
The Annals of Applied Probability
2019, Vol. 29, No. 4, 2114–2174
https://doi.org/10.1214/18-AAP1444
© Institute of Mathematical Statistics, 2019

THE HYDRODYNAMIC LIMIT OF A RANDOMIZED LOAD
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Randomized load balancing networks arise in a variety of applications,
and allow for efficient sharing of resources, while being relatively easy to im-
plement. We consider a network of parallel queues in which incoming jobs
with independent and identically distributed service times are assigned to the
shortest queue among a subset of d queues chosen uniformly at random, and
leave the network on completion of service. Prior work on dynamical prop-
erties of this model has focused on the case of exponential service distri-
butions. In this work, we analyze the more realistic case of general service
distributions. We first introduce a novel particle representation of the state of
the network, and characterize the state dynamics via a countable sequence
of interacting stochastic measure-valued evolution equations. Under mild as-
sumptions, we show that the sequence of scaled state processes converges,
as the number of servers goes to infinity, to a hydrodynamic limit that is
characterized as the unique solution to a countable system of coupled deter-
ministic measure-valued equations. As a simple corollary, we also establish
a propagation of chaos result that shows that finite collections of queues are
asymptotically independent. The general framework developed here is poten-
tially useful for analyzing a larger class of models arising in diverse fields
including biology and materials science.
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1. Introduction.

1.1. Background and motivation. Randomized load balancing is a method for
the efficient sharing of resources in networking systems that is relatively easy to
implement, and used in a variety of applications such as, for example, hash ta-
bles in data switches, parallel computing [30] and wireless networks [19]. In this
article, we introduce a mathematical framework for the analysis of a class of large-
scale parallel server load balancing networks in the presence of general service
times, with the specific goal of obtaining a tractable characterization of the hy-
drodynamic limit of randomized join-the-shortest-queue networks, as the number
of servers goes to infinity. Past work on dynamical properties of this model has
essentially been restricted to the case of exponential service distributions. A key
component of our approach that allows us to handle general service distributions
is a description of its dynamics via a sequence of interacting stochastic measure-
valued evolution equations, which are amenable to analysis. Our framework can be
generalized and we expect similar representations to also be useful for the study of
other load-balancing models [29] as well as models arising in population biology
and materials science.

In the randomized join-the-shortest-queue network model, also referred to as
the supermarket model, jobs with independent and identically distributed (i.i.d.)
service times arrive according to a renewal process with rate λN to a network of
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N identical servers in parallel, each with an infinite-capacity queue. Upon arrival
of a job, d queues are sampled independently and uniformly at random (with re-
placement) and the job is routed to the shortest queue among those sampled, with
ties broken uniformly at random. Each server processes jobs from its queue in a
first-come first-serve (FCFS) manner, a server never idles when there is a job in
its queue and jobs leave the network on completion of service. The arrival process
and service times are assumed to be mutually independent, and service times of
jobs have finite mean which, without loss of generality, will be taken to be one.
We refer to this model as the (N -server) SQ(d) model. A positive feature of this
algorithm is that its implementation does not require much system memory.

Several results are known when the arrival process is Poisson with rate λ < 1
and the service time is exponential (with unit mean). When d = 1, the model re-
duces to a system of N independent single-server queues with exponential service
times, for which it is a classical result that the stationary distribution of the length
of a typical queue is geometric, and thus has an exponentially decaying tail. When
d = 2, the stationary distribution of a typical queue is not exactly computable, but
it was shown in [33] (also see [30] for the extension to d > 2) that as the num-
ber of servers goes to infinity, the limit of the stationary distributions of a typical
queue has a doubly exponential tail. This shows that introducing just a little bit
of random choice leads to a dramatic improvement in performance in equilibrium,
a phenomenon that has been dubbed the “power of two choices” and has led to
substantial interest in this class of randomized load balancing schemes.

