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Consider a countably infinite collection of interacting queues, with a
queue located at each point of the d-dimensional integer grid, having indepen-
dent Poisson arrivals, but dependent service rates. The service discipline is of
the processor sharing type, with the service rate in each queue slowed down,
when the neighboring queues have a larger workload. The interactions are
translation invariant in space and is neither of the Jackson Networks type, nor
of the mean-field type. Coupling and percolation techniques are first used to
show that this dynamics has well-defined trajectories. Coupling from the past
techniques are then proposed to build its minimal stationary regime. The rate
conservation principle of Palm calculus is then used to identify the stability
condition of this system, where the notion of stability is appropriately defined
for an infinite dimensional process. We show that the identified condition is
also necessary in certain special cases and conjecture it to be true in all cases.
Remarkably, the rate conservation principle also provides a closed-form ex-
pression for the mean queue size. When the stability condition holds, this
minimal solution is the unique translation invariant stationary regime. In ad-
dition, there exists a range of small initial conditions for which the dynamics
is attracted to the minimal regime. Nevertheless, there exists another range of
larger though finite initial conditions for which the dynamics diverges, even
though stability criterion holds.
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1. Introduction. In this paper, we consider a spatial queueing network con-
sisting of an infinite collection of processor sharing queues interacting with each
other in a translation invariant way. In our model, there is a queue located at each
grid point of Zd , for some d ≥ 1. The queues evolve in continuous time and serve
the customers according to a generalized processor-sharing discipline. The arrivals
to the queues form a collection of i.i.d. Poisson point processes of rate λ > 0. Thus,
the total arrival rate to the network is infinite since there is an infinite number
of queues. The different queues interact through their departure rates. We model
the interactions through an interference sequence that we denote by {ai}i∈Zd . It is
such that ai ≥ 0 and ai = a−i for all i ∈ Zd . We also assume that this sequence is
finitely supported, that is, L := max{‖i‖∞ : ai > 0} < ∞. For ease of exposition,
we also assume that a0 = 1 in certain sections of the paper, although our model
and its analysis can be carried out for any nonzero value of a0. For any t ∈ R, let
{xi(t)}i∈Zd ∈ NZd

denote the queue lengths at time t in the network, that is, the
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state of the system at time t . Then the interference experienced by a customer lo-
cated in queue i at time t is defined as

∑
j∈Zd aj xi−j (t), that is, some weighted

sum of queue lengths of the neighbors of queue i. Observe that the neighborhood
definition is translation invariant. Conditional on the queue lengths {xi(t)}i∈Zd at
time t , the instantaneous departure rate from any queue i at time t is given by

xi(t)∑
j∈Zd aj xi−j (t)

, with 0/0 interpreted as being equal to 0. Note that since the inter-

ference sequence {ai}i∈Zd is nonnegative, and a0 = 1, for all t ∈ R and all i ∈ Zd ,
the instantaneous departure rate from queue i at time t is xi(t)∑

j∈Zd aj xi−j (t)
∈ [0,1]

and is hence bounded. Since {ai}i∈Zd is nonnegative, the rate of service at a queue
is reduced if its “neighbors” have larger queue lengths. This is meant to capture
the fundamental spatiotemporal dynamics in wireless networks where the instanta-
neous rate of a link is reduced if there are a lot of other links accessing the spectrum
nearby, due to an increase of interference. In the rest of the paper, we shall always
assume that there exists at least one i ∈ Zd \ {0} such that ai > 0. For otherwise,
the system is “trivial,” as the queues evolve independent of each other without any
interaction amongst them, according to a standard M/M/1 dynamics with unit ser-
vice rate. Observe that the Markovian dynamics of our model is nonreversible and
does not fall under the class of generalized Jackson networks. This model is also
not of the mean-field interacting queues type such as the supermarket model [34],
which admit a form of “asymptotic independence” across queues, as the system
sizes get large.

This model is motivated by fundamental design questions in wireless networks.
The motivation for this particular model comes from certain mathematical ques-
tions about such wireless dynamics left open in [29]. In our model, we view the
queues as representing “regions of space” and the customers in each queue to be
the wireless links in that region of space. One can interpret a link or customer to be
a transmitter–receiver pair, with the transmitter transmitting a file to its intended
receiver. For simplicity, we assume that the links are very tiny, that is, a single
customer represents both the transmitter and receiver. The links share the wireless
spectrum in space, and hence they impact each other’s performance due to interfer-
ence. We assume that links arrive “uniformly” in space, and each transmitter has
a file whose length is exponentially distributed to transmit to its receiver. A link
departs and leaves the network once the transmitter has finished sending the file
to its receiver. We model the instantaneous rate of communication any transmitter
can send to its own receiver as being inversely proportional to the interference seen
at the receiver, that is, as 1∑

j∈Zd aj xi−j (t)
. This can be viewed as the low Signal-to-

Noise-and-Interference-Ratio (SINR) channel capacity of a point-to-point Gaus-
sian channel (see [12]). Since there are xi(t) links simultaneously transmitting,
and each of them has an independent unit mean exponentially distributed file, the
rate at which a link departs is then xi(t)∑

j∈Zd aj xi−j (t)
. The instantaneous rate of trans-

mission of a link is lowered if it is in a “crowded” area of space, due to interference,
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and hence it takes longer for this link to complete the transmission of its file. In the
meantime, it is more likely that a new link will arrive at some point nearby before it
finishes transmitting, further reducing the rate of transmission. Understanding how
the network evolves due to such spatiotemporal interference dynamics is crucial in
designing and provisioning of wireless systems (see discussions in [29]).

The central thrust of this paper is to understand when the above described model
is stable. By stability, we mean stabilization in time of the distribution of the
infinite-dimensional queue-length vector. Traditionally, this means that the distri-
bution of any finite-dimensional restriction of the vector converges weakly to the
limiting one. In fact, in this paper, we introduce an appropriate coupling construc-
tion to investigate a stronger version of the sample-path stability (or boundedness).
We show the coupling-convergence of finite-dimensional vectors (that imply con-
vergence in the total variation norm), using the so-called Loynes’ backward rep-
resentation of the system dynamics (see, e.g., [23]). The latter means that we fix
initial (nonrandom) values of the queue-length process, start with this values at
time −t and observe the queue lengths {xi;t (0)}i∈Zd at time 0. Then we let t tend
to infinity. We begin with all-zero initial values. We establish certain monotonicity
properties to conclude that, in the case of zero initial values, xi;t (0) increases a.s.
with t , for any i. Therefore, the limit xi ≡ xi;∞(0) = limt→∞ xi;t (0) exists a.s.
It may be either finite or infinite, where each occurs with probability either zero
or one (see Lemma 3.3 in Section 3). This is the minimal stationary regime: any
other stationary regime, say {yi} must satisfy xi ≤ yi , for all i. Then we identify a
sufficient condition for stability, that is, for the finiteness of the minimal stationary
regime. Remarkably, we are able to provide an exact formula for the mean queue
length of the minimal stationary solution.

THEOREM 1.1. If λ < 1∑
j∈Zd aj

, then the system {xi(·)}i∈Zd is stable. Fur-

thermore, for all i ∈ Zd and s ∈ R, the minimal stationary solution {xi;∞(s)}i∈Zd

satisfies

E
[
xi;∞(s)

]= λa0

1 − λ
∑

j∈Zd aj

.

The proof of this theorem is carried out in Section 7, with some accompanying
calculations in Section 6. In the rest of the paper, the condition λ <

λa0
1−∑

j∈Zd aj

will be referred to as the stability criterion for the system. In this theorem, we only
considered whether there exists a stationary solution to the dynamics. However, as
our network consists of infinitely many queues, uniqueness of stationary solutions
is not guaranteed. In this paper, we are mainly concerned with stationary solutions
of queue lengths that are translation invariant in space. Formally, a stationary so-
lution {yi}i∈Zd is said to be translation invariant in space if, for all x ∈ Zd , the law
{yi−x}i∈Zd is identical to that of {yi}i∈Zd . Observe that the minimal stationary so-
lution {xi;∞(s)}i∈Zd are translation invariant for every s ∈ R. This follows, as for
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every finite −t ≤ s, {xi;t (s)}i∈Zd is translation invariant, as the initial conditions
(of all queues being empty) and the driving sequences in the finite time interval
[−t, s] are both translation invariant. Thus, the almost-sure limit {xi;∞(s)}i∈Zd is
also translation invariant. The following proposition sheds light on the question of
unique translation invariant stationary solutions.

PROPOSITION 1.2. If E[x0;∞(0)2] < ∞, then {xi;∞(0)}i∈Zd is the unique
translation invariant stationary solution with finite second moment.

This proposition is proved in Section 8. This result relies on the finiteness of
second moment of the stationary queue length, which does not follow immedi-
ately from the conclusions of Theorem 1.1. In this regard, we have the following
proposition that establishes finiteness of second moment under further restrictive
conditions than stability.

PROPOSITION 1.3. If λ < 2
3

1+c∑
j∈Zd aj

, where c =
√

a2
0+a0
∑

j∈Zd \{0} aj−a0∑
j∈Zd \{0} aj

, then
we have E[x0;∞(0)2] < ∞.

The proof of this proposition is carried out in Section 7, with some accom-
panying calculations in Section 6. Note that under our assumption of a0 = 1,

the value of the constant c can be simplified as c =
√∑

j∈Zd ai−1∑
j∈Zd ai−1 . Observe that

if c = 1
2 , then the above proposition will cover the full range of stability. How-

ever, for any valid interference sequence {ai}i∈Zd , we have c ∈ (0, 1
2), with c ↗ 1

2
as
∑

j∈Zd\{0} aj ↘ 0. Thus, this proposition does not cover the full stability re-
gion. For the simplest nontrivial case of one dimensions and the interference se-
quence being ai = 1 if |i| ≤ 1 and ai = 0 if |i| > 1, the second moment is finite for
λ ≤ 0.91 1∑

j∈Z aj
. From Propositions 1.2 and 1.3, we have the following immediate

corollary.

COROLLARY 1.4. If λ < 2
3

1+c∑
j∈Zd aj

, where c is given in Proposition 1.3, then

{xi;∞(0)}i∈Zd is the unique translation invariant stationary solution with finite
second moment.

Our next set of results assesses whether queue length process converges to any
stationary solution when started from different starting states. Observe that we
deemed the system stable if when started with all queues empty, the queue lengths
converge to a proper random variable. Thus, stability alone does not imply con-
vergence from other initial conditions. In this regard, our main results are stated in
Theorems 1.5 and 1.7 which show the sensitivity of the dynamics to the starting
conditions. In particular, we show in Theorem 1.5, that if λ is sufficiently small
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and the initial conditions are uniformly bounded, then the queue lengths converge
to the minimal stationary solution. Surprisingly, in Theorem 1.7 below, we exhibit
both deterministic and random initial conditions for all λ > 0, such that the queue
lengths diverge, even though the stability criterion λ < 1∑

j∈Zd aj
is met. This is a

new type of result which holds primarily since the network consists of an infinite
collection of queues.

THEOREM 1.5. Let λ be such that the minimal stationary solution satisfies
E[x0;∞(0)2] < ∞. Then if the initial condition satisfies supi∈Zd xi(0) < ∞, the
queue length process {xi(·)}i∈Zd converges weakly to the minimal stationary solu-
tion as t → ∞.

This theorem is proved in Section 9. As the queue lengths are positive inte-
ger valued, and the dynamics admits a form of monotonicity, every fixed finite
collection of coordinates also converges to the minimal stationary solution in the
total variation norm in the above theorem, which is stronger than just weak con-
vergence. Notice from Proposition 1.3, that if λ < 2

3
1+c∑
j∈Zd aj

, where c is given in

Proposition 1.3, then the conclusion of the above theorem holds. We further exam-
ine sensitivity to initial conditions in Theorem 1.7 by constructing examples where
the queue lengths diverge, even though the stability criterion is met. To state the
result, we need a natural “irreducibility” condition on the interference sequence
{ai}i∈Zd .

DEFINITION 1.6. The interference sequence {ai}i∈Zd is said to be irreducible
if, for all z ∈ Zd , there exists k ∈ N and i1, . . . , ik ∈ Zd , not necessarily distinct,
such that i1 + i2 + · · · + ik = z and aij > 0 for all j ∈ [1, k].

This is a natural condition which ensures that we cannot “decompose” the grid
into many sets of queues, each of which does not interact with the queues in the
other group. In the extreme case, this disallows the case when ai = 0 for all i �= 0,
in which case the network can be decomposed into an infinite collection of inde-
pendent M/M/1 Processor Sharing queues.

THEOREM 1.7. For all λ > 0, d ∈ N, and irreducible interference sequences
{ai}i∈Zd , and even when the stability criterion holds, there exist:

1. A deterministic sequence (αi)i∈N such that if the initial condition satisfied
xi(0) ≥ αi for all i ∈ Zd , then the queue length of 0 satisfies limt→∞ x0(t) = ∞
almost surely.

2. A distribution ξ on N such that if the initial condition {xi(0)}i∈Zd is an i.i.d.
sequence with each xi(0), i ∈ Zd being distributed as ξ independent of every-
thing else, then the queue length of 0 (or any finite collection of queues) satisfies
limt→∞ xi(t) = ∞ almost surely.
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This theorem is proved in Section 10. Based on the proof of this theorem, we
make the following remark.

REMARK 1.8. For all λ, the support of (αi)i∈Zd in statement 1 above can be
made arbitrarily sparse, that is, for any sequence (bn)n∈N such that bn → ∞, the

initial conditions (αi)i∈Zd can be chosen, such that limn→∞
∑

i∈Zd :‖i‖∞≤n
1αi>0

bn
= 0,

yet the queue lengths converge almost surely to infinity.

The above theorem is qualitative in nature, as it only establishes the existence
of bad initial conditions, but does not provide estimates for how large this initial
condition must be. In this regard, we include Proposition 1.9, which pertains to the
deterministic starting state in the simplest nontrivial system, namely the case of
d = 1, and the interference sequence being (ai)i∈Z such that ai = 1 for |i| ≤ 1 and
ai = 0 otherwise. This simplest nontrivial example already contains the key ideas
and hence we present the computations involved explicitly here. In principle, one
can provide a quantitative version of the above theorem in full generality. However,
we do not pursue this here as they involve heavy calculations without additional
insight into the system.

PROPOSITION 1.9. Consider the system with d = 1 and the interference se-
quence ai = 1 if |i| ≤ 1 and ai = 0 otherwise. Let (bn)n∈N be arbitrary determinis-
tic nonnegative integer valued sequence such that bn → ∞. If the initial condition,
αi := ii2

i+2+8 for i ∈ {bn : n ∈ N}, and αi = 0 otherwise, then for every λ > 0,
limt→∞ x0(t) = ∞ almost surely.

This proposition is proved in Appendix D of the extended version of the pa-
per in [30]. Regarding the converse to stability, we prove the following result in
Theorem 1.11, which establishes that the phase-transition at the critical λ is sharp,
at least in certain cases, and we conjecture it to be sharp for all cases. In order
to state the result about transience, we require the following definition about the
monotonicity of the interference sequence.

DEFINITION 1.10. The interference sequence (ai)i∈Z for the dynamics on the
one-dimensional grid is said to be monotone if for all i ∈ Z+, ai ≥ ai+1 holds true.

The following theorem is the main result regarding instability.

THEOREM 1.11. For the system with d = 1 and monotone interference se-
quence, if λ > 1∑

j∈Z ai
, then the system is unstable.

This theorem is proved in Section 11. We provide a more quantitative version
of this result in Theorem 11.2 stated in Section 11, which is applied to large finite
spatial truncation of the dynamics.
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1.1. Open questions and conjectures. We now list some conjectures and ques-
tions that are left open by the present paper. The first one concerns the finiteness
of the second moment of the minimal stationary solution in Proposition 1.3. Based
on some numerical evidence, we put forth the following conjecture in the initial
version [30] of our paper.

CONJECTURE 1.12. If λ < 1∑
j∈Zd aj

, then E[x0;∞(0)2] < ∞.

After the posting of this paper, the conjecture was proven by [31], using
rate-conservation techniques, similar to those presented in this paper. This, with
Proposition 1.2 implies, that the minimal stationary solution is indeed the unique
translation invariant stationary solution to the dynamics that admits finite second
moments. Furthermore, the conclusion of Theorem 1.5 holds for all λ < 1∑

j∈Zd aj
,

namely, if the system is stable then from all uniformly bounded initial conditions,
the queue length process will converge to this unique translation invariant sta-
tionary solution. In this regard, three natural interesting questions arise—one con-
cerning what other moments of stationary queue lengths are finite, one regarding
correlation decay and another on existence of other stationary solutions.

QUESTION 1.13. For each λ ∈
(

0, 1∑
j∈Zd aj

)
, what moments of x0;∞(0) are

finite?

QUESTION 1.14. How does the correlation k → E[x0;∞(0)xk;∞(0)] decay as
|k| → ∞?

QUESTION 1.15. Does the dynamics admit stationary solutions other than
the minimal one? If so, do there exist initial conditions such that the law of the
queue lengths converge to them?

We know from Proposition 1.2 that the minimal stationary solution is the unique
translation invariant stationary solution with finite second moment. This then raises
the following question.

QUESTION 1.16. Does there exist a translation invariant stationary solution
that has an infinite first moment? Does there exist one with finite first moment, but
infinite second moment?

In regard to establishing transience, a natural open question in light of Theo-
rem 1.11 is to extend this result to higher dimensions and nonmonotone interfer-
ence sequence. We make the following conjecture.

CONJECTURE 1.17. For all d ≥ 1 and interference sequence (ai)i∈Z, if λ >
1∑

j∈Zd aj
, then the system is unstable.
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1.2. Main ideas in the analysis. The key technical challenge in analyzing our
model is the positive correlation between queue lengths, which persist even in the
model with infinitely many queues (see also Figure 1). As mentioned, our system
of queues is neither reversible, nor falls under the category of generalized Jackson
networks. Thus, our model does not admit a product form stationary distribution,
even when there are finitely many queues. In particular, the model has no asymp-
totic independence properties as those encountered in “mean-field models” (such
as the supermarket model [34]). The correlations across queues is intuitive, since
if a queue has a large number of customers, then its neighboring queues will re-
ceive lower rates, and thus they will in turn build up. Therefore, in steady state, if
a particular queue is large, most likely, its neighboring queues are also large (see
also Figure 1).

To prove the sufficient condition for stability, we first study finite space-
truncated torus systems in Section 5. In words, we restrict the dynamics to a large
finite set Bn ⊂ Zd , and study its stability by employing fluid-like and Lyapunov
arguments. For this model, we write down rate conservation equations in Section 6
and solve for the mean queue-length of this dynamics. This section contains the
key technical innovations in this paper. The rate conservation equations turn out
to be surprisingly fruitful, as we are able to obtain an exact formula for the mean
queue length. This formula also gives as a corollary, that the queue length distri-
butions are tight, as the size of the truncation Bn increases to Zd . In Section 7,
we then show that we can take a limit as Bn increases to all of Zd and consider
the stationary solution {xi;∞(0)}i∈Zd as an appropriate limit of the stationary so-
lutions of the space-truncated system. The central argument in this section is to
exploit the many symmetries, the monotonicity of the dynamics and the aforemen-
tioned tightness to arrive at the desired conclusion. We furthermore apply a similar
rate conservation equation for the infinite system, which along with monotonic-
ity arguments, establishes the uniqueness of stationary solutions with finite second
moments.

