inequality and Itô isometry, we calculate

(2.38)

EB

[
sup
[0,T ]

∣∣U(t) − fn(B)(t)
∣∣2]

≤ C

∫ T

0
EB

[∣∣∣∣∣
∞∑

k=0

ζn

(
B

(
k

n

))
1[ k

n
, k+1

n
)
(t) − sgn

(
B(t)

)∣∣∣∣∣
2]

dt

= C

∞∑
k=0

∫
Ik,n(T )

EB

[∣∣∣∣ζn

(
B

(
k

n

))
− sgn

(
B(t)

)∣∣∣∣2]dt,

where Ik,n(T ) := [ k
n
, k+1

n
) ∩ [0, T ]. Set Vk,n := sup

s∈[0, 1
n
] |B(s + k

n
) − B(k

n
)|. On

the interval t ∈ Ik,n(T ), we have ζn(B( k
n
)) = sgn(B(t)) whenever |B(k

n
)| > n− 1

4

and Vk,n < n− 1
4 . Hence,

EB

[
sup
[0,T ]

∣∣U(t) − fn(B)(t)
∣∣2]

≤ C

[nT ]∑
k=0

(
PB

[
Vk,n ≥ n− 1

4
] + PB

[∣∣∣∣B(
k

n

)∣∣∣∣ ≤ n− 1
4

])
1

n
.
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By the scaling property of Brownian motion and the reflection principle, we have

that Vk,n
law= √

2/n|Z| and that B(k
n
)

law= √
2k/nZ, where Z is a standard Gaussian.

This gives

EB

[
sup
[0,T ]

∣∣U(t) − fn(B)(t)
∣∣2]

≤ C

[nT ]∑
k=0

(
PB

[|Z| ≥ 2− 1
2 n

1
4
] + PB

[
|Z| ≤ n1/4

(2k)1/2

])
1

n
,

with n1/4

(2k)1/2 := ∞ when k = 0. It is now readily verified that the last expres-
sion tends to 0 as n → ∞. From this the desired result follows: sup[0,T ] |U(t) −
fn(B)(t)| → 0 in probability, as n → ∞, for each fixed T . �

3. Proof of Theorem 1.1. Let us first establish the boundedness of moments
of uε(t, x). Set λn := n(n+1)

2 . With the initial condition u0 being bounded, applying
Hölder’s inequality (with exponents (λn, . . . , λn)) in the formula (2.12), we have

E
[∣∣uε(t, x)

∣∣n]
≤ C

(
n∏

j=1

EB

[
exp

(
λn

(
Xj,ε(t) − 1

2
σ 2∗ t + rε(t)

))]

× ∏
1≤i<j≤n

EB

[
exp

(
λnYi,j,ε(t)

)])1/λn

≤ C
(
EB

[
exp

(
λnXε(t)

)])n/λn
(
EB

[
exp

(
λnYi,j,ε(t)

)])n(n−1)/2λn.

Using the exponential moment bounds from Proposition 2.2, we obtain
supε∈(0,1)E[|uε(t, x)|n] < ∞. That is, moments of uε(t, x) are bounded uniformly
in ε. This reduces proving (1.4) for all n ≥ 1 to proving (1.4) for just one n ≥ 1,
since it implies the convergence in probability, and combining with the uniform
integrability of |uε(t, x)|n, we will have the convergence in Ln(�). We hencefor-
ward consider n = 2.

Let us first identify the limit of E[uε1(t, x)uε2(t, x)]. Recall from (2.19) that
�(t) denotes the mutual intersection localtime of B1, B2, and that U denotes the
solution of the SHE (1.1).

PROPOSITION 3.1. We have

lim
ε1,ε2→0

E
[
uε1(t, x)uε2(t, x)

] = EB

[
u0

(
x + B1(t)

)
u0

(
x + B2(t)

)
exp

(
�(t)

)]
.



3054 Y. GU AND L.-C. TSAI

PROOF. The starting point of the proof is the formula (2.14):

E
[
uε1(t, x)uε2(t, x)

]
= EB

[ 2∏
j=1

u0
(
x + Bj(t)

)
exp

(
Yε1,ε2(t) +

2∑
j=1

(
Xj,εj

(t) − 1

2
σ 2∗ t + rεj

(t)

))]
.

