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APPROXIMATING MIXED HÖLDER FUNCTIONS
USING RANDOM SAMPLES

BY NICHOLAS F. MARSHALL

Yale University

Suppose f : [0,1]2 → R is a (c,α)-mixed Hölder function that we sam-
ple at l points X1, . . . ,Xl chosen uniformly at random from the unit square.
Let the location of these points and the function values f (X1), . . . , f (Xl) be
given. If l ≥ c1n log2 n, then we can compute an approximation f̃ such that

‖f − f̃ ‖L2 =O
(
n−α log3/2 n

)
,

with probability at least 1 − n2−c1 , where the implicit constant only depends
on the constants c > 0 and c1 > 0.

1. Introduction.

1.1. Introduction. A function f : [0,1]2 →R is (c,α)-mixed Hölder if∣∣f (
x′, y

) − f (x, y)
∣∣ ≤ c

∣∣x′ − x
∣∣α,

∣∣f (
x, y′) − f (x, y)

∣∣ ≤ c
∣∣y′ − y

∣∣α
and ∣∣f (

x′, y′) − f
(
x, y′) − f

(
x′, y

) + f (x, y)
∣∣ ≤ c

(∣∣x′ − x
∣∣∣∣y′ − y

∣∣)α,

for all x, x′, y, y′ ∈ [0,1]. For example, if f : [0,1]2 →R satisfies∣∣∣∣∂f∂x

∣∣∣∣ ≤ c,

∣∣∣∣∂f∂y
∣∣∣∣ ≤ c and

∣∣∣∣ ∂f

∂x∂y

∣∣∣∣ ≤ c on [0,1]2,

then by the mean value theorem f is (c,1)-mixed Hölder. In 1963, Smolyak [5]
discovered a surprising approximation result for mixed Hölder functions.

LEMMA 1.1 (Smolyak). Suppose that f : [0,1]2 →R is (c,α)-mixed Hölder.
Then

f (x, y) =
m∑

k=0

f (xk, ym−k) −
m∑

k=1

f (xk−1, ym−k) +O
(
m2−αm)

,

where xk is the center of the dyadic interval of length 2−k that contains x, and yj

is the center of the dyadic interval of length 2−j that contains y.
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Observe that the point (xk, yj ) is the center of a dyadic rectangle of width 2−k

and height 2−j ; thus, Lemma 1.1 is a statement about approximating mixed Hölder
functions by linear combinations of function values at the center of dyadic rectan-
gles of area 2−m and 2−m+1.

We remark that Smolyak [5] actually presented a general d-dimensional version
of Lemma 1.1, and that the ideas of Smolyak were expanded upon by Strömberg
[7], and have been developed into a computational tool called sparse grids; see [1].
The proof of Lemma 1.1 involves a telescoping series argument and is included
below; throughout, we use the notation f � g when f ≤ Cg for some constant
C > 0.

PROOF OF LEMMA 1.1. Fix (x, y) ∈ [0,1]2. For notational brevity, set f
j
k :=

f (xk, yj ). First, we approximate f (x, y) by the center f m
m of a 2−m by 2−m square.

Clearly, ∣∣f (x, y) − f m
m

∣∣ � 2−αm.

Expanding f m
m in successive telescoping series in {xk}mk=1 and {yj }mj=1 gives

f m
m =

m∑
j=1

m∑
k=1

(
f

j
k − f

j
k−1 − f

j−1
k + f

j−1
k−1

) +
m∑

l=1

(
f 0

l − f 0
l−1 + f l

0 − f l−1
0

) + f 0
0 .

Since f is (c,α)-mixed Hölder, it follows that the terms of the double sum satisfy∣∣f j
k − f

j
k−1 − f

j−1
k + f

j−1
k−1

∣∣ � 2−α(j+k).

Thus, we can bound the sum of terms in the double sum such that j + k > m by
m∑

j=1

m∑
k=m−j+1

∣∣f j
k − f

j
k−1 − f

j−1
k + f

j−1
k−1

∣∣ �
m∑

j=1

m∑
k=m−j+1

2−α(j+k) � m2−αm.

Removing these terms from the double sum and collapsing the telescoping series
leaves only terms f k

j such that j + k ∈ {m,m − 1}; in particular, we conclude that∣∣∣∣∣f m
m −

(
m∑

l=0

f m−l
l −

m∑
l=1

f m−l
l−1

)∣∣∣∣∣ � m2−αm,

which completes the proof. �

REMARK 1.1. The proof began by approximating f (x, y) to error O(2−αm)

by the function value at the center of the dyadic square with side length 2−m which
contains (x, y). However, it would require 22m function values to approximate f

at every point in the unit square using this method. In contrast, the telescoping ar-
gument in the proof of Lemma 1.1 achieves an approximation error of O(m2−αm)

while only using function values at the center of dyadic rectangles of area 2−m and
2−m+1; the total number of such rectangles is (m + 1)2m + m2m−1.
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1.2. Main result. Informally speaking, Lemma 1.1 says that if we are given a
specific set of ∼ n lnn samples of a (c,α)-mixed Hölder function f : [0,1]2 →R,
then we are able to compute an approximation f̃ of f such that

‖f − f̃ ‖L∞ =O
(
n−α logn

)
, and ‖f − f̃ ‖L2 = O

(
n−α logn

)
,

where the L2-norm estimate follows directly from the L∞-norm estimate. Our
main result relaxes the sampling requirement to ∼ n log2 n random samples and
achieves the same L2-norm error estimate up to log factors.