To study the convergence from different initial conditions, we employ differ-
ent arguments, again exploiting the symmetry and monotonicity in the model. To
show that stability implies convergence from bounded initial conditions, we define
a modified K-shifted system in Section 4.2. It is a model having the same dynam-
ics as our original model, except that the queue lengths do not go below K , for
some K ∈ N. We carry out the same program of identifying a bound on the first
moment on the minimal stationary solution to the shifted dynamics by analyzing
similar rate conservation equations as for the original system. We then exploit the
monotonicity and the fact that a stationary solution with finite mean is unique,
to conclude that stability implies convergence to the minimal stationary solution
from bounded initial conditions. In order to identify initial conditions from where
the queue length can diverge even though the stability condition holds, we first
consider a simple idea of “freezing” a boundary of queues at a large distance n,
to a “large value” αn around a typical queue, say 0, and then consider its effect
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on the queue length at the origin. By freezing, we mean, there are no arrivals and
departures in those queues, but a constant number αn of customers that cause in-
terference. We see that by choosing αn sufficiently large, this wall can influence
the stationary distribution at queue 0. We leverage this observation, along with
monotonicity, to construct both deterministic and random translation invariant ini-
tial conditions such that queue lengths diverge to +∞ even though the stability
condition holds. This proof technique is inspired by similar ideas developed to
establish nonuniqueness of Gibbs measures in the case when the state space of a
particle is finite, while our methods and results bear on the case when the state
space is countable.

1.3. Organization of the paper. The rest of the paper is organized as follows.
In Section 2, we survey related work on infinite queueing dynamics and place our
model in context. We then start the technical part of the paper by providing the
complete mathematical framework in Section 3, where we formalize the model
and the questions studied. We also state the monotonicity properties satisfied by
the model, which are crucial throughout. We discuss certain generalizations of the
model in Section 4. We subsequently proceed to state and prove the main results
in this paper. In Section 5, we introduce the space truncated finite system version
of our model and analyze it using fluid-like arguments. The space truncated sys-
tem can be viewed as a certain finite dimensional approximation of our infinite
dimensional dynamics. The key technical part in that section is in writing and an-
alyzing certain rate-conservation equations in Section 6, which give an explicit
formula for the mean queue length in steady state. Based on the results in this
section, we complete the proof of Theorem 1.1 in Section 7, where we establish
that the minimal stationary solution of our dynamics is a limit of the stationary
solutions of the finite approximations in an appropriate sense. Subsequently in
Section 8, we prove Proposition 1.2. In Section 8, we prove Theorem 1.5. The
proof of Theorem 1.7 which establishes the presence of bad initial conditions is
then done in Section 10. The proof of Theorem 1.11 establishing the converse to
stability is carried out in Section 11. For ease of exposition, we delegate many de-
tails of the proof to the Appendix while outlining the key ideas in the body of the
paper. For instance, the details on construction of the process are forwarded to the
Appendix.

2. Related work. Our study is motivated by the performance analysis of wire-
less networks which has a large and rich literature (see, e.g., [2, 10, 33] and the
references therein). Our model is an adaptation of the Spatial Birth–Death model
proposed in [29], where a dynamics of this type was introduced on a compact
subset of the Euclidean space. Although that paper has a phase-transition result
similar to ours for stability, the analysis sheds no light on whether the result holds
true for an infinite network. In this paper, we answer in the affirmative in The-
orem 1.1, that the same result indeed holds in the infinite discrete network case.
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From a mathematical point of view, the tools and techniques of [29], which rely
on fluid limits, are very different from those discussed in the present paper. The
results are quite different, too, with new quantitative results (like the closed form
for the mean queue size) and new qualitative phenomena such as the existence of
multiple stationary solutions being reachable depending on the initial conditions.

Since some of the new properties are directly linked to the fact that there are
infinitely many queues, we thought it appropriate to briefly survey the mathemati-
cal literature on queueing models consisting of infinitely many queues interacting
through some translation invariant dynamics. A model related to ours is the so-
called Poisson Hail model which has been studied in a series of papers [5, 7, 15].
The discrete version of this model consists of a collection of queues on Zd , where
the queues interact through their service mechanism in a translation invariant man-
ner. In this model, the customer at a queue occupies a “footprint” and when being
served, no other customer in the queues belonging to its footprint is served. In con-
trast, in our model a customer slows down the customers in neighboring queues,
but does not block them. Another set of papers close to ours is [3, 27] and [25].
These papers analyze an infinite collection of queues in series. The main results are
connections with last passage percolation on grids. A similar model to this is stud-
ied by Ferrari and Fontes [14], where analogues of Burke’s theorem are established
for a network of infinite collection of queues on the integers. There is also a series
of papers on infinite polling systems. The paper by Foss and Chernova [16] con-
siders a polling model with an infinite collection of stations, and addresses ques-
tions about ergodicity and positive recurrence of such models. In a similar spirit,
Borovkov, Korshunov and Schassberger [11] considers infinite polling models and
establishes the presence of many stationary solutions leveraging the fact that the
Markov process is not finite-dimensional. The dynamics in these polling systems
are however very different from ours. The paper by Malyshev and Tsaregradskii
[26] also introduced a nice problem with translation invariant dynamics, but only
analyzed the setting with finitely many queues. The paper by Kel’bert, Kontsevich
and Rybko [21] introduced an elegant problem on Jackson queueing networks on
infinite graphs. However, the stationary distribution there admits a product-form
representation, which is very different from our model in the present paper. The
paper by Hajek [20] studies translation-invariant dynamics on infinite graphs aris-
ing from combinatorial optimization, which again falls broadly in the same theme,
but for a fundamentally different class of problems. Queueing like dynamics on
an infinite number of nodes are also studied, though under different names, in the
interacting particle system literature in the sense of [22]. The most well-known
instance of an interacting particle system connected to queueing is probably the
TASEP. Another fundamental class of an interacting particle system exhibiting
a positive correlation between nodes (like our model) is the ferromagnetic Ising
model. The first difference is that the state-space of a node is not compact (i.e., N,
since the state is the number of customers in the queue) in our model, whereas it
is finite in these models. Another fundamental difference between our model and
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these is the lack of reversibility. The common aspects are the infinite dimensional
Markovian representation of the dynamics, the nonuniqueness of stationary solu-
tions and the sensitivity to initial conditions. Infinite queueing models are also cen-
tral in mean-field limits. In the literature on mean-field queueing systems ([13, 19,
34]), the finite case exhibits correlations among the queue lengths thereby making
them difficult to analyze. However, in the large number of node limit, one typically
shows that there is “propagation of chaos.” This then gives that the queue lengths
become independent in the limit. This independence can then be leveraged to write
evolution equations for the limiting dynamics which can be analyzed. Such mean-
field analysis have recently become very popular in the applied literature (e.g., [1,
35]). Our model differs fundamentally from the above models in many aspects.
First, unlike the mean-field models described above, we can directly define the
limiting infinite object, that is, a model with infinitely many queues. Second and
more crucially, our infinite model does not exhibit any independence properties in
the limit, that is, queue lengths are positively correlated even in the infinite model.
This is why we need different techniques to study this model. Our main technical
achievement in this context is to introduce coupling and rate conservation tech-
niques not relying on any independence properties.

3. Problem setup. In this section, we give a precise description of our model
in Section 3.1 and demonstrate certain useful monotonicity properties it satisfies
in Section 3.3. We then precisely state the definition of stability in Section 3.4 and
the notion of stationary solutions to the dynamics in Section 3.5.

3.1. Framework. Our model is parameterized by λ ∈ R and an interference se-
quence {ai}i∈Zd which is a nonnegative sequence. This sequence satisfies a0 = 1,
ai = a−i for all i ∈ Zd and L := sup{‖i‖∞ : ai > 0} < ∞, that is, finitely sup-
ported. We also impose the sequence {ai}i∈Zd to be irreducible, which gives that
for all z ∈ Zd , there exists k ∈ N and i1, . . . , ik ∈ Zd not necessarily distinct, such
that i1 + i2 + · · · + ik = z and aij > 0 for all j ∈ {1, . . . , k}. To describe the prob-
abilistic setup, we assume there exists a probability space (�,F,P) that contains
the stationary and ergodic driving sequences (Ai ,Di)ı∈Zd . For each i ∈ Zd , Ai is
a Poisson Point Process (PPP) of intensity λ on R, independent of everything else
and Di is a PPP of intensity 1 on R × [0,1], independent of everything else. Our
stochastic process denoting the queue lengths t → {xi(t)}i∈Zd will be constructed
as a factor of the process (Ai ,Di)ı∈Zd . The process Ai :=∑q∈Z δ

A
(i)
q

encodes the

fact that, at times {A(i)
q }q∈Z, there is an arrival of a customer in queue i. Thus the

arrivals to queues form PPPs of intensity λ and are independent of everything else.
The process Di :=∑q∈Z δ

(D
(i)
q ,U

(i)
q )

encodes that there is a possible departure from

queue i at time D
(i)
q , with an additional independent U [0,1] random variable pro-

vided by U
(i)
q . To precisely describe the departures, we define the interference at
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a customer in queue i at time t as equal to
∑

j∈Zd aj xi−j (t). A customer, if any, is

removed from queue i at times D
(i)
q if and only if U

(i)
q ≤ xi(D

(i)
q )∑

j∈Zd aj−ixj (D
(i)
q )

. In other

words, conditionally on the state of the network {xj (D
(i)
q )}j∈Zd at time D

(i)
q , we

remove a customer from queue i at time D
(i)
q with probability xi(D

(i)
q )∑

j∈Zd aj−ixj (D
(i)
q )

,

independently of everything else. Thus we see that conditionally on the network
state {xj (t)}j∈Zd at time t , the instantaneous rate of departure from any queue

i ∈ Zd at time t ∈ R is xi(t)∑
j∈Zd aj xi−j (t)

, independently of everything else. Observe

that since a0 = 1, if xi(t) > 0, then necessarily, xi(t)∑
j∈Zd aj xi−j (t)

∈ (0,1].
We further assume (without loss of generality) that the probability space

(�,F,P) equipped with a group (θu)u∈R of measure preserving functions from
� to itself where θu denotes the “time shift operator” by u ∈ R. More precisely
(Ai ,Di)ı∈Zd ◦ θu is the same driving sequence where each of the arrivals and de-
partures are shifted by time u in all queues, that is, if Ai :=∑q∈Z δ

A
(i)
q

and Di :=∑
q∈Z δ

(D
(i)
q ,U

(i)
q )

, then Ai ◦ θu :=∑q∈Z δ
A

(i)
q −u

and Di ◦ θu :=∑q∈Z δ
(D

(i)
q −u,U

(i)
q )

,

for all i ∈ Zd . We also assume that the system (P, (θu)u∈R) is ergodic, that is, if
for some event A ∈ F , if P[A � A ◦ θu] = 0 for all u ∈ R, then P[A] ∈ {0,1}.

3.2. Construction of the process. Before we analyze the above model, one
needs to ensure that it is well defined. We mean that our model is well defined if
given the initial network state {xi(0)}i∈Zd , any time T ≥ 0 and any index k ∈ Zd ,
we are able to construct the queue length xk(T ) unambiguously and exactly. In the
case of finite networks (i.e., networks with finitely many queues), the construc-
tion is trivial: almost surely, one can order all possible events in the network with
increasing time, and then update the network state sequentially using the evolu-
tion dynamics described above. Such a scheme works unambiguously since, al-
most surely, all event times will be distinct and in any interval [0, T ], there will
be finitely many events. The main difficulty in the case of infinite networks is
that there is no first-event in the network. In other words, in any arbitrarily small
interval of time, infinitely many events will occur almost surely, and hence we
cannot construct by ordering all the events in the network. However, we show in
Appendix A that in order to determine the value of any arbitrary queue k ∈ Zd at
any time T ≥ 0, we can effectively restrict our attention to an almost surely finite
subset Xk,T ⊂ Zd and determine xk(T ) by restricting the dynamics to Xk,T to the
interval [0, T ]. This is then easy to construct as it is a finite system. Thereby we
can determine xk(T ) unambiguously. Such construction procedures are common
in interacting particle systems setup (e.g., the book by Liggett [22]). Nevertheless,
we present the entire details of construction in Appendix A for completeness.
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3.3. Monotonicity. We establish an obvious but an extremely useful property
of pathwise monotonicity satisfied by the dynamics. Note that our model is not
monotone separable in the sense of Baccelli and Foss [6] since the dynamics does
not satisfy the external monotonicity condition. Nonetheless, the model still enjoys
certain restricted forms of monotonicity, which we state below. We only highlight
the key idea for the proof and defer the details to Appendix B.

LEMMA 3.1. If we have two initial conditions {x′
i (0)}i∈Zd and {xi(0)}i∈Zd

such that for all i ∈ Zd , x′
i (0) ≥ xi(0), then there exists a coupling such that

x′
i (T ) ≥ xi(T ) for all i ∈ Zd and all T ≥ 0 almost surely.

The proof is by a pathwise coupling argument, where the two different initial
conditions are driven by the same arrival and potential departures. The key idea
the following. At arrival times, the ordering will trivially be maintained. Consider
some queue i and time t where there is a potential departure. If x′

i (t) ≥ xi(t) + 1,
then since at most one departure occurs, the ordering will be maintained. But if

x′
i (t) = xi(t), then the rates

x′
i (t)∑

j∈Zd aj x′
i−j (t)

≤ xi(t)∑
j∈Zd aj xi−j (t)

, and hence the order-

ing will again be maintained. This observation can be leveraged again to have the
following form of monotonicity.

LEMMA 3.2. For all initial conditions {xi(0)}i∈Zd , for all 0 ≤ s ≤ t ≤ ∞, all
X ⊂ Zd , and all T > 0, {xi(T )}i∈Zd is coordinatewise larger in the true dynamics
than in the dynamics constructed by setting Aj ([s, t]) = 0 for all j ∈ X.

3.4. Stochastic stability. We establish a 0–1 law stating that either all queues
are transient or all queues are recurrent (made precise in Lemma 3.3 in the sequel).
Thus, we can then claim that the entire network is stable if and only if any (say
queue indexed 0 without loss of generality) is stable (made precise in Definition 3.4
in the sequel). To state the lemmas, we set some notation. Let T ≥ 0 and s > −T

be arbitrary and finite. Denote by {xi;T (s)}i∈Zd the value of the process seen at
time s when started with the empty initial state at time −T , that is, with the initial
condition of xi;T (−T ) = 0 for all i ∈ Zd . Lemma 3.1 implies that for every queue
i ∈ Zd , and for P almost-every ω ∈ �, we have T → xi;T (s) is nondecreasing for
every fixed s. Thus, for every i, and every s ∈ R, there exists an almost sure limit
limT →∞ xi:T (s) := xi;∞(s). From the definition, this limit is shift-invariant, that
is, almost surely, for all x ∈ R, we have xi;∞(s) ◦ θx = xi;∞(s + x).

LEMMA 3.3. We have either P[⋂i∈Zd {xi;∞(0) = ∞}] = 1 or
P[⋂i∈Zd {xi;∞(0) < ∞}] = 1.

Since for all x ∈ R and all j ∈ Zd , xi;∞(0)◦θx = xi;∞(x), for all s ∈ R, Lemma
3.3 implies either P[⋂i∈Zd {xi;∞(s) = ∞}] = 1 or P[⋂i∈Zd {xi;∞(s) < ∞}] = 1.
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PROOF OF LEMMA 3.3. The proof follows from standard shift-invariance ar-
guments which we present here for completeness. It suffices to first show that for
any fixed i ∈ Zd , we have P[xi;∞(0) < ∞] ∈ {0,1}. Assume that we have es-
tablished for some i (say 0 without loss of generality that) P[x0;∞(0) < ∞] ∈
{0,1}. From the translation invariance of the dynamics, it follows that, for all
i ∈ Zd , we have P[xi;∞(0) < ∞] = P[x0;∞(0) < ∞]. Thus, if P[x0;∞(0) <

∞] = 1, then P[⋂i∈Zd xi;∞(0) < ∞] = 1. Similarly, if P[x0;∞(0) = ∞] = 1, then
P[⋂i∈Zd xi;∞(0) = ∞] = 1. Thus to prove the lemma, it suffices to prove that
P[x0;∞(0) < ∞] ∈ {0,1}.

The key observation is, the event A := {ω ∈ � : x0;∞(0) < ∞} is such that
for all x ∈ R, P[A � A ◦ θu] = 0. To show this, first notice that from elementary
properties of PPP, we have that for every i ∈ Zd and every compact set B ⊂ R,
Ai (B) < ∞ a.s. Now for any x ≥ 0, we have x0;∞(0)◦ θx ≤ x0;∞(0)+A0([0, x]),
which is finite almost surely if x0;∞(0) < ∞ almost surely. Similarly, for every
x < 0, x0;∞(0) = x0;∞(0) ◦ θx +A0([x,0]), which again implies that x0;∞(0) ◦ θx

is almost surely finite if x0;∞(0) < ∞. Thus, for all x ∈ R, we have P[A�A◦θx] =
0, which from ergodicity of (P, (θu)u∈R) implies P[A] ∈ {0,1}, and thus the lemma
is proved. �

The following definition of stability follows naturally.

DEFINITION 3.4. The system is stable if x0;∞(0) < ∞ almost surely. Con-
versely, we say the system is unstable if x0;∞(0) = ∞ almost surely.

Observe that the definition of stability does not require E[x0;∞(0)] to be finite.
In words, we say that our model is stable if when starting with all queues being
empty at time −t in the past, the queue length of any queue stays bounded at time
0 when letting t go to infinity. This definition of stability is similar to the definition
introduced, for example, by Loynes [23] in the single server queue case. A nice
account of such backward coupling methods can be found in [4].

The main result in this paper is to prove that if λ
∑

j∈Zd aj < 1, then the sys-
tem is stable (Theorem 1.1). Moreover, in this case, we compute exactly the mean
queue length in steady state, that is, an explicit formula for E[x0;∞(0)] (Theo-
rem 1.1) and by shift-invariance it is equal to E[xi;∞(s)]. We also conjecture this
condition to be necessary, that is, if λ

∑
j∈Zd aj > 1, then x0;∞ = ∞ almost surely.

We are unable to prove this conjecture yet, but prove it for the special case of d = 1
in Theorem 1.11.

3.5. Translation invariant stationary solutions.

DEFINITION 3.5. A probability measure π on (Zd)N is said to be translation
invariant, if (yi)i∈Zd ∼ π implies, for all x ∈ Zd , (yi−x)i∈Zd ∼ π . A probability
measure π on (Zd)N is said to be stationary for the dynamics {xi(t)}i∈Zd if, when-
ever {xi(0)}i∈Zd is distributed according to π independently of everything else,
then, for all t ≥ 0, the random variables {xi(t)}i∈Zd are also distributed as π .
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In this paper, we restrict ourselves to studying stationary solutions to the dy-
namics that are translation invariant in space. Observe that the driving sequence
(Ai ,Di)i∈Zd is translation invariant on Zd , that is, for all v ∈ Zd , (Ai−v,Di−v)i∈Zd

is equal in distribution to (Ai ,Di)i∈Zd . Furthermore, the interactions among the
queues are also translation invariant, since the definition of interference seen at a
queue is translation invariant. However, it is not immediately clear that all station-
ary solutions must necessarily be translation invariant. It is known, for instance
in the literature on Ising models (see the book by Georgii [18]), that certain sta-
tionary measures for translation invariant Glauber dynamics need not necessarily
be translation invariant. We leave the question of existence and construction of
nontranslation invariant stationary measures for our model to future work.