By virtue of Propositions 2.3–2.4, we have(
B1(t),B2(t), Yε1,ε2(t),X1,ε1(t),X2,ε2(t)

)
⇒ (

B1(t),B2(t), �(t), σ∗W1(t), σ∗W2(t)
)

in distribution. The proof is complete by invoking Propositions 2.2. �

Now, with

E
[(

uε1(t, x) − uε2(t, x)
)2]

= E
[
uε1(t, x)uε1(t, x)

] − 2E
[
uε1(t, x)uε2(t, x)

] +E
[
uε2(t, x)uε2(t, x)

]
,

Proposition 3.1 has an immediate corollary:

COROLLARY 3.2. The sequence {uε(t, x)}ε∈(0,1) is Cauchy in L2(�).

Given this result, it suffices to identify the unique limit of uε(t, x) in L2(�).
We achieve this by Wiener chaos expansion. Fix (t, x) ∈ R+ × R hereafter, and
denote Rk

< := {(s1, . . . , sk) ∈ R
k : s1 < · · · < sk}. Given any f ∈ L2(Rk

< ×R
k), we

consider the kth order multiple stochastic integral

Ik(f ) :=
∫
Rk

<×Rk
f (s1, . . . , sk, y1, . . . , yk)

n∏
i=1

ξ(si, yi) dsi dyi.

Let q(s, y) = 1√
2πs

e−y2/2s denotes the standard heat kernel, the solution U of the
SHE permits the chaos expansion (we omit the dependence on (t, x))

U(t, x) =
∞∑

k=0

Ik(fk),

fk := 1{0<s1<···<sk<t}
∫
R

u0(y0)

k∏
i=0

q(si+1 − si, yi+1 − yi) dy0,

(3.1)

under the convention yk+1 := x, s0 := 0, and sk+1 := t . For uε , a similar expansion
also exists: using the Stroock formula ([23], equation (7), page 3), we arrive at

uε(t, x) =
∞∑

k=0

Ik(fk,ε), fk,ε := E
[
Dkuε(t, x)

]
.(3.2)
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(Alternatively, this formula (3.2) can also be obtained from the Wick exponen-
tial.) Here D denotes the Malliavin derivative with respect to ξ on (�,F ,P). To
calculate the chaos coefficient fk,ε , we set

�ε,B(r, y) :=
∫ t

0
φε

(
t − s − r, x + B(s) − y

)
ds,(3.3)

and rewrite the Feynman–Kac formula (2.1) as

uε(t, x) = EB

[
u0

(
x + B(t)

)
exp

(∫
R2

�ε,B(r, y)ξ(r, y) dy dr − cεt

)]
.

From this expression we calculate

(3.4)

fk,ε(r1, . . . , rk, y1, . . . , yk)

= EB

[
u0

(
x + B(t)

)
exp

(∫ t

0

∫ s

0
Rε

(
s − u,B(s) − B(u)

)
duds − cεt

)

×
k∏

i=1

�ε,B(ri, yi)

]
.

Denoting the L2(�)-limit of uε(t, x) by U (t, x), and the chaos expansion of
U (t, x) is written as

(3.5) U (t, x) =
∞∑

k=0

Ik(f̃k).

The following lemma completes the proof of Theorem 1.1.

LEMMA 3.3. U (t, x) = U(t, x) in L2(�).

REMARK 3.4. The major component of the following proof is to establish the
convergence fk,ε → fk in L2(Rk

< × R
k). To set up the premise of the proof, we

first give a heuristic explanation why the convergence should hold. Under current
notations, Proposition 2.4 gives the following weak convergence in C[0,∞)2:(∫ t

0

∫ s

0
Rε

(
s − u,B(s) − B(u)

)
duds − cεt,B(t)

)
=⇒

(
σ∗W(t) − 1

2
σ 2∗ t,B(t)

)
,

(3.6)

where W and B are independent standard Brownian motions. This implies

EB

[
u0

(
x + B(t)

)
exp

(∫ t

0

∫ s

0
Rε

(
s − u,B(s) − B(u)

)
duds − cεt

)
F(B)

]
−→ EB

[
u0

(
x + B(t)

)
F(B)

]
,

(3.7)
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for any continuous, bounded test function F : C[0,∞) →R. Referring to (3.4) and
(3.1), together with φε(t, x) → δ(t, x), we can informally view the convergence
fk,ε → fk as a generalization of (3.7) where the test function depend on ε.

To prove fk,ε → fk , the weak convergence (3.6) does not suffice. This is so
especially because the test function φε(t, x) (which approximates the Dirac func-
tion) probes small-scales that are not compatible with the topology of the weak
convergence (3.6). One possible proof is to establish a local version (3.6) that is
commensurate with the scale of φε(t, x). Doing so requires much technical effort.
Instead, we circumvent this technical issue by testing fk,ε against a smooth test
function g, after which the weak convergence (3.6) applies.

