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PROPAGATION OF CHAOS FOR TOPOLOGICAL INTERACTIONS

BY P. DEGOND1 AND M. PULVIRENTI

Imperial College London and University of L’Aquila

We consider a N -particle model describing an alignment mechanism due
to a topological interaction among the agents. We show that the kinetic equa-
tion, expected to hold in the mean-field limit N → ∞, as following from the
previous analysis in (J. Stat. Phys. 163 (2016) 41–60) can be rigorously de-
rived. This means that the statistical independence (propagation of chaos) is
indeed recovered in the limit, provided it is assumed at time zero.

1. Introduction. Propagation of chaos is a fundamental property in kinetic
theory: it allows to pass from a N -particle description, which is usually intractable
due to the huge number of particles to handle, to a single partial differential equa-
tion. Originally, it refers to deterministic particle systems and it has been intro-
duced by Boltzmann in the formal derivation of his famous equation. From the
mathematical side, we address the well-known paper by Lanford [25] (see also [6,
10, 12, 18, 19, 34, 35, 40, 42] for subsequent progresses) where the validity of the
Boltzmann equation has been proved for a short time interval. On the other hand,
other stochastic processes have been introduced to derive the Boltzmann equation
and the most famous model is Kac’s model [22, 23]. See also [28] and [32] for
recent developments. Similar models of interest for the numerics have also been
studied for instance in [24, 36, 37]. Nowadays, the methodology and techniques
of kinetic theory have been applied also to mean-field limits of particle models
in which interactions are averages of binary interactions and which, at the kinetic
level, give rise to nonlinear Vlasov (in the deterministic case) or Fokker–Planck
(in the stochastic case) equations; see, for example, [7, 11, 16, 20, 26, 30, 41]. For
recent approaches to propagation of chaos, see [29].

In most mean-field models, binary interactions are weighted by a function of
the relative distance between the two particles. However, recent observations [2,
9] have shown that interactions between animals in nature are weighted by a func-
tion of their rank, irrespective of the relative distance, meaning that the interac-
tion probability of an individual with its kth nearest neighbor is the same whether
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this individual is close or far. This new type of interaction has been called “topo-
logical,” by contrast to the usual “metric” interaction which is a function of the
subjects’ relative distance. Numerical simulations of particle systems undergoing
topological interactions seem to support the observations [5, 8, 13]. In the recent
past, the literature on the applications of topological interactions to flocking has
grown exponentially [17, 21, 31, 38]. On the mathematical side, flocking under
topological interactions has been studied in [15, 27, 39, 43]. In [15], mean-field ki-
netic and fluid models for topological mean-field interactions are formally derived.
Recently, [3] and [4] have formally derived kinetic models for jump processes
ruled by topological interactions. In the former, the number of particles interact-
ing with a given particle is unbounded in the large particle number limit, while in
the latter, particles only interact with a fixed finite number of closest neighbors. In
the large particle number limit, the former gives rise to an interaction operator in
integral form, while the latter provides a diffusion-like interaction operator.

The goal of this paper is to give a rigorous proof of convergence for the jump
process of [3] in the limit of the number of particles tending to infinity, that is,
to prove that propagation of chaos holds for this system in this limit, providing a
rigorous derivation of the kinetic equation.

Here, new difficulties arise. Indeed in usual metric models particles interact
through two-body interactions which are averaged through weights that depend
on the distance between the two interacting particles. This structure reflects in the
system satisfied by the hierarchy of joint probability distributions (also known as
the BBGKY hierarchy): the evolution of the sth marginal only depends on the (s +
1)th marginal. This structure is lost with topological interactions as the rank of a
particle neighbor depends on all the other particles. Now the study of the hierarchy
usually describing the time evolution of the marginals is not possible anymore: the
time evolution of the s-particle marginal depends on the full N -particle probability
measure. Therefore, to prove propagation of chaos, we are facing new, previously
unmet, problems.