Moreover, as our network is not finite-dimensional, stability in the sense of
Definition 3.4 does not imply ergodicity in the usual Markov chain sense. In par-
ticular, it does not imply that stationary distributions are unique, and starting from
any initial condition on NZd

, the queue lengths converge in some sense to the
minimal stationary distribution considered in Definition 3.4. Stability only implies
the existence of a stationary solution, namely the law of {xi∞(0)}i∈Zd . However,
uniqueness is not granted and one of our main results in Proposition 1.2 bears on
this. Moreover, convergence to stationary solutions from different starting states is
more delicate as evidenced in Theorems 1.5 and 1.7.

4. Model extensions. In this section, we introduce two natural extensions to
the model not considered in Section 3. We show that similar results as for our
original model hold, albeit with a little bit more notation. Hence we separate this
discussion from the main body of the paper with proofs deferred to the Appendix
as the key ideas are the same as for the model described earlier.

4.1. Infinite support for the interference sequence. We consider here a system
where {ai}i∈Zd is such that ai ≥ 0 for all i ∈ Zd with {i : ai > 0} having infinite
cardinality but being summable, that is,

∑
j∈Zd aj < ∞. In this case as well, we

can uniquely construct the system in a sense as a limit of finite systems with finite
truncation. The following proposition encapsulates the main results.

PROPOSITION 4.1. Consider {ai}i∈Zd such that {i : ai > 0} has infinite cardi-
nality, and

∑
j∈Zd aj < ∞. Then the dynamics are well defined.

PROOF. To show the existence of the dynamics, we introduce a sequence of
systems, with the kth system evolving according to the dynamics described in
Section 3 with the interference sequence being {ai1‖i‖∞≤K}. This interference se-
quence satisfies all the conditions specified in Section 3, and hence the dynamics
can be constructed. We now construct the infinite dynamics sequentially as fol-
lows. Consider any arbitrary initial conditions {xi(0)}i∈Zd . For this system, for
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every K ∈ N, we can define the process {x̃(K)
i (t)}i∈Zd , t ≥ 0, which is the pro-

cess corresponding to the truncated interference sequence {ai1‖i‖∞≤K}. Now it
suffices to assert that at each arrival and potential departure event at queue i, we
can unambiguously decide on how the system with infinite interference support
evolves. The evolution due to an arrival event is easy, we just add an customer
to queue i. At the first potential departure event at queue i, with the indepen-
dent mark given by u ∈ [0,1], we have to decide whether to remove a customer
or not. Now, at this time, we can do this unambiguously by deciding whether
u ≤ limK→∞ xi(t)∑

j∈Zd aj 1(‖j‖∞≤K)x̃
(K)
i−j (t)

or not. The existence of the almost sure

limit is guaranteed by monotonicity. In words, a
(K)
j is nondecreasing in K and

the queue lengths x̃
(K)
i (t) are nondecreasing in K for each i ∈ Zd and t ≥ 0. The

numerator xi(t) can be deduced without resorting to limits as this is the first po-
tential departure after time 0 in queue i. Hence we can unambiguously decide on
the outcome of the first potential departure event at queue i after time 0. Now, by
induction, we can construct the sample path of any queue i over any finite time
interval, thereby establishing that the dynamics is well defined. �

Based on the construction described above, it is not immediately clear that a
stability region even exists for the case with infinitely supported interference se-
quence. The following proposition gives an alternative representation of the dy-
namics as a pointwise limit of dynamics with truncated interference sequence.

PROPOSITION 4.2. Consider an initial condition {xi(0)}i∈Zd and interference
sequence {ai}i∈Zd with {i : ai > 0} being infinite and such that

∑
j∈Zd aj < ∞.

Consider the sequence of processes {x̃(K)
i (t)}i∈Zd each driven by the K-truncated

interference sequence dynamics. Then for each i ∈ Zd and t ≥ 0 finite, we have
xi(t) = limK→∞ x̃

(K)
i (t) almost surely.

PROOF. For every queue i and finite time t , there are only finitely many po-
tential departure events almost surely in the interval [0, t]. From Proposition 4.1,
we know that at each instance of a potential departure at queue i, we take a limit
in K , the truncation length to determine whether or not to remove a customer.
However, since there are only finitely many events in the time interval [0, t],
one can make the limit uniform to conclude that for all t ≥ 0 and all i ∈ Zd ,
limK→∞ sup0≤u≤t |x̃(K)

i (u) − xi(u)| = 0 almost surely. �

Based on the construction outlined above, one can extend the existence of a sta-
tionary solution to the case when the interference sequence has an infinite support.
Indeed, it is not a corollary, as, by the construction of the infinite support dynam-
ics as a pointwise limit of the K truncated interference systems’ dynamics, the
existence of a stability region is not granted.
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PROPOSITION 4.3. Suppose that the interference sequence {ai}i∈Zd is such
that {i : ai > 0} is infinite with

∑
j∈Zd aj < ∞. Under this conditions, if λ <

1∑
j∈Zd aj

, then there exists a minimal stationary solution {x̃i}i∈Zd with E[x̃0] =
λ

1−λ
∑

j∈Zd aj
.

The proof is deferred to Appendix C.1. However, establishing uniqueness of
stationary regime in this case is slightly more delicate and we leave it to future
work. The main difficulty being that writing down rate-conservation equations as
done in Section 6 when the interference support is infinite is not obvious.

4.2. K-Shifted system. In this subsection, we introduce a model of queues
which “reflect” at level K . In other words, we consider a dynamic which will
forbid any departures from a queue if it has K or more customers at any point
of time. Note that the original model we describe is the 0 shifted, or the model
reflected at 0. Thus, if {x(K)

i (t)}i∈Zd is the stochastic process corresponding to the
K shifted dynamics for some K ∈ N, then the instantaneous rate of departure from
any queue i ∈ Zd at time t is then given by

R̂
(K)
i (t) = x

(K)
i (t)∑

j∈Zd aj x
(K)
i−j (t)

1
(
x

(K)
i (t) > K

)
.(4.1)

For the purposes of this section, we assume that L := sup{‖i‖∞ : ai > 0} < ∞,
although one could extend this definition to include the case of L = ∞ as well by
the ideas introduced in Section 4.1. In this case of finitely supported interference
sequence, the process can be formally defined through a Poisson clock similar to
that used in Section 3. The main result for the general K shifted system is the
following.

PROPOSITION 4.4. If λ < 1∑
j∈Zd aj

, then for all K ∈ N, the K-shifted dynam-

ics is stable. Moreover, the minimal stationary solution {x̃(K)
i }i∈Zd satisfies

E
[
x̃

(K)
0

]≤ λ + K

1 − λ
∑

j∈Zd aj

< ∞.(4.2)

PROPOSITION 4.5. If λ < 2
3

1+c∑
j∈Zd aj

, where the constant c =√
a2

0+a0
∑

j∈Zd \{0} aj−a0∑
j∈Zd \{0} aj

, then we have E[(x̃(K)
0 )2] < ∞.

The proofs are deferred to Appendix C.2. The K-shifted dynamics is introduced
as it will later be used to show convergence from bounded initial conditions to
the stationary regime of the original initial dynamics, that is, it is used as a tool
to prove Theorem 1.5 in Section 8. One can also naturally extend the K-shifted
dynamics to accommodate the case when the interference sequence {ai}i∈Zd has
infinite support satisfying

∑
j∈Zd aj < ∞, but we do not do so here.
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5. Space truncated finite systems. In this section, we discuss a finite version
of the aforementioned infinite queueing network. For any n ∈ Z+, we consider two
n-truncated systems, both of which are obtained by restricting the dynamics to the
set Bn(0), the l∞ ball of radius n centered at 0. For notational convenience, we
shall drop 0 and denote by Bn := Bn(0) the l∞ ball of radius n centered at 0. For
every n ∈ N, we define two truncated dynamics, {y(n)

i (·)}i∈Bn and {z(n)
i (·)}i∈Bn .

The process {y(n)
i (·)}i∈Bn evolves with the set Bn “wrapped around” to form a

torus. More precisely, the process {y(n)
i (·)}i∈Bn is driven by (Ai ,Di)i∈Bn . The ar-

rival dynamics is the same as for the infinite system described in Section 3 wherein,
for all i ∈ Bn, at each epoch of Ai , a customer is added to queue i. The depar-
ture dynamics is driven by Di as before, but we treat the set Bn as a torus. More
precisely, given any i, j ∈ Bn, define dn(i, j) := (i − j) mod n, where the mod-
ulo operation is coordinatewise. Thus, at any time t , and any i ∈ Bn, the rate at
which a departure occurs from queue i at time t in the process {y(n)

i (t)}i∈Bn(0) is
y

(n)
i (t)∑

j∈Bn
adn(i,j)y

(n)
j (t)

. Since n is finite, the stochastic process y(n)(t) is a continuous

time Markov process on a countable state-space, that is, on N(2n+1)d . Moreover,
since the jumps are triggered by a finite number of Poisson processes, this chain
has almost surely no explosions.

Similarly, the process {z(n)
i (t)}i∈Bn is driven by the arrival data (Ai ,Di)i∈Bn

as before, but this time the set Bn is viewed as a subset of Zd and in particular
the “edge effects” are retained. The arrival rate to any queue i ∈ Bn in the system
{z(n)

i (t)}i∈Bn is λ, while there are no arrivals to queues in B�
n , that is, an arrival

rate of 0. Moreover, the queue lengths of queues in B�
n is set to 0, that is, for all

t ≥ 0 and all i ∈ B�
n , we have z

(n)
i (t) = 0. The departure process for any queue

i ∈ Bn, is identical to the original infinite system described in Section 3. At any
time t ≥ 0, and any i ∈ Bn, the rate of departure from queue i at time t is given

by
z
(n)
i (t)∑

j∈Zd ai−j z
(n)
j (t)

. From the monotonicity in the dynamics, we have the following

proposition.

PROPOSITION 5.1. For all n > L, there exists a coupling of the processes
{xi(·)}i∈Zd , {z(n)

i (·)}i∈Bn and {y(n)
i (·)}i∈Bn such that for all t ∈ R, and all i ∈ Zd ,

we have xi(t) ≥ z
(n)
i (t) and y

(n)
i (t) ≥ z

(n)
i (t) almost surely.

The following property of the truncated systems will be used in the analysis of
the infinite system.

THEOREM 5.2. For all n > L and λ < 1∑
j∈Zd aj

, the Markov process

{y(n)
i (t)}i∈Bn(0) is positive recurrent. Let π(n) denote the stationary queue length
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distribution on N of any queue i ∈ Bn(0) and let Z be distributed as π(n). Then
there exists a c > 0 possibly depending on n such that E[ecZ] < ∞.

REMARK 5.3. The symmetry in the torus implies that the marginal stationary
queue length distribution of any queue i, π(n), is the same for all i.

REMARK 5.4. The existence of an exponential moment yields that all power
moments of π(n) are finite.

REMARK 5.5. In view of Proposition 5.1, if λ < 1∑
j∈Zd aj

, then for all n ∈ N,

the process {z(n)
i (·)}i∈Bn is positive recurrent. Moreover, for all i ∈ Bn, the station-

ary distribution of {z(n)
i (·)}i∈Bn , denoted by {π̃ (n)

i }i∈Bn , is such that there exists a
c > 0 possibly depending on n satisfying E[ecZi ] < ∞, where Zi is distributed
according to π̃

(n)
i .

Proof sketch. We provide a sketch here and defer the details to Section 5 of
the extended version in [30]. The proof is technical with a lot of details based
on monotonicity and the standard properties of a single-server queue with light-
tailed service time distributions. So we present its summary just to highlight the
key ideas involved. To prove the theorem, we will define a modified dynamics
{ỹ(n)

i (t)}t≥0,i∈Bn(0) which is coupled with the evolution of {y(n)
i (t)}i∈Bn(0). We

construct the modified dynamics such that it satisfies ỹ
(n)
i (t) ≥ y

(n)
i (t) a.s. for all

i ∈ Bn(0) and t ≥ 0. We do this by discretization of continuous time to discrete by
choosing sufficiently small interval h, that is, times . . . ,−h,0, h,2h, . . . will form
time slot boundaries. We then restrict departures so that at-most one departure can
occur in a time period. We also modify the arrivals so that in any time slot, the
difference between the maximum number of arrivals and the minimum number of
arrivals in a time slot is at-most a constant. From monotonicity, the dynamics with
such modified arrivals and departures can be coupled to provide an upper bound to
the true queue lengths. We describe in detail this construction in Section 5 of [30].
We further identify a large r , and equalize the queues after every r time-slots, that
is, at times . . . ,−rh,0, rh,2rh, . . . , we add fictitious customers so that all queues
have the same number of customers. If the number of customers is smaller than a
constant y0, we further add more customers until every queue has at least y0 cus-
tomers. Thus, at the end of every r time-slots, every queue has the same number of
customers which is at least y0. From a coupling argument, we show that after the
addition of the fictitious customers, the queue length follows the trajectory of an
appropriately modified GI/GI/1 queue which is stable. Thus, we have dominated
our process {y(n)

i (t)}i∈Bn so that every one of them is dominated from above by a
stable GI/GI/1 queue with light-tailed service time distributions, and hence the
stationary distribution of {y(n)

i (t)}i∈Bn is also light-tailed.
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6. Rate conservation arguments. This section forms the central tool used in
our analysis. We shall consider the space truncated systems introduced before to
explicitly write down differential equations for certain functionals of the dynamics.
The key result we will establish in this section is a closed-form formula for the
mean of the steady-state queue length of the space truncated torus system. To do
so, we will use the general rate conservation principle of Palm calculus [4] to
derive certain relations between the system parameters in steady state. We shall
assume λ < 1∑

j∈Zd aj
throughout in this section. We shall let n > L be arbitrary and

fixed for the rest of this section. In this section, we shall again consider the two
space truncated stochastic processes {y(n)

i (·)}i∈Bn and {z(n)
i (·)}i∈Bn to be in steady-

state. Recall that the process {y(n)
i (·)}i∈Bn is one wherein the set Bn is viewed as a

torus with its end points identified and the process {z(n)
i (·)}i∈Bn is one with the end

effects, that is, with the set Bn is viewed as a subset of Zd . Furthermore, we denote
by π(n), the steady-state distribution of y

(n)
0 (0) and by the translation invariance

on the torus, the steady-state distribution of y
(n)
i (0), for all i ∈ Bn. Similarly, for

all i ∈ Bn, we shall denote by π̃
(n)
i , the steady-state distribution of the marginal

z
(n)
i (t). Notice that the marginal distributions in the process z

(n)
i (·)

i∈Bn
depend

on the coordinate, unlike in the process y
(n)
i (·)

i∈Bn
. For notational simplicity, we

shall denote by μ(n), the mean of π(n) and for all i ∈ Bn, by ν
(n)
i , the mean of

π̃
(n)
i . In this section, we shall study two stochastic processes - {It }t∈R and {Ĩt }t∈R,

with It := y
(n)
0 (t)(

∑
j∈Zd aj y

(n)
j (t)) and Ĩ(t) :=∑i∈Bn

z
(n)
i (t)(
∑

j∈Zd aj z
(n)
i−j (t)).

If one were to be more precise, one should use the notation I
(n)
t and Ĩ

(n)
t , but we

drop the superscript n to simplify the notation. In words, the process ({It })t∈R
considers the interference seen at a typical queue in {y(n)

i (·)}i∈Bn , the system where
the set Bn is viewed as a torus and ({Ĩt })t∈R considers the total interference in the
process {z(n)

i (·)}i∈Bn , the system with boundary effects, where the set Bn is viewed
as a subset of Zd . Observe that since Bn is a torus, the marginals of the process
{y(n)

i (·)}i∈Bn are identical, and hence, we can consider a typical queue, but as the

marginals of {z(n)
i (·)}i∈Bn are different due to the edge effects, we study the total

interference at all queues instead of the interference seen at a typical queue. Since
λ < 1∑

j∈Zd aj
, and the systems {y(n)

i (t)}i∈Bn and {z(n)
i (t)}i∈Bn are in steady state,

and the queue lengths in both systems possess exponential moments, it is the case
that for all t ∈ R, E[It ] < ∞ and E[Ĩ(t)] < ∞.

The main technical results of this section are Propositions 6.1, 6.2 and
Lemma 6.8. These will then help us to derive closed-form expressions for the
mean queue length and a bound on the second moment for the original infinite
system.
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PROPOSITION 6.1.

(6.1)

d

dt
E[It ] = 0 = λa0 + 2λ

(∑
j∈Bn

aj

)
μ(n)

−E

[
R(0)

(
a0
(
2y

(n)
0 (0) − 1

)+ ∑
i∈Bn\{0}

aiy
(n)
i (0)

)

+ ∑
i∈Bn\{0}

R(i)aiy
(n)
0 (0)

]
,

where for any i ∈ Bn,

R(i) := y
(n)
i (0)∑

j∈Bn
adn(i,j)y

(n)
j (0)

.

PROOF. We provide a heuristic derivation of the differential equation using
the PASTA property of the arrival and departure process and skip all the technical
details as it is standard. For example, see the Appendix of [8] for an account of
the derivation. In a small interval of time �t , in every queue, there will be exactly
one arrival with probability roughly λ�t . The chance that two or more arrivals
occur in a time interval �t in the entire network is O((�t)2), where the O(·)
hides all system parameters (e.g., λ, n) other than �t as they are fixed. On an
arrival at queue 0, the increase in the quantity I0 is E[(y(n)

0 + 1)(a0(y
(n)
0 + 1) +∑

j∈Bn\{0} ajy
(n)
j )−y

(n)
0 (
∑

j∈Bn
ajy

(n)
j )], which is equal to E[a0 +∑j∈Bn

ajy
(n)
j ].

Similarly, the average increase in I0 due to an arrival in the neighboring queues
of 0 is E[(y(n)

0 )(ai(y
(n)
i + 1) +∑j∈Bn\{i} ajy

(n)
j ) − y

(n)
0 (
∑

j∈Bn
ajy

(n)
j )], which is

equal to E[aiy
(n)
0 ]. The chance that there are two or more arrivals is O((�t)2),

which is small. Thus, the average increase due to arrivals is λ�tE[a0(y
(n)
0 + 1) +∑

j∈Bn
ajy

(n)
j +∑j∈Bn\{0} ajy

(n)
0 ] + O((�t)2). After simplification, and using the

fact that the variables y
(n)
j all have the same mean, we get that the average increase

in time �t is

λ�t

(
a0 + 2μ(n)

(∑
j∈Bn

aj

))
+ O
(
(�t)2).(6.2)

Likewise, with probability R(i)�t , there will be a departure from queue i.
When a customer leaves from queue 0, which occurs with probability R(0)�t the
average decrease in I0 is then E[(a0((y

(n)
0 )2 − a0(y

(n)
0 − 1)2 +∑i∈Bn\{0} aiy

(n)
i )].

