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A MCKEAN–VLASOV EQUATION WITH POSITIVE
FEEDBACK AND BLOW-UPS
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University of Oxford∗ and University of Bristol†

We study a McKean–Vlasov equation arising from a mean-field model of
a particle system with positive feedback. As particles hit a barrier, they cause
the other particles to jump in the direction of the barrier and this feedback
mechanism leads to the possibility that the system can exhibit contagious
blow-ups. Using a fixed-point argument, we construct a differentiable solu-
tion up to a first explosion time. Our main contribution is a proof of unique-
ness in the class of càdlàg functions, which confirms the validity of related
propagation-of-chaos results in the literature. We extend the allowed initial
conditions to include densities with any power law decay at the boundary,
and connect the exponent of decay with the growth exponent of the solu-
tion in small time in a precise way. This takes us asymptotically close to the
control on initial conditions required for a global solution theory. A novel
minimality result and trapping technique are introduced to prove uniqueness.

1. Introduction. This paper concerns a McKean–Vlasov problem, formu-
lated probabilistically as ⎧⎪⎪⎨⎪⎪⎩

Xt = X0 + Bt − αLt ,

τ = inf{t ≥ 0 : Xt ≤ 0},
Lt = P(τ ≤ t),

(1.1)

where α ∈ R is a constant, B is a standard Brownian motion and X0 is an inde-
pendent random variable distributed on the positive half-line. We denote the law
of X0 by ν0. A solution to this problem is a deterministic and initially zero càdlàg
function t �→ Lt that is increasing and for which (1.1) holds for any Brownian
motion B . Viewing (1.1) as an SDE in X, notice that there is no distinction to be
made between strong and weak notions of solution: knowing L fixes the law of
X and, together with any Brownian motion, L fixes a pathwise construction of X.
When α > 0, the equations have a positive feedback effect and this is the case we
consider here. The situation for α ≤ 0 is classical and existence and uniqueness of
smooth solutions is known [2–4].
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Our motivation for studying (1.1) comes from mathematical finance, where it
can serve as a simple model for contagion in large financial networks or large port-
folios of defaultable entities. To illustrate how (1.1) may emerge in this context,
consider a large system of N banks. Following the structural approach to credit
risk, we say that the ith bank defaults when its asset value, Ai

t , hits a default bar-
rier, Di

t . This gives rise to the notion of distance-to-default, for which a simple
model could be of the form

Y i
t := log

(
Ai

t

) − log
(
Di

t

) = Xi
0 +

∫ t

0
b(s) ds +

∫ t

0
σ(s) dBi

s, i = 1, . . . ,N,

where X1
0, . . . ,X

N
0 are i.i.d. copies of X0 and B1, . . . ,BN are independent Brow-

nian motions. Next, we can introduce an element of contagion with a model in
which the default of one bank causes the other banks to lose a proportion α/N of
their assets. For large N , we have 1−α/N � exp{−α/N}, so the new asset values,
Â, can then be defined by

Â
i,N
t :=

N∏
j=1

exp
{
− α

N
1t≥τ j,N

}
Ai

t = exp

{
− α

N

N∑
j=1

1t≥τ j,N

}
Ai

t , t < τ i,N ,

where τ i,N := inf{t > 0 : Xi,N
t ≤ 0} for X

i,N
t := log(Â

i,N
t )− log(Di

t ). After taking
logarithms, it follows that the new distances-to-default, Xi,N , satisfy

(1.2) dX
i,N
t = b(t) dt + σ(t) dBi

t − α dLN
t with LN

t = 1

N

N∑
j=1

1t≥τ j,N ,

for i = 1, . . . ,N . If we let N → ∞, then the same arguments as in [6] show that
we can recover solutions to (1.1)—with the corresponding drift and volatility—as
suitable topological limit points of the particle system (1.2), and these solutions are
global: they exist for all t ≥ 0. As regards the form of (1.2), we will concentrate
the analysis in this paper on the simplest case (1.1) and then we devote the final
Section 6 to a discussion of more general coefficients.

The first version of the problem (1.1) appeared in the mathematical neuro-
science literature as a mean-field limit of a large network of electrically coupled
neurons [2, 3, 5, 6]. In this setting, each neuron is identified with an electrical
potential (given by an SDE) and when it reaches a threshold voltage, the neuron
fires an electrical signal to the other neurons, which then become excited to higher
voltage levels. After reaching the threshold, the neuron is instantaneously reset to
a predetermined value and it then continues to evolve according to this rule in-
definitely. Therefore, the model is different to our setting as we do not reset the
mean-field particle in (1.1), however, the essential mathematical difficulties from
the positive feedback remain common to both models. With regard to the financial
framework introduced above, we note that a similar model for default contagion
(with constant drift and volatility) was recently proposed in [14].
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Mathematically, the McKean–Vlasov problem (1.1) can be recast in a num-
ber of ways. We denote the law of Xt killed at the origin by νt and set νt (φ) :=
E[φ(Xt)1t<τ ], for suitable test functions φ. Then a simple application of Itô’s for-
mula gives the nonlinear PDE⎧⎪⎪⎨⎪⎪⎩

νt (φ) = ν0(φ) + 1

2

∫ t

0
νs

(
φ′′)ds − α

∫ t

0
νs

(
φ′)dLs,

Lt = 1 −
∫ ∞

0
νs(dx),

(1.3)

for φ ∈ C2 with φ(0) = 0 and t ≥ 0. Writing Vt for the density of νt (which exists
by Proposition 2.1), we can formally integrate by parts in (1.3) to find the Dirichlet
problem

∂tVt (x) = 1

2
∂xxVt (x) + αL′

t ∂xVt (x), L′
t = 1

2
∂xVt (0), Vt (0) = 0,(1.4)

on the positive half-line. In other words, the law of X (absorbed at the origin)
solves the heat equation on (0,∞) with a drift term proportional to the flux across
the Dirichlet boundary at zero—the latter being a highly singular nonlocal nonlin-
earity. Setting v(t, x) := −Vt(x − αLt) in (1.4), the equations for v and L can be
viewed as a Stefan problem with supercooling on the semi-infinite strip (αLt ,∞).
From this point of view, it is known that L′

t may explode in finite time as has been
analysed (on a finite strip) in the series of papers [8–10, 13].

A third characterisation of (1.1) is as the solution to the integral equation∫ ∞
0

�

(
−x − αLt

t1/2

)
ν0(dx) =

∫ t

0
�

(
α

Lt − Ls

(t − s)1/2

)
dLs,(1.5)

where � is the c.d.f. of the Normal distribution. This is a Volterra integral equation
of the first kind, and a derivation can be obtained by following [15]. The formula-
tion that is most helpful here is to view the problem as a fixed point of the map 	

defined by ⎧⎪⎪⎨⎪⎪⎩
X


t = X0 + Bt − α
t ,

τ 
 = inf
{
t ≥ 0 : X


t ≤ 0
}
,

	[
]t = P
(
τ 
 ≤ t

)
,

(1.6)

that is, a solution to 	[L] = L. We will use this map in stating and proving our
main theorems. The key is to find a suitable space on which 	 stabilises and to
show that it is contractive (Theorems 1.6 and 1.7). Note that [5, 14] also take
this approach to the problem, but our techniques differ in that they are entirely
probabilistic and do not rely on PDE estimates.

A very interesting feature of the problem (1.1) is that it exhibits a phase tran-
sition in the continuity of solutions as the feedback strength, α, increases. The
methods of [5], for the neuroscience version of the problem, show that for α suf-
ficiently small (and ν0 = δx with x > 0) there is a unique solution to (1.1) in the
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FIG. 1. Example of a solution to (1.3), (1.4) showing two blow-up times. The pixel intensity repre-
sents the value of the solution density at that space-time coordinate. The initial condition is a linear
combination of indicator functions of three disjoint sets.

class of continuously differentiable functions. On the other hand, the extremely
simple proof below (modified from [2]) shows that (1.1) cannot have a continu-
ous solution for values of α that are sufficiently large. When this is the case, the
positive feedback becomes too great and at some point in time the loss process,
L, undergoes a jump discontinuity, which we call a blow-up. In other words, in an
infinitesimal period of time, a macroscopic proportion of the mass in the PDE (1.3)
is lost at the boundary, that is, the system blows up (see Figure 1). It is intriguing
that this result can be proved so simply and with no technical estimates, although
of course the threshold obtained below is not sharp and the proof does not reveal
anything about the nature of the blow-ups.

THEOREM 1.1 (Blow-up for large α). Let m0 := ∫ ∞
0 xν0(dx). If α > 2m0,

then any solution to (1.1) cannot be continuous for all times.

PROOF. For a contradiction, suppose L solves (1.1) and is continuous. Stop-
ping X at τ , we then get

0 ≤ Xt∧τ = X0 + Bt∧τ − αLt∧τ .

Taking expectations and rearranging,

m0 ≥ αE[Lt∧τ ] → αE[Lτ ] = α

∫ ∞
0

Ls dLs as t → ∞,

where we note that τ < ∞ a.s. and L∞ = 1, since Brownian motion hits every
level with probability 1. As L is continuous and increasing, the integral can be
computed exactly, so we get

m0 ≥ 1

2
α

(
L2∞ − L2

0
) = 1

2
α,

which is the required contradiction. �
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FIG. 2. On the left, Vt− is the density just before a jump of size �Lt . This density is then translated
by α�Lt and the mass falling below the boundary at zero equals the change in the loss, which gives
(1.7). After the jump, the system is restarted from the density on the right. Notice that, in general, this
new initial condition will not vanish at the origin.

From Theorem 1.1, it is clear that, in general, we cannot restrict our search to
solutions of (1.1) that are continuous and so we must allow càdlàg solutions. If a
solution has a jump of size �Lt at time t , then the instantaneous loss must equal
the mass of νt− absorbed at the boundary after a translation by −α�Lt , that is,

(1.7) νt−(0, α�Lt) = �Lt ;
see Figure 2. Unfortunately, this equation alone is not sufficient to determine the
jump sizes of a discontinuous solution. In particular, �Lt = 0 is always a solution,
but in general this is an invalid jump size by Theorem 1.1. To continue the solution
after a blow-up, we must decide how to choose the jump size from the solution set
of (1.7). In [6], the authors introduce the term physical solution for a solution, L,
that satisfies

(1.8) �Lt = inf
{
x ≥ 0 : νt−(0, αx) < x

}
for all t ≥ 0. The next result justifies that this is a natural condition, as it is the
smallest possible choice of jump size that admits càdlàg solutions (see Section 2
for a proof and further discussion).