Obviously, the hierarchical approach is not the only possible one. For instance,
we quote [14] where Kac’s model has been treated by a coupling technique, yield-
ing by the way, optimal estimates. Such a technique is not easy to apply to the
present context. First, the transition probability does not depend on the initial and
final state of the jumping pair but on the whole configuration of the N -particle sys-
tem. However, this is not the main obstruction. For instance, in [33] the coupling
technique works in this case for a metric interaction. The difficulty we find here in
applying these methods is mostly due to the topological nature of the interaction.
All of these previous references use the total variation distance to control the cou-
pled process. A weaker topology as the usual Wasserstein distance works well for
the McKean–Vlasov diffusion processes but one can also include suitable jumps;
see [1]. Unfortunately, this technique does not apply immediately to the present
context due to the very special nature of the jumps considered in [1].
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Therefore, our strategy is different. We assume the function that weights the
interaction strength with the various partners to be real analytic. For such a kind of
interactions, we can establish a new hierarchy for which the time evolution of the
j -particle marginal fj is expressed in terms of an infinite sequence of marginals
fm with m > j , with decreasing weight.

2. The model. Here, we recall the setting of [3]. We consider a N -particle
system in R

d , d = 1,2,3, . . . (or in Td the d-dimensional torus). Each particle,
say particle i, has a position xi and velocity vi . The configuration of the system is
denoted by

ZN = {zi}Ni=1 = {xi, vi}Ni=1 = (XN,VN).

Given the particle i, we order the remaining particles j1, j2, . . . , jN−1 according
their distance from i, namely by the following relation:

|xi − xjs | ≤ |xi − xjs+1 |, s = 1,2, . . . ,N − 1.

The rank (with respect to i) of particle k = js is s. The rank is denoted by R(i, k).
The normalized rank is defined as

r(i, k) = R(i, k)

N − 1
∈

{
1

N − 1
,

2

N − 1
, . . .

}
.

Next, we introduce a (smooth) function

K : [0,1] → R
+ s.t.

∫ 1

0
K(r) dr = 1,

and the following quantities:

(2.1) πi,j = K(r(i, j))∑
s K( s

N−1)
.

Clearly, ∑
j

πi,j = 1.

We are now in the right position to introduce a stochastic process describing
alignment via a topological interaction. The particles go freely, namely following
the trajectory xi + vit . At some random time dictated by a Poisson process of
intensity N , a particle (say i) is chosen with probability 1

N
and a partner particle,

say j , with probability πi,j . Then the transition

(vi, vj ) → (vj , vj ),

is performed. After that, the system goes freely with the new velocities and so on.
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The process is fully described by the continuous-time Markov generator given,
for any � ∈ C1

b(R2dN) by

LN�(x1, v1, . . . , xN, vN)

=
N∑

i=1

vi · ∇xi
�(x1, v1, . . . , xN, vN)

+
N∑

i=1

∑
1≤j≤N

i �=j

πi,j

[
�(x1, v1, . . . , xivj · · ·xj , vj · · ·xN, vN)

− �(x1, v1, . . . , xN, vN)
]
.

(2.2)

Note that πi,j = πN
i,j depends not only on N but also on the whole configuration

ZN .
The law of the process WN(ZN ; t) is driven by the following evolution equa-

tion:

∂t

∫
WN(t)�

=
∫

WN(t)

N∑
i=1

vi · ∇xi
�

+
∫

WN(t)

N∑
i=1

∑
1≤j≤N

i �=j

πi,j

[
�(x1, v1, . . . , xivj · · ·xj , vj · · ·xN, vN)

− �(x1, v1, . . . , xN, vN)
]
,

(2.3)

for any test function �.
We assume that the initial measure WN

0 = WN(0) factorizes, namely WN
0 =

f ⊗N
0 where f0 is the initial datum for the limiting kinetic equation we are going

to establish. Note also that WN(ZN ; t), for t ≥ 0, is symmetric in the exchange of
particles.

The strong form of equation (2.3) is

(2.4)

(
∂t +

N∑
i=1

vi · ∇xi

)
WN(t) = −NWN(t) +LNWN(t),

where

(2.5) LNWN(XN,VN, t) =
N∑

i=1

∑
1≤j≤N

i �=j

∫
duπi,j WN (

XN,V
(i)
N (u)

)
δ(vi − vj ).

Here, V
(i)
N (u) = (v1 · · ·vi−1, u, vi+1 · · ·vN) if VN = (v1 · · ·vi−1, vi, vi+1 · · ·vN).
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3. Kinetic description. Here, we present a heuristic derivation of the kinetic
equation we expect to be valid in the limit N → ∞. This derivation is slightly
simpler than in [3].