Similarly, a departure from queue i, which occurs with probability R(i)�t results
in an average decrease in I0 of E[aiy

(n)
0 ]. The chance that two or more possible

departures occur in time �t is O((�t2), which is small. Thus, the total average
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decrease in I0 due to departures is

�tE

[
R(0)

(
a0
(
2y

(n)
0 − 1

)+ ∑
i∈Bn\{0}

aiy
(n)
i

)

+ ∑
i∈Bn\{0}

R(i)aiy
(n)
0

]
+ O
(
(�t)2).(6.3)

Hence, we see from equations (6.2) and (6.3) that

1

�t
E
[
I(t + �t) − I(t)

]
= λ

(
a0 + 2μ(n)

(∑
j∈Bn

aj

))
−E

[
R(0)

(
a0
(
2y

(n)
0 − 1

)+ ∑
i∈Bn\{0}

aiy
(n)
i

)

+ ∑
i∈Bn\{0}

R(i)aiy
(n)
0

]
+ O(�t)

The proposition is concluded by letting �t go to 0. �

Now we compute the differential equation for the space truncated system, by
carefully taking into consideration the “edge effects” introduced by the truncation
to the set Bn. Denote by the set B

(I)
n ⊂ Bn, where B

(I)
n := {z ∈ Bn : ∀y s.t. ‖y −

z‖∞ ≤ L,y ∈ Bn}. In words, the set B
(I)
n is the set of all points z ∈ Bn such that

the l∞ ball of radius L is completely contained in Bn.

PROPOSITION 6.2.

d

dt
E
[
Ĩ(t)
]= 0 ≥ −2

(
1 − λ

∑
j∈Zd

aj

) ∑
i∈B

(I)
n

ν
(n)
i + 2λa0|Bn| − 2

∑
i∈Bn\B(I)

n

ν
(n)
i .

PROOF. A rigorous proof of this is standard and we skip it, for example, see
[8]. Instead, we outline the computations required in establishing this proposi-
tion. Furthermore, to lighten the notation in the proof, we drop the superscript n,
as n is fixed and does not change in the course of the proof. Thus, we shall de-
note {z(n)

i (t)}i∈Bn by {zi(t)}i∈Bn and the steady state means by (νi)i∈Bn , instead of

(ν
(n)
i )i∈Bn . As in the proof of Proposition 6.1, we shall consider a small interval

�t of time such that at most one event of either an arrival or departure occurs any-
where in the network in the set Bn. Roughly speaking, with probability λ�t , there
will be an arrival in some queue i ∈ Bn. In the rest of the proof, we shall partition
the set Bn into B

(I)
n and Bn \ B

(I)
n .
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From similar computations as in the previous proposition, if there is an arrival
in queue i ∈ B

(I)
n , the increase in Ĩ(t) will be

E

[(
zi(t) + 1

)(
a0
(
zi(t) + 1

)+ ∑
j∈Zd\{0}

aj zi−j (t)

)

− zi(t)

(
zi(t) + ∑

j∈Zd\{0}
aj zi−j (t)

)

+ ∑
l∈Bn\{i}

(
zl(t)

(
ai−l

(
zi(t) + 1

)+ ∑
j∈Zd\{i}

aj−lzj (t)

)

− zl(t)

(
ai−lzi(t)

∑
j∈Zd\{i}

aj−lzj (t)

))]
.

This follows since if there is an extra customer in queue i, then the total inter-
ference is increased both at queue i and any other queue j such that ai−j > 0.
From the PASTA property, we know that at the moment of arrival, {zi(t)}I∈Bn is
in steady state and in particular, E[zi(t)] = νi . Thus, the above expression can be
simplified as ∑

j∈Zd

aj νi−j + a0 + a0νi + ∑
l∈Bn\{i}

νlai−l .

If i ∈ B
(I)
n , the above expression is equal to

2
∑

j∈Zd

aj νi−j + a0,

while if i ∈ B
(I)
n \ Bn, we use the trivial inequality∑

j∈Zd

aj νi−j + a0 + a0νi + ∑
l∈Bn\{i}

νlai−l ≥ a0.

Thus, the average increase in the time interval �t in the interference I(t) due to an
arrival event is at least

λ�t

( ∑
i∈B

(I)
n

(
2
∑

j∈Zd

aj νi−j + a0

)
+ ∑

i∈Bn\B(I)
n

a0

)
+ O
(
�t2).

Since for all i ∈ B
(I)
n , the l∞ ball of radius L is contained within the set Bn, we

can further simplify the above expression as

λ�t

( ∑
i∈B

(I)
n

2νi

∑
j∈Zd

aj + a0

)
+ λa0�t

∣∣Bn \ B(I)
n

∣∣+ O
(
�t2).
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Similarly, we can compute the average decrease in Ĩ(t) due to a departure event.
Roughly, the probability of a departure from any queue i ∈ Bn is given by Ri(t)

where Ri(t) = zi(t)∑
j∈Zd ai−j zj (t)

. If there is a departure from queue i, the average

decrease can be computed as

E

[(
zi(t)
)(

a0zi(t) + ∑
j∈Zd\{0}

aj zi−j (t)

)

− (zi(t) − 1
)(

a0
(
zi(t) − 1

)+ ∑
j∈Zd\{0}

aj zi−j (t)

)

+ ∑
l∈Bn\{i}

(
zl(t)

(
ai−lzi(t) + ∑

j∈Zd\{i}
aj−lzj (t)

)

− zl(t)

(
ai−l

(
zi(t) − 1

) ∑
j∈Zd\{i}

aj−lzj (t)

))]
.

We do not need to worry about the fact that zi(t) − 1 can be negative since, in this
case, the rate of departure Ri(t) will be 0. Thus the average rate of decrease in the
interference due to a departure can be written as

�t

(∑
i∈Bn

E

[
Ri(t)

(
a0zi(t) + ∑

j∈Zd

aj zi−j (t) − a0

)
+ ∑

l∈Bn\{i}
ai−lzl(t)

])

+ O
(
�t2).

Using the fact that for all i ∈ Bn and all t ∈R, we have Ri(t)(
∑

j∈Zd aj zi−j (t)) =
zi(t), we can simplify the average rate of decrease as

�t

(∑
i∈Bn

2νi − a0
∑
i∈Bn

E
[
Ri(t)
])+ O

(
�t2).

However, as {zi(·)}i∈Bn is a stationary process,
∑

i∈Bn
E[Ri(t)] = λ|Bn|. This then

gives that average rate of change in E[I(t)] is

1

�t
E
[
I(t�t) − I(t)

]≥ λ

( ∑
i∈B

(I)
n

2νi

(∑
j∈Zd

aj

)
+ a0

)
+ λa0|Bn \ B(I)

n |

−∑
i∈Bn

2νi + a0
∑
i∈Bn

λ + O(�t).

Letting �t go to 0, we obtain the bound in Proposition 6.2. �
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We now state Lemma 6.3 which holds as a consequence of the rate conser-
vation argument. This establishes a closed-form expression for the mean queue
length in steady state in the space truncated torus system {y(n)

i (t)}i∈Bn . Recall that

the system {y(n)
i (t)}i∈Bn is in steady state. Thus, the stochastic process (It )t∈R is

stationary. In particular, d
dt
E[It ] is equal to 0. Thus, from Proposition 6.1, we have

the following key lemma.

LEMMA 6.3. For all λ < 1∑
j∈Zd aj

and all n > L,

μ(n) = λa0

1 − (
∑

j∈Zd aj )λ
.(6.4)

REMARK 6.4. Note that we assumed a0 = 1 in the model. For completeness,
we give the derivation for any general a0 > 0.

This lemma in particular yields that the mean number of customers in the steady
state of the space truncated torus is independent of n, provided n is large enough.
This in particular gives supn μ(n) < ∞.

PROOF OF LEMMA 6.3. From equation (6.1), we get

λ

(
a0 + 2μ(n)

(∑
j∈Zd

aj

))

= E

[
R(0)

(
a0
(
2x

(n)
0 − 1

)+ ∑
i∈Bn\{0}

aix
(n)
i

)
+ ∑

i∈Bn\{0}
R(i)aix

(n)
0

]
.

Now we use the following version of the mass transport principle for unimodu-
lar random graphs (see also [24]).

PROPOSITION 6.5. The following formula holds:

E

[ ∑
i∈Bn\{0}

R(i)aiy
(n)
0

]
= E

[ ∑
i∈Bn\{0}

R(0)aiy
(n)
i

]
.

PROOF. The proof follows from the standard argument of mass transport in-
volving swapping double sums. Observe from the definition of the dynamics, the
queue lengths {y(n)

k }k∈Bn is translation invariant on the torus Bn. Hence, for all

j ∈ Bn, the variables y
(n)
j

∑
i∈Bn\{j} R(i)ai−j are identically distributed, and in

particular have the same means. The proposition is now proved thanks to the fol-
lowing calculations:

E

[ ∑
i∈Bn\{0}

R(i)aiy
(n)
0

]
= 1

|Bn|E
[∑
j∈Bn

y
(n)
j

∑
i∈Bn\{j}

R(i)ai−j

]
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(a)= 1

|Bn|E
[∑
i∈Bn

R(i)
∑

j∈Bn\{i}
ai−j y

(n)
j

]
(b)= 1

|Bn|E
[∑
i∈Bn

R(i)
∑

j∈Bn\{i}
aj−iy

(n)
j

]
(c)= E

[ ∑
i∈Bn\{0}

R(0)aiy
(n)
i

]
.

Equality (a) follows by swapping the order of summations, which is licit since
they each contain finitely many terms. Equality (b) follows since ak = a−k

for all k ∈ Zd . Equality (c) again follows from the fact that for all i ∈ Bn,
R(i)
∑

j∈Bn\{i} aj−iy
(n)
j are identically distributed. This is a consequence of the

queue lengths {y(n)
k }k∈Bn being translation invariant on the torus. �

We now show how to conclude the proof of Lemma 6.3, using the conclusions
of Proposition 6.5. Intuitively, Proposition 6.5 can be interpreted by considering
the finite graph with vertices on the torus Bn with a directed edge from i to j in Bn

with weight R(i)adn(i−j)y
(n)
j . This random graph, when rooted in 0, is unimodular,

and hence the mass transport principle holds ([24]). Since ai = a−i , we get that the
average decrease is E[−a0R(0) + 2R(0)

∑
i∈Bn

aiy
(n)
i ]. Now E[R(0)] = λ, and

since, for all i ∈ Bn, E[y(n)
i ] = μ(n),

2λ

(∑
i∈Bn

ai

)
μ(n) + 2λa0 = E

[
2R(0)

(∑
i∈Bn

aiy
(n)
i

)]
.(6.5)

But since R(0)(
∑

i∈Bn
aiy

(n)
i ) = y

(n)
0 , we get

μ(n) = λa0

1 − (
∑

i∈Zd ai)λ
. �

COROLLARY 6.6. If λ < 1∑
j∈Zd aj

, then the sequence of probability measures

{π(n)}n>L is tight.

PROOF. From Markov’s inequality, we have

P[X > Q] ≤ λa0

Q(1 − (
∑

i∈Zd ai)λ)
,

where X is distributed according to π(n). Thus, for every ε > 0, we can find Q

large such that supn>L Pπ(n)[X > Q] < ε. �
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6.1. Finiteness of second moments. In this section, we establish that under the
conditions stated in Proposition 1.3, the second moments of the marginals of the
queue lengths of {y(n)

i (·)}i∈Bn are uniformly bounded in n. In order to show this,
we need the following auxiliary lemma. For completeness, we provide expressions
without assuming that the value of a0 of the interference sequence {ai}i∈Zd to be 1.

LEMMA 6.7. For all λ > 0, {ai}i∈Zd , d ∈ N and n > L, we have E[y2
0 ×∑

i∈Bn
Riai] ≤ 2cE[y2

0 ], where the constant c equals

√
a2

0+a0
∑

j∈Zd \{0} aj−a0∑
j∈Zd \{0} aj

.

PROOF. From symmetry, that is, ai = a−i for all i ∈ Bn and translation invari-
ance on the torus, we have

E

[
y2

0

∑
i∈Bn

Riai

]
= E

[
R0
∑
i∈Bn

y2
i ai

]
.(6.6)

Let c > 0 be such that 2ca0 = a0 − (
∑

j∈Zd\{0} ai)c
2. The only positive solution

to this equation is c =
√

a2
0+a0
∑

j∈Zd \{0} aj−a0∑
j∈Zd \{0} aj

. Thus, we have the following chain of

equations:∑
i∈Bn

aiy
2
i = a0y

2
0 + ∑

i∈Zd\{0}
aiy

2
i = 2ca0y

2
0 + ∑

i∈Zd\{0}
ai

(
y2
i + c2y2

0
)

≥ 2cy0
∑
i∈Bn

aiyi,
(6.7)

where the last inequality follows from y2
i + c2y2

0 ≥ 2cy0yi . Thus, from equations
(6.6) and (6.7), we have

E

[
R0
∑
i∈Bn

y2
i ai

]
≥ 2cE

[
R0y0
∑
i∈Bn

aiyi

]
= 2cE

[
y2

0
]
.

�

LEMMA 6.8. For all λ < 2
3

1+c∑
j∈Zd aj

, we have E[(y(n)
0 )2] ≤ 2μ(λ+λ

∑
j∈Zd aj+1)

2(1+c)−3λ
∑

j∈Zd aj
,

where the constant c is

√
a2

0+a0
∑

j∈Zd \{0} aj−a0∑
j∈Zd \{0} aj

.

PROOF. The proof of this lemma is an application of the rate conserva-
tion equation to the process (y

(n)
0 )2I

(n)
0 , where I

(n)
0 is the interference given by

I
(n)
0 =∑j∈Zd aj y

(n)
j . For brevity of notation, we remove the superscript n in the

calculations. The average increase in the process y2
0I0 due to an arrival is given by

E

[
λ

((
(y0 + 1)2(I0 + 1) − y2

0I0
)+ ∑

j∈Zd\{0}

(
y2

0(I0 + aj ) − y2
0I0
))]
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= E

[
λ

(((
y2

0 + 2y0 + 1
)
(I0 + 1) − y2

0I0
)+ ∑

j∈Zd\{0}
y2

0aj

)]

= E

[
λ

(
y2

0 + 2y0I0 + 2y0 + I0 + 1 + ∑
j∈Zd\{0}

y2
0aj

)]
(6.8)

= λ
∑

j∈Zd

ajE
[
y2

0
]+ 2λE[y0I0] + 2λμ + λμ

∑
j∈Zd

aj + λ

≤ 3λ
∑

j∈Zd

ajE
[
y2

0
]+ 2λμ + λμ

∑
j∈Zd

aj + λ.

In the last simplification, we use the bound that y0yj ≤ 1
2(y2

0 + y2
j ) and the fact

that E[y2
0 ] = E[y2

j ] for all j ∈ Bn. Similarly, the average decrease in the process

(y
(n)
0 )2I

(n)
0 due to a departure is then given by

E

[
R0
(
y2

0I0 − (y0 − 1)2(I0 − 1)
)+ ∑

j∈Zd\{0}
Rj

(
y2

0I0 − y2
0(I0 − aj )

)]

= E

[
R0
(
y2

0I0 − (y2
0 − 2y0 + 1

)
(I0 − 1)

)+ ∑
j∈Zd\{0}

Rjy
2
0aj

]
(6.9)

= E

[
R0
(
y2

0 + 2y0I0 − 2y0 − I0 + 1
) ∑
j∈Zd\{0}

Rjy
2
0aj

]

= E

[
y2

0

∑
j∈Zd

ajRj

]
+ 2E[R0y0I0] − 2E[R0y0] −E[R0I0] +E[R0].

Since the process {y(n)
i }i∈Bn is stationary, the average change due to arrivals and

departures is 0, that is, the difference between the left-hand sides of equations (6.8)
and (6.9) equals 0. Further, using the simplifications that E[R0] = λ, R0I0 = y0

and R0 ≤ 1 almost surely, we have by taking a difference of equations (6.8) and
(6.9), that

0 ≤ 3λ
∑

j∈Zd

ajE
[
y2

0
]+ 2λμ + λμ

∑
j∈Zd

aj + λ

−
(
E

[
y2

0

∑
j∈Zd

ajRj

]
+ 2E[R0y0I0] − 2E[R0y0] −E[R0I0] +E[R0]

)
.
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The above equation can be simplified by employing the result of Lemma 6.7 as
follows:

0
(a)≤ 3λ

∑
j∈Zd

ajE
[
y2

0
]+ 2λμ + λμ

∑
j∈Zd

aj − 2cE
[
y2

0
]− 2E

[
y2

0
]

+ 2μ + λμ
∑

j∈Zd

aj ,

≤ 2μ

(
λ + λ

∑
j∈Zd

aj + 1
)

−
(

2(1 + c) − 3λ
∑

j∈Zd

aj

)
E
[
y2

0
]
.

(6.10)

The inequality (a) follows from Lemma 6.7. By rewriting the last display, it is

clear that if λ < 2(1+c)
3

1∑
j∈Zd aj

, then E[y2
0 ] ≤ 2μ(λ+λ

∑
j∈Zd aj+1)

2(1+c)−3λ
∑

j∈Zd aj
. �

The above proposition in particular gives us the following corollary.

COROLLARY 6.9. For all n > L, if λ < 2(1+c)
3

1∑
j∈Zd aj

, then
supn≥LE[(y(n)

0 )2] < ∞.

Based on discrete event simulations, we conjectured in the initial version of
this paper posted online, that the second moment is uniformly bounded in n for
the entire stability region. This was subsequently established by [31]. See also
Conjecture 1.12 in Section 1.1, and the discussions following it.

7. Coupling from the past—proofs of Theorem 1.1 and Proposition 1.3.
The key idea is to use monotonicity and the backward coupling representation. In
order to implement the proof, we need some additional notation. For any T > 0 and
n ∈ N such that n > L, and any i ∈ Zd , we define the random variables xi;T (0),
y

(n)
i;T (0) and z

(n)
i:T (0). These variables represent the number of customers in queue

i at time 0 in three different dynamics which will be coupled and driven by the
same arrival and departure processes—(Ai ,Di)i∈Zd . In all of them, the subscript i

refers to queue i and T refers to the fact that the system started empty at time −T .
We now describe the three different dynamics in question:

1. xi;T (0) denotes the number of customers in queue i at time 0 in the original
infinite dynamics as defined in Section 3.

2. y
(n)
i;T (0) denotes the number of customers in queue i at time 0 for the dy-

namics restricted to the set Bn(0) viewed as a torus. Hence {y(n)
i;T (0)}i∈Bn(0) is the

queue length of the process studied in Section 5.

3. z
(n)
i;T (0) denotes the number of customers at time 0 for the dynamics restricted

set Bn, not seen as a torus. Thus for all i ∈ Bn(0)c, we have z
(n)
i;T (0) = 0, by defini-

tion.



INTERFERENCE QUEUEING NETWORKS ON GRIDS 2959

The following two propositions follow immediately from monotonicity.

PROPOSITION 7.1. For all T > 0, all n > L, and all i ∈ Zd , we have
xi;T (0) ≥ z

(n)
i;T (0) and y

(n)
i;T (0) ≥ z

(n)
i;T (0) almost surely.

PROPOSITION 7.2. For all n > L, almost surely, the following limits exist:

xi;∞(0) := lim
T →∞xi;T (0),

y
(n)
i;∞(0) := lim

T →∞y
(n)
i;T (0),

z
(n)
i;∞(0) := lim

T →∞ z
(n)
i;T (0).

Note that the distribution of the random variable y
(n)
0;∞ is the marginal on co-

ordinate 0 of the probability measure π (n), whose existence was proved in Theo-
rem 5.2 We also established in Corollary 6.6 that the sequence of probability mea-
sures {π(n)}n∈N is tight. Moreover, in view of Lemma 3.3, it suffices to show that
queue 0 is stable to conclude that the entire network is stable. Hence for notational
brevity, we will omit the queue and time index by adopting the following simplified
notation for the rest of this section: xT := x0;T (0), y

(n)
T := y

(n)
i;T (0), z

(n)
T := z

(n)
i;T (0),

where T ∈ [0,∞].