The analysis in [33] proceeds by representing the dynamics of the N -server net-
work by a Markov chain that keeps track of the fraction of queues that have � or
more jobs at time t , for each positive integer �, and then applying the so-called
ODE method (see Theorem 11.2.1 of [17]) to show that, as N →∞, the sequence
of Markov chains converges weakly (on finite time intervals) to the unique so-
lution of a countable system of coupled [0,1]-valued ordinary differential equa-
tions (ODEs). Further tightness estimates are then used to prove convergence of
the stationary distributions to the unique invariant state of the ODE. This basic
approach was subsequently used to analyze various relevant modifications of the
supermarket model [18, 23, 29]. Other theoretical results on the SQ(d) model with
exponential service distributions in this asymptotic regime include [20, 28, 31].

However, measurements in different applications have shown that service times
are typically not exponentially distributed [13, 15, 26, 27]. In this case, the ODE
method is no longer directly applicable because in order to describe the future evo-
lution of the system, it is not sufficient to keep track of the fraction of queues with
� jobs at any time. For each job in service, one has also to keep track of additional
information such as its age (the amount of time the job has spent in service) or its
residual service time. In a system with N servers, this requires keeping track of
N additional nonnegative random variables, and thus the dimension of the Marko-
vian state representation grows with N , which is not conducive to obtaining a limit
theorem. Our goal is to develop a general framework for the analysis of this model
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and related models, that in particular enables an intuitive and tractable description
of the hydrodynamic limit.

1.2. Discussion of results. To achieve our goal, we introduce a novel interact-
ing particle representation of the state of the network that allows for a description
of the dynamics of all N -server systems on a common (infinite-dimensional) state
space. Specifically, we represent the state of an N -server SQ(d) network at any
time t in terms of an infinite sequence of finite measures ν(N)(t) = (ν

(N)
� (t);� ∈

N), where ν
(N)
� (t) is the measure that has a “particle” or unit delta mass at the

age of each job that is in service at a queue of length greater than or equal to � at
time t , where length denotes the number of jobs either waiting or in service. We
then characterize the dynamics of the N -server SQ(d) model in terms of a coupled
system of interacting stochastic measure-valued evolution equations (see Proposi-
tion 4.5). The main result of this article, Theorem 2.6, shows that under general
conditions on the service time distribution and arrival processes, as N →∞, the
sequence of scaled state processes ν(N)/N converges weakly to the unique so-
lution of a coupled system of deterministic measure-valued equations, which we
refer to as the hydrodynamic equations (see Definition 2.1). While measure-valued
representations keeping track of ages of jobs have recently been introduced to an-
alyze certain many-server models such as the GI/GI/N model studied in [22, 24],
to the best of our knowledge, this is the first work to consider a representation in
terms of a countable sequence of interacting measure-valued stochastic processes.
This poses several new technical challenges because the dynamics is significantly
more complicated than in the models considered in [22, 24], in large part due to the
state-dependent routing structure of the SQ(d) network model and the interactions
between the various component processes. In addition, the routing term contains
components that evolve on different time-scales (as elaborated in Section 6.2.2),
making its convergence analysis more challenging.

The tractable dynamical characterization of the limit via the hydrodynamic
equations is one of the main contributions of this article. Our characterization pro-
vides qualitative insight into transient network performance, whose value is further
illustrated in the related works [2–4], where, under some additional conditions on
the service distribution, a reduced countable system of interacting classical PDEs
is shown to capture essential performance characteristics of the limit system such
as queue lengths and virtual waiting times. In [4], the numerical solution of the
PDE is used to identify nonintuitive behavior of load-balancing networks, such as,
for example, showing that under the SQ(d) routing algorithm, backlog in the sys-
tem is cleared faster when the service distribution is heavy-tailed rather than light-
tailed (with the same mean), and that for light-tailed service distributions, relax-
ation times (suitably defined) under the SQ(d) algorithm are significantly shorter
than under random routing. Thus, our approach yields a PDE method for analyzing
randomized load balancing networks, which generalizes the more classical ODE
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method that is valid only in the presence of exponential service distributions, and
can be adapted to study several other models.