We first compute explicitly the transition probability πi,j . In general,

r(i, j) = 1

N − 1

∑
1≤k≤N

k �=i

χB(xi ,|xi−xj |)(xk),

where χB(xi,|xi−xj |) is the characteristic function of the ball {y | |xi − y| ≤ |xi −
xj |}. Moreover, recalling that

∫
K = 1,

∑
s

K

(
s

N − 1

)
= (N − 1)

(
1 −

∫ 1

0
K(x)dx + 1

N − 1

∑
s

K

(
s

N − 1

))

= (N − 1)
(
1 − eK(N)

)
,

where the last identity defines eK(N). Note that eK measures the difference be-
tween the integral and the Riemann sum of K .

Clearly,

(3.1)
∣∣eK(N)

∣∣ ≤ ∥∥K ′∥∥
L∞

1

N − 1
.

Therefore, by (2.1),

(3.2) πi,j = αNK

(
1

N − 1

∑
k �=i

χB(xi ,|xi−xj |)(xk)

)
,

where

(3.3) αN = 1

(N − 1)(1 − eK(N))
.

Setting �(ZN) = ϕ(z1) in (2.3), we obtain

(3.4) ∂t

∫
f N

1 ϕ =
∫

f N
1 v · ∇xϕ −

∫
f N

1 ϕ +
∫

WN
∑
j �=1

πi,jϕ(x1, vj ).

Here, f N
1 denotes the one-particle marginal of the measure WN . We recall that the

s-particle marginals are defined by

f N
s (Zs) =

∫
WN(Zs, zs+1 · · · zN)dzs+1 · · · dzN, s = 1,2, . . . ,N,

and are the distribution of the first s particles (or of any group of s tagged particles).
In order to describe the system in terms of a single kinetic equation, we expect

that chaos propagates. Actually, since WN is initially factorizing, although the
dynamics creates correlations, we hope that, due to the weakness of the interaction,
factorization still holds approximately also at any positive time t , namely

f N
s ≈ f ⊗s

1
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for any fixed integer s. In this case, the strong law of large numbers does hold,
that is for almost all i.i.d. variables {zi(0)} distributed according to f1(0) = f0, the
random measure

1

N

∑
j

δ
(
z − zj (t)

)

approximates weakly f N
1 (z, t). Then

πi,j ≈ 1

N − 1
K

(
1

N − 1

∑
k �=i

χB(xi ,|xi−xj |)(xk)

)

≈ 1

N − 1
K

(
Mρ

(
xi, |xi − xj |)),

(3.5)

where

Mρ(x,R) =
∫
B(x,R)

ρ(y) dy,

and where ρ(x) = ∫
dv f N

1 (x, v) is the spatial density and B(x,R) is the ball of
center x and radius R.

In conclusion, we expect that, by (3.4), using the symmetry of WN , f N
1 → f

and f N
2 → f ⊗2 in the limit N → ∞, where f solves

(3.6)
∂t

∫
f ϕ =

∫
f v · ∇xϕ −

∫
f ϕ

+
∫

f (z1)f (z2)ϕ(x1, v2)K
(
Mρ

(
x1, |x1 − x2|)),

or, in strong form,

(3.7) (∂t + v · ∇x)f = −f + ρ(x)

∫
dy K

(
Mρ

(
x, |x − y|))f (y, v),

which is the equation we want to derive rigorously.
As regards existence and uniqueness of the solutions to equation (3.7), we can

apply the Banach fixed-point theorem in find a unique solution for (3.7) in mild
form, for a short time interval, provided that K has bounded derivative in [0,1].
Actually, we realize that the map

g(x, v, t) → e−t f0(x − vt, v)

+
∫ t

0
dτ

∫
dy ρg(τ)

(
x − v(t − τ), v

)
e−(t−τ)

× K
(
Mρg(τ)

(
x − v(t − τ), |x − v(t − τ) − y|))g(y, v, τ ),

(3.8)

where ρg(τ) = ∫
dv g(·, v, τ ), is a contraction in C([0, T ];L1) provided that T is

small enough.
The global solution is recovered by the conservation of the L1(x, v) norm. The

method is classical and we leave the details to the reader.
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4. Hierarchies. We assume the function K to be expressible in terms of a
power series,

(4.1) K(x) =
∞∑

m=0

amxm, x ∈ [0,1],

for some sequence of coefficients am. The normalization condition gives the con-
straint a0 + ∑∞

m=1
1

m+1am = 1. Note that the coefficients am are not necessarily
positive.