PROPOSITION 7.3. Almost surely, for every T ≥ 0, we have limn→∞ z
(n)
T =

xT .

PROOF. From Corollary A.10, for every finite T , there exists a random subset
X ⊂ Zd which is almost surely finite and such that the value of xT can be obtained
by restricting the dynamics to the set X in the time interval [−T ,0]. Let N be any
integer such that X is contained in Bn. Then, for all n ≥ N , xT = z

(n)
T . �

LEMMA 7.4. The sequence z
(n)∞ is nondecreasing in n and almost surely con-

verges to a finite integer valued random variable denoted by z
(∞)∞ .

PROOF. Note that for all finite T , z
(n)
T is nondecreasing in n. Thus for any

n > m, we have z
(n)
T ≥ z

(m)
T , for all T . Now, taking a limit in T on both sides,

which we know exist from Proposition 7.2, we see that z
(n)∞ ≥ z

(m)∞ . This establishes
the fact that z

(n)∞ is a nondecreasing sequence, and hence the almost sure limit
limn→∞ z

(n)∞ := z
(∞)∞ exists. We now show the finiteness of z

(∞)∞ . Note that for
all n and T , z

(n)
T ≤ y

(n)
T . Now, taking a limit in T , we see that z

(n)∞ ≤ y
(n)∞ . The

distribution of the random variable y
(n)∞ is the probability measure π(n) on N. From
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Corollary 6.6, the sequence {πn} is tight. Let π̃ (n), n ∈ N, denote the distribution of
z(n). Thus the sequence {π̃ (n)}n∈N is tight as well since z

(n)∞ ≤ y
(n)∞ almost surely.

Moreover, due to monotonicity, z
(n)∞ converges almost surely to a random variable

z
(∞)∞ . But since the sequence {π̃ (n)}n∈N is tight, the limiting random variable z

(∞)∞
is almost surely finite. �

LEMMA 7.5. There exists a random N ∈ N, such that for all n ≥ N , there
exists a random Tn ∈ R+, such that for all t ≥ Tn, z

(∞)∞ = z
(n)
t .

PROOF. From the previous lemma, z
(n)∞ converges almost surely to a finite

limit as n → ∞. Since the random variables {z(n)∞ }n∈N are integer valued, there
exists a random N such that z

(∞)∞ = z
(n)∞ , ∀n ≥ N . Now since, for each T and n,

z
(n)
T is integer valued, the existence of an almost surely finite limit limT →∞ z

(n)
T

implies that there exists a Tn, almost surely finite and such that z
(n)
t = z

(n)∞ for all
t ≥ Tn. Now, combining the two, for every n ≥ N , we can find a Tn such that
z
(n)
t = z

(n)∞ for all t ≥ Tn. Since N is such that for all n ≥ N , z
(n)∞ = z

(∞)∞ , the
lemma is proved. �

LEMMA 7.6. Let TN be the random variable defined in Lemma 7.5. For all
t ≥ TN , we have xt = z

(∞)∞ .

PROOF. Let m ≥ N and t ≥ TN be arbitrary. Observe that limT →∞ z
(m)
T =

z
(m)∞ = z

(∞)∞ , where the second equality follows from the fact that m ≥ N . From
Lemma 7.5, there exists an almost surely finite Tm such that for all t ≥ Tm, we
have z

(m)
t = z

(m)∞ = z
(∞)∞ . Let t ′ ≥ max(t, Tm). Since t ′ ≥ Tm, we have z

(m)
t ′ = z

(∞)∞ .
Basic monotonicity gives us the following two inequalities:

z
(m)
t ≥ z

(n)
t = z(∞)∞ ,

z
(m)
t ≤ z

(m)
t ′ = z(∞)∞ .

The first inequality follows from monotonicity in space and the second from mono-
tonicity in time. Thus, z

(m)
t = z

(∞)∞ . But since m ≥ N was arbitrary, it must be the
case that xt = limm→∞ z

(m)
t = z

(∞)∞ , where the first equality follows from Propo-
sition 7.3. Thus we have established that, for all t ≥ TN , we have xt = z

(∞)∞ and, in
particular, x∞ = limt→∞ xt = z

(∞)∞ is an almost surely finite random variable. �

COROLLARY 7.7. If λ < 1∑
i∈Zd ai

, then the following interchange of limits
holds true:

lim
t→∞ lim

n→∞ z
(n)
t = lim

n→∞ lim
t→∞ z

(n)
t = x∞ = z(∞)∞ < ∞ a.s.
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COROLLARY 7.8. If λ < 1∑
j∈Zd aj

, then E[x∞] ≤ λa0
1−λ(
∑

j∈Zd aj )
< ∞.

PROOF. From Corollary 7.7, x∞ = limn→∞ z
(n)∞ . Moreover since z

(n)∞ is
nondecreasing in n, it follows from the monotone convergence theorem that
E[x∞] = limn→∞E[z(n)∞ ]. As z

(n)∞ ≤ y
(n)∞ and supn≥LE[y(n)∞ ] = λa0

1−λ(
∑

j∈Zd aj )
from

Lemma 6.3, we get E[x∞] ≤ λa0
1−λ(
∑

j∈Zd aj )
< ∞. �

Now to complete the proof of Theorem 1.1, we need to conclude about the mean
queue length value, which we do in the following lemma.

LEMMA 7.9. If λ < 1∑
j∈Zd aj

, then E[x0;∞(0)] ≥ λa0
1−λ
∑

j∈Zd aj
.

PROOF. We shall choose n > L arbitrary and consider the stochastic process
Ĩ(n)(t) defined in Proposition 6.2. We shall let Ĩ(n)(t) be stationary as λ < 1∑

j∈Zd aj
.

Furthermore, notice from Theorem 5.2 that the truncated process {z(n)
i (t)}i∈Bn has

exponential moments. Thus, we have for all n ∈ N and all t ∈ R, E[Ĩ(n)(t)] < ∞.
Thus, we can equate d

dt
E[Ĩ(n)(t)] to 0 in Proposition 6.2 along with the fact |Bn| ≥

|B(I)
n |, to obtain

0 ≥ −2
(

1 − λ
∑

j∈Zd

aj

) ∑
i∈B

(I)
n

ν
(n)
i + 2λ

∣∣B(I)
n

∣∣− 2
∑

i∈Bn\B(I)
n

ν
(n)
i .(7.1)

Rearranging the inequality, we see that

1

|B(I)
n |
∑

i∈B
(I)
n

ν
(n)
i ≥ λa0

1 − λ
∑

j∈Zd aj

−
∑

i∈Bn\B(I)
n

ν
(n)
i

|B(I)
n | .(7.2)

Notice that ν
(n)
i ≤ E[x0;∞(0)] which in turn thanks to Corollary 7.7 is upper

bounded by λa0
1−λ
∑

j∈Zd aj
. Furthermore, from elementary counting arguments, we

have limn→∞ |Bn \ B
(I)
n ||B(I)

n | = 0. Thus, we obtain for all n > L,

E
[
x0;∞(0)

]≥ 1

|B(I)
n |
∑

i∈B
(I)
n

ν
(n)
i

≥ λa0

1 − λ
∑

j∈Zd aj

(
1 − |Bn \ B

(I)
n |

|B(I)
n |
)
.

(7.3)

Taking a limit as n → ∞ concludes the proof. �

7.1. Proof of Proposition 1.3. From Corollaries 6.9 and 7.7, the conclusion of
Proposition 1.3 follows.
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8. Proof of Proposition 1.2—uniqueness of stationary solution. To carry
out the proof, we shall employ the following rate conservation principle.

LEMMA 8.1. If {qi}i∈Zd is a stationary solution to the dynamics satisfying
E[q2

0 ] < ∞, then E[q0] = λa0
1−λ
∑

j∈Zd aj
.

PROOF. Since E[q2
0 ] < ∞, then we can apply the same proof verbatim of

Proposition 6.1, where the stochastic process I(t) := q0(t)
∑

i∈Zd aiqi(t). Then the
conclusion of Proposition 6.1 and Lemma 6.3 follow. �

We now prove Proposition 1.2 with the aid of certain monotonicity arguments.

PROOF. Let π ′ be a stationary measure on (Zd)N, with finite second moment
for the marginals. Let this distribution be different from π , the distribution cor-
responding to the minimal stationary solution {xi;∞(0)}i∈Zd . We show by ele-
mentary coupling and monotonicity arguments that π = π ′. Let T > 0 be arbi-
trary. We couple the evolutions of the two systems {yi;T (·)}i∈Zd and {xi;T (·)}i∈Zd

as follows: Let {qi}i∈Zd be distributed according to π ′, independently of every-
thing else. Let {yi;T (−T )}i∈Zd be such that yi;T (−T ) = qi , for all i ∈ Zd and
{xi;T (−T )}i∈Zd be empty, that is, for all i ∈ Zd , we have xi;T (−T ) = 0. Thus,
for all i ∈ Zd , xi;T (−T ) ≤ yi;T (−T ). Monotonicity in Lemma 3.1 implies that,
almost surely, for all i ∈ Zd , we have xi;T (0) ≤ yi;T (0). By the definition of in-
variance, {yi;T (0)}i∈Zd is distributed as π ′ with E[y0;T (0)] given in Lemma 8.1.
From Proposition 7.6, we know that as T → ∞, x0;T (0) converges almost surely
to a random variable which has a finite first moment. Furthermore, from the hy-
pothesis of the proposition, we know that the almost sure limit limT →∞ x0;T (0)

also possesses finite second moment. Thus from the dominated convergence the-
orem, we have that limT →∞E[x0;T (0)] = E[x0;∞(0)], which is also the same as
given in Lemma 8.1. Thus π ′ coordinatewise dominates π . But they have the same
first moment. This implies that the two probability measures are the same. �

9. Proof of Theorem 1.5. We briefly summarize the main idea in the proof,
before describing the details. We consider a comparison of three systems—the
original system described in Section 3 started with the empty initial condition and
one wherein all queues have K customers, and the K-shifted system introduced
in Section 4.2. We are able to compare the dynamics of the three systems us-
ing the monotonicity property of the dynamics. Furthermore, using the fact that
the K-shifted dynamics has finite second moment for its minimal stationary solu-
tion, monotonicity implies that the original system started with K customers in all
queues also has a finite second moment, in the limit of large time. Notice that, as
time goes to infinity, the limiting law of the number of customers in each queue
when all queues were started with exactly K customers is translation invariant.
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Thus, the uniqueness of translation invariant stationary measures having finite sec-
ond moment, implies the desired result.

PROOF. To prove this statement, we consider the K-shifted dynamics intro-
duced in Section 4.2. We know that for λ < 1∑

j∈Zd aj
, there exists a minimal station-

ary solution for this dynamics with finite mean. Furthermore, from Proposition 4.5,
we know that for λ < 2(1+c)

3
∑

j∈Zd aj
, where the value of c is given in Proposition 1.3,

that the second moment of the minimal stationary solution is also finite.
We set some notation to illustrate the proof. For each t ≤ 0, denote by

{x̃i (t)}i∈Zd to be the stationary solution of the K-shifted dynamics given that this
system was started with all queues having exactly K customers at time minus in-
finity. In other words, for s ≥ t , let x̃i;s(−t) be the number of customers in the
K-shifted dynamics in queue i ∈ Zd at time −t , given that it was started with
all queues having exactly K customers at time −s. Then, from Proposition 4.4,
we know that an almost surely finite limit lims→∞ x̃i,s(−t) := x̃i,∞(−t) exists for
all i ∈ Zd and t ∈ R. Now consider three coupled systems in the backward con-
struction procedure. The first system {x̃(t)

i (·)}i∈Zd is started at time −t with initial

condition x̃
(t)
i (−t) := x̃i,∞(−t) for all i ∈ Zd . The second system {x̂(t)

i (·)}i∈Zd is

started with all queues having exactly K customers, that is, x̂
(t)
i (−t) = K for all

i ∈ Zd . The third system {x(t)
i (·)}i∈Zd with the empty queue condition at time −t ,

that is, x
(t)
i (−t) = 0 for all i ∈ Zd . From the monotonicity in the dynamics, we

clearly, have for all t ≥ 0 and all u ≥ −t , the inequality x
(t)
i (u) ≤ x̂

(t)
i (u) ≤ x̃

(t)
i (u)

holding almost surely. Furthermore, we know that limt→∞ x
(t)
i (0) := x

(∞)
i (0) ex-

ists and has mean λa0
1−λ
∑

j∈Zd aj
and E[(x(∞)

i (0))2] < ∞.

The key observation now is to notice that x̃
(t)
0 (0) is monotonically nonincreasing

in t . To prove this, consider any t ′ ≥ t . From monotonicity of the shifted dynamics

and the original dynamics, we have x̃
(t ′)
0 (−t) ≤ x̃0,∞(−t) = x̃

(t)
0 (−t). Thus, from

the monotonicity of the dynamics, we have that x̃
(t ′)
0 (0) ≤ x̃

(t)
0 (0), thereby con-

cluding that x̃
(t)
0 (0) is nonincreasing in t . This ensures the existence of the almost

sure limit of limt→∞ x̃
(t)
0 (0) := x̃

(∞)
0 (0). Furthermore since x̃

(t)
0 (0) is monoton-

ically nonincreasing in t and supt≥0 E[x̃(t)
0 (0)] ≤ E[x̃(0)

0 (0)] ≤ λ+K
1−λ
∑

j∈Zdaj

< ∞,

we have that the limit E[x̃(∞)
0 (0)] < ∞ has finite mean. Similarly, from Proposi-

tion 4.5, we know that supt≥0 E[(x̃(t)
0 (0))2] ≤ E[(x̃(0)

0 (0))2] < ∞. From the def-

inition, it is clear that {x̃(∞)
i (0)}i∈Zd is a stationary solution to our dynamics as

it is shift invariant in time. Furthermore, from Proposition 4.5, the second mo-
ment of {x̃(∞)

i (0)}i∈Zd is finite. Hence from the uniqueness result in Proposi-

tion 1.3, it has to be the case that x̃
(∞)
0 (0) = x

(∞)
0 (0). But since for all t ≥ 0 and
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all u ≥ −t , the inequality x
(t)
i (u) ≤ x̂

(t)
i (u) ≤ x̃

(t)
i (u) holds true, it has to be the

case that the almost sure limit limt→∞ x̂
(t)
0 (0) := x̂

(∞)
0 (0) exists and further satis-

fies E[x̂(∞)
0 (0)] = λa0

1−λ
∑

j∈Zd aj
and E[x̂(∞)

0 (0)2] < ∞. The proof is concluded by

invoking the uniqueness result in Proposition 1.2. �

10. Large initial conditions from which queue lengths diverge—proof of
Theorem 1.7. The proof of Theorem 1.7 is split into two parts: the first part of
the theorem is proved in Section 10.1 and the second part in Section 10.2. We omit
the proof of Proposition 1.9 in the present version and can be found in Appendix D
of [30].

10.1. Proof of Part 1 of Theorem 1.7.

PROOF. We present the proof first for the simple case of d = 1 and the in-
terference sequence {ai}i∈Z such that ai = 1 if |i| ≤ 1 and ai = 0 otherwise. This
will illustrate the key idea of freezing some queue and considering its effect at the
center. We then show how to generalize this argument to arbitrary d and {ai}i∈Zd .

Consider d = 1 and {ai}i∈Z such that ai = 1 if |i| ≤ 1 and ai = 0 otherwise.
The proof for this case relies on a definition of a “frozen boundary state” system.
Roughly speaking, the nth frozen system for some n ∈ N refers to the dynamics of
queues at {−n, . . . ,0, . . . , n}, given that queues at the “boundary,” that is, at n + 1
and −n − 1 are frozen to some value αn. To formalize this, consider the following
system. Let n ∈ N be arbitrary. Consider the (n,∞) system in which the initial
condition is such that x

(n,∞)
i = 0 if i /∈ {n,−n} and x

(n,∞)
i (0) = ∞ if i ∈ {n,−n}.

Moreover, in this system, there are no arrivals to queues j such that |j | > n. Hence
we call it the {x(n,∞)

i (·)}i∈Z system since the arrivals are stopped for queues j such
that |j | > n and queues at n and −n have an initial value of ∞. Now since the
queues at −n and n are frozen to infinity, it is an easy consequence to see that there
will be no departures in queues −n + 1 and n − 1 as the departure rate will be 0,
and hence the queue lengths of queues n − 1 and −n + 1 will go to infinity almost
surely at a positive rate λ. More generally, all the queues i ∈ [−n + 1, n − 1] will
converge to infinity almost surely at a positive rate. Thus, for every n ∈ N, there
exists a Tn > 0 such that

P

[{
inf

t≥Tn

x
(n,∞)
0 (t)

}
≥ n
]
≥ 1 − 2−(n+2).(10.1)

Furthermore, we can assume without loss of generality that Tn → ∞ as n → ∞.
Now consider a second system (n,α) for some 0 ≤ α < ∞. This convention

implies that the system {x(n,α)
i (·)}i∈Z is such that all arrivals into queues j such

that |j | > n is stopped and the initial condition is that all queues except at n and
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−n have 0 customers and queues at n and −n have α customers. The crucial ob-
servation is that for each fixed t ≥ 0 and n ∈ N, we have

lim
α→∞ sup

0≤s≤t

(
x

(n,∞)
i (t) − x

(n,α)
i (t)

)= 0 a.s.

This observation follows from the fact that, in a finite interval of time t , only
finitely many events occur in the queues −n, . . . ,0, . . . , n. In particular, by choos-
ing α sufficiently large, we can ensure that there are no departures in queues n − 1
and −n+ 1 in the time interval (0, t]. This will ensure that the dynamics of queues
−n + 1 < i < n − 1 in the time interval [0, t], is unchanged in the system with
frozen values of α and ∞. Hence, in particular, for each n ∈N and un ≥ 0, we can
find a αn such that

P

[
inf

Tn≤t≤Tn+un

x
(n,αn)
0 (t) ≥ n

]
≥ 1 − 2−(n+1),(10.2)

where Tn is given in equation (10.1). Furthermore, we can choose αn even larger
such that P[Poi(un + Tn) > αn] ≤ 2−(n+1). Thus, if we then consider an initial
condition where queue i has 2αi customers, then by monotonicity and a simple
union bound, we have for all n sufficiently large

P

[
inf

Tn≤t≤Tn+un

x
(n,2αn)
0 (t) ≥ n

]
≥ 1 − 2−(n).

To complete the proof, let (bn)n∈N be an arbitrary sequence of nonnegative inte-
gers such that bn → ∞. Consider an initial condition such that xbi

(0) = x−bi
(0) =

2αbi
. For all i ∈ N such that i /∈ {bn : n ∈ N}, we have xi(0) = x−i (0) = 0. In

this case, from monotonicity that for all t and all n ∈ N, the inequality x0(t) ≥
x

(bn,αbn)

0 (t) almost surely. In particular, from equation (10.2), P[x0(Tbn) ≥ bn] ≥
1 − 2−(bn+1) for every n ∈ N. Thus, by a standard Borel–Cantelli argument, the
queue length at 0, x0(t) converges almost surely to +∞ as t → ∞, as the se-
quence of times (Tbn)n∈N is deterministic with limn→∞ Tbn = ∞.