THEOREM 1.1. Suppose f : [0,1]2 → R is a (c,α)-mixed Hölder function
that we sample at l points X1, . . . ,Xl chosen uniformly at random from the unit
square. Let the location of these points and the function values f (X1), . . . , f (Xl)

be given. If l ≥ c1n log2 n, then we can compute an approximation f̃ such that

‖f − f̃ ‖L2 = O
(
n−α log3/2 n

)
,

with probability at least 1 − n2−c1 , where the implicit constant only depends on
the constants c > 0 and c1 > 0.

When α > 1/2, the theorem implies that we can integrate mixed Hölder func-
tions on the unit square with an error rate that is better than the Monte Carlo rate
of O(n−1/2) with high probability.

COROLLARY 1.1. Under the assumptions of Theorem 1.1, if l ≥ c1n log2 n,
then we can compute an approximation I of the integral of f on [0,1]2 such that∫

[0,1]2
f (x) dx = I +O

(
n−α log3/2 n

)
,

with probability at least 1 − n2−c1 .

The proof of this corollary follows immediately from the L2-norm estimate
from Theorem 1.1 and the Cauchy–Schwarz inequality.

REMARK 1.2. The computational cost of computing f̃ is O(n log3 n) opera-
tions of precomputation, and then O(logn) operations for each point evaluation.
Furthermore, after precomputation we can compute the integral of f̃ on the unit
square in O(n) operations. The construction of f̃ is described in Section 3.

REMARK 1.3. An advantage of using random samples and Theorem 1.1 to
approximate a mixed Hölder function over using samples at the center of dyadic
rectangles and Lemma 1.1 is the ability to perform spin cycling. For simplicity of
exposition, assume that f : [0,1]2 → R is a mixed Hölder function on the torus.
Let X1, . . . ,Xl be chosen uniformly at random from [0,1]2, and let the function
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values f (X1), . . . , f (Xl) be given. By Theorem 1.1, we can compute an approx-
imation f̃ of the function f ; however, as described in Section 3 the computation
of f̃ is dependent on the dyadic decomposition of [0,1]2, and this dependence
will create artifacts. We call the following method of removing these artifacts spin
cycling.

Let ζ ∈ [0,1]2 be given, and define fζ (x) = f (x − ζ ) where addition is per-
formed on the torus. By considering the function values f (X1), . . . , f (Xl) as val-
ues of the function fζ at the uniformly random sample of points X1 + ζ, . . . ,Xl +
ζ , we can use Theorem 1.1 to compute an approximation f̃ζ of the function fζ . It
follows that f̃ζ (x + ζ ) is an approximation of f with the same accuracy guaran-
tees as f̃ . However, the shift ζ has changed the relation of the function values to
the dyadic decomposition of [0,1]2, and thus has changed the resulting artifacts.
In general, we can consider a sequence of shifts ζ1, . . . , ζq ∈ [0,1]2 and define

f̄ (x) = 1

q

q∑
k=1

f̃ζk
(x + ζk) for x ∈ [0,1]2,

where f̃ζj
is the approximation of the function fζj

computed via Theorem 1.1
using the shift operation described above. We say that f̄ is an approximation via
Theorem 1.1 with q spin cycles. In Section 4.1, we provide empirical evidence
that spin cycling removes artifacts. We note that when l ≥ c1n log2 n and c1 >

2 + log(q)/ log(n), it follows that the accuracy claims of Theorem 1.1 hold for all
function f̃ζj

for j = 1, . . . , q with high probability. The assumption that f is mixed
Hölder on the torus can be relaxed by handling the boundaries appropriately. We
emphasize that spin cycling is not possible when using a fixed sample of points at
the center of dyadic rectangles and Lemma 1.1 as any shift moves the points away
from the center of dyadic rectangles, which is prohibitive for using Lemma 1.1.

2. Preliminaries.

2.1. Notation. Let D denote the set of dyadic intervals in [0,1]; more pre-
cisely,

D := {[
(j − 1)2−k, j2−k) ⊂ R : k ∈ Z≥0 ∧ j ∈ {

1, . . . ,2k}}.
We say that R = I × J is a dyadic rectangle in the unit square if I, J ∈ D. The
number of dyadic rectangles in the unit square of area 2−m is

(m + 1)2m = #
{
R = I × J : |R| = 2−m ∧ I, J ∈ D

}
.