PROPOSITION 1.2 (Physical solutions have minimal jumps). Suppose L is any
càdlàg process satisfying (1.1). Then

�Lt ≥ inf
{
x ≥ 0 : νt−(0, αx) < x

}
,

for every t ≥ 0. In particular, if the right-hand side is nonzero for some t ≥ 0, then
L has a blow-up at time t .

It is helpful to consider the density function, Vt−, of νt− in light of Proposi-
tion 1.2. If, at some time t , Vt− is greater than or equal to the critical value of α−1

on a nonzero interval about the origin, then a blow-up in L is forced to occur at
that time (this is what happens in Figure 2).

In [6], it is shown that there exist (global) physical solutions to the neuroscience
version of equation (1.1), for any α > 0, albeit with an initial measure ν0 that
vanishes in a neighbourhood of zero. Those solutions arise as topological limit
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points of a corresponding finite particle system analogous to (1.2). Consequently,
the authors are unable to establish regularity results on the solutions. The main
advantage of a fixed-point argument is that solutions are guaranteed to have known
regularity, at least on a small time interval.

Our motivation in this paper is to make progress towards the following conjec-
ture.

CONJECTURE 1.3 (Global uniqueness). Solutions to (1.1) that satisfy the
physical jump condition (1.8) are unique. Furthermore, between jump times the
solution is continuously differentiable, and we predict

√
t -singularities immedi-

ately before and after jumps, which is to say: For all t0 > 0 that satisfy �Lt0 > 0,
we have L′

t0+h = O(|h|−1/2), as h → 0.

Currently, we are far from proving Conjecture 1.3, and the major obstruction
concerns the initial conditions. To see why, notice that after a jump has taken place,
we must, in general, restart the system from an initial law that has a density which
does not vanish at the origin (see Figure 2, as well as Proposition 2.1 concerning
the existence of a density for ν at all times). In fact, without further analysis, all
we can say about the measure νt after a blow-up at time t is that

inf
{
x ≥ 0 : νt (0, αx) < x

} = 0.

Therefore, to attack Conjecture 1.3 it is necessary to make progress towards the
following simpler goal.

CONJECTURE 1.4 (Uniqueness for nonvanishing initial laws). Suppose ν0 has
a density and satisfies inf{x ≥ 0 : ν0(0, αx) < x} = 0. Then the solution, L, to
(1.1) is unique and continuously differentiable up to a small time, and it satisfies
L′

t = O(t−1/2) as t ↓ 0.

Initial conditions that do not vanish at the origin are currently outside the scope
of known results, and the results that do exist only tackle the uniqueness in a too re-
strictive class of candidate solutions. In the literature, the closest to Conjecture 1.4
is [14], Theorem 2.6, which is established for a slight variant of our problem: Given
an initial density V0 ∈ H 1(0,∞) with V0(0) = 0, it gives existence and uniqueness
up to the first time the L2-norm of L′ explodes in the class of candidate solutions
for which L ∈ H 1(0, t0) for some t0 > 0. Here, H 1(a, b) denotes the usual Sobolev
space with one weak derivative in L2(a, b). We note that these conditions on V0
imply that it decays like o(x1/2) near the origin, so it is far from what is needed in
order to proceed to a global uniqueness theory. The aforementioned was preceded
by [5], Theorem 4.1, which gives existence and uniqueness on a small time interval
in the class of C1 solutions, starting from an initial density that decays like O(x)

as x → 0. The connection between the boundary decay of the initial condition and
the short-time regularity of solutions will feature prominently in our results below.
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Moreover, the existing results in the literature leave open the question of
whether there is (short-time) uniqueness in the wider class of càdlàg solutions.
This is more than just a technical curiosity: Indeed, the physical and financial mo-
tivations for (1.1) derive from the corresponding particle system, as presented in
(1.2), but the requisite regularity of its limit points is not known and could be dif-
ficult to verify a priori—all we know is that they are càdlàg. Thus, it obstructs the
full convergence in law of the finite system (i.e., the propagation of chaos).

1.1. Main results. Our contribution here is to construct an H 1 solution to (1.1)
up to the first time its H 1 norm explodes, and to show that it is the unique solution
on this time interval amongst all possible càdlàg solutions (Theorem 1.8). We al-
low initial densities with any power law decay at the origin, that is, decay of order
O(xβ) as x → 0 for some 0 < β < 1. To be precise, we consider initial condi-
tions, ν0, that have a bounded initial density, V0, for which we can find constants
C,D,x� > 0 such that

(1.9) V0(x) ≤ Cxβ1x≤x� + D1x>x� for every x > 0.

A key observation is that it is only the values of C, x� and β that determine the
behaviour of solutions in short time (Theorem 1.7). The reason for assuming an
initial density is that this state is reached after any nonzero period of time anyway
(Proposition 2.1). Below, we state our main results chronologically to make it clear
how they are connected.

First, we introduce the following subsets of H 1.

DEFINITION 1.5. For γ ∈ (0, 1
2), A > 0 and t0 > 0, let S(γ,A, t0) denote the

subset of H 1(0, t0) given by

S(γ,A, t0) := {

 ∈ H 1(0, t0) : 
′

t ≤ At−γ for a.e. t ∈ [0, t0]}.
Our first argument is to show that, on these sets, 	 is an L∞-contraction. The

proof follows by comparing the first hitting times of a single Brownian motion
driven by two different drift functions (Proposition 3.1), which is a coupling of
the X
 processes in (1.6) to the same Brownian motion B . As a by-product of this
method, we can deduce that differentiable solutions are minimal in the class of
potential càdlàg solutions, which is an important ingredient in the main uniqueness
result (Theorem 1.8). The power of the technique lies in the ability to estimate the
positive part of the difference (Lt − L̄t )

+, for two solutions L and L̄, assuming
only the regularity properties of L and not L̄.

THEOREM 1.6 (Contraction and minimality). For any γ ∈ (0, 1
2) and A > 0,

there exists t0 > 0 such that for all 
, 
̄ ∈ S(γ,A, t0),∥∥	[
] − 	[
̄]∥∥L∞(0,t0)
≤ 1

2
‖
 − 
̄‖L∞(0,t0).
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Moreover, if there exists a solution L ∈ S(γ,A, t0) to (1.1) for some γ ∈ (0, 1
2),

A > 0 and t0 > 0 and another solution L̄ that is càdlàg, then L̄t ≥ Lt for all t < t0.

To construct a fixed-point solution, we find choices of the parameters γ , A and
t0 such that the map 	 stabilises on the set S(γ,A, t0). An interesting product of
our technique is that we are able to recover the exact regularity of the solutions
at time zero from the decay of the initial condition near the Dirichlet boundary.
Thus, the main factor in the short-time growth of solutions is the behaviour of the
heat equation with absorbing boundary conditions and not the feedback effect in
the model. This should be an indication that something new is required to tackle
Conjecture 1.3. Crucially, we rely on Girsanov’s theorem to control t �→ Bt −α
t ,
for which we require 
 ∈ H 1(0, t0). Notice, however, that if V0(+0) > 0 as in the
hypothesis of Conjecture 1.3, then we must have 
t ≥ const. ×√

t (by comparison
with the case α = 0), and so we can no longer expect this approach to be viable.

THEOREM 1.7 (Stability and fixed point). There exists a constant K > 0 de-
pending only on β , C and x� such that for all ε > 0 there exists t0 for which

	 : S
(

1 − β

2
,K + ε, t0

)
→ S

(
1 − β

2
,K + ε, t0

)
.

Hence 	 has a fixed point, L = 	[L], in S(
1−β

2 ,K + ε, t0) and this solution is
unique in the class of candidate solutions in

⋃
0<γ<1/2,A>0 S(γ,A, t0).

This short-time fixed-point construction can be extended by observing that if L

is in the space H 1(0, t0), then, by appealing to Girsanov’s theorem, we can show
that the density Vt0− must have decay of order O(xβ) near the Dirichlet boundary.
In other words, we can recover the regularity of the initial condition at time t0, and
so exactly the same argument can be applied to the system restarted from time t0.
Consequently, we can extend the solution constructed in Theorem 1.7 onto another
small nonzero time interval and iterate this procedure, so long as the solution we
obtain is in H 1. The catch that prevents this procedure from giving a differentiable
solution for all times (recall that this would contradict Theorem 1.1) is that we
lose control of the constants in the relevant S subsets. Hence the construction
only applies up to the first time the H 1-norm of the solution explodes. Trivially,
this occurs no later than the first jump, however, the mathematical challenge in
attempting to restart the problem after an explosion time seems no less difficult
than Conjecture 1.4.

THEOREM 1.8 (Uniqueness up to explosion). There exists a solution, L, to
(1.1) up to time

texplode := sup
{
t > 0 : ‖L‖H 1(0,t) < ∞} ∈ (0,∞]
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such that, for every t0 < texplode, we have L ∈ S(
1−β

2 ,K, t0) for some constant
K > 0. Furthermore, L is the unique solution on [0, texplode): If L̄ is any other
generic càdlàg solution to (1.1) on [0, t] for some t < texplode, then Ls = L̄s for all
s ∈ [0, t].

The analogous result for the McKean–Vlasov problem corresponding to (1.2) is
presented in Section 6. The first step towards uniqueness is given by Theorem 1.6:
The differentiable solution constructed in the first part of Theorem 1.8 is minimal,
so it must be a lower bound of any generic candidate càdlàg solution, at least in
small time. To obtain an upper bound, we introduce a family of processes in which
we kill a small proportion, ε > 0, of the initial condition at time zero. In Sec-
tion 5, we show that these modified solutions cannot overlap and so they bound
the generic solutions from above. By returning to the contraction argument in The-
orem 1.6, we show that these modified solutions converge to the differentiable
solution as the amount of deleted mass, ε, tends to zero. Thus, the envelope of so-
lutions shrinks to zero size and this forces uniqueness of solutions. The power of
this method is that it circumvents the need to have quantitative information about
the generic candidate càdlàg solutions.

REMARK 1.9 (Propagation of chaos). Theorem 1.8 resolves ambiguity about
the validity of the propagation of chaos. By following the methods in [6], it can
be shown that the particle system in (1.2) has limit points that converge in law
(with respect to a suitable topology) to a càdlàg solution of (1.1). Now that we
have uniqueness amongst general càdlàg solutions, we can conclude that this is
in fact full convergence, up to the first explosion time, and not just subsequential
convergence.

Overview of the paper. In Section 2, we motivate and explain the physical
condition (1.8) and prove that it is necessary in order to have a càdlàg solution.
In Section 3, we prove Theorem 1.6 via a comparison argument. In Section 4, we
prove Theorem 1.7 by finding a space on which the map 	 stabilises. In Section 5,
we prove Theorem 1.8 by extending the fixed-point argument up to the explosion
time and introducing the ε-deleted solutions used to bound candidate solutions.
In Section 6, we show how our arguments can be extended to incorporate more
general drift and diffusion coefficients.

