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TREE LENGTHS FOR GENERAL �-COALESCENTS AND
THE ASYMPTOTIC SITE FREQUENCY SPECTRUM AROUND

THE BOLTHAUSEN–SZNITMAN COALESCENT1

BY CHRISTINA S. DIEHL AND GÖTZ KERSTING

Goethe Universität

We study tree lengths in �-coalescents without a dust component from
a sample of n individuals. For the total length of all branches and the total
length of all external branches, we present laws of large numbers in full gen-
erality. The other results treat regularly varying coalescents with exponent 1,
which cover the Bolthausen–Sznitman coalescent. The theorems contain laws
of large numbers for the total length of all internal branches and of internal
branches of order a (i.e., branches carrying a individuals out of the sample).
These results immediately transform to sampling formulas in the infinite sites
model. In particular, we obtain the asymptotic site frequency spectrum of
the Bolthausen–Sznitman coalescent. The proofs rely on a new technique to
obtain laws of large numbers for certain functionals of decreasing Markov
chains.

1. Introduction and main results. �-coalescents are established models for
family trees of a sample of individuals from some large population. Its most promi-
nent representative, the Kingman coalescent [18], is widely used in population
genetics. More recently, the Bolthausen–Sznitman coalescent [6] gained atten-
tion for models including selection. The class of Beta-coalescents with parameter
1 < α < 2 has been applied to marine populations [5]. In this paper, we investigate
branch lengths and sampling formulas in the infinite sites model for the whole
class of �-coalescents without a dust component, which covers all these special
cases.

�-coalescents have been introduced by Pitman [20] and Sagitov [21] as Markov
processes whose states are partitions of N and whose evolution may be imagined
as a random tree. In this paper, we identify a �-coalescent with an induced se-
quence of n-coalescents, n ∈ N, by restricting partitions to the subsets {1, . . . , n}
of N. These n-coalescents are considered to be Markovian models for the family
trees of a sample of n individuals. If such a tree contains b ∈ {2, . . . , n} lineages
at the moment t ≥ 0 backwards in time (representing the ancestors living at that
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moment), then it is assumed that of those, k ∈ {2, . . . , b} specified lines merge at
rate

λb,k :=
∫
[0,1]

pk(1 − p)b−k �(dp)

p2

to one line. Here, � denotes any finite, nonvanishing measure on [0,1]. The re-
sulting tree consists of n leaves, τn merging events, and a root at time τ̃n > 0, rep-
resenting the MCRA (most recent common ancestor). Its branches have lengths
which specify lifetimes. There are external branches ending in leaves on the one
hand, and internal branches ending in mergers on the other. For the detailed parti-
tion valued picture, we refer to the survey [4].

In the sequel, we work with the Markovian counting process Nn = (Nn(t))t≥0,
where Nn(t) denotes the number of lineages at time t ≥ 0. Thus, Nn(0) = n and
Nn(τ̃n) = 1. For convenience, we set Nn(t) := 1 for t > τ̃n. Then for b = 2, . . . , n

the numbers

λ(b) =
b∑

k=2

(
b

k

)
λb,k

give the jump rates of the process Nn and

μ(b) =
b∑

k=2

(k − 1)

(
b

k

)
λb,k

its rate of decrease since a merger of k lineages results in a downward jump of
the block counting process of size k − 1. These two sequences can be naturally
extended to positive continuous functions λ,μ : [2,∞) →R (see the formulas (4)
and (5) below).

In this paper, we focus on the class of �-coalescents without a dust component.
To put it briefly, in this case the rate, at which within the n-coalescents a single
lineage merges with some others, diverges as the sample size n tends to infinity.
They are characterized by the condition (Pitman [20])∫

[0,1]
�(dp)

p
= ∞.

In particular, they cover �-coalescents coming down from infinity. These are the
coalescents with the property that the absorption times τ̃n are bounded in proba-
bility uniformly in n. They are distinguished by the criterion (Schweinsberg [22])∫ ∞

2

dx

μ(x)
< ∞.

We shall analyze the lengths of the whole n-coalescents as well as of differ-
ent parts. They play an important role in the infinite sites model introduced by
Kimura [17]. In this model, each mutation affects a different site in the DNA. The
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mutations are distributed along the branches of the coalescent depending on their
appearance in the past. Mathematically, they build a homogeneous Poisson point
process with rate θ > 0. Their total number S(n) counts the segregating sites in
the sample of size n underlying the coalescent and are thus closely tied to its total
length �n. Mutations which are located on an external branch appear only once in
the sample, these are the singleton polymorphisms (see Wakeley [25], page 103).
Accordingly, their number is linked to the total length �̂n of all external branches.
Likewise, the number of mutations visible repeatedly in the sample corresponds to
the total internal length q�n.

NOTATION. For two sequences An and Bn of positive random variables, we

write An
1∼ Bn and An

P∼ Bn if the sequence An/Bn converges to 1 in the L1-sense
or in probability, respectively. The notation An = OP (Bn) means that the sequence
An/Bn is tight and An = oP (Bn) that An/Bn converges to 0 in probability.

Now we come to the main results of this paper. As a first notion let

�n :=
∫ τ̃n

0
Nn(t) dt, n ≥ 1,

be the total length of the coalescent tree.

THEOREM 1. Assume that the �-coalescent has no dust component. Then as
n → ∞
(1) �n

1∼
∫ n

2

x

μ(x)
dx.

This is an intuitive approximation: if the counting process Nn takes the value x,
then there are currently x lines and 1/μ(x), the reciprocal of the rate of decrease,
indicates how long on average Nn will stay close to x. Observe that the right-
hand integral diverges for n → ∞: because of Lemma 1(i) below, the function
μ(x)/(x(x − 1)) is decreasing and, therefore,

∫ n
2

x
μ(x)

dx ≥ 2
μ(2)

log(n − 1). This
lower bound is attained by the Kingman coalescent.

Berestycki et al. [2] conjectured Theorem 1 and proved it for �-coalescents
coming down from infinity in the framework of convergence in probability by
using instead of μ(x) the asymptotically equivalent quantity

ψ(x) :=
∫
[0,1]

(
e−xp − 1 + xp

)�(dp)

p2 .

For the Kingman coalescent, the result was earlier obtained by Watterson [26] and
for the Bolthausen–Sznitman coalescent by Drmota et al. [10].

In the context of the infinite sites model, Theorem 1 may be restated directly in
terms of the number S(n) of segregating sites as

S(n)
1∼ θ

∫ n

2

x

μ(x)
dx,
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due to the assumption that mutations appear according to a homogeneous Poisson
point process with rate θ .

Next, we define the total external length

�̂n :=
∫ τ̃n

0
N̂n(t) dt,

where N̂n(t) denotes the number of external branches extant at time t . In con-
trast to the previous theorem, the following result contains a statement only of
convergence in probability (but see Theorem 4 below, which shows that, indeed,
L1-convergence holds under the stronger conditions of that theorem).

THEOREM 2. Suppose that the �-coalescent has no dust component. Then as
n → ∞

(2) �̂n
P∼ n2

μ(n)
.

An intuitive explanation goes as follows: μ(n)/n is the rate of decrease per
individual at time 0. Therefore, it is plausible that each external branch length
is of order n/μ(n), and the external branch length in total results approximately
in n2/μ(n). The sequence μ(n)/n2, n ≥ 1, has the limit �({0})/2 (see formula
(8) below). Thus, the total external lengths diverge in probability if and only if
�({0}) = 0. We point out that x/μ(x) is a decreasing function (see Lemma 1(i)
below), therefore, the integral appearing in (1) exceeds the corresponding term
in (2).

The proof rests on a close relation between the functions λ and μ, which
seems unobserved until now. To describe it, let us introduce another function
κ : [2,∞) →R given by

κ(x) := μ(x)

x
,

which could be named the rate of decrease per capita. Then we have the approxi-
mation

λ(x) ∼ x2κ ′(x)

as x → ∞ (see Lemma 1(ii) below).
In the special case of Beta-coalescents, Theorem 2 follows from [7] and [9]. For

�-coalescents with a dust component, the picture is rather different. Then �n/n as
well as �̂n/n converge in distribution to one and the same nondegenerate limit law
(see [19]). Fluctuation results on the total length or the total external length of �-
coalescents with no dust component are known only in special cases [7, 10, 13, 14,
24].



2704 C. S. DIEHL AND G. KERSTING

Theorem 2 again allows a reformulation in terms of the infinite site model. Let-
ting M1(n) be the number of singletons, we obtain for �({0}) = 0,

M1(n)
P∼ θ

n2

μ(n)
,

whereas for �({0}) > 0 it follows that M1(n) is asymptotically Poisson with pa-
rameter 2θ/�({0}).

REMARK. From our proofs, we will gain further insight into the structure of
the coalescents. For 0 < c < 1, let

ρ̃n := inf
{
t ≥ 0 : Nn(t) ≤ cn

}
be the first moment when the number of lineages falls below cn, and let

�∗
n :=

∫ ρ̃n

0
Nn(t) dt, �̂∗

n :=
∫ ρ̃n

0
N̂n(t) dt

be the respective lengths up to this moment. Then, from (23) and (32) below, we
have

�∗
n

1∼
∫ n

cn

x

μ(x)
dx and �̂∗

n

P∼ (1 − c)
n2

μ(n)
.

The picture provides an illustration.

�∗
n and �̂∗

n are the areas of the total grey region and of the lighter part, respectively.

It is tempting to expect an analogous result for the total internal length

q�n := �n − �̂n.

This is certainly true in cases where the total external length �̂n does not exceed
the total internal length q�n. Then we have

q�n
P∼

∫ n

2

x

μ(x)
dx − n2

μ(n)
∼

∫ n

2

(
x

μ(x)
− n

μ(n)

)
dx.

To provide some examples, let us introduce the following class of coalescents.
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DEFINITION. We call the �-coalescent regularly varying with exponent 0 ≤
α ≤ 2 if �({0}) = 0 and if, as y → 0,∫

(y,1]
�(dp)

p2 ∼ y−αL

(
1

y

)
with a function L that is slowly varying at infinity.

This generalizes the notion of Berestycki et al. [2] of a strong regularly varying
coalescent.

EXAMPLES. (i) The Kingman case: if �({0}) > 0, then μ(x)/x2 ∼ �({0})/2
and, therefore,

�n
1∼ 2 logn

�({0}) and �̂n
P∼ 2

�({0})
as n → ∞. Here, the internal total length completely dominates the external ones,
and we have

q�n
1∼ 2 logn

�({0}) .
(ii) Regularly varying coalescents with exponent 1 < α < 2 come down from in-

finity, as can be easily checked by the above criterion. They fulfill (see Lemma 2(ii)
below)

μ(x) ∼ �(2 − α)

α − 1
xαL(x)

as x → ∞. Hence (having in mind how to integrate regularly varying functions
(see Theorem 1(b), Section VIII.9 in Feller [11]),

�n
1∼ α − 1

(2 − α)�(2 − α)

n2−α

L(n)
and �̂n

P∼ α − 1

�(2 − α)

n2−α

L(n)

and consequently

q�n
P∼ (α − 1)2

(2 − α)�(2 − α)

n2−α

L(n)

P∼ α − 1

2 − α
�̂n.

Here, the external and the internal length are of the same order. As an application,
one may use the quantity 2 − �̂n/�n as an estimator for the parameter α. In the
special case of Beta(2 − α,α)-coalescents, this was already discussed in more
detail in Example 9 of [16].