As a simple corollary of our main result, we also obtain a “propagation of chaos”
result for finite time intervals, showing asymptotic independence of any finite set
of servers at any given time as N →∞, when the initial conditions are exchange-
able (see Corollary 2.8). A similar result has been obtained in Proposition 7.1 of
[10] using completely different techniques (though only in the more restrictive set-
ting of Poisson arrivals and i.i.d. fixed initial conditions). However, no dynamical
characterization of the system was obtained in [10]. Indeed, just establishing prop-
agation of chaos (over finite time intervals) is not sufficient to obtain a convenient
characterization of the dynamics that can be used to provide qualitative insight into
transient network performance such as our paper, along with [4], does.

Although the main focus of our paper is to understand transient behavior of the
SQ(d) load balancing network, we believe that this paper could also serve as a
useful first step toward understanding equilibrium behavior in such systems. To
the best of our knowledge, the only prior work on the SQ(d) model, d ≥ 2, for
a general class of nonexponential service distributions seems to be the work of
Bramson, Lu and Prabhakar [8–11], which focuses on equilibrium behavior rather
than dynamical behavior. In particular, under the assumption that the arrival pro-
cess is Poisson with rate λ < 1 and the service distribution has a decreasing hazard
rate, they show that the stationary distribution of a typical queue in the N -server
model converges to a limit, and uncover the interesting phenomenon that when
the service distribution is power law, its tail does not always exhibit a doubly ex-
ponential decay. However, by the authors’ own evaluation (see page 3 of [10]),
extending the approach in [10] to more general settings appears to be a difficult
problem. The hydrodynamic equations introduced in this article pave the way for
an alternative approach to analyzing the equilibrium behavior for a larger class of
service distributions and more general, renewal arrivals. Indeed, the hydrodynamic
equations have been shown in [1] to have a unique invariant state, which admits
a useful computable characterization that provides more detailed information be-
yond the tail behavior. When combined with the results of [10], this invariant state
can be shown to be the limit of the sequence of stationary distributions of the state
processes when the service distribution has a decreasing hazard rate function. To
establish convergence of the sequence of N -server stationary distributions to this
invariant state for the more general class of service distributions considered here,
it would suffice to show that the unique invariant state of the hydrodynamic limit
is globally attractive. This is a nontrivial interesting problem for future work, but
it does provide an alternative approach from that in [10] to the analysis of the
equilibrium behavior of large-scale SQ(d) networks.

Finally, we note that the proof of convergence relies on several new techniques,
beyond those that have been used in the analysis of scaling limits of measure-
valued stochastic process models of queueing networks in other works such as,
for example, [22, 24]. First, we introduce a marked point process representation
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of the dynamics (see Section 5.2) that allows us to prove certain conditional in-
dependence properties that are used to identify compensators (with respect to a
suitable filtration) of various auxiliary processes that govern the dynamics, such
as the cumulative routing and departure processes (see Propositions 5.1 and 5.2).
Next, we establish certain renewal estimates to characterize the limit of the scaled
compensators. In particular, the compensator of the routing process involves dif-
ferent components whose dynamics evolve on different time scales, and hence the
characterization of its limit requires establishing a form of averaging principle (see
the Appendix and Sections 6.1.3 and 6.2.2). Furthermore (in Section 6.2), we ob-
tain an alternative dynamical characterization of the solution to the hydrodynamic
equations (see Proposition 3.1), which is used to prove relative compactness of the
sequence of scaled state processes in Theorem 6.16 and show that any subsequen-
tial limit satisfies the hydrodynamic equations. To complete the proof, we establish
uniqueness of the solution to the hydrodynamic equations (see Theorem 2.4). The
hydrodynamic equations consist of a countable collection of coupled nonlinear
measure-valued equations subject to nonstandard boundary conditions that appear
to fall outside the class considered in the literature. Two new ingredients that we
introduce to facilitate the uniqueness analysis is the nonstandard pseudometric on
the space of finite measures defined in (3.1), and a characterization of the evolution
of this metric in terms of a certain renewal equation.