2. Minimal jumps and α-fragility: Proof of Proposition 1.2. Our aims in
this section are twofold: First, we prove that the physical jump condition in (1.8)
yields the solution with the smallest possible jump size (at any given instance) and,
second, we provide some intuition for this behaviour.

We begin by observing that regardless of the initial condition, at any time t > 0,
the measure νt will have a density.
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PROPOSITION 2.1 (Existence of a density process). Let (νt )t≥0 be the law
of a solution, X, to (1.1) absorbed at the origin. For all t > 0, νt is absolutely
continuous with respect to the Lebesgue measure and, therefore, has a density
function, Vt : (0,∞) → (0,∞). Moreover, if ν0 has a density V0 ∈ L∞, then
‖Vt‖∞ ≤ ‖V0‖∞.

PROOF. By omitting the killing at zero, we have the upper bound

νt (S) ≤ P(X0 + Bt − αLt ∈ S) =
∫
S

∫ ∞
0

pt(x0 + x − αLt)ν0(dx0) dx,

where pt is the Brownian transition kernel. Hence νt (S) ≤ (2πt)−1/2 Leb(S), so
the first claim follows from the Radon–Nikodym theorem. If ν0 has a density V0
in L∞, then we get

Vt(x) ≤
∫ ∞

0
pt(x0 + x − αLt)V0(x0) dx0 ≤ ‖V0‖∞,

since
∫
R pt(y) dy = 1. This proves the second claim. �

As remarked in Section 1, equation (1.7) alone is insufficient to determine the
jump size at a given time. Not only is zero always a solution of that equation, but
there may indeed be many other solutions that differ from the physical solution
given by (1.8).

EXAMPLE 2.2. Suppose we have an initial law ν0 with density

V0(x) = α−110<x<α + 2α−112α<x<3α.

Then any jump size �L0 ∈ [0,1] ∪ {3} solves (1.7), however, the physical solution
is given by the condition �L0 = 1; see Figure 3.

FIG. 3. The function from Example 2.2 is on the left. The candidate jumps—that is, solutions to
(1.7)—are the points on the right where the graphs intersect. The point (1,1) gives the minimal
allowed jump size of 1, since x = 1 is the value given by (1.8).
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An alternative way to view the physical jump condition (1.8), which better mo-
tivates Proposition 1.2, is the notion of fragility. To state a proper definition, con-
sider first the sequence

f0(μ,α, ε) := μ(0, αε),

fn+1(μ,α, ε) := μ
(
0, αε + αfn(μ,α, ε)

)
for n ≥ 0,

(2.1)

for a given measure μ and constants ε > 0 and α > 0. Notice that fn(μ,α, ε) is
increasing in n and in ε. Hence we can deduce that the limit f∞(μ,α, ε) exists and
is an increasing function of ε. Therefore, we can sensibly define the following.

DEFINITION 2.3 (α-fragility). The measure, μ, is said to be α-fragile if

lim
ε→0

f∞(μ,α, ε) �= 0.

To see why α-fragility is related to physical solutions, consider starting the heat
equation from an initial law ν0. In small time, we will immediately lose mass at
the boundary, say an ε amount. To approximate the contagious system in (1.1),
we must then shift the measure down towards the origin by an amount αε. If we
apply this to ν0, we obtain a loss of f0(ν0, ε, α), which we can then further shift
our initial condition by, and so on, hence obtaining f∞(ν0, α, ε) in the limit. If
this terminal quantity does not shrink to zero with ε, we should not expect the
solution to (1.1) to be right continuous at t = 0: An infinitesimal loss of mass
starts a cascade of losses summing to a nonzero amount. Indeed, this is a heuristic
version of the argument presented in the proof of Proposition 1.2 below. For now,
we notice that there is, in fact, an exact correspondence between f∞(μ,α,0+) and
the physical jump condition (1.8).

PROPOSITION 2.4. For any atomless measure μ on the positive half-line and
α > 0, we have

lim
ε→0

f∞(μ,α, ε) = inf
{
x ≥ 0 : μ(0, αx) < x

}
.

PROOF. Write f := limε→0 f∞(μ,α, ε) and

x0 := inf
{
x ≥ 0 : μ(0, αx) < x

}
.

Suppose f < x0. Then we can find ε > 0 such that f∞(μ,α, ε) + ε < x0. By
taking the limit as n → ∞ in (2.1), we get

f∞(μ,α, ε) = μ
(
0, αε + αf∞(μ,α, ε)

) ≥ ε + f∞(μ,α, ε),

where the inequality is due to the definition of x0, but this is clearly a contradiction.
Suppose f > x0. By definition of x0, we can find a sequence (xδ) ↓ x0 as δ ↓ 0

such that

μ(0, αxδ) ≤ xδ − δ.
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Fix any such δ > 0 and take ε ∈ (0, xδ ∧ δ), then we have

f0(μ,α, ε) = μ(0, αε) ≤ μ(0, αxδ) ≤ xδ − δ ≤ xδ − ε.

Since f0(μ,α, ε) + ε ≤ xδ , we may now repeat the argument to get

f1(μ,α, ε) = μ
(
0, αε + αf0(μ,α, ε)

) ≤ μ(0, αxδ) ≤ xδ − δ ≤ xδ − ε,

and so on. Proceeding inductively, we conclude that f ≤ xδ − δ, so taking δ ↓ 0
gives f ≤ x0, which is a contradiction. �

EXAMPLE 2.5. Returning to the density V0 from Example 2.2, we define
Nε := �ε−1 − 1� for ε < 1. Then α(n + 1)ε ≤ α for all n ≤ Nε , so we get

fn(V0, α, ε) = (n + 1)ε ≤ 1 ∀n ≤ Nε.

Thereafter, we have α < α(Nε + 2)ε < 2α, so fNε+1(V0, α, ε) = 1 and, since α <

αε + α < 2α, it follows that fn(V0, α, ε) remains equal to 1 for all n > Nε . Con-
sequently, we have f∞(V0, α, ε) = 1 for all ε < 1, and hence f∞(V0, α,0+) = 1,
which indeed agrees with the physical jump condition.

REMARK 2.6 (Restarting solutions at a nonzero time). To prove Proposi-
tion 1.2, it will be sufficient to take t = 0 in the statement of the result, since
we can always restart the system at a time t > 0, taking t as our new time origin.
This might be confusing at first glance as we specified L0 = 0 in our definition of a
solution to (1.1). To be clear, if we want to solve (1.1) from a time t > 0 onwards,
and we have a solution L up to time t , then we can solve the problem⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

X̃x
s = x + Bs − αL̃s,

τ̃ x = inf
{
s ≥ 0 : X̃x

s ≤ 0
}
,

L̃s =
∫ ∞

0
P

(
τ̃ x ≤ s

)
Vt(x) dx,

L̃0 = 0 and L̃ càdlàg,

for s > 0, where Vt is the density for the problem at time t . Indeed, this is exactly
the same formulation as (1.1), except the initial condition is a sub-probability den-
sity. We then have that

Lu := Lt + L̃u−t

is an extension of L for u ≥ t , which solves (1.1). Therefore, restarting the system
at a nonzero time is just a matter of normalising the initial condition.

PROOF OF PROPOSITION 1.2. For a contradiction, suppose that L is a càdlàg
process satisfying (1.1) for which the inequality in Proposition 1.2 is violated. As
noted in Remark 2.6, it suffices to assume that this occurs at t = 0, and this implies
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that x0 := inf{x > 0 : ν0(0, αx) < x} > 0 and Lh → 0 as h ↓ 0. By definition of
x0, we have

ν0(0, x) ≥ α−1x for x < αx0.

Thus, if F is a decreasing differentiable function, then∫ αx0

0
F(x)ν0(dx) = F(αx0)ν0(0, αx0) −

∫ αx0

0
F ′(x)ν0(0, x) dx

≥ α−1
(
αx0F(αx0) −

∫ αx0

0
xF ′(x) dx

)
= α−1

∫ αx0

0
F(x)dx.

Using this lower bound, it holds for any h > 0 that

Lh = P(τ ≤ h) ≥
∫ ∞

0
P(Bh ≤ αLh − x)ν0(dx)

≥ α−1
∫ αx0

0
P(Bh − αLh ≤ −x)dx

= α−1h1/2
∫ αh−1/2(x0−Lh)

−αh−1/2Lh

�(−y)dy.

Here, � is the Normal c.d.f. and we shall also need the Normal p.d.f., φ. Observe
that the function

�(x) := φ(x) − x�(−x), x ∈ R

satisfies

(2.2) � ′(x) = −�(−x) for every x ∈ R.

Now let c0 := αx0/2. Since we are assuming Lh → 0, we have α(x0 −Lh) > c0
for all h > 0 sufficiently small, and hence

αh−1/2Lh ≥
∫ c0h

−1/2

−αh−1/2Lh

�(−y)dy = [
x�(−x) − φ(x)

]c0h
−1/2

−αh−1/2Lh
.

Using �(αh−1/2Lh) = 1 − �(−αh−1/2Lh) and φ(−αh−1/2Lh) = φ(αh−1/2Lh),
we can rearrange this inequality to find that

φ
(
αh−1/2Lh

) − αh−1/2Lh�
(−αh−1/2Lh

)
≤ φ

(
c0h

−1/2) − c0h
−1/2�

(−c0h
−1/2)

.

In other words, for all h > 0 sufficiently small, we have

�
(
αh−1/2Lh

) ≤ �
(
c0h

−1/2)
,

but this then gives us our required contradiction: By (2.2), � is strictly decreasing,
and if Lh → 0 as h ↓ 0 then we can certainly find h sufficiently small so that
αh−1/2Lh < c0h

−1/2. �
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3. Contractivity of � and minimality of differentiable solutions: Proof of
Theorem 1.6. The main objective in this section is to prove Theorem 1.6, which
states that differentiable solutions are minimal and that 	 is contractive on L∞.
The key technique is the following comparison result, which is obtained by cou-
pling two outputs, 	[
] and 	[
̄], of the map (1.6) to the same driving Brownian
motion.

PROPOSITION 3.1 (Comparison). Let 
 and 
̄ be two increasing and initially
zero càdlàg functions and 	 be defined as in (1.6) for model parameters α and ν0.
Suppose that 
 is continuous on [0, t0). Then

(
	[
]t − 	[
̄]t )+ ≤

∫ t

0

{
2�

(
α

(
s − 
̄s)
+

√
t − s

)
− 1

}
d	[
]s for every t < t0,

where x+ := max{x,0} and � is the Normal c.d.f.