In some other cases, q�n is of smaller order than �̂n. Then a large part of internal
length will be located close to the coalescent tree’s root, where extremely large
mergers may take over (which is definitely the case for �-coalescents not coming
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down from infinity). Still the internal length may obey the law of large numbers
suggested above. The following theorem presents a situation of special interest.
Define for a slowly varying function L and for x ≥ 1

L∗(x) :=
∫ x

1

L(y)

y
dy.

THEOREM 3. Assume that the �-coalescent has no dust component and is
regularly varying with exponent α = 1. Then

q�n
1∼

∫ n

2

(
x

μ(x)
− n

μ(n)

)
dx

and ∫ n

2

(
x

μ(x)
− n

μ(n)

)
dx ∼ nL(n)

L∗(n)2

as n → ∞.

Below we prove (Lemma 2(ii)) that the function L∗ is slowly varying at infinity,
too, and that L(x) = o(L∗(x)) as x → ∞. In comparison with Theorem 2, we see
that q�n = oP (�̂n) for regularly varying coalescents with exponent 1. In particular,
for the Bolthausen–Sznitman coalescent Theorems 2 and 3 yield

�̂n
P∼ n

logn
and q�n

1∼ n

log2 n
.

These approximations were already obtained in Dhersin and Möhle [9] and Kerst-
ing, Pardo and Siri-Jégousse [15], respectively.

Our last object of investigation concerns lengths of higher order. A branch of
order a ≥ 2 is by definition an internal branch carrying a subtree with a leaves out
of the original sample. In this context we consider external branches as branches
of order 1. Denote the number of branches of order a ≥ 1 present at time t ≥ 0
as N̂n,a(t), notably N̂n,1(t) = N̂n(t). Then the total length of all these branches is
given by

�̂n,a =
∫ τ̃n

0
N̂n,a(t) dt, a ≥ 1.

THEOREM 4. Suppose that the �-coalescent has no dust component and is
regularly varying with exponent α = 1. Then

�̂n,1
1∼ n

L∗(n)
,

whereas for a ≥ 2

�̂n,a
1∼ 1

(a − 1)a

nL(n)

L∗(n)2

as n → ∞.
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These formulas have interesting applications to the site frequency spectrum. It
consists of the counts Ma(n), a ≥ 1, specifying the numbers of mutations located
on branches of order a, which can be distinguished in the various DNAs of the
sample. The theorem yields

M1(n)
1∼ θ

n

L∗(n)
and Ma(n)

1∼ θ

(a − 1)a

nL(n)

L∗(n)2 , a ≥ 2.

A corresponding result in the so-called infinite allele model was obtained by Bas-
devant and Goldschmidt [1]. They deal with the allele frequency spectrum and
consider the special case of the Bolthausen–Sznitman coalescent. Analogue re-
sults for Beta-coalescents coming down from infinity were presented by Beresty-
cki, Berestycki and Schweinsberg [3] and, more generally, for strongly regular
varying coalescents with exponent 1 < α < 2 by Berestycki, Berestycki and Limic
[2]. We conjecture that these results can be further extended to regular varying co-
alescents. Computational procedures for the general site frequency spectrum were
established by Spence et al. [23].

Theorem 4 illustrates that mutations mainly show up on external branches,
whereas the tree structure of the coalescent becomes visible only at branches of
higher order. This reflects that, for regularly varying coalescents with exponent
α = 1, mergers occur preferentially at a later time and close to the MRCA. Our
proof will show that, with probability asymptotically equal to 1, any mutation seen
in exactly a ≥ 2 individuals stems from an internal branch of order a arose from
one single merger. This is similar to the findings of Basdevant and Goldschmidt.

Closing this Introduction, we briefly discuss our methods of proof, which differ
from other approaches in the literature. They rest upon L2-considerations and ele-
mentary martingale estimates, and they may well find further applications as indi-
cated in two examples below. These methods deal with the time-discrete Markov
chain n = X0 > X1 > · · · > Xτn = 1, embedded in the Markov process Nn (or
more generally with decreasing Markov chains). Let

�i := Xi−1 − Xi, i ≥ 1,

denote its downwards jump size resulting from the ith merger. We shall present
different laws of large numbers for expressions of the form

∑ρn−1
i=0 f (Xi), with

some function f : [2,∞) →R and with stopping times ρn of the form

ρn := min{i ≥ 0 : Xi ≤ rn},
where rn, n ≥ 1, is some sequence of positive numbers.

Our approach specifies the following intuition:

(3)
ρn−1∑
i=0

f (Xi) ≈
ρn−1∑
i=0

f (Xi)
�i+1

ν(Xi)
≈

∫ n

rn

f (x)
dx

ν(x)
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with

ν(x) := μ(x)

λ(x)
, x ≥ 2.

Thus,

ν(b) =
b∑

k=2

(k − 1)

(
b

k

)
λb,k

λ(b)
=

b∑
k=2

(k − 1)P(�i+1 = k − 1 | Xi = b)

or

ν(b) = E[�i+1 | Xi = b], b ≥ 2.

The rationale behind this intuition is that the differences of both sums in (3) are
small, because they stem from a martingale, whereas the second sum may be con-
sidered as a Riemann approximation of the right-hand integral. This latter approx-
imation requires that the jump sizes �i+1 are small compared to the values Xi of
the Markov chain and is only ensured if the time

ρ̃n := inf
{
t ≥ 0 : Nn(t) = Xρn

} = inf
{
t ≥ 0 : Nn(t) ≤ rn

}
of entrance into the interval [1, rn] converges to 0 in probability (observe that these
random times generalize the notion used in the above remark). Thus, we strive
toward small time approximations.

The quadratic variation of the previously mentioned martingale will be esti-
mated along the following lines: since �i+1 = oP (Xi) in the range of the small
time approximation, we have

ρn−1∑
i=0

f (Xi)
2 �2

i+1

ν(Xi)2 = oP

(
ρn−1∑
i=0

f (Xi)
2 Xi�i+1

ν(Xi)2

)

= oP

(
max

rn≤x≤n

xf (x)

ν(x)

ρn−1∑
i=0

f (Xi)
�i+1

ν(Xi)

)
.

Under suitable conditions not only the right-hand sum but also the maximum is of
order

∫ n
rn

f (x) dx
ν(x)

resulting in

ρn−1∑
i=0

f (Xi)
2 �2

i+1

ν(Xi)2 = op

((∫ n

rn

f (x)
dx

ν(x)

)2)
.

According to this pattern, we may control the martingale’s quadratic variation and
its fluctuations.

The paper is organized as follows: Section 2 deals in detail with the rate func-
tions. Section 3 contains our general laws of large numbers. Finally, our theorems
are proved in Sections 4 to 7.
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2. Properties of the rate functions. We extend the above sequences λ(b) and
μ(b), b ≥ 2, of rates to positive continuous functions λ,μ : [2,∞) → R via the
definitions

λ(x) :=
∫
[0,1]

(
1 − (1 − p)x − xp(1 − p)x−1)�(dp)

p2 ,(4)

μ(x) :=
∫
[0,1]

(
xp − 1 + (1 − p)x

)�(dp)

p2 ,(5)

with x ≥ 2. Note that μ(x) ≥ λ(x) for all x ≥ 2, since the integrands fulfill the
corresponding inequality. Recall our notion

κ(x) := μ(x)

x
, x ≥ 2.

LEMMA 1. (i) The functions λ(x) and κ(x), x ≥ 2, are increasing in x, and
the functions λ(x)/(x(x − 1)) and κ(x)/(x − 1), x ≥ 2, are decreasing.

(ii) For any 0 < δ < 1 as x → ∞
λ(x) = x2κ ′(x)

(
1 + O

(
x−δ)).

(iii) The �-coalescent has no dust component if and only if κ(x) → ∞ as x →
∞ and then κ(x) = o(λ(x)).

PROOF. (i) The function (1−p)x +xp(1−p)x−1 = (1−p)x−1(1+(x−1)p),
x ≥ 2, respectively, its logarithm, has a negative derivative. From (4), we thus
obtain monotonicity of λ(x). Moreover, a partial integration yields

(6)
λ(x)

x(x − 1)
= �({0})

2
+

∫ 1

0
y(1 − y)x−2

∫
(y,1]

�(dp)

p2 dy

implying that λ(x)/(x(x − 1)) is decreasing for x ≥ 2.
Similarly, from (5) and a partial integration we have

(7) κ(x) = μ(x)

x
= x − 1

2
�

({0}) +
∫ 1

0

(
1 − (1 − y)x−1) ∫

(y,1]
�(dp)

p2 dy,

which is increasing in x, and by another partial integration

(8)
μ(x)

x(x − 1)
= �({0})

2
+

∫ 1

0
(1 − z)x−2

∫ 1

z

∫
(y,1]

�(dp)

p2 dy dz,

a decreasing function in x.
(ii) From (7), we have

(9) κ ′(x) = �({0})
2

+
∫ 1

0
(1 − y)x−1 log

1

1 − y

∫
(y,1]

�(dp)

p2 dy.
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From concavity (1 − y) log 1
1−y

≤ y for y ∈ [0,1], also (1 − y) log 1
1−y

∼ y +
O(y2) for y → 0. Thus, combining (6) and (9), for 0 < δ < 1 and a suitable c ≥ 1

0 ≤ λ(x)

x(x − 1)
− κ ′(x)

≤ c

∫ x−δ

0
y2(1 − y)x−2

∫
(y,1]

�(dp)

p2 dy

+
∫ 1

x−δ
y(1 − y)x−2

∫
(y,1]

�(dp)

p2 dy

≤ cx−δ
∫ x−δ

0
y(1 − y)x−2

∫ 1

y

�(dp)

p2 dy

+ (
1 − x−δ)x−2

∫ 1

x−δ
y

∫
(y,1]

�(dp)

p2 dy

≤ cx−δ
∫ 1

0
y(1 − y)x−2

∫ 1

y

�(dp)

p2 dy

+ e−x−δ(x−2)
∫ 1

0
y

∫
(y,1]

�(dp)

p2 dy

≤ cx−δ λ(x)

x(x − 1)
+ e2−x1−δ

�
([0,1]).

Since λ is an increasing function, this implies

κ ′(x) = λ(x)

x2 + O

(
λ(x)

x2+δ

)
,

which is equivalent to our claim.
(iii) From (5) and the definition of κ , it follows by monotone convergence that

κ(x) →
∫
[0,1]

�(dp)

p
.

This formula implies our first claim. As to the second one, we have for 2 ≤ x0 ≤ x,

κ(x) = κ(x0) +
∫ x

x0

κ ′(y) dy.

From part (ii) and since λ is increasing, if x0 is sufficiently large,

κ(x) ≤ κ(x0) + 2
∫ x

x0

λ(y)

y2 dy ≤ κ(x0) + 2λ(x)

∫ x

x0

dy

y2 ≤ κ(x0) + 2
λ(x)

x0
.
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Thus, from κ(x) → ∞ it follows that λ(x) → ∞ as x → ∞, and we obtain for
any x0 ≥ 2

lim sup
x→∞

κ(x)

λ(x)
≤ 2

x0
.

This implies our second claim. �

Preliminary consequences of the previous results are contained in the next
lemma.

LEMMA 2. Let the �-coalescent be regularly varying with exponent α.

(i) If 0 ≤ α < 2, then

λ(x) ∼ �(2 − α)xαL(x)

as x → ∞, and for k ≥ 2(
b

k

)
λb,k

λ(b)
→ α

�(2 − α)

�(k − α)

k!
as b → ∞.