1.3. Outline of the paper. The rest of the paper is organized as follows. Sec-
tion 1.4 lists some common notation. Section 2 first introduces the basic assump-
tions of the model, the state representation and the definition of the hydrodynamic
equations, and then states the main results. Section 3 is devoted to the analysis of
the hydrodynamic equations, with uniqueness of the solution established in Sec-
tion 3.1 and an alternative dynamical characterization of the solution obtained in
Section 3.2. Section 4 contains a detailed description of the state dynamics in the
N -server system. Martingale decompositions for the routing and departure pro-
cesses are obtained in Section 5.1. The proofs build on a marked point process rep-
resentation and some conditional independence results established in Section 5.2.
Finally, the main convergence results are established in Section 6, with the proof
of the convergence result, Theorem 2.6, presented in Section 6.2.3. Proofs of some
technical lemmas are relegated to the Appendix.

1.4. Common notation. The following notation will be used throughout the
paper. We use Z, Z+ and N to denote the sets of integers, nonnegative integers and
positive integers, respectively. Also, R is the set of real numbers and R+ the set
of nonnegative real numbers. For a, b ∈ R, a ∧ b and a ∨ b denote the minimum
and maximum of a and b, respectively. For a set B , 1B(·) is the indicator function
of the set B (i.e., 1B(x) = 1 if x ∈ B and 1B(x) = 0 otherwise). When B is a
measurable subset of a probability space (�,F), we omit the explicit dependence
on ω and write 1B(ω) as 1B . Moreover, with a slight abuse of notation, on every
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domain V , 1 denotes the constant function equal to 1 on V . Also, Id is the identity
function on [0,∞), that is, Id(t)= t , for all t ≥ 0.

For a topological space V , we let C(V ), Cb(V ) and Cc(V ) be, respectively,
the space of continuous functions, bounded continuous functions, and contin-
uous functions with compact support on V . For f ∈ Cb(V ), ‖f ‖∞ denotes
sups∈V |f (s)|. When V = [0,∞), for T ≥ 0, ‖f ‖T denotes sups∈[0,T ] |f (s)|, and
recall that wf (δ, T ) := sup{|f (t) − f (s)|; s, t ∈ [0, T ], |s − t | ≤ δ}, δ > 0, is the
modulus of continuity of f on the interval [0, T ]. For V = [0,L), L ∈ [0,∞],
C

1
b(V ) is the set of functions f ∈ Cb(V ) for which the first derivative, denoted

by f ′, exists and is bounded and continuous on V . Similarly, when V ⊂ R
2 is

the product of two intervals in R, C1,1
b (V ) (resp., C1,1

c (V )) is the set of functions
(x, s) �→ ϕ(x, s) in Cb(V ) (resp., Cc(V )) for which the first order partial deriva-
tives ϕx and ϕs exist and are bounded and continuous (resp., continuous with com-
pact support) on V . Also, let AC(V ) denote the space of real-valued functions that
are absolutely continuous on every bounded subset of V .

For a metric space X, DX[0,∞) is the set of X-valued functions on [0,∞) that
are right continuous and have finite left limits on (0,∞), and CX[0,∞) is the
subset of continuous functions on [0,∞). For every function f ∈ DX[0,∞) and
T ≥ 0, w′(f, δ, T ) is the modulus of continuity of f in DX[0,∞); see equation
(3.6.2) of [17] for a precise definition of w′. Furthermore, for every function f ∈
DR[0,∞), we define

[f ]t := lim|π |→0

n∑
k=1

(
f (tk)− f (tk−1)

)2
,

where the limit is taken over all partitions π = {t0 = 0, t1, . . . , tn = t} [0, t] with
|π | := maxk=1,...,n |tk − tk−1|. When f is a càdlàg stochastic process, the limit is
defined in the sense of convergence in probability.

Finally, L1(0,∞), L2(0,∞) and L
∞(0,∞), denote, respectively, the spaces

of integrable, square-integrable and essentially bounded functions on (0,∞),
equipped with their corresponding standard norms. Also, L1

loc(0,∞) denotes the
space of locally integrable functions on [0,∞). For any f ∈ L

1
loc(0,∞) and a func-

tion g that is bounded on finite intervals, g ∗f denotes the (one-sided) convolution
of the two functions, defined as f ∗ g(t) := ∫ t

0 f (t − s)g(s) ds, t ≥ 0.
For every subset V of R or R

2 endowed with the Borel sigma-algebra, let
MF (V ) (resp., M≤1(V )) be the space of finite positive (resp., sup-probability)
measures on V . For μ ∈MF (V ) and any bounded Borel-measurable function f

on V , we denote the integral of f with respect to μ by

〈f,μ〉 :=
∫
V

f (x)μ(dx).