Now consider arbitrary d and arbitrary irreducible {ai}i∈Zd . Let n > L :=
sup{‖i‖∞ ∈ Zd : ai > 0}, be larger than the support of the interference sequence.
We modify the definition of freezing where the (n,∞) system for some n ∈ N

denotes a system where the arrivals into queues i such that ‖i‖∞ > n is sup-
pressed and the initial condition is such that x

(n,∞)
i (0) = ∞, if ‖i‖∞ = n and

x
(n,∞)
i (0) = 0 if ‖i‖∞ �= n. For such a system, we can find a sequence of times

(Tn)n∈N that satisfy equation (10.1), for all n > L. This follows from the irre-
ducibility of the interference sequence {ai}i∈Zd and the fact that it is finitely sup-
ported. The reason we may have to avoid some finite n is to account for certain
aj being equal to 0, and thus an infinite wall of customers may not “influence”
the queue at 0. Nevertheless, we can find a Tn satisfying equation (10.1) for all
n > L. Thus, we can then define a (n,α) system for all n > L, where the initial
condition is such that x

(n,α)
i (0) = α if ‖i‖∞ = n and x

(n,α)
i (0) = 0 otherwise. From
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monotonicity, for every nonnegative sequence of (un)n>n0 , there exists a nonneg-
ative sequence (αn)n>n0 such that equation (10.2) is satisfied for all n > L. The
remainder of the proof follows from the discussion of the one-dimensional case.

�

10.2. Proof of Part 2 of Theorem 1.7.

PROOF. We will first carefully implement the proof for the case of d = 1 and
the interference sequence being (ai)i∈Z with ai = 1 for |i| ≤ 1 and ai = 0 oth-
erwise. The proof builds on the ideas developed in the previous proof. The key
observation we make in this proof is to notice that for every nonnegative sequence
(un)n∈N, there exists a sequence (αn)n∈N such that if the initial condition satisfies
min(xn(0), x−n(0)) ≥ αn, then for all sufficiently large n, we have

P

[
inf

Tn≤s≤Tn+un

x0(s) ≥ n
]
≥ 1 − 2−n,(10.3)

where Tn is as defined in equation (10.1). To implement the proof of this theo-
rem, let the initial conditions be such that {ζi}i∈Z be an i.i.d. sequence of N val-
ued random variables independent of everything else. We will divide the queues
into blocks denoted by sets Bk ⊂ Z recursively using indices (mk)k∈N such that
m0 = 0 and Bk to be of the form Bk := {−mk, . . . ,−mk−1 − 1} ∪ {mk−1 +
1, . . . ,mk}. The sequence (mk)k∈N is defined by mk := mk−1 + lk where lk sat-
isfies P[Geom(1/k) ≥ lk] ≤ 2−(k+1). Let the sequence of times (Ti)i∈N be as de-
fined in equation (10.3). For every n ∈ N such that n ∈ Bk for some k ∈ N, let
un := maxv∈Bk

Tv − Tn. Let T̂k := maxv∈Bk
Tv . Thus, by definition, for all k ∈ N

and for all n ∈ Bk , we have Tn + un = T̂k . From equation (10.3), we know that for
the particular un we have constructed, there exists a αn satisfying equation (10.3)
for all sufficiently large n. Denote by γk := max0≤n≤mk

αn, where mk was defined
above.

Given the above setup, we shall consider a random variable ζ on N such that
P[ζ ≥ γk] ≥ 1/

√
k for all sufficiently large k. This distribution forms the initial

conditions that we consider. More precisely, the initial condition (xi(0))i∈Z cor-
responds to the i.i.d. sequence (ζi)i∈Z distributed according to ζ defined above.
Define the event Ek as

Ek := ⋃
n∈Bk

{
min(ζn, ζ−n) ≥ γk

}
.

From the definition of ζ , it is clear that P[Ek] = P[Geom(1/k) ≤ lk] ≥ 1 − 2−k ,
where the second relation follows from the definition of lk .

Conditional on the event Ek , we have that P[x0(T̂k) ≥ mk−1|Ek] ≥ 1−2−mk−1 ≥
1 − 2−k . This follows from the fact that at least one of the coordinates i ∈ Bk is
such that min(xi(0), x−i (0)) ≥ γk under the event Ek , and hence equation (10.3)
holds. The conditioning does not affect the dynamics, as the initial conditions
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were chosen independent of everything else. Since Tn + un = T̂k for all n ∈ Bk ,
the claim follows. Thus, by unconditioning, we get that P[x0(T̂k) ≥ mk−1] ≥
(1−2−k+1)(1−2−k) for all sufficiently large k. Now, by a standard Borel–Cantelli
argument, we see that the event {x0(T̂k) < mk−1} occurs only finitely often. In
particular, this yields that limk→∞ x0(T̂k) = ∞ almost surely since mk → ∞.
Since the sequence (T̂k)k∈N is fixed and deterministic with limk→∞ T̂k = ∞,
limk→∞ x0(T̂k) = ∞ almost surely implies that limt→∞ x0(t) = ∞ almost surely.

Now we implement the proof in the general case. Let the initial condition be
given by the i.i.d. family {ξi}i∈Zd such that the initial condition xi(0) = ξi . Further-

more, the random variable ξ is such that for each k ∈ N, P[ξ ≥ γk] ≥ k
− 1

2d(2mk)d−1 ,
where γk will be a sequence to be chosen and mk is the sequence defined in the pre-
ceding paragraph. Now we define the blocks Bk as before by choosing the bound-
ary values (mk)k∈N from before. Note that the sequence mk is such that m0 = 0
and mk = mk−1 + lk−1 with lk−1 satisfying P[Geom(1/k) ≥ lk−1] ≤ 2−k for all
k ∈ N. The block Bk is defined by Bk := {i ∈ Zd : mk < ‖i‖∞ ≤ mk+1}. Now, for
all k ∈ N, let γk := maxn≤mk+1 αn, and the event Ek be defined as

Ek :=
mk⋃

i=mk−1+1

⋂
l∈Zd ,‖l‖∞=i

{ξl ≥ γk}.

From the tail probability of ξ , for all k ∈ N, we have P[Ek] ≥ P[Geom(1/k) ≥
lk] ≥ 1 − 2−k .

Since the interference sequence {ai}i∈Zd is finitely supported and irreducible,
equation (10.1) will be satisfied for all n > L. Let k0 := inf{k : L < mk}. The rest of
the argument follows exactly from the one-dimensional case which we reproduce
again. For j ∈ Zd such that ‖j‖∞ > L and j ∈ Bk , define uj := maxv∈Bk

Tv − Tj .
Similarly, define γk := maxj∈Zd :‖j‖∞≤mk+1

αj . Recall that the random variable ξ

satisfied for all k, P[ξ ≥ γk] ≥ k
− 1

2d(2mk)d−1 . It is easy to verify that for all k ≥ k0,
we have on the event Ek , P[x0(T̂k) ≥ mk−1|Ek] ≥ 1 − 2−(k). This follows, since
there is at least one i ∈ [mk + 1,mk+1], such that the initial condition satis-
fies xj (0) ≥ γk+1 for all j ∈ Zd such that ‖j‖∞ = i. By definition, γk+1 ≥ αi ,
and hence from monotonicity in the dynamics, equation (10.2) is satisfied for
the specific chosen un. The rest of the argument follows verbatim from the one-
dimensional case above, since P[Ek] ≥ 1 − 2−k . The proof follows from uncondi-
tioning and a standard application of the Borel–Cantelli lemma. �

11. Transience—proof of Theorem 1.11. In this section, we establish a con-
verse to the stability result in the following theorem, which holds for the dynam-
ics on the one-dimensional grid with the interference sequence satisfying certain
monotonicity property, which was specified in Definition 1.10 and reproduced here
for the reader.
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DEFINITION 11.1. The interference sequence (ai)i∈Z for the dynamics on the
one-dimensional grid is said to be monotone if for all i ∈ Z, ai ≥ ai+1 holds true.

We now state the main result in this section regarding transience.

THEOREM 11.2. For the dynamics on the one-dimensional grid with mono-
tone (ai)i∈Z, if λ > 1∑

i∈Z ai
, then there exists a N0 large enough such that for all

N ≥ N0, the dynamics truncated to the set [−N, . . . ,N] is transient.

REMARK 11.3. We provide a proof using the fluid approximation approach.
In the special case of ai = 1 for |i| ≤ 1 and ai = 0 if |i| > 1, one can construct
a “triangular” Lyapunov function and directly establish transience by using the
results of [17]. We present this alternate proof for this special case in Appendix E
of the extended version [30].

PROOF. Consider the case when a1 = 0. Then, by monotonicity of the inter-
ference sequence, this implies that for all i �= 0, ai = 0, in which case the theorem
is true for all N ≥ 1, as each queue is an independent M/M/1 queue. Thus, we
assume without loss of generality that a1 > 0 in the rest of this proof. Let N > L

be larger than the support of {ai}i∈Z which will be chosen later. We will con-
sider the dynamics restricted to the set [−N, . . . ,N], which is a finite dimensional
Markov process denoted by the process [Y−N(· · · ), . . . , YN(· · · )]. We will study
this process in the fluid limit scaling and it is denoted by [y−N(·), . . . , yN(·)].
We shall study the fluid limit behavior of the Markov chain and using the stan-
dard results of [28], we will conclude about transience. For the truncated system
[Y−N(· · · ), . . . , YN(· · · )], the fluid scale trajectories [y−N(·), . . . , yN(·)] are Lip-
schitz continuous functions satisfying the following system of differential equa-
tions, subject to a certain initial condition, given by

d

dt
yi(t) =

⎧⎪⎨⎪⎩
λ − yi∑

j∈Z ai−j yj

yi(t) > 0,

λ yi(t) = 0.

(11.1)

In the equation above, i ∈ {−N, . . . ,N} and for all j such that |j | > N , and
all t ≥ 0, we have yj (t) = 0 and y′

j (t) = 0. For an initial condition y(0) :=
[y−N(0), . . . , yN(0)], we denote by the set S(y(0)) of Lipschitz functions sat-
isfying equations (11.1) with the initial condition specified by the vector y(0).
A formal derivation of this as a fluid limit ODE for the dynamics is standard (e.g.,
see [29], Theorem 6) and we defer it to Proposition 11.9 stated and proved at the
end of the section. The fluid limit equations (11.1) are also such that, if at a certain
time all coordinates become equal to 0, they stay at 0. In the rest of the proof, de-
note by t0 ∈ (0,∞] such that for all 0 ≤ t < t0, there exists a i ∈ {−N, . . . ,N} such
that yi(t) > 0 and for all t ≥ t0 and all i ∈ {−N, . . . ,N}, yi(t) = 0. The value of t0
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clearly depends on the initial value [y−N(0), . . . , yN(0)]. From Proposition 11.9,
the fluid limit functions are moreover differentiable almost anywhere in (0, t0) and
its derivative is given by equations (11.1). Moreover, the fluid limit functions have
additional smoothness properties like the existence of higher order derivatives that
we do not exploit in the present paper. Instead, we define a key notion of “uni-
modality” satisfied by our dynamics which is essential for establishing transience.

DEFINITION 11.4. The vector [v−N, . . . , vN ] ∈ R2N+1 is said to be strictly
unimodal if for all 0 ≤ i < j ≤ N , we have vi > vj , vi = v−i and vi > 0. The
vector is said to be unimodal if for all 0 ≤ i < j ≤ N , we have vi ≥ vj , vi = v−i

and vi ≥ 0.

The following propositions characterizes the behavior of the system of equa-
tions in (11.1), which will be crucial in analyzing the system.

PROPOSITION 11.5. Assume the initial conditions [y−N(0), . . . , yN(0)] of
the system of equations (11.1) is strictly unimodal and the interference sequence
(ai)i∈Z is monotone. If t1 is the first time any two coordinates of [y0(t), . . . , yN(t)]
become equal, then t1 = t0, where t0 is defined above.

PROPOSITION 11.6. If at time 0, certain coordinates of [y−N(0), . . . , yN(0)]
are zero, then there exists a time ε > 0 such that the coordinates of [y−N(t), . . . ,

yN(t)] are nonzero for all 0 < t ≤ ε.

PROPOSITION 11.7. Let at time 0, the vector [y−N(0), . . . , yN(0)] be uni-
modal. Then, if limt→∞ y0(t) = ∞, then for all i ∈ {−N, . . . ,N}, limt→∞ yi(t) =
∞.

PROPOSITION 11.8. If the system of equations in (11.1) have two initial
conditions: [y−N(0), . . . , yN(0)] and [ỹN (0), . . . , ỹN (0)] such that for all i ∈
{−N, . . . ,N}, we have yi(0) ≥ ỹi(0), then for all t ≥ 0 and all i ∈ {−N, . . . ,N},
we have yi(t) ≥ ỹi(t).

Before we present the proofs of these results, we will demonstrate how to use
them to conclude the proof of Theorem 11.2. From Proposition 11.6, we can
assume without loss of generality that all coordinates [y−N(0), . . . , yN(0)] are
nonzero. Furthermore, from monotonicity in the dynamics in Proposition 11.8,
we can suppose that [y−N(0), . . . , yN(0)] is strictly unimodal. For if it were not
strictly unimodal, then there exists [ỹ−N(0), . . . , ỹN(0)] that is strictly unimodal
satisfying ỹi (0) ≤ yi(0) for all i ∈ [−N, . . . ,N].

The key quantity to study is the evolution of J(t) :=∑N
i=−N yi(

∑N
j=−N yi+j aj )

and concluding that d
dt
I(t) > ε for some ε > 0, for all sufficiently large t , provided
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N is suitably large. To aid in understanding, we first write the equations for the
simple case when ai = 1 for |i| ≤ 1 and ai = 0 otherwise before attacking the
general monotone (ai)i∈Z case. For notational brevity, we skip explicitly denoting
that yi and y′

i are functions of time t :

d

dt

N∑
i=−N

yi(yi−1 + yi + yi+1)

= 2
N∑

i=−N

yiy
′
i +

N∑
i=−N

yiy
′
i−1 + yi−1y

′
i + yiy

′
i+1 + yi+1y

′
i ,

= 2
N∑

i=−N

yiy
′
i + 2

N∑
i=−N

y′
i (yi−1 + yi+1),

= 2
N∑

i=−N

y′
i (yi−1 + yi + yi+1),

(11.2)

(a)= 2
N∑

i=−N

λ(yi−1 + yi + yi+1) − yi,

= 2(3λ − 1)

N∑
i=−N

yi − λ(y−N + yN),

= 4(3λ − 1)

N∑
i=0

yi − 2λyN,

(b)≥ (4(3λ − 1)N − 2λ
)
yN.

In the calculations above, step (a) follows from substituting equation (11.1) for
y′
i and step (b) follows from unimodality which gives that for all i ∈ {0,1, . . . ,

N − 1}, yi ≥ yN .
Let N be sufficiently large so that the coefficient of yN in equation (11.2) be

strictly positive. From standard results in fluid limits of Markov process ([28]),
if we establish that lim inft→∞ J(t)

t
> 0 whenever J(0) > 0, then the underly-

ing Markov process is transient. Let the initial condition [y−N(0), . . . , yN(0)]
be arbitrary such that J(0) > 0. From Proposition 11.6, we can assume without
loss of generality that all coordinates [y−N(0), . . . , yN(0)] are nonzero. Further-
more, from monotonicity in the dynamics in Proposition 11.8, we can suppose that
[y−N(0), . . . , yN(0)] is strictly unimodal. For if it were not strictly unimodal, then
there exists [ỹ−N(0), . . . , ỹN (0)] that is strictly unimodal satisfying ỹi(0) ≤ yi(0)

for all i ∈ [−N, . . . ,N]. We will now argue that given this arbitrary strictly uni-
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modal initial condition, we have lim inft→∞ J(t)
t

> 0. Notice that from equation
(11.2), d

dt
J(t) ≥ 0 for all t ≥ 0. Furthermore, since J(0) > 0, it follows that

inft≥0 J(t) > 0.
We will first argue that if the initial conditions [y−N(0), . . . , yN(0)] is strictly

unimodal, then t0 = ∞. Recall t0 is the first time when all coordinates be-
come equal to 0. From the definition of t0, it is clear that J(t0) = 0. But since
inft≥0 J(t) > 0, it has to be the case that t0 = ∞. Thus, the conclusion of Proposi-
tion 11.5 holds for all t ≥ 0 when started with an arbitrary strictly unimodal initial
condition, provided inft≥0 J(t) > 0, which in turn holds under the conditions in
Theorem 11.2.

From Proposition 11.7, if limt→∞ J(t) = ∞, then for all k ∈ {−N, . . . ,N},
limt→∞ yk(t) = ∞. From equation (11.2), this will yield that lim inft→∞ J(t)

t
> 0,

thereby from [28], establishing the truncated Markov chain is transient. Hence
it suffices to show that limt→∞ J(t) = ∞. Further from equation (11.2) and the
Lipschitz continuity of t → yN(t), we can see that if lim supt→∞ yN(t) > 0,
then limt→∞ J(t) = ∞. To establish that lim supt→∞ yN(t) > 0, assume on the
contrary that limt→∞ yN(t) = 0. Since inft≥0 J(t) > 0, we must have some k ∈
{1, . . . ,N − 1} such that lim supt→∞ yk(t) > 0, but limt→∞ yk+1(t) = 0. De-
note by δ := lim supt→∞ yk(t) > 0. Let 0 ≤ ε < λδ

2 be arbitrary. Let t ′ ≥ 0 be
such that yk(t

′) ≥ δ/2 and yk+1(t0) ≤ ε. There exist infinitely many choices for
t ′ from our assumption that limt→∞ yk+1(t) = 0 and lim supt→∞ yk(t) = δ > 0.
The derivative of yk+1(·) at time t ′ satisfies d

dt
yk+1(t)|t=t ′ ≥ λ − ε

δ/2 > 0. As
lim supt→∞ yk(t) ≥ δ/2, and t → yk+1(t) is Lipschitz continuous, we have that
lim supt→∞ yk+1(t) > ε, contradicting the assumption that limt→∞ yk+1(t) = 0.
The general case can be handled similarly as follows:

d

dt

N∑
i=−N

yi

(
N∑

j=−N,j �=0

ajyi+j

)

= 2
N∑

i=−N

yiy
′
i +

N∑
i=−N

N∑
j=−N,j �=0

aj

(
yiy

′
i+j + yi+j y

′
i

)

= 2
N∑

i=−N

yiy
′
i + 2

N∑
i=−N

y′
i

N∑
j=−N,j �=0

ajyi+j ,

= 2
N∑

i=−N

y′
i

(
N∑

j=−N

ajyi+j

)
,

(a)= 2
N∑

i=−N

λ

(
N∑

j=−N

ajyi+j

)
− yi,
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(b)≥ 2
(
λ
∑
j∈Z

aj − 1
) N∑

i=−N

yi − 2
∑
j∈Z

aj

N∑
i=N−L

yi

= 2
((

λ
∑
j∈Z

aj − 1
)⌊

N

L

⌋
− 2
∑
j∈Z

aj

) N∑
j=N−L

yj .

In the calculations above, step (a) follows from substituting equation (11.1) for
y′
i and step (b) follows from unimodality which gives that for all i ∈ {0,1, . . . ,

N − 1}, yi ≥ yi+1. Since
∑N

j=N−L yj (t) ≥ 0 for all t ≥ 0 and
∑N

j=N−L yj (0) > 0,
by choosing N sufficiently large, we get from similar arguments as above that the
Markov process [y−N(·), . . . , yN(·)] is transient. �

We now prove Proposition 11.5, which was the main structural result used in
the above theorem.