(ii) The �-coalescent has no dust component if and only if
∫ ∞

1 xα−2L(x)dx =
∞. Then α ≥ 1 and we have

κ(x) ∼
⎧⎪⎨⎪⎩

�(2 − α)

α − 1
xα−1L(x) for 1 < α < 2,

L∗(x) for α = 1,

as x → ∞, with a function L∗ given by

L∗(x) :=
∫ x

1

L(y)

y
dy, x ≥ 1.

L∗ is slowly varying at infinity and satisfies L(x) = o(L∗(x)) as x → ∞.

For 1 < α < 2, the convergence result on λb,k has already been obtained by
Delmas et al. [8]. In this case, they also have asymptotic estimates on λ(x) and
μ(x) under the assumption that the slowly varying function L is constant.

PROOF OF LEMMA 2. (i) Let 1 ≤ k ≤ b be natural numbers. Starting from the
identity,

1 − (1 − p)b − bp(1 − p)b−1 − · · · −
(
b

k

)
pk(1 − p)b−k

=
(
b

k

)
(b − k)

∫ p

0
yk(1 − y)b−k−1 dy,
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we obtain

λ(b) −
k∑

j=2

(
b

j

)
λb,j =

(
b

k

)
(b − k)

∫
[0,1]

∫ p

0
yk(1 − y)b−k−1 dy

�(dp)

p2

=
(
b

k

)
(b − k)

∫ 1

0
yk(1 − y)b−k−1

∫
(y,1]

�(dp)

p2 dy.

Taking account of the definition of regular varying coalescents, it is no loss of gen-
erality to specify the function L in such a way that

∫
(y,1] p−2�(dp) = y−αL(1/y)

for 0 < y ≤ 1. It follows that

λ(b) −
k∑

j=2

(
b

j

)
λb,j

=
(
b

k

)
(b − k)

∫ 1

0
yk−α(1 − y)b−k−1L

(
1

y

)
dy

=
(
b

k

)
(b − k)bα−k−1L(b)

∫ b

0
zk−α

(
1 − z

b

)b−k−1 L(b/z)

L(b)
dz,

where for k = 1 we set the value of the left-hand sum equal to 0.
Since the function L is slowly varying, the right-hand integrand converges

pointwise to the limit zk−αe−z. Also, by the fundamental representation theorem
of slowly varying functions (see Feller [11] Section VIII.9, corollary), we have
L(b) ∼ c exp(

∫ b
0 η(z)z−1 dz) with a constant c > 0 and a function η(z) = o(z) as

z → ∞. This implies that for any ε > 0 we have L(b/z) ≤ zεL(b) for z ≥ 1 and
L(b/z) ≤ z−εL(b) for z ≤ 1 if only b is sufficiently large. Hence, for large b we
may dominate the above integrand by the function zk−α max(zε, z−ε)e−z/2. By the
assumption α < 2, it is integrable for k ≥ 1 if we choose ε small enough. Thus, by
dominated convergence,

λ(b) −
k∑

j=2

(
b

j

)
λb,j ∼ bαL(b)

k!
∫ ∞

0
zk−αe−z dz = bαL(b)�(k − α + 1)

k!
as b → ∞, or in other terms

λ(b) ∼ �(2 − α)bαL(b) and

(
b

k

)
λb,k ∼ α�(k − α)

k! bαL(b)

for k ≥ 2. This implies our claim.
(ii) From part (i) and Lemma 1(ii), we obtain

κ ′(x) ∼ �(2 − α)xα−2L(x)
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as x → ∞. In view of Lemma 1(iii), we are in the dustless case if and only if
κ(x) → ∞, that is if and only if the integral

∫ ∞
1 xα−2L(x)dx is divergent. This

implies α ≥ 1 and the claimed asymptotic formulas for κ .
Finally, since L is slowly varying at infinity, we have for c > 1,

(10) L∗(cx) − L∗(x) =
∫ cx

x

L(y)

y
dy ∼ L(x)

∫ cx

x

1

y
dy = L(x) log c

as x → ∞. Because L∗ is increasing, this implies for any d > 1 and large x,

0 ≤ L∗(cx)

L∗(x)
− 1 ≤ L∗(cx) − L∗(x)

L∗(x) − L∗(x/d)
∼ log c

logd

as x → ∞. Since d may be chosen arbitrarily large, it follows that L∗ is slowly
varying. Consequently, choosing c = e in (10),

L(x)

L∗(x)
∼ L∗(ex) − L∗(x)

L∗(x)
= o(1).

This completes our proof. �

EXAMPLES. We consider regularly varying �-coalescents with exponent
α = 1.

(i) Let L(x) = (logx)δ with exponent δ > −1. Then

L∗(x) =
∫ logx

0
yδ dy = 1

δ + 1
(logx)δ+1 = 1

δ + 1
L(x) logx.

For −1 < δ ≤ 0, these coalescents neither have a dust component nor come down
from infinity, and for δ > 0 they come down from infinity. The case δ = 0 covers
the Bolthausen–Sznitman coalescent.

(ii) Let L(x) = e(logx)δ with 0 < δ < 1. Then

L∗(x) =
∫ logx

0
eyδ

dy ∼ 1

δ
e(logx)δ (logx)1−δ = 1

δ
L(x)(logx)1−δ.

These coalescents come down from infinity.

3. Some general laws of large numbers. The laws of large numbers in this
section apply not only to branch lengths of �-coalescents. As explained in the
Introduction, they concern the discrete-time Markov chains X = (Xi)i∈N0 embed-
ded in the lineage counting processes. For notational ease, we do not account here
for the dependence of the chains X on n. Thus, n = X0 > X1 > · · · > Xτn−1 >

Xτn = 1 denote the states which the process Nn is successively visiting, and
τn := min{i ≥ 0 : Xi = 1} is the respective number of merging events. For con-
venience, we set Xi = 1 for all natural numbers i > τn. Also, for i ≥ 1 let Wi be
the waiting times of the process Nn in the states Xi and

�i := Xi−1 − Xi.
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Recall that

E[�i+1 | Xi = b] = ν(b) := μ(b)

λ(b)
.

For sequences rn, sn ≥ 2, n ≥ 1, of positive numbers, we set

ρn := min{i ≥ 0 : Xi ≤ rn}, σn := min{i ≥ 0 : Xi ≤ sn},
ρ̃n := inf

{
t ≥ 0 : Nn(t) ≤ rn

}
.

PROPOSITION 1. Assume that the �-coalescent has no dust component. Let
f : [2,∞) → R be a nonnegative function with the property that xβf (x) is in-
creasing and x−βf (x) is decreasing in x for some β > 0. Let 2 ≤ rn ≤ sn ≤ n,
n ≥ 1, be two sequences of numbers fulfilling

(11) rn ≤ γ sn

for all n ≥ 1 and some γ < 1. Also, assume that

(12) ρ̃n
P→ 0

as n → ∞. Then, as n → ∞
ρn−1∑
i=σn

f (Xi)
1∼

∫ sn

rn

f (x)
dx

ν(x)
.

Also, as n → ∞

E

[
τn−1∑
i=ρn

f (Xi)

]
= O

(∫ rn

2
f (x)

dx

ν(x)

)
.

Due to the assumption (12), this result addresses the coalescent’s evolution in
only a short initial time interval. This takes double effect: first, as seen from the
next lemma, the chain is kept away from the occurrence of huge jumps �i being
of the same order as the chain’s values. Second, the chain X is prevented from
taking values that are too small where larger fluctuations may become obstructive.
Note that, for any �-coalescent, the passage times inf{t ≥ 0 : Nn(t) ≤ r} below
some number r > 1 are bounded away from 0 uniformly in n ∈ N. Therefore, the
assumption (12) enforces that

(13) rn → ∞
as n → ∞. Actually, both requirements are equivalent if the coalescent comes
down from infinity, otherwise the assumption (12) is the more incisive one.
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EXAMPLE (Total number of mergers). If we choose f ≡ 1 and sn = n, then∑ρn−1
i=0 f (Xi) is equal to the number of mergers up to time ρ̃n. For �-coalescents

coming down from infinity, we may consider any divergent sequence rn ≤ γ n.
In particular, since

∫ ∞
2

dx
ν(x)

= ∞, we may choose the rn in such a way that rn =
o(

∫ n
rn

dx
ν(x)

). This implies that the number of mergers after the moment ρ̃n are of
negligible order and that, for the total number τn of mergers, we have

τn
1∼

∫ n

2

dx

ν(x)
.

Aside from �-coalescents coming down from infinity, the scope of this formula is
unclear. For the Bolthausen–Sznitman coalescent it is valid (see [12]).

The proof of Proposition 1 is prepared by the next lemma.

LEMMA 3. (i) If the �-coalescent has no dust component and if∫ n

rn

μ(x)−1 dx → 0,

then as n → ∞,

E[ρ̃n] → 0.

(ii) If ρ̃n
P→ 0, then for any η > 0 as n → ∞

P(�i+1 > ηXi for some i < ρn) → 0.

PROOF. (i) Given X, the waiting times Wi are exponential with expectation
1/λ(Xi). Therefore,

E[ρ̃n] = E

[
ρn−1∑
i=0

Wi

]
=

n−1∑
i=0

E
[

1

λ(Xi)
;Xi > rn

]
.

Also, E[�i+1 | Xi] = ν(Xi) a.s. Thus, according to the Markov property,

E[ρ̃n] =
n−1∑
i=0

E
[

�i+1

λ(Xi)ν(Xi)
;Xi > rn

]
= E

[
ρn−1∑
i=0

�i+1

μ(Xi)

]
.

From Lemma 1(i), we know that μ(x) = xκ(x) is increasing. Also, �i+1 ≤ Xi ,
and hence

E[ρ̃n] ≤ E

[
ρn−2∑
i=0

∫ Xi

Xi+1

dx

μ(x)
+ Xρn−1

μ(Xρn−1)

]
= E

[∫ n

Xρn−1

dx

μ(x)
+ 1

κ(Xρn−1)

]
,

and since κ is an increasing function, we end up with the estimate

E[ρ̃n] ≤
∫ n

rn

dx

μ(x)
+ 1

κ(rn)
.
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Our assumptions imply rn → ∞. Therefore, since there is no dust component, we
have κ(rn) → ∞ by Lemma 1(iii). This entails our claim.

(ii) For b ≥ 2/η, we have

P(�i+1 > ηXi | Xi = b)

= ∑
k>ηb

1

λ(b)

∫
[0,1]

(
b

k

)
pk(1 − p)b−k �(dp)

p2

≤ 1

λ(b)

∫
[0,1]

∑
k>ηb

2

η2

(
b − 2

k − 2

)
pk−2(1 − p)(b−2)−(k−2)�(dp)

≤ c

λ(b)
,

with c := 2�([0,1])/η2.
Let δ0 := 0 and δi := W0 + · · · + Wi−1, i ≥ 1, which is the moment of the ith

jump. Then

P(�i+1 > ηXi for some i < ρn, ρ̃n ≤ 1)

≤ P(�i+1 > ηXi,Xi > rn, δi ≤ 1 for some i < n)

≤
n−1∑
i=0

E
[
P(�i+1 > ηXi | Xi);Xi > rn, δi ≤ 1

]

≤
n−1∑
i=0

E
[

c

λ(Xi)
;Xi > rn, δi ≤ 1

]
.