Given μ ∈ MF (V ) and a function f defined on a larger set Ṽ ⊇ V , by some
abuse of notation, we will write 〈f,μ〉 to denote 〈f|V ,μ〉 = ∫

V f (x)μ(dx), where
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f|V denotes the restriction of f to V . For every measure μ with representation
μ = μ+ − μ−;μ+,μ− ∈ Mf [0,∞), we extend the bracket notation by setting
〈f,μ〉 := 〈f,μ+〉− 〈f,μ−〉. We equip MF (V ) and M≤1(V ) with the weak topol-
ogy: μn ⇒ μ if and only if 〈f,μn〉→ 〈f,μ〉 for all f ∈Cb[0,∞). Recall that the
Prohorov metric dP on MF (V ) (page 72 of [7]) induces the same topology (see
Theorem 6.8 of Chapter 1 in [7]).

Also, we denote by M(V ) the space of Radon measures on V , that is, the space
of measures on V that assign finite mass to every relatively compact subset of V .
Alternatively, one can identify a Radon measure μ ∈ M(V ) with a linear func-
tionals ϕ �→ μ(ϕ) := ∫

V ϕ(x)μ(dx) on the space Cc(V ) of compactly supported
functions on V such that for every compact set K ⊂ V , there exists a finite CK
such that

μ(ϕ)≤ CK‖ϕ‖∞, ∀ϕ ∈Cc(V ) with supp(ϕ)⊂K.

2. Main results.

2.1. Basic assumptions. Consider the SQ(d) model with N servers described
in the Introduction. For t ≥ 0, let E(N)(t) denote the number of jobs that arrived
to the network in the interval [0, t]. We start by stating our assumptions on the
cumulative arrival process E(N). Let Ẽ be a delayed renewal process with inter-
arrival times ũn, n ≥ 1, whose cumulative distribution function GẼ has a den-
sity gẼ and mean λ−1, for some λ > 0, and delay ũ0 that satisfies P{ũ0 > r} =
GẼ(R̃ + r)/GẼ(R̃), for some R̃ ≥ 0, where GẼ := 1 −GẼ .

ASSUMPTION I. The arrival process satisfies E(N)(t)= Ẽ(Nt), t ≥ 0.

Note that Assumption I implies that E(N) is a delayed renewal process with
delay u

(N)
0 := ũ0/N , and interarrival times u

(N)
n := ũn/N , n ≥ 1, with com-

mon distribution G
(N)
E (x) := GẼ(Nx), x ≥ 0, and probability density function

g
(N)
E (·)=Ng

Ẽ
(N ·). Moreover, setting R(N) := R̃/N , we have

(2.1) P
{
u

(N)
0 > r

}= G
(N)

E (R(N) + r)

G
(N)

E (R(N))
, r ≥ 0.

For future purposes, we also define the backward recurrence time of E(N):

(2.2) R
(N)
E (t) :=

{
R(N) + t if 0 ≤ t < u0,

t − sup
{
s ≥ 0,E(N)(s) < E(N)(t)

}
if t ≥ u0,

where in this particular definition, the supremum of an empty set should be inter-
preted as zero. Note that R

(N)
E (0)=R(N).

Next, let G denote the cumulative distribution function of the i.i.d. service times
{vj ; j ∈ Z}, and let G := 1 −G. We impose the following conditions on G.
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ASSUMPTION II. The service time distribution G has the following proper-
ties:

(a) G has a density g and finite mean which can (and will) be set to 1.
(b) There exists �0 < L such that the hazard rate function

(2.3) h(x) := g(x)

G(x)
, x ∈ [0,L),

where L := sup{x ∈ [0,∞) : G(x) < 1}, is either bounded or lower semicontinu-
ous on (�0,L).

(c) The density g is bounded on every finite interval of [0,∞).