We further assume that

(4.2) A :=
∞∑

m=0

|am|8m < +∞.

REMARK. An example of a function K satisfying the above hypotheses is, for
x ∈ (0,1):

K(x) = e1−x − 1

e − 2
= 1

e − 2

(
e − 1 + e

∑
r≥1

(−1)rxr

r!
)
.

To outline the behavior of the s-particle marginal f N
s , we integrate (2.4) with

respect to the last N − s variables and compute preliminarily
N∑

i=s+1

∑
1≤j≤N

i �=j

∫
duπi,jW

N (
XN,V

(i)
N (u)

)
δ(vi − vj ) dzs+1 · · · dzN

= (N − s)f N
s (Xs,Vs),

since the variable zi is integrated. Therefore,(
∂t +

s∑
i=1

vi · ∇xi

)
f N

s (t)

= −sf N
s (t) + E1

s (t)

+ (N − s)

s∑
i=1

∫
dzs+1 · · · dzN πi,s+1W

N (
XN,V

(i,s+1)
N ; t),

(4.3)

where

V
(i,s+1)
N = {v1 · · ·vi−1, vs+1, vi+1 · · ·vs, vi, vs+2 · · ·vN },

namely the velocities of particles i and s + 1 exchange their positions in the se-
quence VN = {v1 · · ·vN }, and

(4.4) E1
s (t) =

s∑
i=1

∑
1≤j≤s
i �=j

∫
dudzs+1 · · · dzN πi,jW

N (
XN,V

(i)
N (u); t)δ(vi − vj ).
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We expect E1
s to be O(s2

N
) since πi,j = O( 1

N
) (see (3.2) and (3.3)). This is the

first error term entering in the present analysis. A precise estimate of this term is
forthcoming. Note also that we used the symmetry to deduce the last term in the
right-hand side of (4.3).

Next, setting χi,j = χB(xi,|xi−xj |), we have from (3.2) and (4.1)

(4.5) πi,j = αN

∞∑
r=0

ar

1

(N − 1)r

∑
(k1,k2,...,kr )∈({1,N}\{i})r

χi,j (xk1) · · ·χi,j (xkr ).

Inserting this quantity into the last term of (4.3), we obtain(
∂t +

s∑
i=1

vi · ∇xi

)
f N

s (t) = −sf N
s (t) + E1

s (t) + E2
s

+ (N − s)αN

∞∑
r=0

ar CN
s,s+r+1 f N

s+r+1,

(4.6)

where CN
s,s+r+1 : L1(R2d(s+r+1)) → L1(R2ds) is a linear operator defined by

CN
s,s+r+1gs+r+1(Xs,Vs)

= (N − s − 1) · · · (N − s − r)

(N − 1)r

×
s∑

i=1

∫
dzs+1 · · · dzs+r+1χi,s+1(xs+2) · · ·χi,s+1(xs+r+1)

× gs+r+1
(
Xs+r+1,V

(i,s+1)
s+r+1

)
.

(4.7)

The form (4.7) of the operator CN
s,s+r+1 comes from considering in the sum∑

k1,k2,...,kr
in (4.5), only the contributions given by∑

k1 �=k2 �=···�=kr
km>s+1;m=1,...,r

,

namely all the km are different and larger than s + 1. Clearly, we also used the
symmetry. The term E2

s is what remains, namely

E2
s (Zs) = (N − s)αN

s∑
i=1

∞∑
r=0

ar

(
1

N − 1

)r

×
∗∑

k1,k2,...,kr

∫
dzs+1 · · · dzNχi,s+1(xk1) · · ·χi,s+1(xkr )

× WN(Zs, zs+1 · · · zN ; t),

(4.8)
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with
∗∑

k1,k2,...,kr

= ∑
k1,k2,...,kr

km �=i,m=1,...,r

− ∑
k1 �=k2 �=···�=kr

km>s+1,m=1,...,r

.