In particular, for each k = 0, . . . ,m there are 2m distinct dyadic rectangles of width
2−k and height 2m−k , which are disjoint and cover the unit square. We illustrate
the dyadic rectangles in the unit square of area at least 2−3 in Figure 1.

Recall that Lemma 1.1 approximates the value f (x) of a mixed Hölder function
by a linear combination of the function values at the centers of dyadic rectangles
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FIG. 1. The dyadic rectangles of area at least 2−3 in the unit square.

of area 2−m and 2−m+1 that contain the point x. Thus, with respect to the illus-
tration in Figure 1, the approximation formula of Lemma 1.1 consists of adding
the function values at the center of the dyadic rectangles in the lowest row which
contain x, and subtracting the function values at the center of the dyadic rectangles
in the second lowest row which contain x.

2.2. Randomized Kaczmarz. In addition to properties of dyadic rectangles, we
will use a result of Strohmer and Vershynin [6] regarding the convergence of a
randomized Kaczmarz algorithm. Specifically, Strohmer and Vershynin show that
a specific randomized Kaczmarz algorithm converges exponentially fast at a rate
that only depends on how well the matrix is conditioned. The following lemma is
a special case of their result, which will be sufficient for our purposes.

LEMMA 2.1 (Strohmer, Vershynin). Let A be an N × n matrix where N ≥ n

whose rows are of equal magnitude, and let Aw = b be a consistent linear system
of equations. Suppose that l indices I1, . . . , Il are chosen uniformly at random
from {1, . . . ,N}. Let an initial guess at the solution v0 be given. For k = 1, . . . , l

define

vk := vk−1 + bIk
− 〈aIk

, vk−1〉
‖aIk

‖2
�2

aIk
,

where aj denotes the j th row of A, and bj denotes the j th entry of b. Then

E‖vk − w‖2
�2 ≤ (

1 − κ−2)k‖v0 − w‖2
�2,

for k = 1, . . . , l, where κ2 := ∑n
j=1 σ 2

j /σ 2
n and σ1, . . . , σn are the singular values

of A.
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The rate of convergence of the algorithm is determined by the constant κ , which
only depends on the singular values of the matrix A. This constant κ can be viewed
as a type of condition number for the matrix A, and can be equivalently defined
as the Frobenius norm of A multiplied by the operator norm of the left inverse
of A. We remark that the convergence of the randomized Kaczmarz algorithm for
inconsistent linear systems Aw ≈ b + ε is analyzed by Needell [4]. In the proof of
the main result we use Lemma 2.1 in combination with a modified version of the
error analysis in [4].

2.3. Organization. The remainder of the paper consists of the proof of Theo-
rem 1.1 in Section 3 followed by discussion in Section 4. The proof of Theorem 1.1
is organized as follows. In Section 3.1, we define an embedding of the points in the
unit square into a larger finite dimensional vector space. In Section 3.2, we show
that inner products of vectors with the defined embedding coordinates have a mar-
tingale interpretation. In Section 3.3, we show that mixed Hölder functions can be
approximated by linear functionals in the embedding coordinates. In Section 3.4,
we show that the randomized Kaczmarz algorithm can be used to solve a specif-
ically constructed system. In Section 3.5, we use the developed tools to complete
the proof of Theorem 1.1. Finally, in Section 3.6 we prove the computational cost
claims of Remark 1.2.

3. Proof of Theorem 1.1.

3.1. Embedding points. Recall, that there are m2m−1 dyadic rectangles of area
2−m+1 in the unit square [0,1]2. Let

T1, . . . , Tm2m−1

be an enumeration of these rectangles such that the rectangles

Tk2m−1+1, . . . , T(k+1)2m−1

have width 2−k and height 2k−m+1 for k = 0, . . . ,m − 1. Let T +
j and T −

j denote
the left and right halves of Tj , respectively. Furthermore, let

R1, . . . ,R2m

be an enumeration of the dyadic rectangles of width 1 and height 2−m.