Also, because λ(x) is increasing, for Xi ≥ 2

E[WiI{Wi≤1} | Xi] =
∫ 1

0
tλ(Xi)e

−λ(Xi)t dt

= 1

λ(Xi)

∫ λ(Xi)

0
ue−u du ≥ d

λ(Xi)

with d := ∫ λ(2)
0 ue−u du > 0. This allows for the estimate

P(�i+1 > ηXi for some i < ρn, ρ̃n ≤ 1)

≤ c

d

n−1∑
i=0

E[Wi;Xi > rn,Wi ≤ 1,W0 + · · · + Wi−1 ≤ 1]

≤ c

d
E

[
ρn−1∑
i=0

WiI{W0+···+Wi≤2}
]
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≤ c

d
E

[
2 ∧

ρn−1∑
i=0

Wi

]

= c

d
E[2 ∧ ρ̃n],

and consequently

P(�i+1 > ηXi for some i < ρn) ≤ c

d
E[ρ̃n ∧ 2] + P(ρ̃n > 1).

Thus, by assumption and dominated convergence, our claim follows. �

PROOF OF PROPOSITION 1. (i) We start with some preliminary estimates.
Since x−βf (x) is a decreasing function, we have that for 0 < δ < 1, 0 ≤ y ≤ δz

and y ≤ z − 2,

yf (z) ≤ zβ
∫ z

z−y
x−βf (x) dx ≤ zβ(z − y)−β

∫ z

z−y
f (x) dx

≤ (1 − δ)−β
∫ z

z−y
f (x) dx.

Similarly, using the fact that xβf (x) is increasing, we obtain a lower bound. Alto-
gether, for 0 < δ < 1, 0 ≤ y ≤ δz and y ≤ z − 2,

(14) (1 − δ)β
∫ z

z−y
f (x) dx ≤ yf (z) ≤ (1 − δ)−β

∫ z

z−y
f (x) dx.

Moreover, for any ε > 0 there is an η > 0 such that

(15) (1 − ε)

∫ sn

(1−η)rn

f (x) dx ≤
∫ sn

rn

f (x) dx ≤ (1 + ε)

∫ (1−η)sn

rn

f (x) dx

for all n. We prove the left-hand inequality. Let a be the affine function mapping
the interval [(1 − η)rn, rn] onto [(1 − η)rn, rn/γ ]. Substituting y = a(x), this im-
plies

dy = η + γ −1 − 1

η
dx.

Moreover, since γ < 1, a(x) ≥ x for x ≥ (1 − η)rn. Therefore, by monotonicity of
xβ and xβf (x), we have with γ as in (11)∫ rn

(1−η)rn

f (x) dx ≤ (
(1 − η)rn

)−β
∫ rn

(1−η)rn

f (x)xβ dx

≤ (
(1 − η)rn

)−β
∫ rn

(1−η)rn

f
(
a(x)

)
a(x)β dx
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= (
(1 − η)rn

)−β η

η + γ −1 − 1

∫ rn/γ

(1−η)rn

f (y)yβ dy

≤ (
γ (1 − η)

)−β η

η + γ −1 − 1

∫ rn/γ

(1−η)rn

f (y) dy.

From condition (11), it follows that∫ rn

(1−η)rn

f (x) dx ≤ (
γ (1 − η)

)−β η

η + γ −1 − 1

∫ sn

(1−η)rn

f (x) dx

≤ ε

∫ sn

(1−η)rn

f (x) dx

for sufficiently small η > 0. This implies the left-hand inequality of (15). The other
one follows similarly, now using the monotonicity of x−βf (x).

We note that (x −1)/x2 is a decreasing function for x ≥ 2. Therefore, in view of
Lemma 1(i) the functions λ(x) and μ(x) are increasing and λ(x)/x3 and μ(x)/x3

are decreasing for x ≥ 2. Thus, the function f (x)/ν(x) = f (x)λ(x)/μ(x) fulfills
the same assumptions as f (x), with β replaced by β + 3. Accordingly, we shall
use the preceding estimates with f (x) replaced by f (x)/ν(x) (and β replaced by
β + 3).

(ii) Next, we develop Riemann approximations of certain random sums. For
0 < η < 1 and b ≥ 2, let

μη(b) := ∑
2≤k≤ηb

(k − 1)

(
b

k

)∫
[0,1]

pk(1 − p)b−k �(dp)

p2 .

In view of the well-known formula for the second factorial moment of binomials,

μ(b) − μη(b) = ∑
ηb<k≤b

(k − 1)

(
b

k

)∫
[0,1]

pk(1 − p)b−k �(dp)

p2

≤ 1

ηb

∫
[0,1]

b∑
k=0

k(k − 1)

(
b

k

)
pk(1 − p)b−k �(dp)

p2

= 1

ηb

∫
[0,1]

b(b − 1)p2 �(dp)

p2 = (b − 1)�([0,1])
η

.

From Lemma 1(iii), we have μ(b)/b → ∞ in the dustless case. Hence, for any
η > 0 we obtain

(16)
μη(b)

μ(b)
→ 1

as b → ∞.
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Also, let

νη(b) := μη(b)

λ(b)
= E[�i+1I{�i+1≤ηb} | Xi = b].

Note that νη(b) > 0 for b ≥ 2/η. Therefore, for 0 < η < 1 and natural numbers n

satisfying rn ≥ 2/η, we may define the random variables

Rn = Rn,η :=
ρn−1∑
i=σn

f (Xi)
�i+1I{�i+1≤ηXi}

νη(Xi)
.

Given η, these random variables are, in view of (13), well defined up to
finitely many n. We shall use them below as an intermediate approximation to∑ρn−1

i=σn
f (Xi). We estimate Rn from above and below. From (14) with z = Xi ,

y = �i+1 and δ = η and with f (x)/ν(x) replacing f (x), we have on the event
that �i+1 ≤ ηXi ,

f (Xi)

ν(Xi)
�i+1 ≤ (1 − η)−β−3

∫ Xi

Xi+1

f (x)
dx

ν(x)
,

consequently

Rn ≤ (1 − η)−β−3
ρn−1∑
i=σn

ν(Xi)

νη(Xi)
I{�i+1≤ηXi}

∫ Xi

Xi+1

f (x)
dx

ν(x)

and, by definition of ρn,

(17) Rn ≤ (1 − η)−β−3 sup
b≥rn

μ(b)

μη(b)

∫ sn

rn(1−η)
f (x)

dx

ν(x)
.

Therefore, in view of (15) and (16) and since rn → ∞, there is for given ε > 0
an η > 0 fulfilling

(18) Rn ≤ (1 + ε)

∫ sn

rn

f (x)
dx

ν(x)

for all n sufficiently large. Similarly, for given ε > 0 there is an η > 0 satisfying
for large n the inequality

(19) Rn ≥ (1 − ε)

∫ sn

rn

f (x)
dx

ν(x)
on the event {�i+1 ≤ ηXi for all i < ρn}.

(iii) Now observe that the random variables M0 := 0 and

Mk :=
k∧τn−1∑

i=0

(
f (Xi)

�i+1I{�i+1≤ηXi}
νη(Xi)

− f (Xi)

)
, k ≥ 1,



2720 C. S. DIEHL AND G. KERSTING

build a martingale M = (Mk)k≥0. The optional sampling theorem yields

E

[(
Rn −

ρn−1∑
i=σn

f (Xi)

)2]
= E

[
(Mρn − Mσn)

2]

≤ E

[
ρn−1∑
i=σn

f (Xi)
2�2

i+1

νη(Xi)2 I{�i+1≤ηXi}
]

≤ ηE

[
ρn−1∑
i=σn

f (Xi)
2Xi�i+1

νη(Xi)2 I{�i+1≤ηXi}
]
.

Letting xn be the point where the function xf (x)/νη(x) takes its maximal value
within the interval [rn, sn], it follows

E

[(
Rn −

ρn−1∑
i=σn

f (Xi)

)2]
≤ η

xnf (xn)

νη(xn)
E

[
ρn−1∑
i=σn

f (Xi)�i+1

νη(Xi)
I{�i+1≤ηXi}

]

= η
xnf (xn)

νη(xn)
E[Rn].

By the assumption (11), it follows that there are numbers ξn, n ≥ 1, such that

rn ≤ γ ξn ≤ xn ≤ ξn ≤ sn.

Using the monotonicity of xβ+3f (x)/ν(x) and (14) with z = ξn, y = (1 − γ )ξn,
δ = 1 − γ , it follows that

(1 − γ )
xnf (xn)

ν(xn)
≤

(
ξn

xn

)β+2
(1 − γ )

ξnf (ξn)

ν(ξn)
≤ γ −2β−5

∫ ξn

γ ξn

f (x)
dx

ν(x)

≤ γ −2β−5
∫ sn

rn

f (x)
dx

ν(x)
.

Hence,

E

[(
Rn −

ρn−1∑
i=σn

f (Xi)

)2]
≤ η

γ −2β−5

1 − γ
sup

x≥2/η

ν(x)

νη(x)
E[Rn]

∫ sn

rn

f (x)
dx

ν(x)
.

Finally, the formulas (16) and (18) yield that for any ε > 0 there is an η > 0 ful-
filling

(20) E

[(
Rn −

ρn−1∑
i=σn

f (Xi)

)2]
≤ ε

(∫ sn

rn

f (x)
dx

ν(x)

)2
.
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(iv) Putting pieces together, we obtain for given ε > 0 and η > 0

P

(∣∣∣∣∣
ρn−1∑
i=σn

f (Xi) −
∫ sn

rn

f (x)
dx

ν(x)

∣∣∣∣∣ ≥ ε

∫ sn

rn

f (x)
dx

ν(x)

)

≤ P

(∣∣∣∣∣Rn −
ρn−1∑
i=σn

f (Xi)

∣∣∣∣∣ ≥ ε

2

∫ sn

rn

f (x)
dx

ν(x)

)

+ P
(∣∣∣∣Rn −

∫ sn

rn

f (x)
dx

ν(x)

∣∣∣∣ ≥ ε

2

∫ sn

rn

f (x)
dx

ν(x)
,�i+1 ≤ ηXi for all i < ρn

)
+ P(�i+1 > ηXi for some i < ρn).

From (20) for suitably chosen η > 0 the first right-hand term becomes smaller
than ε and from (18) and (19) the second one vanishes for large n. Consulting also
Lemma 3(ii), we arrive at

P

(∣∣∣∣∣
ρn−1∑
i=σn

f (Xi) −
∫ sn

rn

f (x)
dx

ν(x)

∣∣∣∣∣ ≥ ε

∫ sn

rn

f (x)
dx

ν(x)

)
≤ ε

for n large enough. This means that
ρn−1∑
i=σn

f (Xi)
P∼

∫ sn

rn

f (x)
dx

ν(x)
.

To show L1-convergence, it is by a convergence criterion due to F. Riesz sufficient
to have

E

[
ρn−1∑
i=σn

f (Xi)

]
∼

∫ sn

rn

f (x)
dx

ν(x)

as n → ∞. From convergence in probability and Fatou’s lemma, we have

lim inf
n→∞ E

[
ρn−1∑
i=σn

f (Xi)

]/∫ sn

rn

f (x)
dx

ν(x)
≥ 1.

On the other hand, (18) yields for given ε > 0, suitable η > 0 and large n,

E

[
ρn−1∑
i=σn

f (Xi)

]
= E[Rn] ≤ (1 + ε)

∫ sn

rn

f (x)
dx

ν(x)
.

This gives our first claim.
(v) For the second claim, we again use the random variables Rn, now for some

η > 0 (say η = 1/2) with rn = r := 2/η. Recall that for this choice the Rn are well
defined for all n. From inequality (17), we obtain the estimate

Rn ≤ (1 − η)−β−3 sup
b≥2/η

μ(b)

μη(b)

∫ sn

2
f (x)

dx

ν(x)
.
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It follows

E

[
τn−1∑
i=σn

f (Xi)

]
≤ ∑

b<2/η

f (b) + E

[
ρn−1∑
i=σn

f (Xi)

]
= ∑

b<2/η

f (b) + E[Rn].