PROOF. Given the chaos expansions in (3.1) and (3.5), it suffices to show
f̃k = fk . Since uε(t, x) → U (t, x) in L2(�), using the orthogonality of the chaos,
that is,

E
[
(uε − U )2] =

∞∑
k=0

∫
Rk

<×Rk
(fk,ε − f̃k)

2 ds dy,

we see that, for each k ≥ 0, fk,ε → f̃k in L2(Rk
<×R

k). Fix arbitrary g ∈ C∞
c (R2n),

we consider

〈fk,ε, g〉 :=
∫
Rk

<×Rk
fk,ε(r1, . . . , rk, y1, . . . , yk)

× g(r1, . . . , rk, y1, . . . , yk) dr dy.

(3.8)

To prove f̃k = fk , it suffices to show 〈fk,ε, g〉 → 〈fk, g〉 as ε → 0.
Formula (3.4) yields

(3.9)

〈fk,ε, g〉

=
∫
Rk

<×Rk
EB

[
u0

(
x + B(t)

)
e
∫ t

0
∫ s

0 Rε(s−u,B(s)−B(u)) duds−cεt

×
(∫

[0,t]k
k∏

i=1

φε

(
t − si − ri, x + B(si) − yi

)
ds

)]

× g(r1, . . . , rk, y1, . . . , yk) dr dy.

With φε(·, ·) := ε−3φ(ε−2·, ε−1·), we perform a change of variables

ri �→ ε2r ′
i + t − si, yi �→ εy′

i + x + B(si)
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to rewrite the last expression as

〈fk,ε, g〉

=
∫
R3k

1Aε∩A′
(
r ′, s

) k∏
i=1

φ
(−r ′

i ,−y′
i

)
×EB

[
u0

(
x + B(t)

)
e
∫ t

0
∫ s

0 Rε(s−u,B(s)−B(u)) duds−cεt

× g
(
ε2r ′

1 + t − s1, . . . , ε
2r ′

k + t − sk, εy
′
1 + x + B(s1), . . . ,

εy′
k + x + B(sk)

)]
dr ′ dy′ ds,

where Aε := {ε2r ′
1 + t − s1 < · · · < ε2r ′

k + t − sk} and A′ := {(s1, . . . , sk) ∈ [0, t]k}
translate the constraints on the old variables into the new ones. In order to pass to
the limit, we note that, by Proposition 2.4, (2.3), (2.7) and our choice of cε , for any
fixed (s1, . . . , sk) ∈ [0, t]k ,(∫ t

0

∫ s

0
Rε

(
s − u,B(s) − B(u)

)
duds − cεt,B(s1), . . . ,B(sk),B(t)

)
⇒

(
σ∗W(t) − 1

2
σ 2∗ t,B(s1), . . . ,B(sk),B(t)

)
.

In addition, for any fixed (r ′
1, . . . , r

′
k) ∈ R

k , 1Aε∩A′(r ′, s) → 1{0<sk<···<s1<t}. By
applying Proposition 2.2 and the dominated convergence theorem, we arrive at

〈fk,ε, g〉 −→
∫
R3k

1{0<sk<···<s1<t}
k∏

i=1

φ
(−r ′

i ,−y′
i

)
×EB

[
u0

(
x + B(t)

)
eσ∗W(t)− 1

2 σ 2∗ t(3.10)

× g
(
t − s1, . . . , t − sk, x + B(s1), . . . , x + B(sk)

)]
dr ′ dy′ ds.

In the last expression, integrate over (ri, yi) using
∫

φ dr dy = 1, and perform a
change of variables t − si �→ si . We see that it equals∫

Rk
<∩[0,t]k

EB

[
u0

(
x + B(t)

)
g
(
s1, . . . , sk, x + B(t − s1), . . . , x + B(t − sk)

)]
ds

= 〈fk, g〉.
The proof is complete. �

REMARK 3.5. In the discrete setting, the convergence to SHE from the parti-
tion function of a random polymer with a weak-disordered randomness was proved
in Alberts–Khanin–Quastel [1], also based on a chaos expansion.
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APPENDIX: HOMOGENIZATION AND STOCHASTICITY

In this appendix we investigate the behaviors of (1.3) at different scales. Let
u0(x) ∈ Cb(R) be fixed as in the rest of the article. For α > 0, set

ξε,α(t, x) =
∫
R2

φε,α(t − s, x − y)ξ(s, y) dy ds,

φε,α(t, x) = ε− 3
2 αφ

(
ε−αt, ε− α

2 x
)
,

and consider the solution vε,α of

∂tvε,α = 1

2
∂xxvε,α + ε

1
2 − α

4 ξε,αvε,α, vε,α(0, x) = u0(x).(A.1)