PROOF. It is no loss of generality to take a Brownian motion, B , and initial
value, X0, such that (1.6) holds with this B and this X0 for both 
 and 
̄, that is,

X

t = X0 + Bt − α
t and X
̄

t = X0 + Bt − α
̄t ,

where we denote the respective hitting times of zero by τ and τ̄ .
By conditioning on the value of τ , we have

	[
]t − 	[
̄]t ≤ P(τ ≤ t, τ̄ > t)

=
∫ t

0
P(τ̄ > t |τ = s) d	[
]s

=
∫ t

0
P

(
inf

u∈[0,t]X

̄
u > 0|τ = s

)
d	[
]s

≤
∫ t

0
P

(
inf

u∈[s,t]
{
X
̄

s + Bu − Bs − α(
̄u − 
̄s)
}
> 0|τ = s

)
d	[
]s,(3.1)

where in the final line we have discarded the contribution on u ∈ [0, s]. Since 
̄ is
increasing and α ≥ 0, we can further bound (3.1) by

	[
]t − 	[
̄]t ≤
∫ t

0
P

(
inf

u∈[s,t]
{
X
̄

s + Bu − Bs

}
> 0

∣∣τ = s
)
d	[
]s .

On the event {τ = s}, we have X

s = 0, so

X
̄
s = X
̄

s − X

s = α(
s − 
̄s)

and thus we have

	[
]t − 	[
̄]t ≤
∫ t

0
P

(
inf

u∈[s,t]{Bu − Bs} > −α(
s − 
̄s)
)
d	[
]s
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≤
∫ t

0
P

(
inf

u∈[s,t]{Bu − Bs} > −α(
s − 
̄s)
+)

d	[
]s

=
∫ t

0

{
2�

(
α

(
s − 
̄s)
+

√
t − s

)
− 1

}
d	[
]s .

Since the right-hand side is positive, we can replace the left-hand side by its max-
imum with zero, so the proof is complete. �

When 	[
] is differentiable with power law control on its derivative near zero,
then we are able to use this derivative to get a more direct bound.

COROLLARY 3.2. Suppose that 	[
] ∈ S(γ,A, t0) for some γ ∈ (0, 1
2), A > 0

and t0 > 0 (recall Definition 1.5). Then there exists c0 > 0, independent of t0 and

, such that(

	[
]t − 	[
̄]t )+ ≤ c0

∫ t

0

(
s − 
̄s)
+

(t − s)
1
2 sγ

ds for every t ≤ t0,

where 
̄ is any càdlàg function that is increasing and initially zero.

PROOF. We begin by noticing that x �→ 2�(αx) − 1 is bounded above on
x ≥ 0 by the linear function

x �→ c1x := α
√

2/πx.

Therefore, by Proposition 3.1,

(
	[
]t − 	[
̄]t )+ ≤ c1

∫ t

0

(
s − 
̄s)
+

(t − s)
1
2

	[
]′s ds.

The result follows since 	[
]′s ≤ As−γ , by definition of S(γ,A, t0). �

It is now a straightforward task to prove Theorem 1.6.

PROOF OF THEOREM 1.6. With A and γ fixed as in the statement of the result,
take 
, 
̄ ∈ S(γ,A, t0), where we will show how to take t0 sufficiently small (and
independent of 
 and 
̄) so that we have the result. With c0 > 0 as in Corollary 3.2
and the symmetry in 
 ↔ 
̄, we have∣∣	[
]t − 	[
̄]t

∣∣ ≤ c0

∫ t

0

|
s − 
̄s |
(t − s)

1
2 sγ

ds ≤ c0‖
 − 
̄‖L∞(0,t0)

∫ t

0

ds

(t − s)
1
2 sγ

≤ c1t
1
2 −γ

0 ‖
 − 
̄‖L∞(0,t0),

for t < t0, where c1 > 0 is a constant independent of t0, 
 and 
̄. Consequently, it
suffices to take t0 such that c1t

1/2−γ
0 ≤ 1

2 .
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For the second half of the result, take t0 now fixed as in the statement. By the
same estimate as above applied to Corollary 3.2, we have

(Lt − L̄t )
+ ≤ c1t

1
2 −γ

1

∥∥(L − L̄)+
∥∥
L∞(0,t1)

for every t ≤ t1,

where t1 is any time with t1 < t0. Therefore, taking t1 > 0 such that c1t
1
2 −γ

1 < 1
forces ∥∥(L − L̄)+

∥∥
L∞(0,t1)

= 0,

that is L̄t ≥ Lt for t ≤ t1.
By returning to Corollary 3.2, and repeating the same estimate again, we can

deduce that

(Lt − L̄t )
+ ≤ ∥∥(L − L̄)+

∥∥
L∞(t1,t2)

∫ t

t1

ds

(t − s)
1
2 sγ

ds for every t ≤ t2,

for any t2 < t0. Thus, by taking t2 > t1 sufficiently close to t1, we can again force∥∥(L − L̄)+
∥∥
L∞(0,t2)

= 0.

Continuing to repeat this argument, we obtain a sequence of times t1 < t2 < · · · <
tn < · · · < t0. If tn → t∞ < t0, then the argument also applies at time t∞ and so can
be restarted. Furthermore, if this procedure ever terminates at a time strictly less
than t0, then the argument can be restarted (by left continuity) for a nonzero time,
thus contradicting the termination. Hence we conclude that we have L̄ ≥ L up to
the time t0. �

4. Stability of � and the fixed-point argument: Proof of Theorem 1.7.
Here, we show that we can choose parameters such that 	 maps S(γ,A, t0) into
itself. From this and Theorem 1.6, we are then able to conclude the existence of
a solution in short time by the Banach fixed-point theorem. We will also carefully
track the contribution to the regularity of the solution near time zero due to the
decay of the initial density near the Dirichlet boundary. To this end, we will see
that the exponent 1−β

2 in Theorem 1.7 comes directly from Lemma 4.2 below.

LEMMA 4.1. With 
 and 	 above,

	[
]t = 1 −
∫ ∞

0

∫ ∞
0

Gt(x0, x) dxν0(dx0) + 2α

∫ t

0
E

[
pt−s(Xs)1s<τ

]
d
s,

where

pt(x) := 1√
2πt

e− x2
2t , Gt (x, y) := pt(x − y) − pt(x + y).
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PROOF. Fix t and take u to be the solution to the backward heat equation on
the positive half-line with Dirichlet boundary condition:

∂tu(s, x) + 1

2
∂xxu(s, x) = 0, u(·,0) = 0, u(t, x) = 1x>0.

That is, let

u(s, x) :=
∫ ∞

0
Gt−s(x, y) dy.

By applying Itô’s formula to s �→ u(s,Xs∧τ ), we obtain

du(s,Xs∧τ ) = 1s<τ

{
∂s + 1

2
∂xx

}
u(s,Xs) ds + 1s<τ ∂xu(s,Xs) d(Bs − α
s).

Since ∂su + 1
2∂xxu = 0, integrating in time and taking expectation gives

E
[
u(t,Xt∧τ )

] = E
[
u(0,X0)

] − α

∫ t

0
E

[
1s<τ ∂xu(s,Xs)

]
d
s,

where the endpoints take the values

E
[
u(t,Xt∧τ )

] = P(τ > t) = 1 − 	[
]t ,
E

[
u(0,X0)

] = E

∫ ∞
0

Gt(X0, x) dx =
∫ ∞

0

∫ ∞
0

Gt(x0, x) dxν0(dx0).

It remains to notice that

∂xu(s, x) =
∫ ∞

0

1√
2π(t − s)

∂x

{
e
− (x−y)2

2(t−s) − e
− (x+y)2

2(t−s)
}
dy

= −
∫ ∞

0

1√
2π(t − s)

∂y

{
e
− (x−y)2

2(t−s) + e
− (x+y)2

2(t−s)
}
dy

= 2√
2π(t − s)

e
− x2

2(t−s) = 2pt−s(x). �

Our strategy is to apply the method of difference quotients [7], Section 5.8.2,
Theorem 3, using Lemma 4.1. With t, δ > 0 fixed, the starting point is to write

	[
]t+δ − 	[
]t = −
∫ ∞

0

∫ ∞
0

(
Gt+δ(x0, x) − Gt(x0, x)

)
dxν0(dx0)

+ 2α

∫ t+δ

t
E

[
pt+δ−s(Xs)1s<τ

]
d
s

+ 2α

∫ t

0
E

[(
pt+δ−s(Xs) − pt−s(Xs)

)
1s<τ

]
d
s

=: I1 + I2 + I3.(4.1)
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In order to estimate these three integrals we must make use of the assumption (1.9)
on the behaviour of ν0 near the origin. Recall that we have constants C,D,x�,β >

0 such that

V0(x) ≤ Cxβ1x≤x� + D1x>x�.

LEMMA 4.2 (I1). There exists t0 = t0(C,D,x�) > 0 and K = K(C,x�) > 0
such that

0 ≤ I1 ≤ Kδt−
1−β

2 ,

for all t < t0 and δ ∈ (0, t0).

REMARK 4.3 (Constants). In the proof below, we will allow the constants to
increase as necessary, but we will pay close attention to ensure that K does not
depend on D (whereas t0 does).

PROOF OF LEMMA 4.2. By the fundamental theorem of calculus, and proper-
ties of G, we have

I1 = −δ

∫ ∞
0

∫ ∞
0

∫ 1

0
∂tGt+θδ(z, x) dθ dxν0(dz)

= −δ

2

∫ ∞
0

∫ ∞
0

∫ 1

0
∂xxGt+θδ(z, x) dθ dxν0(dz)

= δ

2

∫ 1

0

∫ ∞
0

∂xGt+θδ(0, z)ν0(dz) dθ

= δ√
2π

∫ 1

0

∫ ∞
0

z

(t + θδ)3/2 e
− z2

2(t+θδ) V0(z) dz dθ

= δ√
2π

∫ 1

0

∫ ∞
0

z

(t + θδ)1/2 e− z2
2 V0

(
(t + θδ)

1
2 z

)
dzdθ.

Splitting the z-integral and using the bound on V0 gives

I1 ≤ δ√
2π

∫ 1

0

(
C

∫ x�(t+θδ)
− 1

2

0
(t + θδ)−

1−β
2 z1+βe− z2

2 dz

+ D

∫ ∞
x�(t+θδ)

− 1
2
(t + θδ)−

1
2 ze− z2

2 dz

)
dθ

≤ δ√
2π

(
Kt−

1−β
2 + D(t + δ)−

1
2 e

− x2
�

2(t+δ)
)
.

Note that the final term is a bounded function of D and x�, so by taking t0 (and δ)
sufficiently small we can conclude the result. �
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In order to control I2 from equation (4.1), we need to make some assumptions
on the regularity of 
. Provided 
 is in H 1, we have that t �→ Bt −α
t is absolutely
continuous with respect to Brownian motion, and so we can proceed as below with
a change of measure.