Putting both estimates together and then replacing σn by ρn (which is just a change
in notation), we arrive at our second claim. �

The next proposition presents a version of Proposition 1 in continuous time. As
before, let ρ̃n and σ̃n denote the times when the process Nn falls below rn and sn,
respectively, while τ̃n is the absorption time of Nn.

PROPOSITION 2. Under the assumptions of Proposition 1, as n → ∞,∫ ρ̃n

σ̃n

f
(
Nn(t)

)
dt

1∼
∫ sn

rn

f (x)
dx

μ(x)
.

Also, as n → ∞,

E
[∫ τ̃n

ρ̃n

f
(
Nn(t)

)
dt

]
= O

(∫ rn

2
f (x)

dx

μ(x)

)
.

EXAMPLE. For f (x) ≡ 1, we obtain under the assumptions of Proposition 2

ρ̃n − σ̃n
1∼

∫ sn

rn

dx

μ(x)
,

in particular,

ρ̃n
1∼

∫ n

rn

dx

μ(x)

as n → ∞.

PROOF OF PROPOSITION 2. We have∫ ρ̃n

σ̃n

f
(
Nn(t)

)
dt =

ρn−1∑
i=σn

f (Xi)Wi

and

E

[
ρn−1∑
i=σn

f (Xi)Wi

∣∣∣ X

]
=

ρn−1∑
i=σn

f (Xi)

λ(Xi)
.
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Thus, for any η > 0, by the Markov property,

E

[(∫ ρ̃n

σ̃n

f
(
Nn(t)

)
dt −

ρn−1∑
i=σn

f (Xi)

λ(Xi)

)2]
= E

[
ρn−1∑
i=σn

f (Xi)
2

λ(Xi)2

]
= E[Rn],

where we now set

Rn :=
ρn−1∑
i=σn

f (Xi)
2

λ(Xi)2

�i+1I{�i+1≤ηXi}
νη(Xi)

.

Using (18) with ε = 1, it follows

E

[(∫ ρ̃n

σ̃n

f
(
Nn(t)

)
dt −

ρn−1∑
i=σn

f (Xi)

λ(Xi)

)2]
≤ 2

∫ sn

rn

f (x)2

λ(x)2ν(x)
dx

= 2
∫ sn

rn

f (x)2

λ(x)μ(x)
dx.

Furthermore, since we are in the dustless case, due to Lemma 1(iii) we have

E

[(∫ ρ̃n

σ̃n

f
(
Nn(t)

)
dt −

ρn−1∑
i=σn

f (Xi)

λ(Xi)

)2]
≤ o

(∫ sn

rn

xf (x)2

μ(x)2 dx

)
.

Letting xn be the point where xf (x)/μ(x) takes its maximum in the interval
[rn, sn], we obtain in the same manner as in the preceding proof

E

[(∫ ρ̃n

σ̃n

f
(
Nn(t)

)
dt −

ρn−1∑
i=σn

f (Xi)

λ(Xi)

)2]
= o

(
xnf (xn)

μ(xn)

∫ sn

rn

f (x)

μ(x)
dx

)

= o

((∫ sn

rn

f (x)

μ(x)
dx

)2)
.

On the other hand, Proposition 1 implies

ρn−1∑
i=σn

f (Xi)

λ(Xi)

1∼
∫ sn

rn

f (x)

λ(x)

dx

ν(x)
=

∫ sn

rn

f (x)

μ(x)
dx.

These last two formulas imply our first statement. Moreover,

E
[∫ τ̃n

ρ̃n

f
(
Nn(t)

)
dt

]
= E

[
τn−1∑
i=ρn

f (Xi)

λ(Xi)

]

and, therefore, our second claim follows from the second statement of Proposi-
tion 1. �
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We now turn to the special case that f (x) = 1/x, x ≥ 2, where Proposition 1
can be considerably extended. Here, we are content with the case sn = n. Observe
that the two following statements do not imply each other.

PROPOSITION 3. Assume that the �-coalescent has no dust component. Let
2 ≤ rn ≤ n, n ≥ 1, be a sequence of numbers fulfilling

rn ≤ γ n

for all n sufficiently large and some γ < 1. Also, assume that

ρ̃n
P→ 0

as n → ∞. Then

ρn−1∑
i=0

1

Xi

1∼ log
κ(n)

κ(rn)

and

max
1≤j≤ρn

∣∣∣∣∣
j−1∑
i=0

1

Xi

− log
κ(n)

κ(Xj )

∣∣∣∣∣ = oP (1).

PROOF. (i) The first statement is a special case of Proposition 1: due to
Lemma 1(ii) we have 1/(xν(x)) = λ(x)/(xμ(x)) ∼ κ ′(x)/κ(x) as x → ∞. There-
fore, ∫ n

rn

dx

xν(x)
∼

∫ n

rn

κ ′(x) dx

κ(x)
= log

κ(n)

κ(rn)
.

(ii) For the proof of the second statement, we proceed along similar lines as
in the proof of Proposition 1. Using the second factorial moment of a binomial
distribution, we have as a first estimate

E
[
�2

i+1

X2
i

∣∣∣ Xi = b

]
= 1

b2λ(b)

b∑
k=2

(k − 1)2

(
b

k

)∫
[0,1]

pk(1 − p)b−k �(dp)

p2

≤ 1

b2λ(b)

∫
[0,1]

b∑
k=0

k(k − 1)

(
b

k

)
pk(1 − p)b−k �(dp)

p2

= 1

b2λ(b)

∫
[0,1]

p2b(b − 1)
�(dp)

p2

≤ �([0,1])
λ(b)

.
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This bound yields

E

[
ρn−1∑
i=0

�2
i+1

X2
i ν(Xi)

]
≤

n−1∑
i=0

E
[

1

μ(Xi)
;Xi > rn

]
�

([0,1])

=
n−1∑
i=0

E
[

�i+1

μ(Xi)ν1/2(Xi)
I{�i+1≤Xi/2};Xi > rn

]
�

([0,1])

≤ cE

[
ρn−1∑
i=0

�i+1

μ(Xi)ν(Xi)
I{�i+1≤Xi/2}

]
for large n, with c := �([0,1]) supb≥4 ν(b)/ν1/2(b) < ∞. In view of Lemma 1(i),
the function

x 
→ (x − 1)μ(x)ν(x)/x = κ(x)2/
(
λ(x)/x(x − 1)

)
is increasing, which entails �i+1/(μ(Xi)ν(Xi)) ≤ ∫ Xi

Xi+1
x((x−1)μ(x)ν(x))−1 dx.

By means of Lemma 1(ii), μ(x)ν(x) ∼ κ(x)2/κ ′(x). Therefore,

E

[
ρn−1∑
i=0

�2
i+1

X2
i ν(Xi)

]
≤ c

∫ n

rn/2

x dx

(x − 1)μ(x)ν(x)
∼ c

∫ n

rn/2

κ ′(x)

κ2(x)
dx ≤ c

κ(rn/2)
,

and consequently, since κ(x) → ∞ in the dustless case,

E

[
ρn−1∑
i=0

�2
i+1

X2
i ν(Xi)

]
= o(1).

(iii) We now consider the martingale M = (Mk)k≥0 given by M0 = 0 a.s. and

Mk :=
k∧τn−1∑

i=0

(
�i+1

(Xi − 1)ν(Xi)
− 1

Xi − 1

)
, k ≥ 1.

By means of the optional sampling theorem, since ρn is a stopping time, we have,
because ν(b) ≥ 1 for all b ≥ 2,

E
[
M2

ρn

] ≤ E

[ρn−1∑
i=0

�2
i+1

X2
i ν(Xi)2

]
= o(1).

Thus, by means of Doob’s maximal inequality,

max
1≤j≤ρn

∣∣∣∣∣
j−1∑
i=0

�i+1

(Xi − 1)ν(Xi)
−

j−1∑
i=0

1

Xi − 1

∣∣∣∣∣ = oP (1).

Also, for j ≤ ρn,

0 ≤
j−1∑
i=0

1

Xi − 1
−

j−1∑
i=0

1

Xi

≤
∞∑

m=Xρn−1

(
1

m − 1
− 1

m

)
= 1

Xρn−1 − 1
≤ 1

rn − 1
,
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and consequently,

(21) max
1≤j≤ρn

∣∣∣∣∣
j−1∑
i=0

�i+1

(Xi − 1)ν(Xi)
−

j−1∑
i=0

1

Xi

∣∣∣∣∣ = oP (1).

(iv) Note that, in view of Lemma 1(i), the function (x − 1)ν(x) = κ(x)/

(λ(x)/x(x − 1)) is increasing and ν(x)/(x − 1)2 = (x/(x − 1)) · (κ(x)/(x −
1))/λ(x) is decreasing. For Xi ≥ 2, this yields

0 ≤ 1

(Xi+1 − 1)ν(Xi+1)
− 1

(Xi − 1)ν(Xi)

= (Xi+1 − 1)2

ν(Xi+1)

1

(Xi+1 − 1)3 − (Xi − 1)2

ν(Xi)

1

(Xi − 1)3

≤ (Xi − 1)2

ν(Xi)

(
1

(Xi+1 − 1)3 − 1

(Xi − 1)3

)

= ((Xi − 1)2 + (Xi − 1)(Xi+1 − 1) + (Xi+1 − 1)2)�i+1

ν(Xi)(Xi − 1)(Xi+1 − 1)3

≤ 3(Xi − 1)

ν(Xi)(Xi+1 − 1)3 �i+1

≤ 24Xi

ν(Xi)X
3
i+1

�i+1.

It follows

E

[
max

1≤j≤ρn

∣∣∣∣∣
j−1∑
i=0

�i+1

(Xi − 1)ν(Xi)
−

j−1∑
i=0

�i+1

(Xi+1 − 1)ν(Xi+1)

∣∣∣∣∣;
�i+1 ≤ Xi/2 for all i < ρn

]

≤ E

[
ρn−1∑
i=0

∣∣∣∣ 1

(Xi − 1)ν(Xi)
− 1

(Xi+1 − 1)ν(Xi+1)

∣∣∣∣�i+1;

�i+1 ≤ Xi/2 for all i < ρn

]

≤ E

[
ρn−1∑
i=0

8 · 24

X2
i ν(Xi)

�2
i+1

]
= o(1).

Also, since (x − 1)ν(x) is increasing,

1

(Xi − 1)ν(Xi)
�i+1 ≤

∫ Xi

Xi+1

dx

(x − 1)ν(x)
≤ 1

(Xi+1 − 1)ν(Xi+1)
�i+1
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and we obtain

(22) max
1≤j≤ρn

∣∣∣∣∣
j−1∑
i=0

1

(Xi − 1)ν(Xi)
�i+1 −

∫ n

Xj

dx

(x − 1)ν(x)

∣∣∣∣∣ = oP (1)

on the event that �i+1 ≤ Xi/2 for all i < ρn. Lemma 3(ii) says that the comple-
mentary event has an asymptotically vanishing probability.

(v) Finally, by Lemma 1(ii) with rn ≤ y ≤ n for δ < 1,∫ n

y

dx

(x − 1)ν(x)
=

∫ n

y

λ(x)/x2

μ(x)/x
dx +

∫ n

y

dx

x(x − 1)ν(x)

=
∫ n

y

κ ′(x)

κ(x)
dx + O

(∫ n

rn

κ ′(x) dx

κ(x)xδ

)
+ O

(
r−1
n

)
,

and recalling rn → ∞,∫ n

rn

κ ′(x) dx

κ(x)xδ
∼

∫ n

rn

dx

xν(x)xδ
≤

∫ n

rn

dx

x1+δ
= o(1).