Note that both Assumptions II(b) and II(c) hold if either g is continuous or h is
bounded on [0,∞).

2.2. State representation. Recall from the Introduction that ν
(N)
� (t) is a (ran-

dom) finite measure on [0,∞) that has a unit delta mass at the age (i.e., amount
of time spent in service) of each job that, at time t , is in service at a queue
of length no less than �. Since the maximum number of jobs in service at any
time is N , ν

(N)
� (t)/N takes values in the space M≤1[0,L) of subprobability

measures on [0,L). The state of the system at time t will be represented by
ν(N)(t) := (ν

(N)
� (t);�≥ 1). The scaled state ν(N)(t)/N takes values in the space

S := {
(μ�;�≥ 1) ∈M≤1[0,L)N; 〈f,μ�〉 ≥ 〈f,μ�+1〉,
∀�≥ 1, f ∈Cb[0,∞), f ≥ 0

}
(2.4)

of ordered sequences of subprobability measures. We equip S with the metric

(2.5) dS(μ, μ̃) := sup
�≥1

dP (μ�, μ̃�)

�
,

where dP is the Prohorov metric. Thus, a sequence {μn} converges to μ in S if and
only if for every �≥ 1, {μn

�} converges weakly to μ�. Recall that weak convergence
and the Prohorov metric are defined in Section 1.4.

Recall that 1 denotes the function that is identically one, and note that

(2.6) S
(N)
� (t) := 〈

1, ν
(N)
� (t)

〉
, t ≥ 0, �≥ 1,

is the number of queues with length at least � at time t . Moreover, let X(N)(t) be
the total number of jobs in the system at time t (including those in service and
those waiting in queue). Since S

(N)
� (t) − S

(N)
�+1(t) is the number of queues with

length exactly �, we have

(2.7) X(N)(t)=∑
�≥1

[
�
(
S

(N)
� (t)− S

(N)
�+1(t)

)]=∑
�≥1

S
(N)
� (t)=∑

�≥1

〈
1, ν

(N)
� (t)

〉
.



HYDRODYNAMIC LIMIT OF A LOAD BALANCING NETWORK 2123

Note that the right-hand side above is in fact a finite sum if and only if the number
of jobs in the system is finite at time t , which in turn holds if and only if that
condition holds for t = 0 since X(N)(t) ≤ X(N)(0) + E(N)(t). Finally, for t ≥ 0
and � ∈ N, let D

(N)
� (t) denote the total number of jobs that completed service in

the interval [0, t] at a queue that had length � just prior to service completion.
All these random elements are assumed to be supported on a common probability
space (�,F,P).

2.3. Hydrodynamic equations. We now introduce the hydrodynamic equa-
tions, which will be shown to characterize the “functional law of large numbers”
or “fluid” limit of the state of the network. The terminology refers to the fact that
we are looking at the limiting dynamics of the empirical measure of an interacting
particle system. For d ≥ 2, let

(2.8) Pd(x, y) := xd − yd

x − y
=

d−1∑
m=0

xmyd−1−m.

When d = 2, we have the simple form P2(x, y) = x + y, and in general, for
x, y, x̃, ỹ ≤ 1,

(2.9) Pd(x, y)≤ d and Pd(x, y)−Pd(x̃, ỹ)≤ d2((x − x̃)+ (y − ỹ)
)
.

DEFINITION 2.1 (Hydrodynamic equations). Given λ > 0 and ν(0) ∈ S,
{ν(t)= (ν�(t);�≥ 1); t ≥ 0} in CS[0,∞) is said to solve the hydrodynamic equa-
tions associated with (λ, ν(0)) if and only if for every t ∈ [0,∞),

(2.10)
∫ t

0

〈
h, ν1(s)

〉
ds <∞,

and for every �≥ 1,

(2.11)
〈
1, ν�(t)

〉− 〈
1, ν�(0)

〉=D�+1(t)+
∫ t

0

〈
1, η�(s)

〉
ds −D�(t),

where

(2.12) D�(t) :=
∫ t

0

〈
h, ν�(s)