DEFINITION 3.1. We define an embedding 	 : [0,1]2 → R
(m+2)2m−1

entry-
wise by

	j(x) = χRj
(x) for j = 1, . . . ,2m

and

	2m+j (x) = 1√
2

(
χT +

j
(x) − χT −

j
(x)

)
for j = 1, . . . ,m2m−1,

where χR denotes the indicator function for the rectangle R.
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Fix x ∈ [0,1]2, and let β0 be the index of the dyadic rectangle Rβ0 of width 1
and height 2−m that contains x. Then, for k = 1, . . . ,m, let βk − 2m be the index
of the dyadic rectangle Tβk−2m of width 2−k+1 and height 2k−m that contains x.
Set ξ0 := 	β0(x) = 1, and

ξk := 	βk
(x) = 1√

2

(
χT +

βk−2m
(x) − χT −

βk−2m
(x)

)
for k = 1, . . . ,m,

such that ξk is +1/
√

2 or −1/
√

2 depending on if x is contained in the left or right
half of Tβk−2m , respectively. Then, if v ∈ R

(m+2)2m−1
we have

〈
	(x), v

〉 = m∑
k=0

ξkvβk
,

where 〈·, ·〉 denotes the (m + 2)2m−1-dimensional Euclidean inner product. In the
following section, we show that partial sums of this inner product can be inter-
preted as martingales.

3.2. Martingale interpretation. Suppose that x ∈ [0,1]2 is chosen uniformly
at random, and let the indices β0, . . . , βm and the scalars ξ0, . . . , ξm be defined as
above. Let v ∈ R

(m+2)2m−1
be a fixed unit vector. We define the partial sum Yr by

Yr =
r∑

k=0

ξkvβk
for r = 0, . . . ,m.

We assert that {Yr}mk=0 is a martingale with respect to {β0, ξ1, . . . , ξm}, that is,

E(Yk+1|β0, ξ1, . . . , ξk) = Yk for k = 0, . . . ,m − 1.

Indeed, this martingale property can be seen by interpreting the partial sums from a
geometric perspective. Recall that β0 determines the dyadic rectangle Rβ0 of width
1 and height 2−m that contains x. Therefore, β0 determines the dyadic rectangle
Tβ1−2m of width 1 and height 2−m+1 that contains x. However, β0 provides no
information about ξ1 = ±1/

√
2, which is positive or negative depending on if the

point x is in the left or right side of Tβ1−2m , respectively. It follows that

E(Y1|β0) = 1

2

(
vβ0 + 1√

2
vβ1

)
+ 1

2

(
vβ0 − 1√

2
vβ1

)
= Y0.

More generally, βk and ξk determine βk+1 since together βk and ξk determine the
dyadic rectangle T

sgn ξk

βk−2m of width 2−k and height 2m−k , which contains x. This,

in turn, determines the rectangle Tβk+1−2m of width 2−k and height 2k−m+1 which
contains x, but provides no information about which side (left or right) of this
rectangle the point x is contained in, that is to say, no information about ξk+1.
Hence

E(Yk+1|β0, ξ1, . . . , ξk) = 1

2

(
Yk + 1√

2
vβk+1

)
+ 1

2

(
Yk − 1√

2
vβk+1

)
= Yk.
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This martingale property of the partial sums has several useful consequences.

LEMMA 3.1. Suppose that X is chosen uniformly at random from the unit
square, and set Y = 	(X). Let v ∈ R

(m+2)2m−1
be a fixed vector of unit length.

Then

E
∣∣〈Y, v〉∣∣2 = 2−m.

PROOF. Let β0, . . . , βm and ξ0, . . . , ξm be as defined above such that

E
∣∣〈Y, v〉∣∣2 = E

∣∣∣∣∣
m∑

k=0

ξkvβk

∣∣∣∣∣
2

=
m∑

k1,k2=0

Eξk1ξk2vβk1
vβk2

.

If k1 > k2, then ξk2 and βk2 are determined by β0, ξ1, . . . , ξk1−1; we conclude that

E(ξk1ξk2vβk1
vβk2

) = E
(
ξk2vβk2

E(ξk1vβk1
|β0, ξ1, . . . , ξk1−1)

) = 0,

where the final equality follows from the fact that the expected value of ξk1vβk1
conditional on β0, ξ1, . . . , ξk1−1 is zero by the above described martingale property.
An identical argument holds for the case when k1 < k2 so it follows that

m∑
k1,k2=0

Eξk1ξk2vβk1
vβk2

=
m∑

k=0

Eξ2
k v2

βk
= Ev2

β0
+ 1

2

m∑
k=1

Ev2
βk

.

We can compute this expectation explicitly by noting that the probability that x is
contained a given dyadic rectangle is proportional to its area; specifically, we have

Ev2
β0

+ 1

2

m∑
k=1

Ev2
βk

= 1

2m

2m∑
j=1

v2
j + 1

2

1

2m−1

m∑
k=1

2m−1∑
j=1

v2
(k+1)2m−1+j

= 2−m,

where the final equality follows from collecting terms and using the assumption
that v is a unit vector in R

(m+2)2m−1
. �

Since embedding 	 : [0,1]2 →R
(m+2)2m−1

is defined using indicator functions
of dyadic rectangles of area 2−m in [0,1]2, it follows that 	 is constant on 2−m

by 2−m dyadic squares since all points in such a square are contained in the same
collection of dyadic rectangles of area 2−m in [0,1]2. This observation leads the
following corollary of Lemma 3.1.