Referring to (1.2), we see that ξε,2 = ξε . For α = 2, (A.1) is the same as (1.3)
up to a centering by −cεuε . We thus view (A.1) as a generalization of (1.3) to

scales α > 0. To see why the specific choice of prefactor ε
1
2 − 1

4 α in (A.1) is rel-
evant, perform a change of variable v(t, x) := vε,α(εαt, εα/2x) in (A.1) to bring
the equation into the “microscopic” coordinates. Using the scaling properties√

ABξ(A·,B·) law= ξ(·, ·) of ξ , we see that v solves

∂tv = 1

2
∂xxv + √

εη(t, x)v,(A.2)

where η(t, x) = ∫
R2 φ(t − s, x − y)̃ξ(s, y) dy ds, for some ξ̃

law= ξ . That is, the
equation (A.1) encodes the behavior of (A.2) (which is α-independent) at the scale
(t, x) ∼ (ε−α, ε−α/2).

Theorem 1.1 yields that vε,2 exp(−cεt) → U . On the other hand, a homogeniza-
tion result was proved in [3, 22] at the scale α = 1, vε,1(t, x) → v̄(t, x) exp(c∗t),
where v̄ solves the unperturbed heat equation

∂t v̄ = 1

2
∂xxv̄, v̄(0, x) = u0(x).

In the following, we establish an analogous homogenization result for α ∈ [1,2),
together with a Gaussian fluctuation result.

PROPOSITION A.1. Fix α ∈ [1,2). For any given (t, x) ∈ R+ ×R, we have

vε,α(t, x) exp
(
− c∗t

εα−1

)
−→ v̄(t, x) in probability,(A.3)

E

[∣∣∣∣ε− 2−α
4

(
vε,α(t, x) −E

[
vε,α(t, x)

])
exp

(
− c∗t

εα−1

)
− V (t, x)

∣∣∣∣2] −→ 0,(A.4)

where V solves the Edwards–Wilkinson equation

∂tV = 1

2
∂xxV + v̄ξ, V (0, x) = 0.(A.5)
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The result shows that if we start the microscopic dynamics (A.2) with the ran-
domness of size

√
ε, then the small Gaussian fluctuations prevail in t ∼ ε−α for

any α < 2. As we increase the time scale to α = 2, the random fluctuations become
of order O(1) and is described by the SHE.

SKETCH OF PROOF. Compared with Theorem 1.1 (i.e., α = 2), the scale α ∈
[1,2) considered here is easier to analyze, so we only sketch the proof. Fix α ∈
[1,2) and set β := 1

2 − α
4 > 0. Apply the Stroock formula in a similar way as we

established (3.2) and (3.4), here we have

vε(t, x) exp
(
− c∗t

εα−1

)
=

∞∑
k=0

εβkIk(f̄k,εα/2),(A.6)

where

f̄k,δ(r1, . . . , rk, y1, . . . , yk)

= EB

[
u0

(
x + B(t)

)
exp

(
ε2βXδ(t) + rε(t)

) k∏
i=1

�δ,B(ri, yi)

]
.

(A.7)

With εβk ≤ εβ → 0, for k ≥ 1, it is not hard to show that
∞∑

k=1

εβkIk(f̄k,εα/2) −→ 0 in L2(�),

and that f̄0,εα/2 → EB[u0(x + B(t))] = v̄(t, x). This concludes the first claim.
Moving onto the second claim regarding random fluctuations, we write

ε−β(vε(t, x) −E
[
vε(t, x)

])
exp

(
− c∗t

εα−1

)

= I1(f̄1,εα/2) +
∞∑

k=2

εβ(k−1)Ik(f̄k,εα/2).

(A.8)

Again, with εβ(k−1) ≤ εβ → 0, for k ≥ 2, it is not hard to show that the second
term on the RHS goes to zero in L2(�). This being the case, we focus on the first
order chaos I1(f̄1,εα/2). Using a similar argument as in the proof of Lemma 3.3,
here we have

f̄1,εα/2(r, y) → q(t − r, x − y)

∫
R

u0(z)q(r, y − z) dz = q(t − r, x − y)v̄(r, y),

in L2(R2), which then yields

I1(f̄1,εα/2) −→
∫ t

0

∫
R

q(t − r, x − y)v̄(r, y)ξ(r, y) dr dy in L2(�).

The expression
∫ t

0
∫
R

q(t − r, x − y)v̄(r, y)ξ(r, y) dr dy is exactly V (t, x). We
hence conclude the second claim. �
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