Altogether, we obtain

max
rn≤y≤n

∣∣∣∣∫ n

y

dx

(x − 1)ν(x)
− log

κ(n)

κ(y)

∣∣∣∣ = o(1).

Combining this formula with (21) and (22) and recalling the definition of ρn, we
arrive at

max
1≤j≤ρn

∣∣∣∣∣
j−1∑
i=0

1

Xi

− log
κ(n)

κ(Xj )

∣∣∣∣∣ = oP (1).

This is our claim. �

4. Proof of Theorem 1. Under the assumptions of Proposition 2, we have

(23) �∗
n :=

∫ ρ̃n

0
Nn(t) dt

1∼
∫ n

rn

x

μ(x)
dx.

In particular, this formula holds for rn := cn with 0 < c < 1 as anticipated in the
Introduction’s remark. Here, the assumptions of Proposition 2 are satisfied because
of Lemma 3(i) and ∫ n

cn

dx

μ(x)
≤ (1 − c)

n

μ(cn)
= o(1),

which in turn is valid in view of Lemma 1(iii).
In order to fill the gap up to �n, we construct a distinguished sequence of real

numbers. We construct the numbers 2 ≤ rn ≤ n, n ≥ 1, satisfying

(24)
∫ n

rn

dx

μ(x)
→ 0 and

∫ rn

2

x

μ(x)
dx = o

(∫ n

rn

x

μ(x)
dx

)
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as n → ∞. From Lemma 3(i), we get ρ̃n = oP (1). Also, since, by Lemma 1(i),
x/μ(x) is decreasing,∫ rn

2

x

μ(x)
dx ≥ rn(rn − 2)

μ(rn)
and

∫ n

rn

x

μ(x)
dx ≤ rn(n − rn)

μ(rn)
.

Therefore, the second statement in (24) entails rn − 2 = o(n − rn) as n → ∞, and
consequently rn = o(n). Hence, the sequence rn, n ≥ 1, fulfills all requirements of
Proposition 2.

For the construction of the numbers rn, note that, from Lemma 1(i), we have
x/μ(x) ≥ 2/(μ(2)(x − 1)) for x ≥ 2, and consequently,

(25)
∫ ∞

2

x

μ(x)
dx = ∞.

We distinguish two cases. If
∫ ∞

2
dx

μ(x)
< ∞, then the required sequence is easily

obtained, because the first condition of (24) is fulfilled for any divergent sequence
rn ≤ n and the second one by reason of (25), if only rn is diverging slowly enough.

Thus, let us assume that
∫ ∞

2
dx

μ(x)
= ∞, and let rn,m ≥ 2 for given m ∈ N be the

solution of the equation ∫ n

rn,m

dx

μ(x)
= 1

m
,

which exists for n ≥ 3 and m ≥ 1/
∫ 3

2
dx

μ(x)
. Since

∫ ∞
2

dx
μ(x)

= ∞, we have rn,m →
∞ as n → ∞. It follows∫ n

rn,m

x

μ(x)
dx ≥ rn,m/m and

∫ rn,m

2

x

μ(x)
dx = o(rn,m)

as n → ∞ because of x = o(μ(x)) from Lemma 1(iii). Therefore, there are natural
numbers n1 < n2 < · · · such that∫ rn,m

2

x

μ(x)
dx ≤ 1

m

∫ n

rn,m

x

μ(x)
dx

for all n ≥ nm. Now, letting rn := rn,m for n = nm, . . . , nm+1 − 1, we obtain∫ n

rn

dx

μ(x)
≤ 1

m
and

∫ rn

2

x

μ(x)
dx ≤ 1

m

∫ n

rn

x

μ(x)
dx

for all n ≥ nm. This implies (24).
Applying now Proposition 2 with f (x) = x, we obtain from (24)∫ ρ̃n

0
Nn(t) dt

1∼
∫ n

rn

x

μ(x)
dx ∼

∫ n

2

x

μ(x)
dx

and

E
[∫ τ̃n

ρ̃n

Nn(t) dt

]
= O

(∫ rn

2

x

μ(x)
dx

)
= o

(∫ n

2

x

μ(x)
dx

)
.

This implies our claim.
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5. Proof of Theorem 2. Again, let rn, n ≥ 1, be any sequence fulfilling the
assumptions of Proposition 1. We investigate the lengths

(26) �̂∗
n :=

∫ ρ̃n

0
N̂n(t) dt =

ρn−1∑
i=0

WiYi,

which are the total lengths of the external branches up to the ρnth merger. Here,
Yi , i ≥ 0, denotes the number of external branches extant after the first i merging
events and Wi as above the waiting time at the state Xi . In the proof, we approxi-
mate �̂∗

n by its conditional expectation given the block-counting process Nn, which
in turn can be handled by means of Propositions 2 and 3. We shall employ the rep-
resentation

(27) Yi =
n∑

k=1

I{ζk≥i},

where ζk denotes the number of coalescent events before the kth external branch
(out of n) merges with some other branches within the coalescent.

LEMMA 4. For i, j ≥ 0, k, l = 1, . . . , n, we have

P(ζk ≥ i | Nn) = Xi − 1

n − 1

i−1∏
m=0

(
1 − 1

Xm

)
a.s.

and for k �= l,

P(ζk ≥ i, ζl ≥ j | Nn) ≤ P(ζk ≥ i | Nn)P(ζl ≥ j | Nn) a.s.

PROOF. Let A be a subset of {1, . . . , n} with a ≥ 1 elements, and let ζA be
the number of mergers before one of the branches ending in A gets involved in a
merging event. Given �1, the first merger consists of a uniformly random choice
of �1 + 1 members out of X0 = n elements. Therefore, we have

P(ζA ≥ 1 | Nn) =
(X0−a
�1+1

)
( X0
�1+1

) = (X0 − a) · · · (X1 − a)

X0 · · ·X1

= (X1 − 1) · · · (X1 − a)

X0 · · · (X0 − a + 1)
a.s.

or

P(ζA ≥ 1 | Nn) = (X1 − 1) · · · (X1 − a)

(X0 − 1) · · · (X0 − a)

(
1 − a

X0

)
a.s.

Because of the Markov property, we may iterate this formula yielding

(28) P(ζA ≥ i | Nn) = (Xi − 1) · · · (Xi − a)

(X0 − 1) · · · (X0 − a)

i−1∏
m=0

(
1 − a

Xm

)
a.s.

In particular, our first claim follows with A = {k} and a = 1.
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Similarly, for k �= l and i ≤ j with ζ ′{l} := ζ{l} − ζ{k,l} and N ′
Xi

(t) := Nn(t +
W0 + · · · + Wi−1), t ≥ 0, by means of the Markov property,

P(ζk ≥ i, ζl ≥ j | Nn) = P(ζ{k,l} ≥ i | Nn)P
(
ζ ′{l} ≥ j − i | N ′

Xi

)
= (Xi − 1)(Xi − 2)

(X0 − 1)(X0 − 2)

i−1∏
m=0

(
1 − 2

Xm

)

× Xj − 1

Xi − 1

j−1∏
m=i

(
1 − 1

Xm

)
a.s.

Since Xi ≤ X0 and (1 − 2/Xm) ≤ (1 − 1/Xm)2, this implies

P(ζk ≥ i, ζl ≥ j | Nn) ≤ (Xi − 1)2

(X0 − 1)2

i−1∏
m=0

(
1 − 1

Xm

)2
× Xj − 1

Xi − 1

j−1∏
m=i

(
1 − 1

Xm

)
= P(ζk ≥ i | Nn)P(ζl ≥ j | Nn) a.s.,

which is our second claim. �

PROOF OF THEOREM 2. (i) First, we consider E[�̂∗
n | Nn]. Due to (27) and

Lemma 4, we have

(29)

E
[
�̂∗
n | Nn

] =
ρn−1∑
i=0

n∑
k=1

WiP(ζk ≥ i | Nn)

= n

n − 1

ρn−1∑
i=0

Wi(Xi − 1)

i−1∏
m=0

(
1 − 1

Xm

)
a.s.

Since
∑i−1

m=0 X−2
m ≤ ∑∞

a=Xi−1
a−2 ≤ (Xi−1 − 1)−1 ≤ (rn − 1)−1 for i ≤ ρn and in

view of Proposition 3,

i−1∏
m=0

(
1 − 1

Xm

)
= exp

(
−

i−1∑
m=0

1

Xm

+ O
(
r−1
n

)) = κ(Xi)

κ(n)
exp

(
oP (1)

)
,

where the oP (1) may be taken uniformly in i < ρn in the sense of Proposition 3.
Thus, we obtain

E
[
�̂∗
n | Nn

] P∼ 1

κ(n)

ρn−1∑
i=0

Wi(Xi − 1)κ(Xi) = 1

κ(n)

∫ ρ̃n

0
f

(
Nn(t)

)
dt

with f (x) := (x − 1)κ(x). This function satisfies the assumption of Proposition 2.
Because of f (x) ∼ μ(x) and rn → ∞, we obtain

(30) E
[
�̂∗
n | Nn

] P∼ 1

κ(n)

∫ n

rn

(x − 1)κ(x)
dx

μ(x)
∼ n − rn

κ(n)
= n(n − rn)

μ(n)
.
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(ii) Next, we have

E
[(

�̂∗
n − E

[
�̂∗
n | Nn

])2 | Nn

]
= E

[(
ρn−1∑
i=0

n∑
k=1

(
WiI{ζk≥i} − WiP(ζk ≥ i | Nn)

))2 ∣∣∣ Nn

]

=
ρn−1∑
i,j=0

n∑
k,l=1

WiWj

(
P(ζk ≥ i, ζl ≥ j | Nn) − P(ζk ≥ i | Nn)P(ζl ≥ j | Nn)

)
a.s.

Applying Lemma 4, it follows

E
[(

�̂∗
n − E

[
�̂∗
n | Nn

])2 | Nn

] ≤
ρn−1∑
i,j=0

n∑
k=1

WiWj P(ζk ≥ i ∨ j | Nn)

≤
ρn−1∑
i,j=0

WiWj

n∑
k=1

P(ζk ≥ i | Nn)

= E
[
�̂∗
n | Nn

] ρn−1∑
j=0

Wj

= ρ̃nE
[
�̂∗
n | Nn

]
a.s.

Since, by assumption, ρ̃n = oP (1) and rn ≤ γ n, (30) yields

E
[(

�̂∗
n − E

[
�̂∗
n | Nn

])2 | Nn

] = oP

(
n(n − rn)

μ(n)

)
= oP

(
n2

μ(n)

)
.

Because of Lemma 1(i), n(n − 1)/μ(n) is increasing, which implies

(31) �̂∗
n − E

[
�̂∗
n | Nn

] = oP

(
n√
μ(n)

)
= oP

(
n2

μ(n)

)
,

and in view of (30),

(32) �̂∗
n

P∼ n(n − rn)

μ(n)
.

In particular, as discussed in the proof of Theorem 1 and addressed in the Intro-
duction, this approximation is valid for the sequence rn = cn with 0 < c < 1.