COROLLARY 3.1. Let x1, . . . , x22m be a sequence of points such that each 2−m

by 2−m dyadic square contains exactly one point. Let A be the 22m × (m+ 2)2m−1

matrix whose j th row is 	(xj ). Then

σ1 = · · · = σ(m+2)2m−1 = 2m/2,

where σ1, . . . , σ(m+2)2m−1 are the singular values of A.
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PROOF. Let v ∈ R
(m+2)2m−1

be an arbitrary unit vector. We have

‖Av‖2
�2 =

22m∑
j=1

∣∣〈	(xj ), v
〉∣∣2.

However, since all points in each 2−m by 2−m dyadic square have the same em-
bedding, and since the measures of all such dyadic squares are equal, we have

22m∑
j=1

∣∣〈	(xj ), v
〉∣∣2 = 22m

E
∣∣〈Y, v〉∣∣2,

where Y := 	(X) for a point X chosen uniformly at random from the unit square.
By Lemma 3.1, we conclude that

‖Av‖2
�2 = 22m

E
∣∣〈Y, v〉∣∣2 = 2m,

and since v was an arbitrary unit vector the proof is complete. �

3.3. Approximation by linear functionals. So far, we have constructed an em-
bedding 	 : [0,1]2 → R

(m+2)2m−1
, and we have shown that inner products of the

form 〈	(X), v〉 are related to martingales. We have used this relation to show that
the collection of all possible embedding vectors form a matrix whose singular val-
ues are all 2m/2. Next, we show that a mixed Hölder function can be approximated
by a linear functional in the embedding coordinates.

LEMMA 3.2. Let f : [0,1]2 → R be a (c,α)-mixed Hölder function. Then
there exists a vector w ∈R

(m+2)2m−1
such that

f (x) = 〈
	(x),w

〉 +O
(
m2−αm)

for all x ∈ [0,1]2,

where the vector w depends on f , but is independent of x and is explicitly defined
below in Definition 3.2.

We construct the vector w using a scheme similar to the construction of Haar
wavelets. Let Dj

k be the collection of dyadic rectangles contained in the unit square
of width 2−k and area 2−j . For a given dyadic rectangle R, we define sr(R) by

sr(R) := ∑
R′∈Dm

r :|R∩R′|>0

f (cR′) − ∑
R′∈Dm−1

r :|R∩R′|>0

f (cR′),

where cR′ is the center of R′. Observe that the first sum in the definition of sr(R)

is over the dyadic rectangles of width 2−r and area 2−m that intersect R, while
the second sum is over the dyadic rectangles of width 2−r and area 2−m+1 that
intersect R.
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DEFINITION 3.2. We define the vector w ∈R
(m+2)2m−1

entrywise by

wj =
m∑

r=0

2−r sr (Rj ) for j = 1, . . . ,2m

and

w2m+j = 2kj

√
2

m∑
r=kj

2−r(sr(T +
j

) − sr
(
T −

j

))
for j = 1, . . . ,m2m−1,

where kj := �j2−k� is such that 2−kj is the width of the rectangle Tj .

PROOF OF LEMMA 3.2. Let x be a fixed point in the unit square [0,1]2. Recall
that we can express the inner product

〈
	(x),w

〉 = m∑
k=0

ξkwβk
,

where the scalars ξ0, . . . , ξm and the indicies β0, . . . , βm are as defined above. First,
let us rewrite Lemma 1.1 using this notation. We have

f (x) = f (cRβ0
) +

m∑
k=1

f (c
T

sgn ξk
βk−2m

) −
m∑

k=1

f (cTβk−2m ) +O
(
m2−αm)

.

Indeed, by definition Rβ0 is the dyadic rectangle of width 1 and height 2−m that

contains x, T
sgn ξk

βk−2m is the dyadic rectangle of width 2−k and height 2m−k that con-

tains x, and Tβk−2m is the dyadic rectangle of width 2−k+1 and height 2m−k that
contains x. Thus, to complete the proof it suffices to show that

m∑
k=0

ξkwβk
= f (cRβ0

) +
m∑

k=1

f (c
T

sgn ξk
βk−2m

) −
m∑

k=1

f (cTβk−2m ).