Again we expect that E2
s is negligible in the limit as we shall see in a moment.

Note that for s = N (4.6) becomes identical to equation (2.3) as the last two
terms are equal to zero. We will also use the convention that f N

s (t) = 0 if s > N .
We have to compare equation(4.6) with a similar hierarchy satisfied by the se-

quence of marginals fj (t) = f ⊗j (t), where f solves the kinetic equation. Such a
hierarchy is easily recovered. Indeed coming back to the kinetic equation (3.7) we
observe that, by virtue of (4.1),

K
(
Mρ

(
xi, |xi − xs+1|))

= ∑
r

ar

∫
dzs+2 · · ·dzs+r+1χi,s+1(xs+2) · · ·χi,s+1(xks+r+1)

× f ⊗r (zs+2 · · · zs+r+1),

(4.9)

and (3.7) becomes (recalling that z1 = (x1, v1)):

(∂t + v1 · ∇x1)f (z1, t) + f (z1, t)

=
∞∑

r=0

ar

∫
dz2 · · ·

∫
dz2+rχ1,2(x3) · · ·χ1,2(x2+r )

× f (x1, v2; t)f (x2, v1; t)f ⊗r (z3 · · · z2+r; t).

(4.10)

As a consequence, an easy computation shows that fs = f ⊗s solves

(4.11)

(
∂t +

s∑
i=1

vi · ∇xi

)
fs(t) = −sfs(t) +

∞∑
r=0

ar Cs,s+r+1 fs+r+1,

where

Cs,s+r+1fs+r+1(Xs,Vs)

=
s∑

i=1

∫
dzs+1 · · · dzs+r+1χi,s+1(xs+2) · · ·χi,s+1(xs+r+1)

× fs+r+1
(
Xs+r+1,V

(i,s+1)
s+r+1

)
.

(4.12)

In view of the comparison of f N
s with fs , we rewrite (4.6) as

(4.13)

(
∂t +

s∑
i=1

vi · ∇xi

)
f N

s (t) = −sf N
s (t) + Es(t) +

∞∑
r=0

ar Cs,s+r+1 f N
s+r+1,
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where

(4.14) Es = E1
s (t) + E2

s (t) + E3
s (t)

and

(4.15) E3
s (t) = (N − s)αN

∞∑
r=0

ar CN
s,s+r+1 f N

s+r+1 −
∞∑

r=0

ar Cs,s+r+1 f N
s+r+1.

The initial conditions for (4.13) and (4.11) are

f N
s (0) = f ⊗s

0 1{s≤N},
where 1{s≤N} is the indicator of the set {s ≤ N} and

fs(0) = f ⊗s
0 ,

respectively. Here, f0 ∈ L1 is the initial datum of the kinetic equation.

5. Estimates of the error term. In this section, we establish some estimates
of the error term Es appearing in equation (4.13).

We observe preliminarily that, by the particular form of the function K given
by (4.1), we have, ‖K ′‖L∞ ≤ A and, using (3.1),

(5.1)
∣∣eK(N)

∣∣ ≤ A

N − 1
.

Therefore,

(5.2) αN = 1

(N − 1)(1 − eK(N))
≤ 4e|eK(N)|

N − 1
≤ 4e

A
N−1

N − 1
,

for N > 2A + 1. This follows by the obvious inequality

1

1 − x
≤ 4ex

valid for x ∈ (0, 1
2)

As a consequence, by (3.2) and from the fact that ‖K‖L∞ ≤ A,

(5.3) πi,j ≤ αNA ≤ 4Ae
A

N−1

N − 1
.

The operators CN and C are easily estimated:

(5.4) max
(∥∥CN

s,s+r+1gs+r+1
∥∥
L1,‖Cs,s+r+1gs+r+1‖L1

) ≤ s‖gs+r+1‖L1,

due to the fact that χ ≤ 1 and that the prefactor in formula (4.7) is less than unity.
As regards the error terms (4.4), we have by (5.3),

(5.5)
∥∥E1

s (t)
∥∥
L1 ≤ s2 4Ae

A
N−1

N − 1
.
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Strictly speaking here, we make a notational abuse. E1 is a measure so that
‖E1

s (t)‖L1 has to be understood as the total variation norm. In other words, ‖μ‖L1

is the L1 norm of the densities whenever μ is absolutely continuous. Otherwise, it
is the total variation.