PROOF. We prove this by contradiction. Clearly, t1 ≤ t0, since at t0, all coor-
dinates of y(t) are equal to 0. Assume t1 < t0. Let k ∈ {1, . . . ,N} be the largest
integer j such that yj−1(t1) = yj (t1). Our first claim is that the interference in
coordinates k and k − 1 at time t1 satisfies

(11.3)
∑
j∈Z

ak−j yj (t1) <
∑
j∈Z

ak−j−1yj (t1).

To establish equation (11.3), we can without loss of generality, assume that
y−k(t1) = · · · = yk(t1). Indeed, recall that for all j ∈ N, we have aj ≥ aj+1 and
aj = a−j . Thus for any i ∈ {−k + 2, . . . , k − 2}, we have ai−k+1yi ≥ ai−kyi—in
other words, by assuming y−k(t1) = · · · = yk(t1), we only decrease the term on the
left-hand side and increase the term on the right-hand side of equation (11.3). Now
if L ≤ 2k − 1, then we have

∑
i≤0 aiyk−1+i =∑i≤0 aiyk+i , while∑

i>0

aiyk−1+i(t1) = a1yk(t1) +∑
i≥2

aiyk−1+i(t1) > a1yk+1(t1) +∑
i≥2

aiyk+i(t1)

=∑
i>0

aiyk+i (t1).

The first inequality follows from the fact that a1 > 0 and yk(t1) > yk+1(t1) (by
definition of k) and yk−1+i(t1) ≥ yk+i (t1), since the vector [y−N(t1), . . . , yN(t1)]
is unimodal. This establishes equation (11.3). If, on the other hand, L > 2k − 1,
let L = 2k − 1 + M , where M > 0. For j = k − 1, k, split the interference∑L

i=−L aiyi+j into four terms as
∑−2k

i=−L,
∑0

i=−2k+1,
∑M

i=1 and
∑L

i=M+1. We
denote the 4 sums as S1(j), S2(j), S3(j) and S4(j), j = k − 1, k, respectively.
Since y−k(t1) = · · · = yk(t1), we have S2(k − 1) = S2(k). Furthermore, as the
interference sequence {ai}i∈Z is monotone and for all q ∈ {k, k + 1, . . . ,N},
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yq(t1) > yq+1(t1) by definition of k, we have S4(k−1) > S4(k). This follows since
we have assumed that N is so large that N > L. This ensures in particular that
S4(k − 1) > 0. The strict inequality follows from the monotonicity of the interfer-
ence sequence and the definition of k. We now claim that S1(k − 1) + S3(k − 1) ≥
S1(k) + S3(k). This claim will then conclude equation (11.3). Indeed, from the
definitions, one can write (S3(k − 1)− S1(k))− (S3(k)− S1(k − 1)) =∑M

i=1(ai −
ai+2k−1)(yk+i−1(t1) − yk+i (t1)) ≥ 0 from the fact that [y−N(t1), . . . , yN(t1)] is
unimodal and the interference sequence is monotone. Thus, equation (11.3) holds.

To conclude the proof of the proposition from equation (11.3), we proceed as
follows. We know from Proposition 11.9, that the functions yk(·) and yk−1(·) are
Lipschitz continuous functions. Hence, from equations (11.1) and (11.3), there
exists an ε > 0 such that y′

k−1(t) > y′
k(t), for all t ∈ [t1 − ε, t1]. This contradicts

yk(t1) = yk−1(t1) since yj (t1) = yj (t1 − ε) + ∫ t1u=t1−ε y′
j (u) du, for j ∈ {k, k − 1},

with yk−1(t1 − ε) ≥ yk(t1 − ε) by unimodality. �

We now provide a proof of Proposition 11.6.

PROOF. Let N be fixed and assume yi(0) > 0 for some i ∈ [−N, . . . ,N] and
yj (0) = 0 for all j �= i. From Proposition 11.8, it suffices to consider this case
due monotonicity. From equations (11.1), it is clear that there exists an ε > 0 such
that yj (t) > 0 for all 0 < t ≤ ε and all j ∈ {−N, . . . ,N} such that ai−j > 0. This
follows from the Lipschitz continuity of the functions yj (·) and the right derivative
of yj (·) at time 0 is equal to λ > 0. Now, to conclude the proof, we must argue
that there exists a ε > 0 such that yj (t) > 0 for all 0 < t ≤ ε and for all j ∈
{−N, . . . ,N}. We do so by induction as follows. Consider a k ∈ {−N, . . . ,N}
such that yk(0) = 0, and all j ∈ {−N, . . . ,N} such that ak−j > 0 has yj (0) = 0,
but there exists a j ′ ∈ {−N, . . . ,N} such that ak−j ′ > 0 and ai−j ′ > 0, where
yi(0) > 0. Essentially, consider a coordinate k ∈ {−N, . . . ,N}, which is a “second
hop” neighbor of coordinate i. Since j ′ ∈ {−N, . . . ,N} is such that aj ′−i > 0, we

have lim inft↓0
yj ′
t

:= δ > 0. We claim that this implies that lim inft↓0
yk(t)

t
> 0.

Assume on the contrary that limt↓0
yk(t)

t
= 0. This implies there exists a sequence

t1 > t2 > · · · such that limr→∞ tr = 0 with the property that limr→∞ yk(tr )
tr

= 0,

but lim infr→∞
yj ′ (tr )

tr
≥ δ/2. Thus, the departure rate at queue k at time tr is at

most yj (tr )

aj−j ′yj ′ (tr ) , which tends to 0 as r goes to infinity. From equations (11.1),

this implies that d
dt

yk(tr ) is converging to λ as r goes to infinity, contradicting

limt↓0
yk

t
= 0. Thus, it has to be the case that lim inft↓0

yk(t)
t

> 0. Then by induction
on the number of hops of a coordinate l to i, one can conclude the proof of the
proposition. �

We now prove Proposition 11.7.
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PROOF. Assume limt→∞ y0(t) = ∞ and there exists a k ∈ {1, . . . ,N} such
that lim inft→∞ yk(t) := C < ∞, but limt→∞ yk−1(t) = ∞. We will show that
this is not possible, thereby completing the proof. More precisely, we will argue
that for any C ≥ 0, it must be the case that lim inft→∞ yk(t) ≥ C. From the hy-
pothesis, since limt→∞ yk−1(t) = ∞, for all M ≥ 0, there exists tM ≥ 0, such
that for all t ≥ tM , we have yk−1(t) ≥ M . Let C ≥ 0 be arbitrary and choose
M > max(0,Ca−1

1 (λ−1 − 1)). Let t0 ≥ tM be such that yk(t0) = C. If no such
t0 exists, then lim inft→∞ yk(t) ≥ C. If such a t0 exists, then from equation (11.1),
the derivative of yk(·) at time t0 satisfies d

dt
yk(t)|t=t0 ≥ λ − C

C+a1M
> 0, which

is strictly positive from the choice of M . Thus from the Lipschitz continuity of
yk(·), we have that lim inft→∞ yk(t) ≥ C. As C was arbitrary, this concludes that
limt→∞ yk(t) = ∞. �

We now prove Proposition 11.8.

PROOF. This proof essentially follows from monotonicity of the stochas-
tic dynamics stated in Proposition 3.1, and the definition of fluid-limit equa-
tion. Consider a nonnegative sequence (zk)k∈N such that zk → ∞ and a se-
quence of two initial conditions (X(k)(0))k∈N and (X̃(k)(0)k∈N such that for
all k ∈ N, we have X(k)(0), X̃(k)(0) ∈ N2N+1. Furthermore, assume the afore-

mentioned sequences are such that limk→∞ X(k)(0)
zk

= [y−N(0), . . . , yN(0)] and

limk→∞ X̃(k)(0)
zk

= [ỹ−N(0), . . . , ỹN (0)], the two initial conditions under consid-
eration in the proposition. Since we know that for all i ∈ {−N, . . . ,N}, the in-
equality yi(0) ≥ ỹi(0) holds, we can choose the sequences (X(k)(0))k∈N and
(X̃(k)(0)k∈N such that for all k ∈ N and all coordinates i ∈ {−N, . . . ,N}, we

have X
(k)
i (0) ≥ X̃

(k)
i (0). Now having considered such a sequence, the proof will

follow essentially from the monotonicity of the dynamics and Proposition 11.9.
To do so, we will set some notation. For any vector x ∈ N2N+1, denote by the
process Y(x)(·) to be the process in consideration in Theorem 11.2 with the ini-
tial condition Y(x)(0) = x. Thus, from the monotonicity of the dynamics and the
choice of the sequences, we have for all k ∈ N, and all t ≥ 0, z−1

k Y(X(k)(0))(zkt) ≥
z−1
k Y(X̃(k)(0))(zkt) almost surely. Thus, from Proposition 11.9, we know that as k

goes to infinity, the processes z−1
k Y(X(k)(0))(zkt) ≥ z−1

k Y(X̃(k)(0))(zkt) converge in
probability to the fluid limit described in equation (11.1) with the appropriate ini-
tial conditions. However, since for all k ∈ N, all i ∈ {−N, . . . ,N} and all t ≥ 0,

z−1
k Y(X(k)(0))(zkt) ≥ z−1

k Y(X̃(k)(0))(zkt) holds almost surely, even the fluid limits
will satisfy this inequality, that is, for all t ≥ 0, yi(t) ≥ ỹi(t). �

We now prove the fluid limit scaling of the Markov process and establish equa-
tions (11.1) as an appropriate law of large numbers for the original stochastic dy-
namics.
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PROPOSITION 11.9. Consider a sequence of deterministic initial conditions
([Y (k)

−N(0), . . . , Y
(k)
N (0)])k∈N for the Markov chain [YN(· · · ), . . . , YN(·)] and a se-

quence of positive integers (zk)k∈N with limk→∞ zk = ∞ such that the limit
limk→∞ z−1

k ([Y (k)
−N(0), . . . , Y

(k)
N (0)]) := [y−N(0), . . . , yN(0)] := y(0) exists. Then

for all T > 0 and δ > 0, we have

lim
k→∞P

[
inf

f ∈S(y(0))
sup

t∈[0,T ]
∣∣z−1

k Y(zkt) − f (t)
∣∣> δ
]
= 0.

PROOF. The proof of this is quite standard (e.g., [29], Theorem 6) and is pro-
duced here for completeness. This can be proved by contradiction. Assume that
there exists an ε > 0 and a sequence (zk)k∈N such that zk → ∞ such that

lim sup
k∈N

P

[
inf

f ∈S(y(0))
sup

t∈[0,T ]
∣∣z−1

k Y(zkt) − f (t)
∣∣> ε
]
≥ ε.(11.4)

Without loss of generality, we can assume the above inequality to hold for all
k ∈ N, by appropriately choosing the sequence (zk)k∈N. The trajectories of the
process Y(k)(·) can be written as

Y
(k)
i (t) = Y

(k)
i (0) + A

(k)
i (λt) − D

(k)
i

(∫ t

s=0

Y
(k)
i (s)∑

j∈Z Y
(k)
j (s)ai−j

ds

)
,

where (A
(k)
i (·))Ni=−N and (D

(k)
i (·))Ni=−N are i.i.d. unit rate Poisson point process

on R+. One can rewrite the above equations by a change of variable as

1

zk

Y
(k)
i (zkt) = 1

zk

Y
(k)
i (0) + 1

zk

A
(k)
i (λzkt) − 1

zk

D
(k)
i

(∫ zkt

s=0

Y
(k)
i (s)∑

j∈Z Y
(k)
j (s)ai−j

ds

)
,

which by a change of variables in the departure process, can be rewritten as

1

zk

Y
(k)
i (zkt) = 1

zK

Y
(k)
i (0) + 1

zk

A
(k)
i (λzkt)

− 1

zk

D
(k)
i

(
zk

∫ t

l=0

Y
(k)
i (zkl)∑

j∈Z Y
(k)
j (zkl)ai−j

dl

)
.

We can rewrite the above equation as a sum of a deterministic part plus an error
term as

1

zk

Y
(k)
i (zkt) = 1

zK

Y
(k)
i (0) + 1

zk

λzkt − 1

zk

zk

∫ t

l=0

Y
(k)
i (zkl)∑

j∈Z Y
(k)
j (zkl)ai−j

dl + δk(t),

where the stochastic process δ
(k)
i (·) satisfies

sup
t∈[0,T ]
∣∣δ(k)

i (t)
∣∣≤ 1

zk

sup
t∈[0,T ]
∣∣A(k)

i (zkt) − zkt
∣∣+ 1

zk

sup
t∈[0,T ]
∣∣D(k)

i (zkt) − zkt
∣∣.
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From standard results, (e.g., [32]), we have the following large deviations for the
unit rate Poisson process.

LEMMA 11.10. Let � be a unit rate Poisson process on R+. Then for all
T > 0 and λ > 0, it holds that

P

[
sup

0≤t≤T

∣∣�(t) − t
∣∣≥ λT

]
≤ e−T h(λ) + e−T h(−λ),

where the function h(λ) := (1 + λ) log(1 + λ) − λ. In the above formula, it is
understood that h(−λ) = +∞ if λ > 1.

The above lemma implies that there exists a subsequence of zk denoted by
zk(l) and another sequence ε(l) with liml→∞ ε(l) = 0 such that

∑
l≥1 P[|δ(k(l))

i | ≥
ε(l)] < ∞. For example, the following particular choice of k(l) can be verified to
satisfy the above statement:⎧⎪⎪⎨⎪⎪⎩

k(1) = 1,

k(l) := mink > k(l − 1) : zk ≥ l l ≥ 2,

εl = l−1/4 l ≥ 1.

Without loss of generality, we can assume that the finiteness property holds for
the original sequence k ≥ 1. Thus, by the Borel–Cantelli lemma, almost surely,
limk→∞ supt∈[0,T ] |δ(k)

i (t)| = 0. As there are only a finitely many coordinates i ∈
{−N, . . . ,N}, we have almost surely, limk→∞ supi∈{−N,...,N} supt∈[0,T ] |δ(k)

i (t)| =
0.

Now consider the random function ωk(t) := ∫ ts=0
Y

(k)
i (zks)∑

j∈Z Y
(k)
j (zks)ai+j

ds, which is

Lipschitz for each sample path, that is, for all 0 ≤ t ≤ u and k ∈ N, we have

ω
(k)
i (u) − ω

(k)
i (t) =

∫ u

s=t

Y
(k)
i (zks)∑

j∈Z Y
(k)
j (zks)ai+j

ds ≤ (t − u) a.s.

Thus, from the Arzela–Ascoli lemma, almost surely, there exists a subsequence
k(l) such that ω

(k(l))
i (·) converges uniformly on [0, T ] to a Lipschitz continuous

function Di(·). This, along with the bound on |δ(k)
i (·)| yields that there exists a

random subsequence k(l) such that, almost surely

lim
l→∞

1

zk(l)

Y
(k(l))
i (zkt) = yi(0) + λt − Di(t),

where the convergence happens uniformly over [0, T ]. Since Di(t) is Lipschitz
continuous on the interval [0, T ], it is differentiable almost-everywhere on [0, T ]
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and its derivative, whenever it exists is defined by

d

dt
Di(t) := lim

h↓0
lim

l→∞

∫ t+h

s=t

Y
(k(l))
i (zk(l)s)∑

j∈Z ai−jY
(k(l))
j (zk(l)s)

ds

= lim
h↓0

∫ t+h

s=t

yi(s)∑
j∈Z ai−j yj (s)

,

= yi(t)∑
j∈Z ai−j yj (t)

for all t ∈ [0, T ] whenever the limit in h exists. As the function Di(·) is Lipschitz,
the above limit in h will exists for t ∈ [0, T ], Lebesgue almost-everywhere.

Thus, we have shown that given a sequence (zk)k∈N, there exists a further ran-
dom subsequence such that 1

zk(l)
Y

(k(l))
i (zk(l)(t)) converges almost surely to a Lips-

chitz continuous function defined by the fluid trajectories in equation (11.1). Thus,
by standard results, 1

zk
Yi(zkt) converges in probability to a Lipschitz continuous

function, uniformly on the interval [0, T ], thereby contradicting equation (11.4).
�

12. Discussion and conclusion. In this paper, we introduce a model of infi-
nite spatial queueing system with the queues interacting with each other in a trans-
lation invariant fashion. This model is neither reversible nor admits any mean-field
type approximations to analyze it. In the present paper, we analyzed this model
using rate conservation and coupling arguments, which can be of interest to study
other large interacting queueing systems. We establish a sufficient condition for
stability which we also conjecture to be necessary. Surprisingly, we are able to
compute an exact formula for the mean number of customers in steady state in
any queue. Furthermore, we identify a subset of the stability region in which the
stationary solution with finite second moment is unique. Interestingly, however,
we see that our system is sensitive to initial conditions. We construct for every
λ, both a deterministic and translation invariant random initial conditions, such
that the queue lengths diverges to infinity almost surely, even though the stability
conditions hold.

However, our paper leaves open many intriguing questions as discussed in Sec-
tion 1.1. In particular, the correlation across queues is interesting as it can be nu-
merically simulated and is shown in Figure 1. In Figure 1, we are empirically es-
timating the function i → E[(x0(t) − μ)(xi(t) − μ)], where μ is the mean queue
length given in the formula in Theorem 1.1. However, we cannot simulate an in-
finite system, and hence consider a finite system of 51 queues placed on a ring
(i.e., one-dimensional torus). We use the interaction function ai = 1 if |i| ≤ 3 and
0 otherwise. The critical arrival rate is 0.14285 and we used a λ = 0.1419 to sim-
ulate. The mean queue length in this example is 21.18. We estimate the function
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FIG. 1. A plot of the empirical covariance function of queue lengths in steady state. We consider
d = 1 and 51 queue placed on a ring. The arrival λ = 0.1419 while λc = 1/7 and the interaction
function is ai = 1 if |i| ≤ 3 and 0 otherwise.

E[(x0(t) − μ)(xi(t) − μ)] by collecting many independent samples approximat-
ing the steady-state queue lengths {x(25)

i }i∈[−25,25]. For each collected sample, we
evaluate an empirical covariance function by setting the value at i ∈ [−25,25] to
be (x

(25)
i −μ)(x

(25)
0 −μ), where μ is the mean queue length equal to 21.18 in this

example. We plot after averaging over many such functions computed on inde-
pendent queue-length samples. From the plot, the strong positive correlations are
very evident, as the function plotted is always large and positive. The figure also
supports our intuition that the correlations must decay with distance as one would
guess, but yields no concrete insight for the exact nature of this decay, for instance
does the correlations decay polynomially or exponentially with the distance. Ex-
ploring this and other related questions in our model is an exciting line of future
work.

APPENDIX A: CONSTRUCTION OF THE PROCESS

In this section, we precisely describe the construction of the process alluded to
in Section 3. To show that the dynamics is well defined, it suffices to establish that
the value of the process at some finite time T < ∞ can be expressed as a deter-
ministic function of an arbitrary initial state {xi(s)}i∈Zd for any T > s > −∞ and
the driving data (Ai ,Di)i∈Zd . Roughly speaking, the queues evolve by adding a
customer to queue i at times A

(i)
q and removing a customer from a queue i at times

D
(i)
q if U

(i)
q ≤ xi(D

(i)
q )∑

j∈Zd aj−ixj (D
(i)
q )

. In other words, we remove a customer from queue

i at time D
(i)
q with probability xi(D

(i)
q )∑

j∈Zd aj−ixj (D
(i)
q )

independently of everything else.