Let us start by considering the terms ξ0wβ0, . . . , ξmwβm of the summation expres-
sion for the inner product 〈	(x),w〉. By the definition of w, we have

ξ0wβ0 = s0(Rβ0) +
m∑

r=1

2−r+1
sr(T

+
β1

) + sr(T
−
β1

)

2

and

ξkwβk
=

m∑
r=k

2−r+k sgn ξk

sr(T
+
βk−2m) − sr(T

−
βk−2m)

2

for k = 1, . . . ,m. We assert that if we start summing at r = k + 1 we have

m∑
r=k+1

2−r+ksr
(
T

sgn ξk

βk−2m

) =
m∑

r=k+1

2−r+k+1
sr(T

+
βk−2m) + sr(T

−
βk−2m)

2
.
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Indeed, observe that T
sgn ξk

βk−2m is the dyadic rectangle of width 2−k and height 2m−k

that contains x. We have that

T
sgn ξk

βk−2m ⊂ T +
βk+1−2m ∪ T −

βk+1−2m = Tβk+1−2m,

since Tβk+1−2m is the dyadic rectangle of width 2−k and height 2k−m+1 that con-
tains x. However, when r ≥ k + 1 we are summing of dyadic rectangles of height
at least 2m−k+1, and any dyadic rectangle of height at least 2k−m+1 that intersects
Tβk+1−2m must also intersect T

sgn ξk

βk−2m so we conclude the above equality. By apply-
ing the identity iteratively as we add each term ξkwβk

, we conclude that

m∑
k=0

ξkwβk
= s0(Rβ0) +

m∑
k=1

sr
(
T

sgn ξk

βk−2m

)
.

Next, we observe that

s0(Rβ0) = f (cRβ0
) − f (cTβ1−2m ),

and that for k = 1, . . . ,m − 1,

sk
(
T

sgn ξk

βk−2m

) = f (c
T

sgn ξk
βk−2m

) − f (cTβk+1−2m ).

However, observe that when r = m we have

sm(R) := ∑
R′∈Dm

m :|R∩R′|>0

f (cR′) − ∑
R′∈Dm−1

m :|R∩R′|>0

f (cR′),

and there are no rectangles in the set Dm−1
m , which is the set of rectangles of width

2−m and area 2−m+1 that are contained in the unit square; indeed, such a rectangle
would need to have height 2, which is prohibitive. We conclude that

sm
(
T

sgn ξm

βm−2m

) = f (c
T

sgn ξm
βm−2m

).

Recall that we have already shown that

m∑
k=0

ξkwβk
= s0(Rβ0) +

m∑
k=1

sk
(
T

sgn ξk

βk−2m

);
substituting in the derived expressions for s0(Rβ0) and sk(T

sgn ξk

βk
) gives

m∑
k=0

ξkwβk
= f (cRβ0

) +
m∑

k=1

f (c
T

sgn ξk
βk−2m

) −
m∑

k=1

f (cTβk−2m ),

which completes the proof. �



APPROXIMATING MIXED HÖLDER FUNCTIONS 2999

3.4. Random projections. We have established that in the embedding coordi-
nates 	(x) of a point x ∈ [0,1]2 that Smolyak’s lemma can be rephrased as a result
about approximating mixed Hölder functions by linear functionals. Moreover, us-
ing the martingale interpretation of inner products of vectors with 	(x) we were
able to explicitly compute the singular values of the matrix of all possible em-
bedding vectors. In the following, we combine these ideas using the randomized
Kaczmarz algorithm of Strohmer and Vershynin [6].

Suppose that x1, . . . , x22m is a sequence of points that contains exactly one point
in each 2−m by 2−m dyadic square in [0,1]2. Let A be the 22m × (m + 2)2m−1

dimensional matrix whose j -th row is 	(xj ). Since the embedding 	(x) has 1
entry of magnitude 1 and m entries of magnitude 1/

√
2, see Definition 3.1, we

have

‖	(x)‖�2 =
√

1 + m/2,

for all x ∈ [0,1]2, and it follows that all of the rows of A have equal magnitude.
Suppose that f : [0,1]2 → R is a (c,α)-mixed Hölder function. By Lemma 3.2,
there exists a vector w such that

|f (x) − 〈	(x),w〉| � m2−αm.

Define

f̄ (x) := 〈	(x),w〉,
for all x ∈ [0,1]2. If b is the 22m-dimensional vector whose j -th entry is f̄ (xj ),
then we have a consistent linear system of equations

Aw = b.

By Corollary 3.1 the condition number κ2 of A satisfies

κ2 :=
(m+2)2m−1∑

j=1

σ 2
j /σ 2

(m+2)2m−1 = (m + 2)2m−1,

where σ1, . . . , σ(m+2)2m−1 are the singular values of A. Observe that sampling
points uniformly at random from [0,1]2 and applying the embedding 	 is equiv-
alent to choosing rows uniformly at random from A. Thus, the following result
is a direct consequence of applying Lemma 2.1 to the consistent linear system of
equations Aw = b that we constructed above.

LEMMA 3.3. Suppose that l points X1, . . . ,Xl are sampled uniformly at ran-
dom from [0,1]2. Given an initial vector v0 ∈ R

(m+2)2m−1
, define

vk := vk−1 + f̄ (Xk) − 〈	(Xk), vk−1〉
1 + m/2

	(Xk).
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Then,

E‖vk − w‖2
�2 ≤

(
1 − 1

(m + 2)2m−1

)k

‖v0 − w‖2
�2,

for k = 1, . . . , l.