Moreover, by (4.8) and (5.2),

(5.6)
∥∥E2

s (t)
∥∥
L1 ≤ 4e

A
N−1

(
N − s

N − 1

) s∑
i=1

∞∑
r=0

|ar |
(

1

N − 1

)r ∗∑
k1,k2,...,kr

1.

But
∗∑

k1,k2,...,kr

1 ≤
∗∗∑

k1,k2,...,kr

1 +
∗∗∗∑

k1,k2,...,kr

1,

where
∑∗∗

k1,k2,...,kr
1 means that km ≤ s + 1 for at least one m = 1,2, . . . , r , while∑∗∗∗

k1,k2,...,kr
means that all the km are larger than s + 1 but k� = km for at least one

couple �, m in 1,2, . . . , r .
Moreover, denoting by � the number of indices m for which km ≤ s + 1, we

have
∗∗∑

k1,k2,...,kr

1 =
r∑

�=1

(
r

�

)
s�(N − s − 1)r−�

= (N − 1)r − (N − s − 1)r ≤ rs (N − 1)r−1,

where in the last step we used the Taylor expansion of the function xr with initial
point N − s − 1.

Furthermore,
∗∗∗∑

k1,k2,...,kr

1 ≤ r(r − 1)

2
(N − s − 1)r−1.

Therefore,

∥∥E2
s (t)

∥∥
L1 ≤ 4e

A
N−1 s

∞∑
r=0

|ar |

× 1

(N − 1)r

(
rs(N − 1)r−1 + r(r − 1)

2
(N − s − 1)r−1

)

≤ 8e
A

N−1
s2

N − 1

∞∑
r=0

|ar |r2 ≤ 8Ae
A

N−1
s2

N − 1
,

(5.7)

where we used that the sum in the second inequality is bounded by A due to (4.2)
and the fact that r2 ≤ 8r .

To estimate E3
s , we have

E3
s = E3,1

s + E3,2
s ,
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where

(5.8) E3,1
s (t) = −T1

∞∑
r=0

ar CN
s,s+r+1 f N

s+r+1

and

(5.9) E3,2
s (t) = T2

∞∑
r=0

ar Cs,s+r+1 f N
s+r+1,

where

T1 := 1 − (N − s)αN

and

T2 := (N − s − 1) · · · (N − s − r)

(N − 1)r
− 1.

Moreover,

T1 = 1 − N − s

(N − 1)(1 − eK(N))

= s − 1

(N − 1)(1 − eK(N))
− eK(N)

(1 − ek(N))
.

Therefore, since A > 1, using (5.1) and (5.2), we obtain

|T1| ≤ s − 1

(N − 1)
4e|eK(N)| + 4

A

N − 1
e|eK(N)|

≤ 4e
A

N−1

(
s − 1

N − 1
+ A

N − 1

)

≤ 8Ae
A

N−1
s

N − 1
.

(5.10)

Finally,

|T2| ≤
∣∣∣∣(N − s − 1) · · · (N − s − r)

(N − 1)r
− 1

∣∣∣∣
≤

∣∣∣∣(N − s − r)r − (N − 1)r

(N − 1)r

∣∣∣∣
≤ r(s + r)(N − 1)r−1

(N − 1)r
≤ 2r2s

N − 1
.

(5.11)

As matter of facts by using (5.4), we conclude that

(5.12)
∥∥E3

s (t)
∥∥
L1 ≤ 10A2e

A
N−1

s2

N − 1
.

Summarizing, we have the following.
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PROPOSITION 1. We have

(5.13)
∥∥Es(t)

∥∥
L1 ≤ 22A2e

A
N−1

s2

N − 1
.