If we had a finite collection of queues, then the above verbose description would
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be a sufficient description of the dynamics as there is a definitive “first-event” and
we can sequentially order all potential events in the network in increasing order
of time. However, the main effort in this section is to show that the dynamics de-
scribed above in words can in fact be constructed when there are infinitely many
queues. To show this, we will need a few definitions.

DEFINITION A.1. For any X ⊂ Zd and any s ≤ t ∈ R, we say that an arrival
occurs in X in the interval [s, t] if

∑
i∈X Ai ([s, t]) ≥ 1.

DEFINITION A.2. For any X ⊂ Zd and any s ≤ t ∈ R, we say that a potential
departure occurs in X in the interval [s, t] if

∑
i∈X Di([s, t]) ≥ 1.

DEFINITION A.3. For any X ⊂ Zd and any s ≤ t ∈ R, we say that a potential
event occurs in X in the interval [s, t] if

∑
i∈X Ai ([s, t]) + Di ([s, t]) ≥ 1, that is,

if either an arrival or a potential departure event occur.

We first consider the simpler problem of constructing the dynamics if the set
of queues were a finite set X ⊂ Zd instead of being the entire grid. For this, let
s ≤ t be given and {xi(s)}i∈X ∈ N|X| be arbitrary and given. From the arrival and
departure process (Ai ,Di)i∈X , we can identify the set of all potential events in all
of the queues in X as {s ≤ t1 < t2 < · · · < tn ≤ t}. This set is finite and distinct
for all finite X ⊂ Zd and all t ≥ s, almost surely. This is the crucial property that
follows since the restricted system can be thought of being driven by a Poisson
process of intensity (λ+ 1)|X|, which is a finite intensity process. Thus, the atoms
of this process will be distinct almost surely and will be locally finite, that is, will
contain finitely many points in any compact interval of time. Given that the set
of potential events {s ≤ t1 < t2 < · · · < tn ≤ t} is finite and distinct almost surely,
we can then sequentially consider the events in chronological order of time and
update the state of the queues {xi(s)}i∈X , thereby uniquely and unambiguously
constructing the state {xi(t)}i∈X at time t .

To show that the dynamics is well defined, we need to show that given any initial
condition {xi(0)}i∈Zd , we are able to construct the state of the system {xi(t)}i∈Zd ,
for all t ≥ 0. Since the dynamics is translation invariant in space and time, it suf-
fices to show that we can unambiguously construct the state x0(t) of queue 0, at
an arbitrary time t . Before we establish this, some definitions are in order.

DEFINITION A.4. A subset S ⊆ Zd is said to be connected if for all x, y ∈ S,
there exists k ≥ 1 and x0 := x, x1, . . . , xk := y such that xi ∈ S for all i ∈ [0, k],
and ‖xi − xi−1‖∞ = 1 for all i ∈ [1, k].

DEFINITION A.5. For each x ∈ Zd and each L ∈ N, denote by B∞(x,L) to
be the l∞ ball of side-length 2�L

2 � + 1 centered around x. Given a set X ⊂ Zd ,
define its L-Thickening to be the set X̃L :=⋃z∈X B∞(z,L).
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The following is a simple and well-known result in Boolean model percola-
tion where the size of a connected component can be upper bounded by the total
progeny of a certain branching process. We provide a short proof here for com-
pleteness.

LEMMA A.6. For every d ≥ 1 and every L ∈ N that is finite, there exists
p > 0, such that if each z ∈ Zd is declared open with probability p independent
of everything else, we have almost surely, every connected subset of the random
subset

⋃
z∈Zd 1(z is open)B∞(z,L) to be finite.

This is a classical result and much more general statements have been proven
in [9]. However, for completeness, we provide a simple proof of Lemma A.6 in
Appendix A.2 of the extended version of the paper [30].

We now use Lemma A.6 to give a construction of our process. Given λ and
{ai}i∈Zd , choose L := sup{‖i‖∞ : i ∈ Zd, ai > 0}. Choose time t̂ > 0 such that
exp(−(λ + 1)t̂)) ≥ 1 − p, where p is defined in Lemma A.6. Now we will do our
construction in time steps of t̂ units.

We show that we can decide on the state of queue 0 at time T in an almost
surely finite number of steps. This will then conclude that we can do so for every
queue, since the model is translation invariant. Divide the time interval [0, T ] into
intervals [0, t̂], (t̂ ,2t̂], . . . , that is, the interval [0, T ] is partitioned into finitely
many blocks (i.e., �T/t̂�) with each block being of at most t̂ . Denote by κ̂ := T/t̂

and by κ := �T/t̂�, the number of time blocks.

DEFINITION A.7. Given any 0 ≤ s < t and any j ∈ Zd , we say j is open in
the time interval [s, t] if Aj ([s, t]) + Dj ([s, t]) ≥ 1, that is, if there is either an
arrival or a possible departure from queue j in the time interval [s, t].

To proceed with the construction, we set some further notation. For any
r ∈ [1, κ], denote by O(r) the set of sites of Zd open in the time interval
[(r − 1)t̂ ,min(r t̂ , T )]. Let Õ(r)

L be its L-Thickening. For any j ∈ Zd , denote by
Cr (j) the connected subset of ÕL containing j .

We define Lκ ⊆ Lκ−1 ⊆ · · · ⊆ L1 = L0 ⊂ Zd , to be the collection of connected
subsets of Zd that contain the origin in a recursive fashion as follows:

Lκ := Cκ(0),

Li−1 := ⋃
j∈Li

Ci−1(j) ∀i ∈ {κ, . . . ,2},

L0 := L1.

It is easy to check that we have
⋃κ

i=1 Li is finite almost surely, since, almost
surely, for all j ∈ Zd and all i ∈ {1, . . . , κ}, Ci (j) is finite.

The following fact is now an immediate consequence of the definitions.
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PROPOSITION A.8. For all i ∈ {1, . . . , κ} and all j ∈ Li and j ′ ∈ Lc
i such that

both j and j ′ are open in the time interval [(i − 1)t̂ , it̂], we have d∞(j, j ′) > L.

PROOF. Observe that, for any r ∈ {1, . . . , κ}, if we have Cr (j) �= Cr (j
′) and

j and j ′ are open in the time interval [(r − 1)t̂ ,min(r t̂ , T )], then d∞(j, j ′) > L.
This can be seen through contradiction as follows. Assume that j and j ′ are open
in the time interval [(r − 1)t̂ ,min(r t̂, T )] and d∞(j, j ′) ≤ L − 1. This implies
that there exists a connected path from j to j ′ in the L-thickening of the set of
open sites in the time interval [(r − 1)t̂ ,min(r t̂, T )]. This contradicts the fact that
Cr (j) �= Cr (j

′). Since the set Li is the union of a Ci (j) for some set of j , the result
follows. �

The following proposition establishes that we can construct the state of queue 0
at time T .

PROPOSITION A.9. For all i ∈ {0,1, . . . , κ}, given the state of all queues in
Li at time it̂ , the state of each queue in Li+1 at time (i +1)t̂ is obtained by running
the dynamics restricted to the set X = Li+1, from time s = it̂ to T = (i + 1)t̂ .

PROOF. For any i, denote by L̃i ⊂ Li the set of queues that are active in the
time interval [(i − 1)t̂ , it̂]. We know from Proposition A.8 that any j ∈ Lc

i that
is active in the time interval [(i − 1)t̂ , it̂] is such that d∞(j, L̃i ) > L. In words,
the queues outside Li do not interact with the active queues in Li during the time
interval [(i − 1)t̂ , it̂]. Thus, to know the state of queues in Li in the time interval
[(i − 1)t̂ , it̂], it suffices to look at the evolution of the dynamics inside the set
Li ignoring the evolutions outside this set. Thus, the statement of the proposition
follows. �

As a corollary, for any finite T , and any initial state {xi(0)}i∈Zd , we can
determine x0(T ) by only looking at finitely many events of the driving data
(Ai ,Di)i∈Zd . Since the system is translation invariant, we can do this for all
j ∈ Zd . As a result of the analysis, we present the following corollary, which will
be useful later on.

COROLLARY A.10. Given any i ∈ Zd , any s ≤ T , and any initial condition
{xj (s)}j∈Zd , there exists a random set Xi;s,T ⊂ Zd which is a deterministic func-
tion of the driving data (Ai ,Di)i∈Zd , such that the value of xi(T ) obtained by
restricting the dynamics to the set Xi;s,T in the time interval [s, T ].

PROOF. Setting Xi;s,T to be equal to the set L1 concludes the proof. �
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A.1. Specialization to one-dimensional systems. The construction for d = 1
is far simpler since for any finite L, all values of p < 1 satisfy Lemma A.6. Thus
given any T , any initial configuration {xi(0)}i∈Z, given any j ∈ Z, and the driving
data (Ai ,Di)i∈Z, there almost surely exists two finite coordinates jl and jr such
that jl ≤ j ≤ jr such that there is no event in the time interval [0, T ] in the set of
queues {jl, . . . , jl − L} and in the set of queues {jr , . . . , jr + L}.

APPENDIX B: MONOTONICITY PROOFS

B.1. Proof of Lemma 3.1.

PROOF. We will consider the coupling where the two systems are driven by
the same arrival and departure process. Pick t̂ as described in the construction.
We will show that for all 0 ≤ t ≤ t̂ , x′

0(t) ≥ x0(t). Since, the dynamics is trans-
lation invariant, this will then establish that {x′

i (t̂ )}i∈Zd coordinatewise dominates
{xi(t̂)}i∈Zd . Since T was finite, we can iterate the above argument in blocks of t̂

steps and conclude the proof.
Denote by O the set of sites of Zd open during the time interval [0, t̂] and by

ÕL its L-thickening. For any j ∈ Zd , denote by C(j) the connected subset of ÕL

containing j . From the definition of t̂ , we know that, for all j ∈ Zd , C(j) is finite
almost surely. Thus, we can order the events in C(0) during the time interval as
E1, . . . ,En which occur at times 0 ≤ T1 < T2 < · · · < Tn ≤ t̂ . From elementary
properties, n is finite and Ti < Ti+1 almost surely.

Now we show by induction that after the operations at all times {Ti}ni=1, the
ordering x′

j (Ti) ≥ xj (Ti) is maintained for all j ∈ C(0). We know that at time
0 the inequality is true. Consider the first event. If it is an arrival, then the in-
equality holds true after the arrival since the arrivals occur in both systems. If
the event E1 is a departure from a queue j ∈ C(0), then two cases are possible.
Either x′

j (T
−
1 ) ≥ xj (T

−1
1 ) + 1, in which case the ordering x′

j (T1) ≥ xj (T1) is triv-
ially true since we have at most one departure per event. Or, we have equality,
that is, x′

j (T
−

1 ) = xj (T
−
1 ), in which case we have the inequality of death prob-

ability
x′
j (T −

1 )∑
k∈Zd ak−j x′

k(T
−
1 )

≤ xj (T −
1 )∑

k∈Zd ak−j xk(T
−
1 )

. We have this inequality since at time

T −
1 , for all k ∈ C(0), we have x′

k(T
−

1 ) ≥ xk(T
−

1 ). Since the death probability is
ordered and the two systems are driven by the same data, if x′

j (T1) = x′
j (T

−
1 ) − 1,

then it must be the case that xj (T1) = xj (T1) − 1. Thus, we have that at time
T1, x′

j (T1) ≥ xj (T1) for all j ∈ C(0). Now, iterating the above arguments over the

finitely many events, we see have the inequality x′
j (t̂) ≥ xj (t̂) for all j ∈ C(0). �

B.2. Proof of Lemma 3.2.

PROOF. We define two systems {x′
j (u)}j∈Zd and {xj (u)}j∈Zd such that at time

s, we have for all j ∈ Zd , x′
j (s) = xj (s). We compute the state of the queues

{x′
j (u)}j∈Zd for u ≥ s without the arrivals stopped in set X during the time interval
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[s, t] and evolve the system {xj (u)}j∈Zd with the arrivals stopped, that is, setting
Ai ([s, t]) = 0 for all i ∈ X. Notice that at time s, we have x′

k(s) ≥ xk(s), for all
k ∈ Zd . In fact, we have equality, but we represent it as an inequality to set up
an induction argument. We first show that at time t̂ + s, we have the inequality
x′
k(t̂ + s) ≥ xk(t̂ + s), for all k ∈ Zd . Now since T is finite, we can iterate the above

argument in blocks of time steps t̂ to conclude the lemma. To prove coordinatewise
domination at time s implies coordinatewise domination at time t̂ + s, it suffices
to show that, for any j ∈ Zd , x′

k(t̂ + s) ≥ xk(t̂ + s), for all k ∈ C(j). Note that in
this proof, C(j) is the connected component containing j of the L-thickening of
the set of sites open in the time-interval [s, t̂ + s].

As above, let j ∈ Zd be arbitrary. Denote by C(j) the cluster of sites that contain
j and are open in the time interval [s, s + t̂]. As seen before, this cluster is almost
surely finite. Thus, there is a first event at time T1 ≥ s and a last event at time
Tn ≤ t̂ + s in the set X in the time interval [s, t̂ + s]. We show that the desired
inequality holds through induction on the events, that is, we show that for all i,
{x′

k(Ti)}k∈C(j) ≥ {xk(Ti)}k∈C(j) holds coordinatewise.
If the event E1 is an arrival in any queue of C(j), then the inequality

is trivially preserved. If the event E1 is a departure event from queue k ∈
C(j), then there are two cases. Either x′

k(T
−
1 ) ≥ xk(T

−
1 ) + 1 or x′

k(T
−
1 ) =

xk(T
−

1 ). Since there is at most one departure per event, the inequality triv-
ially holds if x′

k(T
−
1 ) ≥ xk(T

−
1 ) + 1. If on the other hand x′

k(T
−

1 ) = xk(T
−

1 ),

then the death probabilities are ordered, that is, we have
x′
k(T

−
1 )∑

k∈Zd ak−j x′
k(T

−
1 )

≤
xk(T

−
1 )∑

k∈Zd ak−j xk(T
−
1 )

. This follows from the fact that at time T −
1 , for all k ∈ C(j),

we have x′
k(T

−
1 ) ≥ xk(T

−
1 ). Thus, if there is a death in the system with-

out stopping the arrivals, that is, if x′
k(T1) = x′

k(T
−

1 ) − 1, then we will have
xk(T1) = xk(T

−
1 ) − 1. Hence, the inequality is preserved after the first event.

Thus, iterating over the finitely many events, we have our desired inequality.
�

APPENDIX C: PROOFS OF THE MODEL EXTENSIONS

In this section, we conclude about the stability of the model extensions intro-
duced in Section 4. In particular, we will prove Propositions 4.1 and 4.4. Propo-
sition 4.1 shows that the system that has an infinite support for the interference
sequence also admits a nontrivial stability region and Proposition 4.4 establishes
the existence of a stationary solution with finite mean for the K-shifted system
introduced in Section 4.

C.1. Proof of Proposition 4.3.

PROOF. The proof follows from elementary monotonicity arguments. As for
the original model, we argue this using the backward construction idea. Denote by
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xi;t (0) the queue length of queue 0 at time 0 in the model with the infinite sup-
port interference sequence, when started empty at time −t . For each K , denote by
x

(K)
i,t (0) the queue length at 0 at time 0 in the model with K truncated interference

when started empty at time −t . The previous proposition establishes that for each
i ∈ Zd and t ≥ 0, xi,t (0) = limK→∞ x

(K)
i,t (0) almost surely. Moreover, from mono-

tonicity in the dynamics, we have limt→∞ x0,t (0) := x0,∞(0) exists almost surely.
Similarly, for each K , we have the monotone limit x

(K)
0,∞(0) = limt→∞ x

(K)
0,t (0).

From the previous results, we also have that E[x(K)
0,∞] = λ

1−λ
∑

j∈Zd a
(K)
j

. Thus, we

have supK∈N E[x(K)
0,∞] < ∞ as λ

∑
j∈Zd aj < 1. This immediately yields the ex-

istence of the monotone almost sure limit x
(∞)
0,∞(0) := limK→∞ x

(K)
0,∞. Further-

more, this limit satisfies E[x(∞)
0,∞] = λ

1−λ
∑

j∈Zd aj
< ∞ as limK→∞

∑
j∈Zd a

(K)
j =∑

j∈Zd aj . It remains to argue that limt→∞ x0,t (0) = x
(∞)
0,∞(0).

We will argue this by the simple observation that x
(K)
0,t (0) is monotone in both

K and t . Thus, we have that x
(K)
0,∞ ≥ x

(K)
0,t . Now taking a monotone limit on both

sides, we obtain that x
(∞)
0,∞ ≥ limK→ x

(K)
0,t = x0,t (0). Now, taking a limit on t , we

observe that x
(∞)
0,∞(0) ≥ x0,∞(0). Now, to argue the opposite inequality, we con-

sider x0,t (0) ≥ x
(K)
0,t (0). Now we take a limit on t on both sides and obtain that

x0,∞(0) ≥ x
(K)
0,∞(0). Now taking a limit with K , we see that x0,∞(0) ≥ x

(∞)
0,∞. Thus,

it must be that x0,∞(0) = x
(∞)
0,∞(0), which concludes the proof. �

C.2. Proof of Proposition 4.4.

PROOF. The proof of stability is similar to the proof of Theorem 5.2, with
minor modifications as detailed in Appendix C.2 of the extended version [30].
The arguments of Section 7 can be repeated verbatim, as the K-shifted dynamics
exhibits the same monotonicity when started with the initial condition of xi(−t) =
K for all i ∈ Zd . Thus, the only new equation to be established for the stability
program to follow is the rate conservation equation to prove the bound in equation
(4.2). We use the same rate conservation equation, with the difference being in the
simplification (6.1) with the different rate function given in equation (4.1). The
derivation is identical up to equation (6.5) with the following steps:

2λE[x̃0]
∑

j∈Zd

aj = 2E
[
R̂

(K)
0 (0)

∑
j∈Zd

aj x̃j (0)

]

= 2E
[
x̃0(0)1

(
x̃0(0) > K

)]≥ 2
(
E
[
x̃0(0)
]− K
)
.

Thus, rearranging yields E[x̃0(0)] ≤ λ+K
1−λ
∑

j∈Zd aj
. �
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C.3. Proof of Proposition 4.5.

PROOF. The proof is again identical to Propositions 6.7 and 6.8, except with
slight modifications that we indicate here. The program is identical to the original
dynamics, namely we study the space truncated system and then write rate conser-
vation equations. To conclude about the final infinite system, we consider a limit
identical to the program carried out in Section 7. The proof of Lemma 6.7 needs to
be modified only in the conclusion as E[R0

∑
i∈Bn

y2
i ai] ≥ 2cE[R0y0

∑
i∈Bn

aiyi].
Since R0(t) = y

(K)
0 (t)∑

j∈Zd aj y
(K)
j (t)

1(y0(t) > K). Thus, the conclusion of Proposition 6.7

can be concluded as E[R0
∑

i∈Bn
y2
i ai] ≥ 2cE[y2

01(y0 > K)].
Now, using this, the proof of Proposition of Lemma 6.8, the proof is identical

until equation (6.10) which is modified as follows:

0 ≤ 3λE
[
y2

0
]+ C − 2cE

[
y2

01(y0 > K)
]− 2E

[
y2

01(y0 > K)
]
,

where C absorbs all the constants independent of y0 in equation (6.10). Now, rear-
ranging the above display, one arrives at the conclusion that under the conditions in
Proposition 1.3, the minimal stationary solution of the K-shifted dynamics admits
a finite second moment. �
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