(iii) Finally, let us switch to the numbers rn, n ≥ 1, constructed in the proof of
Theorem 1 and fulfilling (24) as well as rn = o(n). As above,

E
[
�̂n − �̂∗

n | Nn

] = n

n − 1

τn−1∑
i=ρn

Wi(Xi − 1)

i−1∏
m=0

(
1 − 1

Xm

)

≤ 2 exp

(
−

ρn−1∑
m=0

1

Xm

)
τn−1∑
i=ρn

WiXi a.s.
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From the Markov property and Theorem 1, applied to the coalescent with initial
value Xρn , we obtain

τn−1∑
i=ρn

WiXi
P∼

∫ Xρn

2

x

μ(x)
dx ≤

∫ rn

2

x

μ(x)
dx.

By (24) and by monotonicity of x/μ(x), it follows

τn−1∑
i=ρn

WiXi = oP

(∫ n

rn

x

μ(x)
dx

)
= oP

(
rn

μ(rn)
n

)
.

Moreover, from Proposition 3,

exp

(
−

ρn−1∑
m=0

1

Xm

)
P∼ μ(rn)

rn

n

μ(n)
,

and we arrive at

E
[
�̂n − �̂∗

n | Nn

] = oP

(
n2

μ(n)

)
.

Hence,

�̂n − �̂∗
n = oP

(
n2

μ(n)

)
.

This estimate, in combination with (32) and rn = o(n), proves our theorem. �

6. Proof of Theorem 3. (i) As to the second claim,∫ n

2

(
x

μ(x)
− n

μ(n)

)
dx =

∫ n

2

∫ n

x

κ ′(y)

κ(y)2 dy dx =
∫ n

2
(y − 2)

κ ′(y)

κ(y)2 dy,

and by Lemma 1(ii) and Lemma 2,∫ n

2

(
x

μ(x)
− n

μ(n)

)
dx ∼

∫ n

2
y

λ(y)

μ(y)2 dy ∼
∫ n

2

L(y)

L∗(y)2 dy ∼ nL(n)

L∗(n)2 .

(ii) Turning to the first claim, we now strive for a lower bound for q�n. We resort
to the definitions (23) and (26), and set

q�∗
n := �∗

n − �̂∗
n.

Again, we first investigate its conditional expectation given Nn. Note that E[�∗
n |

Nn] = �∗
n a.s. and, therefore, in view of (31),

q�∗
n − E

[
q�∗
n | Nn

] = E
[
�̂∗
n | Nn

] − �̂∗
n = oP

(
n√
μ(n)

)
.
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Lemma 1(i) implies μ(n) ≥ nμ(2)/2 for n ≥ 2, hence

(33) q�∗
n − E

[
q�∗
n | Nn

] = oP

(
n1/2)

.

We like to estimate E[q�∗
n | Nn] from below. For this purpose, we specify our

choice of the numbers rn. We fix h ∈ N, and we define stopping times 0 = ρn,h ≤
ρn,h−1 ≤ · · · ≤ ρn,1 and the corresponding times ρ̃n,g as

(34)

ρn,g := min
{
i ≥ 0 : Xi ≤ g

h
n

}
,

ρ̃n,g := inf
{
t ≥ 0 : Nn(t) ≤ g

h
n

}
, g = 1, . . . , h.

As we already argued in the proof of Theorem 1, we may apply Propositions 2 and
3 to these stopping times. We now proceed in the same manner as in (29). Using
Xi ≤ n, respectively Xi ≥ n(Xi − 1)/(n − 1), we obtain

E

[ρn,g−1−1∑
i=ρn,g

Wi(Xi − Yi)
∣∣∣ Nn

]

=
ρn,g−1−1∑
i=ρn,g

Wi

(
Xi − n

n − 1
(Xi − 1)

i−1∏
m=0

(
1 − 1

Xm

))

≥
ρn,g−1−1∑
i=ρn,g

WiXi

(
1 −

i−1∏
m=0

(
1 − 1

Xm

))

≥
(

1 −
ρn,g−1∏
m=0

(
1 − 1

Xm

)) ρn,g−1−1∑
i=ρn,g

WiXi

≥
(

1 − exp

(
−

ρn,g−1∑
m=0

1

Xm

))∫ ρ̃n,g−1

ρ̃n,g

Nn(t) dt a.s.

Proposition 2, together with Lemma 2(ii), implies∫ ρ̃n,g−1

ρ̃n,g

Nn(t) dt
1∼

∫ gn/h

(g−1)n/h

x

μ(x)
dx ∼ n

hL∗(n)
,

and Proposition 3 and Lemma 2(ii) yield

ρn,g−1∑
m=0

1

Xm

1∼ log
κ(n)

κ(gn/h)
∼ log

L∗(n)

L∗(gn/h)
.

Because L∗ is slowly varying and because of (10), we have

log
L∗(n)

L∗(gn/h)
∼ L∗(n) − L∗(gn/h)

L∗(gn/h)
∼ L(n)

L∗(n)
log

h

g
.
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Hence, because of Lemma 2(ii),

(35)
ρn,g−1∑
m=0

1

Xm

1∼ L(n)

L∗(n)
log

h

g
= oP (1)

and

1 − exp

(
−

ρn,g−1∑
m=0

1

Xm

)
P∼ L(n)

L∗(n)
log

h

g
.

Altogether,

E

[ρn,g−1−1∑
i=ρn,g

Wi(Xi − Yi)
∣∣∣ Nn

]
≥ (

1 + oP (1)
) nL(n)

L∗(n)2

1

h
log

h

g

and, consequently,

E
[
q�∗
n | Nn

] = E

[ρn,1−1∑
i=0

Wi(Xi − Yi)
∣∣∣ Nn

]

≥ (
1 + oP (1)

) nL(n)

L∗(n)2

h∑
g=2

1

h
log

h

g

≥ (
1 + oP (1)

) nL(n)

L∗(n)2

∫ 1

2/h
log

1

z
dz

= (
1 + oP (1)

) nL(n)

L∗(n)2

(
1 − 2

h
− 2

h
log

2

h

)
.

In view of (33), this estimate transfers to q�∗
n. We have q�n ≥ q�∗

n and, therefore, letting
h → ∞, we obtain

(36) q�n ≥ (
1 + oP (1)

) nL(n)

L∗(n)2

as n → ∞.
(iii) Coming to an upper bound, we have, in view of

∏i−1
m=0(1 − 1/Xm) ≥ 1 −∑i−1

m=0 1/Xm,

(37)

E[q�n] = E
[
E[q�n | Nn]]

= E

[
τn−1∑
i=0

Wi

(
Xi − n

n − 1
(Xi − 1)

i−1∏
m=0

(
1 − 1

Xm

))]

≤ E

[
τn−1∑
i=0

Wi

(
1 + n

n − 1
Xi

i−1∑
m=0

1

Xm

)]
.
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From Proposition 2, and since x = o(μ(x)) (see Lemma 1(iii)),

(38) E

[
τn−1∑
i=0

Wi

]
= E[τ̃n] = O

(∫ n

2

dx

μ(x)

)
= o

(∫ n

2

dx

x

)
= o(logn).

Furthermore, by means of the Markov property,

E

[
τn−1∑
i=0

WiXi

i−1∑
m=0

1

Xm

]
=

n−1∑
i=0

E

[
Xi

λ(Xi)

i−1∑
m=0

1

Xm

;Xi > 2

]

=
n−1∑
i=0

E

[
Xi�i+1

μ(Xi)

i−1∑
m=0

1

Xm

;Xi > 2

]

= E

[
τn−1∑
m=0

1

Xm

τn−1∑
i=m+1

Xi�i+1

μ(Xi)

]
.

Since x/μ(x) is decreasing, we have
∑τn−1

i=m+1 Xi�i+1/μ(Xi) ≤ ∫ Xm+1
1 x/μ(x)dx,

where we let x/μ(x) := 2/μ(2) for 1 ≤ x ≤ 2. Thus,

E

[
τn−1∑
i=0

WiXi

i−1∑
m=0

1

Xm

]
≤ E

[
τn−1∑
m=0

1

Xm

∫ Xm+1

1

x

μ(x)
dx

]
.

Invoking the Markov property once again, we obtain

E

[
τn−1∑
i=0

WiXi

i−1∑
m=0

1

Xm

]
≤ E

[
τn−1∑
m=0

�m+1

(Xm − 1)ν(Xm)

∫ Xm+1

1

x

μ(x)
dx

]
,

and taking now into account that the functions (x − 1)ν(x) and
∫ x

1 z/μ(z) dz are
increasing, we end up with

(39) E

[
τn−1∑
i=0

WiXi

i−1∑
m=0

1

Xm

]
≤

∫ n

1

1

(x − 1)ν(x)

∫ x

1

z

μ(z)
dz dx,

where we let (x − 1)ν(x) := ν(2) for 1 ≤ x ≤ 2. Using Lemma 2, it follows∫ n

1

1

(x − 1)ν(x)

∫ x

1

z

μ(z)
dz dx ∼

∫ n

2

L(x)

xL∗(x)

∫ x

2

1

L∗(z)
dz dx

∼
∫ n

2

L(x)

xL∗(x)

x

L∗(x)
dx

∼ nL(n)

L∗(n)2 .

Together with (37), (38) and (39), we obtain all in all

E[q�n] ≤ (
1 + o(1)

) nL(n)

L∗(n)2 .
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Combining this result with (36), we get

q�n
P∼ nL(n)

L∗(n)2 ,

and invoking once again the convergence criterion of F. Riesz, also L1-convergence
follows. This completes the proof of Theorem 3.

7. Proof of Theorem 4. (i) Concerning the first claim, we have, from Theo-
rem 2 and Lemma 2(ii),

�̂n,1 = �̂n
P∼ n2

μ(n)
∼ n

L∗(n)
,

where L∗ is slowly varying. In order to also obtain L1-convergence, we use Theo-
rem 1 and Lemma 2(ii), saying that

�n
1∼

∫ n

2

x

μ(x)
dx ∼

∫ n

2

dx

L∗(x)
∼ n

L∗(n)
.

In particular, the random variables L∗(n)�n/n, n ≥ 1, make a uniformly inte-
grable sequence. Since �̂n,1 ≤ �n, this holds true also for the random variables
L∗(n)�̂n,1/n, n ≥ 1. Therefore, the convergence in probability above converts to
L1-convergence.

(ii) Now we turn to the case a ≥ 2. We preliminary study lengths of the form

�̂∗
n,a =

∫ ρ̃n

σ̃n

N̂n,a(t) dt =
ρn−1∑
i=σn

WiYi,a,

where Yi,a denotes the number of internal branches of order a present in the coa-
lescent after i merging events. We are going to bound these numbers from below.
Let A denote a subset of {1, . . . , n} with a elements. For 1 ≤ k ≤ i, let Ei,k,A be
the event that the external branches ending in A are not involved in the first k − 1
mergers, next coalesce with the kth merger to one lineage without any other branch
participating, and then remain untouched by merging events until the ith merger.
These are disjoint events, which all contribute to Yi,a . Thus,

Yi,a ≥ Y ′
i,a :=

i∑
k=1

∑
A

IEi,k,A
,

where the second sum is taken over all A ⊂ {1, . . . , n} with a elements.

LEMMA 5. Let both A,A′ ⊂ {1, . . . , n} have a ≥ 1 elements. Then, for 1 ≤
k ≤ i,

P(Ei,k,A | Nn) = a!
(X0 − 1) · · · (X0 − a)

Xi

Xk−1

×
k−2∏
m=0

(
1 − a

Xm

) i∏
m=k

(
1 − 1

Xm

)
I{�k=a−1} a.s.
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and for A �= A′ or k �= l and for 1 ≤ j ≤ �

P(Ei,k,A ∩ Ej,l,A′ | Nn)

≤ (
1 + O

(
X−1

k−1

) + O
(
X−1

l−1

))
P(Ei,k,A | Nn)P(Ej,l,A′ | Nn) a.s.