6. Convergence. In this section, we estimate the quantity

(6.1) �N
s (t) = f N

s (t) − fs(t),

where f N
s (t) and fs(t) solve the initial value problems (4.13) and (4.11), respec-

tively. Taking the difference between (4.13) and (4.11), we have

(6.2)

(
∂t +

s∑
i=1

vi · ∇xi

)
�N

s (t) = −s�N
s (t) + Es(t) +

∞∑
r=0

ar Cs,s+r+1 �N
s+r+1,

with initial datum

�N
s (0) = −f ⊗s

0 1{s>N},

where C and E are given by (4.12) and (4.14).
We define the operator Sj (t) : L1(Xj ,Vj ) → L1(Xj ,Vj ) by(

Sj (t)fj

)
(Xj ,Vj ) = e−j tfj (Xj − Vj t,Vj ),

and notice that

(6.3)
∥∥Sj (t)

∥∥
L1→L1 ≤ 1,

where ‖ · ‖L1→L1 denotes the operator norm.
We can express (6.2) in integral form

�N
j (t) = Sj (t − t1)�

N
j (t1)

+
∫ t

t1

dτ Sj (t − τ)

∞∑
r=0

ar Cj,j+r+1 �N
j+r+1(τ )

+
∫ t

t1

dτ Sj (t − τ)Ej (τ ).

(6.4)

for any t1 ∈ [0, t).
Therefore, we can represent the solution �N

j (t) as a series expansion in terms

of the initial datum �N
j (t1) and Ej(s). To this end, we define the operator Tn(t, t1)

by recurrence. For any sequence F = {Fj }∞j=1, Fj ∈ L1(Xj ,Vj ), set(
T0(t, t1)F

)
j = Sj (t − t1)Fj

and

(
Tn(t, t1)F

)
j =

∫ t

t1

dτ Sj (t − τ)

∞∑
r=0

ar Cj,j+r+1
(
Tn−1(τ, t1)F

)
j+r+1.
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Therefore, denoting by �N and E the sequences {�j }∞j=1 and {Ej }∞j=1, respec-
tively, by a standard computation we have

(6.5) �N(t) = ∑
n≥0

Tn(t, t1)�
N(t1) + ∑

n≥0

∫ t

t1

ds Tn(t, τ )E(τ).

We are now in position to establish the main result of the present paper.

THEOREM 1. For any T > 0 and α > log 2, there exists N(T ,α) such that for
any t ∈ (0, T ), any j ∈ N and for any N > N(T ,α), we have

(6.6)
∥∥�N

j (t)
∥∥
L1 ≤ 2j

(
1

N − 1

)e−α(8At+1)

.

REMARK. Note that according to (6.6) the quality of the order of convergence
rate deteriorates with increasing time. Note also that the magnitude of the error in-
creases exponentially with the order j of the marginals. In particular, if j increases
with N too fast, correlations are persistent in the limit N → ∞.

PROOF. The proof follows two steps. First, we estimate Tn(t, t1), and hence
�N(t) for a short time interval δ = t − t1. Then we split the time interval (0, t)

into m intervals of length δ, with δ small enough, to obtain the result inductively.

6.1. Short time estimate. We first observe, using (6.3), that

(6.7)
∥∥(
Tn(t, t1)F

)
j

∥∥
L1 ≤ j

∞∑
r=0

|ar |
∫ t

t1

dτ
∥∥(
Tn−1(τ, t1)F

)
j+r+1

∥∥
L1 .

Iterating this inequality and using, for t > t1,∫ t

t1

dτ1

∫ τ1

t1

dτ2 · · ·
∫ τn−1

t1

dτn = (t − t1)
n

n! ,

we obtain, for any F = {Fj }∞j=1, setting δ = 1
8A

and R = ∑n−1
i=1 ri ,∥∥(

Tn(t, t − δ)F
)
j

∥∥
L1

≤ δn

n!
∑

r1···rn
|ar1 | · · · |arn |

≤ j (j + r1 + 1) · · · (j + R + n − 1) sup
τ∈(t−δ,t)

∥∥Fj+R+n(τ )
∥∥
L1

≤ ∑
r1···rn

|ar1 | · · · |arn |2j+R−1(2δ)n sup
τ∈(t−δ,t)

∥∥Fj+R+n(τ )
∥∥
L1 .

(6.8)
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In the last step, we used that

j (j + r1 + 1) · · · (j + R + n − 1)

n! ≤ (j + R)(j + R + 1) · · · (j + R + n − 1)

n!
≤ (j + R + n − 1)!

n!(j + R − 1)! ≤ 2j+R+n−1.