LEMMA 4.4 (A Girsanov argument). Let F : R → R be measurable and
bounded and assume that 
 ∈ H 1(0, t0) for some t0 > 0. Then for all q > 1 and
t ∈ [0, t0],

E
[
F(Xt)1t<τ

] ≤ exp
{α2‖
′‖2

L2(0,t)

2(q − 1)2

}
E

[
F(Wt)

q1t<τW

] 1
q ,

where W is a standard Brownian motion, started from ν0, and τW is its first hitting
time of the origin, that is, τW = inf{t ≥ 0 : Wt = 0}.

PROOF. Let Zt denote the Radon–Nikodym derivative

Zt = dQ

dP

∣∣∣∣
Ft

= exp
{
α

∫ t

0

′
s dBs − α2

2

∫ t

0

(

′
s

)2
ds

}
for t ∈ [0, t0]. Under Q, t �→ Bt −α
t is a standard Brownian motion by Girsanov’s
theorem. Therefore, applying Hölder’s inequality gives

E
[
F(Xt)1t<τ

] = EQ[
Z−1

t F (Xt)1t<τ

]
≤ EQ[

Z−r
t

] 1
r EQ[

F(Xt)
q1t<τ

] 1
q

≤ E
[
Z1−r

t

] 1
r E

[
F(Wt)

q1t<τW

] 1
q ,

where q−1 + r−1 = 1. Finally, it is a simple calculation to see that

E
[
Z1−r

t

] 1
r = exp

{
α2

2
(r − 1)2∥∥
′∥∥2

L2(0,t)

}
,

and this completes the proof. �

COROLLARY 4.5. Suppose 
 satisfies the conditions of Lemma 4.4 and fix
q > 1. Then there is a constant c0 > 0 depending only on V0 and q such that, for
all u, s > 0 and ζ, η ≥ 0,

E
[
Xζ

s pu(Xs)1s<τ

]
≤ c0 exp

{α2‖
′‖2
L2(0,s)

2(q − 1)2

}(
u

β
2 +η+ qζ

2 − q−1
2 s−η + uη+ qζ

2 − q−1
2 s

β
2 −η) 1

q .
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PROOF. We first prove the bound for Brownian motion, and then we appeal to
the previous lemma for the full result. From the assumption (1.9), we can certainly
find a constant c0 > 0 such that V0(x) ≤ c0x

β for all x > 0, and so

E
[
Wqζ

s pu(Ws)
q1s<τW

] ≤ c0

u
q
2

∫ ∞
0

∫ ∞
0

xqζ e− qx2

2u Gs(x0, x)x
β
0 dx0 dx,

where from here on we absorb the relevant numerical constants into c0. Using the
estimate,

Gs(x0, x) ≤ 2

(2πs)1/2

(
xx0

s
∧ 1

)
e− (x−x0)2

2s

together with the substitution x0 �→ x0 − x gives

E
[
Wqζ

s pu(Ws)
q1s<τW

]
≤ c0

u
q
2 s

1
2

∫ ∞
0

xqζ e− qx2

2u

∫ ∞
−x

(x + x0)
β

(
x(x + x0)

s
∧ 1

)
e− x2

0
2s dx0 dx.(4.2)

Now notice that for generic a, b ≥ 0 we have the inequality

(a + b) ∧ 1 ≤ (a ∧ 1) + (b ∧ 1).

Hence it holds for x ≥ 0, x0 ≥ −x and η ∈ [0,1] that

x(x + x0)

s
∧ 1 ≤

(
x2

s
∧ 1

)
+

( |x0x|
s

∧ 1
)

≤
(

x2

s

)η

+
( |x0x|

s

)2η

.

Combining this inequality with (x + x0)
β ≤ c1(|x|β +|x0|β), for c1 > 0 a constant

depending only on β , allows us to bound the inner integral in (4.2) by∫ ∞
−x

(|x|β + |x0|β)((
x2

s

)η

+
( |x0x|

s

)2η)
e− x2

0
2s dx0

≤ c0s
1
2

∫ ∞
−∞

(|x|β + sβ/2|x0|β)((
x2

s

)η

+
( |x0x|

s1/2

)2η)
e− x2

0
2 dx0

≤ c0
(|x|β+2ηs

1
2 −η + |x|2ηs

1
2 + β

2 −η)
.

Setting this into (4.2) and making the change of variables x �→ u1/2x, we obtain

E
[
Wqζ

s pu(Ws)
q1s<τW

] ≤ c0
(
u

β
2 +η+ qζ

2 − q−1
2 s−η + uη+ qζ

2 − q−1
2 s

β
2 −η)

.

Finally, the result for X in place of W follows by invoking Lemma 4.4. �

LEMMA 4.6 (I2). If 
 ∈ S(γ,A, t0), then there exist constants c1 > 0, θ1 > 0
and θ2 ∈ [0,1) (depending on 
) such that

0 ≤ I2 ≤ c1δ
1+θ1 t−

1
2 θ2 for every t ∈ (0, t0).
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REMARK 4.7. Formally, the integrand in I2 converges to a Dirac mass at zero,
evaluated at Xs and multiplied by 1s<τ . We expect such an expression to vanish
since s < τ implies Xs > 0. While this argument is not rigorous, it suggests why
I2 = o(δ), and hence why this term will not contribute to the bound on 	[
]′ in the
proof of Theorem 1.7.

PROOF OF LEMMA 4.6. We begin by applying the bound 
′
s ≤ As−γ to see

that

I2 = 2α

∫ t+δ

t
E

[
pt+δ−s(Xs)1s<τ

]
d
s = 2α

∫ t+δ

t
E

[
pt+δ−s(Xs)1s<τ

]

′
s ds

≤ 2αAt−γ
∫ t+δ

t
E

[
pt+δ−s(Xs)1s<τ

]
ds.

Taking u = t + δ − s and ζ = 0 in Corollary 4.5, and bounding with the worst-case
exponents, gives

I2 ≤ c2t
−γ− η

q

∫ t+δ

t
(t + δ − s)

η
q
− 1

2 (1− 1
q
)
ds = c3δ

1+ η
q
− 1

2 (1− 1
q
)
t
−γ− η

q ,

where c2 and c3 are constants depending on 
. The result is now complete by
choosing η and q so that γ + η

q
< 1

2 (possible since γ < 1
2 ) and η

q
− 1

2(1 − 1
q
) > 0

(take q sufficiently close to 1 and maintain constant ratio η/q). �

The third term, I3, is not so simple to control.

LEMMA 4.8 (I3). If γ < 1
2 and 
 ∈ S(γ,A, t0), then there exist constants c0 >

0, c1 > 0 and θ3 > 0 (depending only on V0 and γ ) such that

|I3| ≤ c0αAδ exp
{
c1α

2A2t
1−2γ
0

}
t−

1−β
2 +θ3 for every t ∈ (0, t0).

PROOF. We begin by applying the fundamental theorem of calculus to see that

pt+δ−s(Xs) − pt−s(Xs)

=
∫ δ

0
∂upt−s+u(Xs) du

= 1

2

∫ δ

0

(
X2

s (t − s + u)−2 − (t − s + u)−1)
pt−s+u(Xs) du

and, therefore,

∣∣pt+δ−s(Xs)−pt−s(Xs)
∣∣ ≤ 1

2

∫ δ

0

(
X2

s (t −s+u)−2 +(t −s+u)−1)
pt−s+u(Xs) du.
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Taking an expectation and using Corollary 4.5 gives

E
[∣∣pt+δ−s(Xs) − pt−s(Xs)

∣∣1s<τ

]
≤ c0δ exp

{α2‖
′‖2
L2(0,t0)

2(q − 1)2

}
× (

(t − s)
β
2 +η− q−1

2 −qs−η + (t − s)η− q−1
2 −qs

β
2 −η) 1

q ,(4.3)

where c0 depends only on V0 and the choice of q and η.
By applying the bound (4.3) to the expression for I3, we get

|I3| ≤ 2Ac0αδ exp
{α2‖
′‖2

L2(0,t0)

2(q − 1)2

}(
J

(
1

q

(
β

2
+ η − q − 1

2
− q

)
,−η

q
− γ

)

+ J

(
1

q

(
η − q − 1

2
− q

)
,

β

2q
− η

q
− γ

))
,

where J is defined to be

(4.4) J (a, b) :=
∫ t

0
(t − s)asb ds = Ct1+a+b,

for a constant C = C(a, b) > 0, provided a > −1 and b > −1. To keep the above
exponents bigger than −1, we need to select η and q so that q−1

2q
<

η
q

< 1 − λ,
whereby we obtain

|I3| ≤ Ac0αδ exp
{α2‖
′‖2

L2(0,t0)

2(q − 1)2

}
t

β
2q

− 1
2 (1− 1

q
)−γ

= Ac0αδ exp
{α2‖
′‖2

L2(0,t0)

2(q − 1)2

}
t
− 1−β

2 − 1+β
2 (1− 1

q
)+ 1

2 −γ
,

where we have absorbed numerical constants into c0. Since γ < 1
2 , we can take

q sufficiently close to 1 so that we have the required exponent. The proof is then
complete by noting that

∥∥
′∥∥2
L2(0,t0)

≤
∫ t0

0
A2s−2γ ds = A2

1 − 2γ
t
1−2γ
0 . �

PROPOSITION 4.9 (Stability of 	). There exists a constant K > 0 depending
only on C and x� such that for every ε > 0 there exists t0 > 0 for which

	 : S
(

1 − β

2
,K + ε, t0

)
→ S

(
1 − β

2
,K + ε, t0

)
,

where t0 also depends on the model parameters.
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PROOF. Take K and t0 as in the conclusion of Lemma 4.2. We will decrease
the value of t0 throughout the proof, but this is the K in the statement of the result.

First, we check that 	 : S(
1−β

2 ,K + ε, t0) → H 1(0, t0). Combine Lemmas 4.2,
4.6 and 4.8 to get∣∣∣∣	[
]t+δ − 	[
]t

δ

∣∣∣∣ ≤ Kt−
1−β

2 + c2δ
θ1 t−

1
2 θ2

+ c0α(K + ε) exp
{
c1α

2(K + ε)2t
β
0

}
t−

1−β
2 +θ3,(4.5)

and so we have

lim sup
δ→0

∫ t0

0

∣∣∣∣	[
]t+δ − 	[
]t
δ

∣∣∣∣2 dt < ∞.

By the method of difference quotients [7], Section 5.8.2, Theorem 3, we conclude
that 	[
] is in H 1(0, t0), as required.