PROOF. We proceed similarly as in the proof of Lemma 4. From (28) and the
Markov property,

P(Ei,k,A | Nn) = (Xk−1 − 1) · · · (Xk−1 − a)

(X0 − 1) · · · (X0 − a)

k−2∏
m=0

(
1 − a

Xm

)

×
(
Xk−1

a

)−1

I{�k=a−1} × Xi − 1

Xk − 1

i−1∏
m=k

(
1 − 1

Xm

)
a.s.

Note that Xk −1 = Xk−1 −a on the event {�k = a−1}. Thus all factors containing
Xk−1 cancel up to the term Xk−1 in the denominator. Replacing also Xi − 1 by
Xi(1 − 1/Xi), the first statement follows.

For the second claim note that, in the case A �= A′ and A ∩ A′ �= ∅ or in the
case A = A′ and k �= l, the events Ei,k,A and Ej,l,A′ are disjoint; thus making our
claim obvious. Therefore, we may assume that A ∩ A′ = ∅. Let us consider the
case k < l < i ≤ j . Then, from (28) and the Markov property,

P(Ei,k,A ∩ Ej,l,A′ | Nn)

= (Xk−1 − 1) · · · (Xk−1 − 2a)

(X0 − 1) · · · (X0 − 2a)

k−2∏
m=0

(
1 − 2a

Xm

)

×
(
Xk−1

a

)−1

I{�k=a−1} × (Xl−1 − 1) · · · (Xl−1 − a − 1)

(Xk − 1) · · · (Xk − a − 1)

l−2∏
m=k

(
1 − a + 1

Xm

)

×
(
Xl−1

a

)−1

I{�l=a−1} × (Xi − 1)(Xi − 2)

(Xl − 1)(Xl − 2)

i−1∏
m=l

(
1 − 2

Xm

)

× Xj − 1

Xi − 1

j−1∏
m=i

(
1 − 1

Xm

)
a.s.

Here, the product (Xk − 1) · · · (Xk − a − 1) = (Xk−1 − a) · · · (Xk−1 − 2a) cancels
out on the event {�k = a − 1}, and again only the factor Xk−1 remains. Similarly,
Xl − 2 and Xl−1 − a − 1 cancel. By increasing some other terms, we get

P(Ei,k,A ∩ Ej,l,A′ | Nn) ≤ a!a!
(X0 − 1) · · · (X0 − 2a)

k−2∏
m=0

(
1 − a

Xm

)2

× I{�k=a−1}
1

Xk−1

l−2∏
m=k

(
1 − a

Xm

)(
1 − 1

Xm

)
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× I{�l=a−1}
1

Xl−1

i−1∏
m=l

(
1 − 1

Xm

)(
1 − 1

Xm

)

× (Xi − 1)(Xj − 1)

j−1∏
m=i

(
1 − 1

Xm

)
a.s.

Replacing also Xi − 1 and Xj − 1 as above and comparing it to our first formula,
we obtain

P(Ei,k,A ∩ Ej,l,A′ | Nn)

≤ (X0 − 1) · · · (X0 − a)

(X0 − a − 1) · · · (X0 − 2a)

(
1 − a

Xk−1

)−1

× P(Ei,k,A | Nn)P(Ej,l,A′ | Nn) a.s.

This implies our second claim. Other cases like k < i < l < j are treated similarly.
�

(iii) Coming back to the proof of the theorem’s second claim, we first consider,
similar to above, conditional expectations given Nn. Recall from (34) the definition
of ρn,g . From Lemma 5 for g ≥ 2, we have

E

[ρn,g−1−1∑
i=ρn,g

WiY
′
i,a

∣∣∣ Nn

]

=
ρn,g−1−1∑
i=ρn,g

Wi

i∑
k=1

∑
A

P(Ei,k,A | Nn)

= X0

X0 − a

ρn,g−1−1∑
i=ρn,g

Wi

i∑
k=1

Xi

Xk−1

k−2∏
m=0

(
1 − a

Xm

) i∏
m=k

(
1 − 1

Xm

)
I{�k=a−1} a.s.

The products may be estimated from above by 1 and, by means of Proposition 3
and the bound (1 − z) ≥ exp(−cz) for z ≤ 1/2 and a suitable c > 0, from below
uniformly in i, k by

ρn,1−1∏
m=0

(
1 − a

Xm

)
≥ exp

(
−ca

ρn,1−1∑
m=0

1

Xm

)
P∼

(
κ(n/h)

κ(n)

)ca

∼
(

L∗(n/h)

L∗(n)

)ca

∼ 1.

Consequently, we may replace the products by 1 and obtain

(40) E

[ρn,g−1−1∑
i=ρn,g

WiY
′
i,a

∣∣∣ Nn

]
P∼

ρn,g−1−1∑
i=ρn,g

WiXi

i∑
k=1

1

Xk−1
I{�k=a−1}

as n → ∞.
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From Lemma 2(i) and (35),
ρn,g−1∑
m=0

1

Xm

P(�m+1 = a − 1)
P∼ 1

(a − 1)a

ρn,g−1∑
m=0

1

Xm

P∼ 1

(a − 1)a

L(n)

L∗(n)
log

h

g
.

By the Markov property,

E

[(ρn,g−1∑
m=0

1

Xm

(
I{�m+1=a−1} − P(�m+1 = a − 1)

))2]

= E

[ρn,g−1∑
m=0

1

X2
m

(
I{�m+1=a−1} − P(�m+1 = a − 1)

)2

]

≤ E
[

1

Xρn,g−1 − 1

]
≤ 1

(gn/h) − 1
.

Therefore,
ρn,g−1∑
m=0

1

Xm

I{�m+1=a−1}
P∼ 1

a(a − 1)

L(n)

L∗(n)
log

h

g
.

Also, once more by Proposition 2 and Lemma 2(ii),
ρn,g−1−1∑
i=ρn,g

WiXi =
∫ ρ̃n,g−1

ρ̃n,g

Nn(t) dt
1∼

∫ gn/h

(g−1)n/h

x

μ(x)
dx ∼ n

hL∗(n)
.

Together with (40), these formulas yield the following lower and upper bounds for
g ≥ 2:

(41) E

[ρn,g−1−1∑
i=ρn,g

WiY
′
i,a

∣∣∣ Nn

]
≥ (

1 + oP (1)
) 1

a(a − 1)

nL(n)

L∗(n)2

1

h
log

h

g

and

(42) E

[ρn,g−1−1∑
i=ρn,g

WiY
′
i,a

∣∣∣ Nn

]
≤ (

1 + oP (1)
) 1

a(a − 1)

nL(n)

L∗(n)2

1

h
log

h

g − 1
.

(iv) Now we estimate the difference between
∑ρn,g−1−1

i=ρn,g
WiY

′
i,a and its condi-

tional expectation given Nn. We have

E

[(ρn,g−1−1∑
i=ρn,g

WiY
′
i,a − E

[ρn,g−1−1∑
i=ρn,g

WiY
′
i,a

∣∣∣ Nn

])2 ∣∣∣ Nn

]

= E

[
(

ρn,g−1−1∑
i=ρn,g

Wi

i∑
k=1

∑
A

(
IEi,k,A

− P(Ei,k,A | Nn)
)2

∣∣∣ Nn

]
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=
ρn,g−1−1∑
i,j=ρn,g

WiWj

i∑
k=1

j∑
l=1

∑
A,A′

(
P(Ei,k,A ∩ Ej,l,A′ | Nn)

− P(Ei,k,A | Nn)P(Ej,l,A′ | Nn)
)

a.s.

For A = A′, k = l and i ≤ j , we use the estimate

P(Ei,k,A ∩ Ej,k,A | Nn) ≤ P(Ei,k,A | Nn) a.s.

Taking also account of Lemma 5, we obtain with some c > 0,

E

[(ρn,g−1−1∑
i=ρn,g

WiY
′
i,a − E

[ρn,g−1−1∑
i=ρn,g

WiY
′
i,a

∣∣∣ Nn

])2 ∣∣∣ Nn

]

≤ 2
ρn,g−1−1∑
i=ρn,g

ρn,g−1−1∑
j=i

i∑
k=1

∑
A

WiWj P(Ei,k,A | Nn)

+ c

ρn,g−1−1∑
i,j=ρn,g

i∑
k=1

j∑
l=1

∑
A,A′

WiWj

(
1

Xk

+ 1

Xl

)
P(Ei,k,A | Nn)P(Ej,l,A′ | Nn)

≤ 2
ρn,g−1−1∑

j=0

Wj

ρn,g−1−1∑
i=ρn,g

i∑
k=1

∑
A

WiP(Ei,k,A | Nn)

+ 2c

Xρn,g−1−1

(ρn,g−1−1∑
i=ρn,g

i∑
k=1

∑
A

WiP(Ei,k,A | Nn)

)2

= 2ρ̃n,g−1E

[ρn,g−1−1∑
i=ρn,g

WiY
′
i,a

∣∣∣ Nn

]
+ 2ch

n

(
E

[ρn,g−1−1∑
i=ρn,g

WiY
′
i,a

∣∣∣ Nn

])2

a.s.

Using (42), Ln = o(L∗(n)) and the fact that L∗(n) is increasing, this implies

E

[(ρn,g−1−1∑
i=ρn,g

WiY
′
i,a − E

[ρn,g−1−1∑
i=ρn,g

WiY
′
i,a

∣∣∣ Nn

])2 ∣∣∣ Nn

]
= o(n)

for g ≥ 2, and thus, from (41),

ρn,g−1−1∑
i=ρn,g

WiY
′
i,a ≥ (

1 + oP (1)
) 1

a(a − 1)

nL(n)

L∗(n)2

1

h
log

h

g
.
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(v) The last formula implies for a ≥ 2 that

�̂n,a =
τn−1∑
i=0

WiYi,a ≥
ρn,1−1∑

i=ρn,h−1

WiY
′
i,a

≥ (
1 + oP (1)

) 1

a(a − 1)

nL(n)

L∗(n)2

h−1∑
g=2

1

h
log

h

g

≥ (
1 + oP (1)

) 1

a(a − 1)

nL(n)

L∗(n)2

∫ 1

2/h
log

1

z
dz.

Letting h → ∞, we obtain the lower estimate

�̂n,a ≥ (
1 + oP (1)

) 1

a(a − 1)

nL(n)

L∗(n)2 .

For an upper estimate, note that q�n = ∑
a≥2 �̂n,a . This formula and Theorem 3

imply for any natural number r ,

�̂n,a ≤ q�n − ∑
2≤b≤r,b �=a

�̂b,n

≤ (
1 + oP (1)

) nL(n)

L∗(n)2

(
1 − ∑

2≤b≤r,b �=a

1

(b − 1)b

)
P∼ nL(n)

L∗(n)2

(
1

r
+ 1

(a − 1)a

)
.

Letting r → ∞ yields the upper estimates and we thus obtain altogether

�̂n,a
P∼ 1

a(a − 1)

nL(n)

L∗(n)2 .

In order to achieve also L1-convergence, we deduce from Theorem 3 that the
random variables q�nL

∗(n)2/(nL(n)) form a uniformly integrable sequence. Since
�̂n,a ≤ q�n, the same holds true for the random variables �̂n,aL

∗(n)2/(nL(n)). Thus,
also L1-convergence follows. This completes the proof of Theorem 4.
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