Applying (6.8) when F = E with t − δ replaced by s, we get, by Proposition 1,∫ t

t−δ
ds

∥∥(
Tn(t, s)E(s)

)
j

∥∥
L1

≤ CA2e
A

N−1 δ
∑

r1···rn
|ar1 | · · · |arn |2j+R−1(2δ)n

(j + R + n)2

N − 1
,

(6.9)

where from now on C will denote a positive numerical constant. Moreover,

(j + R + n)2 < 3n2 + 3j2 + 3R2

so that

(6.10) 2j−1
∑

r1···rn
|ar1 | · · · |arn |2R(R + j + n)2 ≤ C2jAn(

j2 + n2)
.

Here and in the sequel, we use systematically∑
r1···rn

|ar1 | · · · |arn |8(r1+r2+···+rn) ≤ An.

Finally, summing over n, using that, for x ∈ (0,1),

∞∑
n=0

(
j2 + n2)

xn = j2

1 − x
+ 1 − 3(1 − x) + (1 − x)2

(1 − x)3 ≤ 4j2

(1 − x)3

we conclude that, recalling that δ = 1
8A

,

(6.11)
∑
n≥0

∫ t

t−δ
ds

∥∥(
Tn(t, s)E(s)

)
j

∥∥
L1 ≤ C(A)2j j2 1

N − 1
,

where C(A) is a constant depending only on A.

6.2. Iteration. Given an arbitrary t > 0, we split the time interval (0, t) in
intervals (kδ, (k + 1)δ), k = 1, . . . ,m where m is an integer for which t ∈ ((m −
1)δ,mδ].

Denoting

(6.12) Dj(k) = sup
s∈((k−1)δ,kδ)

∥∥�N
j (s)

∥∥
L1, k = 1, . . . ,m,



PROPAGATION OF CHAOS FOR TOPOLOGICAL INTERACTIONS 2609

with Dj(0) = �N
j (0) = −f

⊗j
0 1j>N , we assume inductively that, for α to be fixed

later

(6.13) Dj(k − 1) ≤ 2jϕ(k − 1,N) with ϕ(k,N) = 1

(N − 1)e
−αk

.

We want to prove that the same holds for k, namely

(6.14) Dj(k) ≤ 2jϕ(k,N).

Note that the proof of the theorem is easily achieved once (6.14) is proven.
Equation (6.14) is trivially true for k = 0 since

Dj(0) ≤ 2j 2−N.

Assuming (6.13) and applying (6.8) and (6.11) to (6.5), with t ∈ ((k − 1)δ, kδ),
t1 = (k − 1)δ and F = �N((k − 1)δ), we have

Dj(k) ≤ ∑
n≥0

∑
r1···rn

|ar1 | · · · |arn |2j+R−1(2δ)n2j+R+nϕ(k − 1,N)

+ j22j C(A)

N − 1
.

(6.15)

Now observe that Dj(k) ≤ 2 so that (6.14) holds true whenever j is so large to
satisfy

(6.16) 2jϕ(k,N) > 2.

Otherwise,

(6.17) 2j ≤ 2

ϕ(k,N)

or, equivalently

(6.18) j ≤ 1 + e−αk

log 2
log(N − 1).

Using (6.18), we control the second term in the right-hand side of (6.15) by

2jϕ(k,N)

{
C(A)

(
1 + e−αk

log 2
log(N − 1)

)2(
1

N − 1

)1−e−αk}
.

Now it is clear that

{· · · } ≤ 1

2

provided that N is sufficiently large depending on α, A and k (and hence on t).
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On the other hand, the first term in the right-hand side of (6.15) is bounded by
(using (6.17)) ∑

n≥0

An2j 2j−1(4δ)nϕ(k − 1,N)

≤ 2j 1

1 − 4Aδ
ϕ(k − 1,N)(N − 1)e

−αk

≤ 1

2
2jϕ(k,N).

(6.19)

The last step follows from the fact that

(N − 1)e
−αk

(
1

N − 1

)e−α(k−1)

=
(

1

N − 1

)e−αk(
1

N − 1

)e−αk(eα−2)

≤ 1

4

(
1

N − 1

)e−αk

for α > log 2 and N sufficiently large, namely such that(
1

n − 1

)β(T ,α)

<
1

4
,

where β = e− αT
δ (eα − 2).

This concludes the proof. �

Data statement. No new data were collected in the course of this research.
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