Taking a pointwise limit in (4.5) gives∣∣	[
]′t
∣∣ ≤ Kt−

1−β
2 + c0α(K + ε) exp

{
c1α

2(K + ε)2t
β
0

}
t−

1−β
2 +θ3

≤ Kt−
1−β

2 + c0α(K + ε) exp
{
c1α

2(K + ε)2t
β
0

}
t
θ3
0 t−

1−β
2 .

With ε > 0 fixed, we can now take t0 > 0 sufficiently small (since the constants in
the bound in Lemma 4.8 do not depend on the value of t0) so that

c0α(K + ε) exp
{
c1α

2(K + ε)2t
β
0

}
t
θ3
0 < ε,

which completes the proof. �

With Proposition 4.9 now in place, it remains to show that we can find a fixed
point and deduce that it lives in one of the sets S(

1−β
2 ,K + ε, t0).

PROOF OF THEOREM 1.7. Take K , ε and t0 as in the conclusion of Propo-
sition 4.9. Take t0 sufficiently small so that the first half of Theorem 1.6 holds.
Define the sequence


(0) := 0, 
(n) := 	
[

(n−1)] for every n ≥ 1.

By the Banach fixed-point theorem, we know that there exists a limit point 
(n) →
L in L∞(0, t0), as n → ∞, and that 	[L] = L. So L solves (1.1) on [0, t0).

To see L ∈ S(
1−β

2 ,K +ε, t0), notice that, since 	[
] is bounded by 1, dominated
convergence gives

(4.6)

∫ t0−δ

0

∣∣∣∣Lt+δ − Lt

δ

∣∣∣∣2 dt

≤ lim sup
n→∞

∫ t0−δ

0

∣∣∣∣
(n)
t+δ − 


(n)
t

δ

∣∣∣∣2 dt for every δ > 0.
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Proposition 4.9 ensures 
(n) ∈ S(
1−β

2 ,K + ε, t0), so we have the estimate∣∣
(n)
t+δ − 


(n)
t

∣∣ =
∣∣∣∣∫ t+δ

t

(

(n)
s

)′
ds

∣∣∣∣ ≤ (K + ε)t−
1−β

2 δ.

Using this in (4.6) yields∫ t0−δ

0

∣∣∣∣Lt+δ − Lt

δ

∣∣∣∣2 dt ≤ (K + ε)

∫ t0

0
t−

1−β
2 dt < ∞,

and hence the method of difference quotients ([7], Section 5.8.2, Theorem 3), gives
that L is in H 1(0, t0). Moreover, it holds pointwise almost everywhere in (0, t0)

that

0 ≤ Lt+δ − Lt

δ
= lim

n→∞


(n)
t+δ − 


(n)
t

δ
≤ (K + ε)t−

1−β
2 ,

so sending δ → 0 gives that L ∈ S(
1−β

2 ,K + ε, t0), as required.
The uniqueness statement follows immediately by applying the second half of

Theorem 1.6. �

5. Bootstrapping and full uniqueness up to explosion time: Proof of The-
orem 1.8. Here, we show how the solutions from the fixed-point argument in
the previous section can be extended up to the first time their H 1 norm explodes.
(Trivially, this time occurs before or at the first jump time.) The key to this boot-
strapping method is to notice that if 
 ∈ H 1(0, t0), for some t0, then necessarily
Vt0−(x) = O(xβ) (Lemma 5.1). Not only does this show that t0 cannot be a jump
time, it also allows us to apply the fixed-point argument once more, thus extend-
ing the solution to H 1(0, t1) for some t1 > t0 (Corollary 5.2). The first half of
Theorem 1.8 then follows by iterating this argument (Corollary 5.3).

After the above, we proceed to prove the second half of Theorem 1.8. The idea
is to consider modified initial conditions for which a fixed portion of the initial
density is erased and added to the initial value of the loss process (Definition 5.4).
An argument that shows solutions cannot overlap (Lemma 5.6) then allows us to
trap any general càdlàg solution of (1.1) between the modified solutions and the
minimal differentiable solution. The proof concludes by showing that the size of
this trapping envelope shrinks to zero as the size of the initial modification is taken
to zero (Lemma 5.7), thus forcing the minimal solution and the general càdlàg
solution to be equal (see Figure 5).

5.1. Bootstrapping of solutions.

LEMMA 5.1 (Recovery of initial exponents). Suppose that L ∈ H 1(0, t0)

solves (1.1) for some t0 > 0, with the usual assumption (1.9) on V0. Then there
exists further constants C′,D′, x′

� > 0 such that

Vt0−(x) ≤ C′xβ1x<x′
�
+ D′1x≥x′

�
for every x > 0.
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PROOF. Note that there exists a limit Lt0− = lims↑t0 Ls , since L must be in-
creasing. Therefore, there exists a left limit density Vt0− (recall Proposition 2.1).
Now fix t < t0. Our strategy is to apply Hunt’s switching identity ([1], Theo-
rem II.1.5), so define the dual process

dX̂s = dBs + α dL̂s, L̂s = Lt−s, τ̂ = inf{s > 0 : X̂s ≤ 0},
for s ∈ [0, t]. Then we have∫

x∈R
φ(x)EX0=x

[
ψ(Xt)1t<τ

]
dx =

∫
x∈R

ψ(x)EX̂0=x

[
φ(X̂t )1t<τ̂

]
dx,

for all nonnegative measurable functions φ and ψ . (Note that, since L ∈ H 1(0, t0)

and �Lt0 = 0 by the hypotheses, we have continuity of L.) By taking φ = V0 and
ψ , an arbitrary nonnegative measurable function, we can conclude that

(5.1) Vt(x) = EX0=x

[
V0(X̂t )1t<τ̂

]
for almost every x > 0.

Since L ∈ H 1(0, t0), X̂ is just a Brownian motion with a H 1 drift. Therefore,
we can apply Lemma 4.4 with X̂ in place of X and F = V0 to get

EX0=x

[
V0(X̂t )1t<τ̂

] ≤ CqEW0=x

[(
V0(Wt)1t<τW

)q] 1
q

for any q > 1, where W is a Brownian motion and Cq < ∞ depends on L, t0 and
q and is independent of t . (We have absorbed the exponential factor into Cq .) By
the assumption that V0(x) = O(xβ), and increasing Cq as needed, we deduce that

EX0=x

[
V0(X̂t )1t<τ̂

] ≤ CqEW0=x

[
(Wt1t<τW )qβ

] 1
q .

Provided we take q > 1 such that qβ < 1, we can apply Jensen’s inequality to get

EX0=x

[
V0(X̂t )1t<τ̂

] ≤ CqEW0=x[Wt1t<τW ]β = Cqxβ.

Putting this into (5.1) gives the required bound near zero at time t . Proposition 2.1
gives Vt(x) ≤ ‖V0‖∞, so we have the required boundedness away from the origin,
too. Since the constants obtained above are independent of t , we can find C′, D′
and x′

� such that

Vt(x) ≤ C′xβ1x<x′
�
+ D′1x≥x′

�

for all x > 0 and t < t0. By sending t ↑ t0, we have the result. �

The implication of Lemma 5.1 is that at the end of the fixed-point argument
from Section 4 we can restart the argument with new initial conditions that have
the same power law decay. As a result, we can push our construction of solutions
by a further nonzero amount of time. Notice, however, that we lose control of the
exact constant that we had in Theorem 1.7, and hence the proceeding results are
qualitative, not quantitative.
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COROLLARY 5.2 (Extending solutions). Suppose we have a solution L ∈
H 1(0, t0) to (1.1). Then there exists t1 > t0 such that L can be extended to a solu-
tion of (1.1) on (0, t1) for which L ∈ H 1(0, t1). Furthermore, if L ∈ S(

1−β
2 ,K0, t0)

for some K0 > 0, then we can find K1 > 0 such that the extension satisfies
L ∈ S(

1−β
2 ,K1, t1).

PROOF. Since we have L ∈ H 1(0, t0), Lemma 5.1 implies that Vt0− satisfies
the condition (1.9), for some constants C, D and x� (that are possibly different to
those for V0). Therefore, by Theorem 1.7 there exists K1 > 0 and u0 > 0 such that
we can find F ∈ S(

1−β
2 ,K1, u0) solving⎧⎪⎪⎨⎪⎪⎩

Xt0+u = Xt0 + Bu − αFu,

τ (t0) = inf{u ≥ 0 : Xt0+u ≤ 0},
Fu = P

(
τ (t0) ≤ u

)
,

(5.2)

for u < u0 (recall Remark 2.6). It follows that, if we define t1 := t0 + u0 and

L̃t :=
{
Lt if 0 < t < t0,

Ft−t0 if t0 ≤ t < t1,

then L̃ extends L and solves (1.1) for all t ∈ (0, t1) with the required derivative
control. �

Naturally, we can iterate Corollary 5.2 to prove the first half of Theorem 1.8.

COROLLARY 5.3 (Bootstrap to explosion time). There exists a solution, L, to
(1.1) up to time

texplode := sup
{
t > 0 : ‖L‖H 1(0,t) < ∞} ∈ (0,∞]

such that, for every t0 < texplode, we have L ∈ S(
1−β

2 ,K, t0) for some K > 0.

PROOF. By repeating Corollary 5.2, we can find an infinite sequence of times
t0 < · · · < tn < · · · over which we can successively extend L. If t∞ := limn→∞ tn
is such that ‖L‖H 1(0,t∞) = ∞, then we are done. Otherwise, by the left continu-
ity of L, we can restart the argument from t∞ by applying Corollary 5.2. This
procedure cannot terminate at a time for which ‖L‖H 1(0,t) < ∞, or else it can be
restarted, hence we conclude the result. �

5.2. Monotonicity and trapping. Our main technical construction will be a
solution to (1.1) for which we delete a portion of the initial condition near the
boundary and add that mass to the loss at time zero, before finally shifting the
density towards zero accordingly.
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DEFINITION 5.4 (ε-deleted solutions). Suppose X0 has a density V0 and let
ε > 0. Define the McKean–Vlasov problem⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Xε
t = X01X0≥ε − 1

4
ε + Bt − αLε

t ,

τ ε = inf
{
t ≥ 0 : Xε

t ≤ 0
}
,

Lε
t = ν0(0, ε) +

∫ ∞
ε

PX0=x

(
τ ε ≤ t

)
ν0(dx),

(5.3)

where solutions, Lε , are taken to be càdlàg.

It is not immediately clear that we can solve the above problem for ε > 0, how-
ever, careful inspection of the initial loss reveals that we can.

LEMMA 5.5 (ε-deleted solutions exist). Assume ν0 has a density satisfying
(1.9). Then there exist K > 0, t0 > 0 and ε0 > 0 such that, for every ε ∈ (0, ε0),
there is a solution Lε ∈ S(

1−β
2 ,K, t0) to (5.3).