Note that vk is defined using f̄ (x) rather than f (x) so that the definition
of vk corresponds to running the randomized Kaczmarz algorithm on the con-
sistent linear system Aw = b. When we complete the proof of Theorem 1.1
in the following section, we estimate the error caused by replacing f̄ (x) by
f (x) = f̄ (x) + O(m2−αm). We remark that the expected error for the random-
ized Kaczmarz algorithm for inconsistent linear systems is analyzed by Needell
[4]. Since we need an error estimate that holds with high probability we perform a
modified version of the error analysis of Needell.

3.5. Proof of Theorem 1.1. In this section, we combine the developed tools to
complete the proof of Theorem 1.1.

PROOF OF THEOREM 1.1. Suppose that f : [0,1]2 → R is a (c,α)-mixed
Hölder function that is sampled at l points X1, . . . ,Xl chosen uniformly at random
from [0,1]2. For some initial vector v∗

0 ∈ R
(m+2)2m−1

, define

v∗
k := v∗

k−1 + f (Xk) − 〈	(Xk), v
∗
k−1〉

1 + m/2
	(Xk),

for k = 1, . . . , l. Recall that by Lemma 3.2 there exists a vector w such that

|f (x) − 〈	(x),w〉| � m2−αm,

and recall that f̄ (x) := 〈	(x),w〉. Suppose that εk := f (Xk) − f̄ (Xk). We can
write

v∗
k = vk + ek,

where vk is the vector defined in Lemma 3.3 by

vk := vk−1 + f̄ (Xk) − 〈	(Xk), vk−1〉
1 + m/2

	(Xk),

and ek is an error term defined by

ek := ek−1 + εk − 〈	(Xk), ek−1〉
1 + m/2

	(Xk).

By orthogonality we have

‖ek‖2
�2 =

∥∥∥∥ek−1 − 〈	(Xk), ek−1〉
1 + m/2

	(Xk)

∥∥∥∥
2

�2
+ ε2

k

(1 + m/2)2 ‖	(Xk)‖2
�2 .



APPROXIMATING MIXED HÖLDER FUNCTIONS 3001

It follows that

‖ek‖2
�2 ≤ ‖ek−1‖2

�2 + ε2
k

1 + m/2
� km2−2αm.

By the triangle inequality we have

‖v∗
k − w‖�2 � ‖vk − w‖�2 + √

km2−αm.

Next, we estimate ‖vk − w‖�2 . From Lemma 3.3 we have

E‖vk − w‖2
�2 ≤

(
1 − 1

(m + 2)2m−1

)k

‖v0 − w‖2
�2 .

Thus, if l ≥ c1 log(2m)(m + 2)2m−1, then we have

E‖vl − w‖2
�2 ≤ 2−c1m‖v0 − w‖2

�2 .

By the possibility of considering the function f −f (X1) instead of f , we may as-
sume that |f | ≤ 2c on [0,1]2. It follows that ‖w‖�∞ ≤ 3c when m is large enough.
Therefore, if we initialize v0 as the zero vector we have

‖v0 − w‖2
�2 ≤ 9c2(m + 2)2m−1.

From this estimate and our above analysis it follows that

E‖vl − w‖2
�2 ≤ 9c2

2
(m + 2)2(1−c1)m,

when l ≥ c1 log(2m)(m + 2)2m−1. Observe that

l = c1 log(2m)(m + 2)2m−1 ≤ c1 log2(2m)2m,

when m is sufficiently large. Thus, if l ≥ c1 log2(2m)2m, then by Markov’s inequal-
ity

P(‖vl − w‖2
�2 ≥ m32(1−2α)m) ≤ E‖vl − w‖2

�2

m32(1−2α)m
≤ 2(2−c1)m,

when m is large enough in terms of c. Recall that we previously showed that

‖v∗
l − w‖�2 � ‖vl − w‖�2 + √

ml2−αm.

If l = �c1 log(2m)22m�, then by our estimate on ‖vl − w‖�2 it follows that

‖v∗
l − w‖�2 � m3/22(1/2−α)m,

with probability at least 1 − 2(2−c1)m. By Corollary 3.1, the operator norm of A is
2m/2, so it follows that

‖Av∗
l − Aw‖�2 � m3/22(1−α)m,
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with probability at least 1 − 2(2−c1)m. Thus, if we define the function f̃ : [0,1]2 →
R by

f̃ (x) := 〈	(x), v∗
l 〉,

then we have the estimate√∫
[0,1]2

|f̃ (x) − f̄ (x)|2dx = ‖f̃ − f̄ ‖L2 � 2−αmm3/2,

with probability at least 1 − 2(2−c1)m. Since ‖f̄ − f ‖L2 � 2−αmm it follows that
‖f̃ − f ‖L2 � 2−αmm3/2. Setting n := 2m completes the proof. �

3.6. Proof of Remark 1.2. It remains to verify the computational cost claims
of Remark 1.2.

PROOF OF REMARK 1.2. Let n = 2m. The computation of v∗
l described in

Lemma 3.3 consists of O(n log2 n) iterations of O(logn) operations for a total
of O(n log3 n) operations of precomputation. Then, since 	(x) is supported on
O(logn) entries, the inner product 〈	(x), v∗

l 〉 requires O(logn) operations. Fi-
nally, approximating the integral of f amounts to approximating the function f at
each point, taking the sum, and dividing by n2,

∣∣∣∣∣
∫
[0,1]2

f (x) − 1

n2

〈
n2∑

j=1

	(xj ),w

〉∣∣∣∣∣ � n−α log3/2 n.

However, this naive approach would require O(n2) operations. Instead, we make
the observation that

n2∑
j=1

	(xj ) = g,

where g is the vector whose first n entries are equal to 1 and which is zero else-
where. Indeed, after the first n entries, each entry is +1/

√
2 and −1/

√
2 for an

equal number of embedding vectors. It follows that
∣∣∣∣
∫
[0,1]2

f (x) − 1

n
〈g,w〉

∣∣∣∣ � n−α log3/2 n;

the computation of the inner product 〈g,w〉 only requires O(n) operations so the
proof is complete. �
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FIG. 2. Function f (left) and approximation via Lemma 1.1 (right).

4. Discussion.

4.1. Illustration. Suppose that f : [0,1]2 →R is the function defined by

f (x, y) = sin
(
20x2 + 10y

)
sin(πx) sin(πy) for (x, y) ∈ [0,1]2.

The function f is (c,1)-mixed Hölder for some c > 0 since the partial derivatives
∂f/∂x, ∂f/∂y, and ∂2f/(∂x∂y) are bounded in [0,1]2. As a baseline, in Figure 2
we plot the function f , and the approximation of f via the method of Smolyak
(Lemma 1.1) with m = 7 such that n := 2m = 128.

Next, we set c1 = 8 and sample l = c1n log2 n points uniformly at random from
[0,1]2. In Figure 3, we plot the approximation of f via Theorem 1.1, and the ap-
proximation of f via Theorem 1.1 with n = 128 spin cycles. In particular, the spin
cycles are performed by considering f as a function on the torus, generating a se-
quence of random shifts ζ1, . . . , ζn ∈ [0,1]2, and using the method of Remark 1.3.

The plots in Figure 3 provide empirical evidence that spin cycling as described
in Remark 1.3 reduces artifacts. Developing quantitative estimates for improve-
ments in approximation accuracy resulting from spin cycling is an interesting the-
oretical problem for future study.

4.2. Discussion. There are several possible extensions and applications of
Theorem 1.1. Informally speaking, we have shown that in 2-dimensions the sam-
pling requirements for the method of Smolyak [5] can be relaxed from a specific
set of points at the center of dyadic rectangles to a similar number of random sam-
ples. As previously noted, Smolyak [5] presented a general d-dimensional version
of Lemma 1.1 so an immediate question for future study is the extension of The-
orem 1.1 to the d-dimensional cube. This would require defining a more sophisti-
cated embedding 	 that retains an analog of the martingale property established in
Section 3.2. It may also be interesting to consider generalizations of Theorem 1.1
to abstract dyadic trees as discussed by M. Gavish and R. R. Coifman in [2].
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FIG. 3. Approximation via Theorem 1.1 (left) and approximation via Theorem 1.1 with 128 spin
cycles as in Remark 1.3 (right).

There are also interesting theoretical questions in 2-dimensions related to ran-
dom matrix theory. Given a collection of l points X1, . . . ,Xl chosen uniformly at
random from [0,1]2, we can consider the l × (m + 2)2m−1 dimensional matrix B

whose j th row is 	(Xj), where 	 is the embedding defined in Definition 3.1. The
rows of B are independent, and the inner product of a vector with a row of B is
a martingale sum; see Section 3.2. It would be interesting to develop quantitative
high probability estimates on the singular values of B .

Finally, we note that the method of Smolyak [5] has been developed into a com-
putational method called sparse grids; see [1]. The relaxation to random sampling
and the ability to perform spin cycles may prove useful for certain applications.
In particular, it may be interesting to consider applications of Theorem 1.1 in the
Fourier domain, where the mixed Hölder condition is very natural. Recently, M.
Griebel and J. Hamaekers [3] have developed a fast discrete Fourier transform on
sparse grids, which could potentially be used in combination with Theorem 1.1.

Acknowledgments. The author would like to thank Raphy Coifman for many
fruitful discussions.
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