PROOF. We begin by noting that, for ε < ε0 < x�, we have

ν0(0, ε) ≤
∫ ε

0
Cxβ dx ≤ C

1 + β
ε1+β ≤ Cε

β
0

1 + β
ε.

Hence we can certainly take ε0 sufficiently small such that

ν0(0, ε) ≤ 1

4
α−1ε for every ε < ε0.

This guarantees that αν0(0, ε) + 1
4ε ≤ 1

2ε < ε, so we can rewrite (5.3) as

(5.4) Lε
t = ν0(0, ε) + Fε

t ,

where Fε
t is given by the McKean–Vlasov problem⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

X
ε,x
t = x + Bt − αFε

t

τ ε,x = inf
{
t ≥ 0 : Xε,x

t ≤ 0
}
,

F ε
t =

∫ ∞
0

P
(
τ ε,x ≤ t

)
V ε

0 (x) dx,

V ε
0 (x) = V0

(
x + αν0(0, ε) + 1

4
ε

)
1x+αν0(0,ε)+ε/4≥ε;

see Figure 4. As noted in Remark 2.6, we can solve to find Fε , since V ε
0 vanishes

on x < 1
2ε, so we certainly have the control in (1.9) for some choice of constants.

Furthermore, we have

V ε
0 (x) ≤ C

(
x + αν0(0, ε) + 1

4
ε

)β

1x+αν0(0,ε)+ε/4≥ε

≤ C

(
x + 1

2
ε

)β

1x≥ε/2 ≤ 2βCxβ,
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FIG. 4. Given an initial density, V0, the ε-deleted initial condition constructed in (5.4) is obtained
by killing the mass on (0, ε) and shifting the density towards the origin by the amount αν0(0, ε)+ 1

4ε.
The proof of Lemma 5.5 shows us that V ε

0 vanishes in a neighbourhood of zero.

so we can find constants such that (1.9) holds for V ε
0 uniformly in ε ∈ (0, ε0). Since

the arguments in Section 4 for proving Theorem 1.7 depend only on the constants
in (1.9), we can conclude that the parameters of S obtained in Theorem 1.7 are
constant across the class of initial densities {V ε

0 }ε , for ε < ε0. Hence we have the
result. �

The solutions in Lemma 5.5 are useful because we have the following two com-
parison results, which say that the ε-deleted solutions dominate and converge to
the traditional solutions of (1.1); see Figure 5.

LEMMA 5.6 (Monotonicity). Let ε > 0 and t0 > 0 be fixed. Assume that L is
a generic solution to (1.1) and that Lε solves (5.3) and that both are continuous
on [0, t0). Then

Lε
t > Lt for every t ∈ [0, t0).

FIG. 5. On a small time interval, the unique differentiable solution, L, from Corollary 5.3 and the
ε-deleted solutions from Definition 5.4 trap any candidate càdlàg solution, L̄, by Lemma 5.6. Here,
η > ε. Lemma 5.7 shows that Lε → L uniformly on a small time interval as ε → 0, and so we see
that L = L̄ is forced since the area between the curves above shrinks to zero.



2366 B. HAMBLY, S. LEDGER AND A. SØJMARK

PROOF. By construction, the result is true at time t = 0. For a contradiction, let
t be the first time at which Lε

t = Lt . Couple both solutions to the same Brownian
motion:

Xs = X0 + Bs − αLs,

Xε
s = X01X0≥ε − 1

4
ε + Bs − αLε

s ,

for s ∈ [0, t), so that taking the difference gives

Xs − Xε
s = X01X0<ε + 1

4
ε − α

(
Ls − Lε

s

) ≥ 1

4
ε.

Therefore, from the definition of Lε
t , we get

Lε
t = P

(
inf

0≤u≤t
Xε

u ≤ 0
)

= lim
s↑t

P
(

inf
0≤u≤s

Xε
u ≤ 0

)
≥ lim

s↑t
P

(
inf

0≤u≤s
Xu ≤ 1

4
ε

)

= Lt + P( inf
0≤u≤t

Xu ∈
(

0,
1

4
ε]

)
.(5.5)

Now fix any f ∈ H 1([0, t]) such that ‖αL − f ‖L∞([0,t]) < 1
16ε. Then we have

(5.6) Lε
t ≥ Lt + P

(
inf

0≤u≤t
{X0 + Bu − fu} ∈

(
1

16
ε,

3

16
ε

))
.

By Girsanov’s theorem, u �→ Bu − fu is absolutely continuous with respect to
Brownian motion, and the infimum of Brownian motion has a density, therefore,
the probability on the right-hand side of (5.6) is nonzero. Hence Lε

t > Lt , which is
the required contradiction. �

LEMMA 5.7 (Convergence). Suppose there exist constants γ ∈ (0, 1
2), K > 0,

t0 > 0 and ε0 > 0 such that L,Lε ∈ S(γ,K, t0) for all ε ∈ (0, ε0). Then there
exists t1 ∈ (0, t0] such that∥∥Lε − L

∥∥
L∞(0,t1)

→ 0 as ε → 0.

PROOF. We know from Lemma 5.6 that Lε > L on [0, t0). By following the
argument in Section 3 for the proof of Theorem 1.6, and coupling L and Lε to the
same Brownian motion, we have

0 ≤ Lε
t − Lt = P

(
τ ε ≤ t < τ

)
=

∫ t

0
P

(
t < τ |τ ε = s

)
dLε

s + ν0(0, ε)
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≤
∫ t

0
�

(
α(Lε

s − Ls) + 1
4ε

(t − s)1/2

)(
Lε)′

s ds + ν0(0, ε)

≤ c0

(∥∥Lε − L
∥∥
L∞(0,t) + 1

4
ε

)∫ t

0

ds

(t − s)1/2sγ
+ ν0(0, ε)

≤ c0t
1/2−γ

(∥∥Lε − L
∥∥
L∞(0,t) + 1

4
ε

)
+ ν0(0, ε),

where c0 > 0 is a constant independent of t , increasing from line to line as neces-
sary. Therefore, taking a supremum over t ≤ t1 and taking t1 sufficiently small, we
have ∥∥Lε − L

∥∥
L∞(0,t1)

≤ 1

2

∥∥Lε − L
∥∥
L∞(0,t1)

+ o(1),

which completes the proof. �

We are now in a position to complete the proof of the main uniqueness theorem.
As already indicated, the idea is to trap a general candidate solution from below by
the differentiable solution from Corollary 5.3 and from above by the ε-deleted so-
lutions, and then to shrink the resulting envelope to zero using the uniform control
in Lemma 5.7

PROOF OF THEOREM 1.8. Take the bootstrapped solution, L, from Corol-
lary 5.3. We will be done if we can show that there is not a solution to (1.1) on
[0, t�) that is distinct from L, for any t� ≤ texplode. So for a contradiction, suppose
that L̄ is such a solution and let tjump be the first discontinuity of t �→ L̄t .

By Lemma 5.5, we can find K > 0, t0 > 0 and a family Lε satisfying the hy-
potheses of Lemma 5.7. By decreasing t0 so that t0 < tjump, Lemma 5.6 and Theo-
rem 1.6 guarantee

Lt ≤ L̄t < Lε
t for every t < t0.

By taking t1 ∈ [0, t0) from the conclusion of Lemma 5.7 and sending ε → 0, we
conclude that L = L̄ on [0, t1].

This argument can now be restarted from time t1 and iterated as in the proof of
Corollary 5.3, hence we conclude that L = L̄ up to the minimum of tjump and t�.
If t� ≤ tjump, then we are done, so suppose tjump < t�. By left continuity, we have
that νtjump− = ν̄tjump−, and, since L does not have a jump at time tjump, the physical
jump condition (1.7) gives

�L̄tjump− = inf
{
x ≥ 0 : ν̄tjump−(0, αx) < x

}
= inf

{
x ≥ 0 : νtjump−(0, αx) < x

} = 0.

This contradicts tjump being a jump time of L̄, so the proof is complete. �
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6. Extensions to more general coefficients. In this section, we consider
some simple extensions of (1.1) that incorporate more general drift and diffusion
coefficients. The aim is to outline how the analysis can be reduced to that of the
previous sections and thus we will only provide sketches of the proofs.

To be specific, we consider the McKean–Vlasov problem

(6.1)

⎧⎪⎪⎨⎪⎪⎩
dXt = b(t,Xt) dt + σ(t) dBt − α dLt ,

τ = inf{t ≥ 0 : Xt ≤ 0},
Lt = P(τ ≤ t),

where B is a Brownian motion and the independent initial condition, X0, is given
by ν0, which is assumed to satisfy (1.9) and taken to be sub-Gaussian. In terms
of the coefficients, we assume that b(t, x) is Lipschitz in space with |b(t, x)| ≤
C(1 + |x|) and we impose the nondegeneracy condition c ≤ σ(t) ≤ C for all t ∈
[0, T ]. Furthermore, we impose an upper bound b(t, x) ≤ M for positive x ≥ 0
(this is only used in Section 6.3 and it could be omitted if we could ensure κ = 1
in Section 6.1).

The above setup includes the financial model (1.2). Moreover, it, for example,
allows for a Brownian motion with an Ornstein–Uhlenbeck-type drift modelling
the attraction to a “resting state”, as in the original neuroscience model [5]. This
could also be of interest in the financial framework, for example, to include a target
leverage ratio or to model some notion of “flocking to default” as in [11].

THEOREM 6.1 (Existence and uniqueness up to explosion). Let the above as-
sumptions be in place. Then there exists a solution to (6.1) up to time

texplode := sup
{
t > 0 : ‖L‖H 1(0,t) < ∞} ∈ (0,∞]

such that, for some β̄ > 0, it holds for every t0 < texplode that L is in S(
1−β̄

2 ,K, t0)

for some K > 0. Furthermore, this solution is unique in the class of candidate
solutions with L ∈ ⋃

0<γ<1/2,A>0 S(γ,A, t0).

As for (1.1), the notions of weak and strong uniqueness for (6.1), regarded as
an SDE in X, are equivalent: taking the difference of two solutions with the same
B and L cancels all terms apart from the drift, whereby strong uniqueness is im-
mediate from the Lipschitz property of x �→ b(t, x). In essence, the main point in
the proof of Theorem 6.1 is to have good control on the boundary decay of the
relevant transition densities akin to the classical Dirichlet heat kernel estimates.

When there is no spatial dependence in the drift—as in (1.2)—we can do better
with essentially no extra work. Specifically, we can directly replicate the mono-
tonicity and trapping arguments from Section 5.2, which gives uniqueness amongst
generic càdlàg solutions.
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THEOREM 6.2 (Generic uniqueness). Suppose the above assumptions are in
place and that, in addition, b(t, x) = b(t). Then we have uniqueness on [0, texplode)

amongst all generic càdlàg solutions to (6.1) in the same sense as Theorem 1.8.

The remainder of this section concerns the proofs of Theorems 6.1 and 6.2,
however, we will only show how to reduce the analysis to that of Sections 3, 4
and 5. The proof of Theorem 6.1 is split into three succinct parts: First, we discuss
the stability of the fixed-point map (Section 6.1), then we revisit the bootstrap-
ping of short-time existence (Section 6.2), and finally we extend the contractivity
arguments (Section 6.3). Last, the proof of Theorem 6.2 is outlined in Section 6.4.

6.1. Stability of the fixed-point map. Let 	 denote the fixed-point map for
(6.1) defined by analogy with (1.6). Then we need to ensure that Proposition 4.9,
concerning the stability of 	, also holds true in this more general setting.

The starting point is still the expression for 	[
] from Lemma 4.1, which re-
mains valid with X given by (6.1). Next, we can observe that the Girsanov argu-
ment from Lemma 4.4 will now take the form

E
[
F(Xt)1t<τ

] ≤ exp
{α2‖
′‖2

L2(0,t)

2c2(q − 1)2

}
E

[
F(X̃t )

q1t<τ̃

] 1
q ,

with

dX̃t = b(t, X̃t ) dt + σ(t) dWt and τ̃ = inf{t > 0 : X̃t ≤ 0},
where W is a standard Brownian motion and X̃0 is an independent random variable
distributed according to ν0. Indeed, we can simply consider the Radon–Nikodym
derivative

dQ

dP

∣∣∣∣
Ft

= exp
{
α

∫ t

0


′
s

σ (s)
dBs − α2

2

∫ t

0

(
′
s)

2

σ(s)2 ds

}
and otherwise repeat the arguments from the proof of Lemma 4.4. From here, we
can apply [12], Theorem 2.7, to see that the absorbed process X̃ has a transition
density Ṽt (x, x0) which satisfies the Dirichlet heat kernel type estimate

(6.2) Ṽt (x, x0) ≤ C
((

t−1xx0 ∧ 1
)
t−

1
2 + (

t−κxκxκ
0 ∧ 1

)
eδx2

0
)
e−c(x−x0)

2/t ,

for some constants C > 0 and κ ∈ (0,1] only depending on δ > 0, where the latter
can be taken sufficiently small such that

∫ ∞
0 eδx2

ν0(dx) < ∞.

REMARK 6.3. The estimate (6.2) is derived in [12], Section 6, by first showing
that

Ṽt (x, x0) = Gσ
0,t (x, x0) +

∫ t

0
EX̃0=x0

[
b(s, X̃s)∂yG

σ
s,t (x, X̃s)1s<τ̃

]
ds,
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where Gσ·,t is the Green’s function for ∂su(s, x) = −1
2σ(s)2∂xxu(s, x) as a

terminal-boundary value problem on [0, t) × R+ with u(·,0) = 0. This follows
from ideas closely related to those in the proof of Lemma 4.1 and the estimate
then comes from a careful change of measure in the second term to remove the
drift of X̃.

With a view towards Section 6.2, fix any κ̄ < κ and set β̄ := β ∧ κ̄ , where β is
the decay exponent of the initial condition. Then the power law decay of Ṽt (x, x0)

near the boundary (cf. (6.2)), implies that we can replicate the arguments from Sec-
tion 4 with Ṽt in place of the Dirichlet heat kernel, Gt . In this way, Proposition 4.9
remains true only with β̄ in place of β .

6.2. Density bounds for bootstrapping. Let νt denote the law of Xt killed at
the origin. In order to allow bootstrapping of our short-time results, we need to
establish analogues of Lemma 5.1 and Corollary 5.2.

First, referring to (6.2) as above, we can argue by analogy with Proposition 2.1
to see that νt has a density, Vt . Moreover„ these same arguments show that Vt is
bounded with ‖Vt |∞ ≤ ‖V0‖∞ + C

∫ ∞
0 eδx2

ν0(dx).
Now suppose L ∈ H 1(0, t0) for some t0 > 0 and fix t < t0. As in Section 5, we

can then define, for all s ≤ t , the dual process

dX̂s = −b(t − s,Xt−s) ds + σ(t − s) dBs + α dL̂s,

where L̂s = Lt−s and B is a Brownian motion. As in the proof of Lemma 5.1, it
follows from Hunt’s switching identity that

Vt(x) = EX̂0=x

[
V0(X̂t )1t<τ̂

]
, τ̂ = inf{s ≥ 0 : X̂s ≤ 0}.

Thus, by the same Girsanov argument as in the extension of Lemma 4.4 above, it
holds for any q > 1 that

(6.3) Vt(x) ≤ CqEY0=x

[
V0(Yt )

q1t<τY

] 1
q ,

where

dYs = −b(t − s,Xt−s) ds + σ(t − s) dBs,

and τY is the first hitting time of zero by Y . As for X, the absorbed process Y has
a transition density Ut(y, y0), so we get

(6.4) EY0=x

[
V0(Yt )

q1t<τY

] =
∫ ∞

0
V0(y)qUt (y, x) dy.

Appealing again to [12], we see that U satisfies precisely the same bound as (6.2).
Now observe that (t−1xy ∧ 1) ≤ t−βqxβqyβq for βq ≤ 1 and recall that V0(y) ≤
Cyβ . Using this and the order xκ boundary decay of the second term in (6.2), as
applied to Ut(y, x), it follows easily from (6.3) and (6.4) that

Vt(x) ≤ C′
q

(
xβ + xκ/q)

for all t < t0,
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for any q > 1 such that βq ≤ 1. Taking q close enough to 1 so that κ/q ≤ β̄ (with
β̄ fixed in Section 6.1) we can conclude that Vt satisfies condition (1.9) for every
t ∈ [0, t0) with β̄ as the decay exponent. Given this, we immediately obtain the
desired analogues of Lemma 5.1 and Corollary 5.2.

6.3. Contractivity of the fixed-point map. In this subsection, we finally show
that 	 remains an L∞ contraction, by extending the first part of Theorem 1.6, and
then we complete the proof of Theorem 6.1.

With 
, 
̄ ∈ S(γ,A, t0) as in the statement of Theorem 1.6, consider for t ∈
[0, t0) the corresponding processes X
 and X
̄ given by

dX

t = b

(
t,X


t

)
dt +σ(t) dBt −α d
t , dX
̄

t = b
(
t,X
̄

t

)
dt +σ(t) dBt −α d
̄t ,

coupled through the same Brownian motion and initial condition. Let τ
 and τ
̄

denote the respective hitting times of zero.
Since 
̄ is increasing, and recalling also the upper bound on b for x ≥ 0, it holds

for all s ≤ u < τ
̄ that

(6.5) X
̄
u − X
̄

s ≤ C̄

∫ u

s
σ (r)2 dr +

∫ u

s
σ (r) dBr =: X̄s,u.

Moreover, by the Lipschitzness of the drift we have∣∣X
̄
t − X


t

∣∣ ≤ C

∫ t

0

∣∣X
̄
r − X


r

∣∣dr + α‖
 − 
̄‖L∞(0,t),

so Grönwall’s lemma yields∣∣X
̄
t − X


t

∣∣ ≤ αeCt‖
 − 
̄‖L∞(0,t).

Therefore, on the event {τ
 = s} it holds for all s < t0 that

(6.6) X
̄
s = X
̄

s − X

s ≤ αC0‖
 − 
̄‖L∞(0,s).

Using (6.5) and (6.6), and arguing as in (3.1), we deduce that

	[
]t − 	[
̄]t ≤
∫ t

0
P

(
inf

u∈[s,t] X̄s,u + αC0‖
 − 
̄‖L∞(0,s) > 0
)
d	[
]s

=
∫ t

0

∫ ∞
0

p̄t−s

(
x,αC0‖
 − 
̄‖L∞(0,s)

)
dx d	[
]s,

for t < t0, where a simple time-change shows that p̄r (x, x0) is given explicitly by

p̄r (x, x0) = 1√
2πς(r)

(
1 − exp

{
−2xx0

ς(r)

})
exp

{
−(x − x0 − C̄ς(r))2

2ς(r)

}
with ς(r) = ∫ r+s

s σ (u)2 du. Noting that c(t − s) ≤ ς(t − s) ≤ C(t − s) and using
the bound 1 − e−z ≤ z ∧ 1, it is straightforward to verify that∫ ∞

0
p̄t−s(x,αC0y)dx ≤ C′

0(t − s)−
1
2 y for y ≥ 0.
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Thus, it holds for all t < t0 that

	[
]t − 	[
̄]t ≤ C′
0‖
 − 
̄‖L∞(0,t)

∫ t

0
(t − s)−

1
2 d	[
]s .

From here, we can repeat the proof of Theorem 1.6 to get contractivity of 	 and
by Section 6.1 we have stability. Thus, the short-time version of Theorem 6.1 holds
by the same arguments as in the proof of Theorem 1.7. Finally, Section 6.2 allows
us to bootstrap this result up to the H 1 explosion time and so the full Theorem 6.1
follows.

6.4. Minimality, monotonicity and trapping. In this final subsection, we con-
sider the special case b(t, x) = b(t) and sketch the remaining steps towards the
proof of Theorem 6.2.

Proceeding as in Section 6.3, the Grönwall argument is now no longer needed
and instead we immediately get XL̄

s = XL̄
s − XL

s ≤ α(Ls − L̄s)
+ on {τL = s}.

Therefore, the ensuing arguments yield

(Lt − L̄t )
+ ≤ C′∥∥(L − L̄)+

∥∥
L∞(0,t)

∫ t

0
(t − s)−

1
2 dLs,

and hence the exact same reasoning as in the second part of Theorem 1.6 ensures
that any differentiable solution L ∈ S(γ,A, t0) is minimal.

In terms of the monotonicity and trapping procedure, the only change in
Lemma 5.6 is that equation (5.6) now reads as

(6.7)

Lε
t ≥ Lt + P

(
inf

0≤u≤t

{
X0 +

∫ u

0
b(r) dr +

∫ u

0
σ(r) dBr − fu

}

∈
(

1

16
ε,

3

16
ε

))
.

Consequently, the proof of Lemma 5.6 goes through by absolute continuity with
respect to the time-changed Brownian motion u �→ ∫ u

0 σ(r) dBr . Furthermore, the
proof of Lemma 5.7 follows immediately by applying the same reasoning as in
Section 6.3. Given this, the proof of Theorem 6.2 can be finished in precisely the
same way as the second part of Theorem 1.8.
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