〉
ds, ∀�≥ 1,

and for every f ∈Cb[0,∞),〈
f, ν�(t)

〉= 〈
f (· + t)

G(· + t)

G(·) , ν�(0)

〉
+
∫
[0,t]

f (t − s)G(t − s) dD�+1(s)

+
∫ t

0

〈
f (· + t − s)

G(· + t − s)

G(·) , η�(s)

〉
ds,(2.13)

with

(2.14) η�(t) :=
{
λ
(
1 − 〈

1, ν1(t)
〉d)

δ0 if �= 1,

λPd

(〈
1, ν�−1(t)

〉
,
〈
1, ν�(t)

〉)(
ν�−1(t)− ν�(t)

)
if �≥ 2.
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Given a solution ν to the hydrodynamic equations, we define

(2.15) S�(t) := 〈
1, ν�(t)

〉
, t ≥ 0, �≥ 1.

REMARK 2.2. The bound (2.10) implies that for every � ≥ 1, the process D�

is well defined.

REMARK 2.3. Definition 2.1 of the hydrodynamic equations and the corre-
sponding uniqueness result in Theorem 2.4 can be generalized to time-varying
rates by simply replacing the constant arrival λ everywhere with a nonnegative
locally integrable function λ(·).

We now state our first main result, which is proved in Section 3.1.

THEOREM 2.4. Suppose Assumptions I and II(a) hold. Then, for every λ > 0
and ν(0) ∈ S, the hydrodynamic equations associated with (λ, ν(0)) have at most
one solution.

We now provide some intuition into the form of the hydrodynamic equations.
Given a(s), the age of a job in service at time s, the mean conditional probabil-
ity that this job will complete service in the time interval (s, s + ds) is roughly
h(a(s)) ds. Summing over the ages of all jobs in service at queues of length no
less than �, we see that the conditional mean departure rate from such queues
at time s is 〈h, ν�(s)〉. In the large N limit, the scaled departure process co-
incides with its mean, thus giving rise to the equality in (2.12). Next, to un-
derstand the mass balance equation (2.11), fix � ≥ 1 and note that in analogy
with (2.6), 〈1, ν�(t)〉 represents the limit fraction of queues of length no less
than � at time t . Over the interval [0, t], this quantity decreases due to depar-
tures from queues of length precisely �, which is given by D�(t) − D�+1(t),
and increases due to exogenous arrivals to queues of length � − 1. To quan-
tify the latter, note that λ is the scaled mean arrival rate of jobs to the net-
work and the probability that an arriving job is routed to a queue of length
� − 1 at time s is approximately equal to (〈1, ν�−1(s)〉)d − (〈1, ν�(s)〉)d , which
is equal to Pd(〈1, ν�−1(s)〉, 〈1, ν�(s)〉)(〈1, ν�−1(s)〉 − 〈1, ν�(s)〉), with the con-
vention 〈1, ν0(s)〉 := 1. Thus, with η� defined by (2.14), 〈1, η�(s)〉 represents the
scaled arrival rate at time s of jobs to queues of length � − 1, and

∫ t
0 〈1, η�(s)〉ds

represents the total exogenous arrivals to such queues over the interval [0, t]. These
observations, when combined, justify the form of (2.11).

Equation (2.13) is a more involved mass balance equation, whose right-hand
side consists of three terms that contribute to the measure ν�(t). The first term on
the right-hand side accounts for jobs already in service at time 0. Any such job,
conditioned on having initial age a(0), would still be in service at time t , with
age a(0) + t , with probability G(a(0) + t)/G(a(0)). The second term represents



HYDRODYNAMIC LIMIT OF A LOAD BALANCING NETWORK 2125

the contribution to ν�(t) due to jobs that entered service at some time s ∈ (0, t] at
a queue of length no less than � at time s and that are still in service at time t .
Such service entries occur due to departures of jobs at time s from a queue no less
than � + 1 prior to departure, which would happen at rate dD�+1(s). Further, the
job entering service would have age 0 at time s and so would still be in service
at time t (with age t − s) with probability G(t − s). Finally, the last term cap-
tures the contribution due to jobs that were in service at a queue of length �− 1 at
some time s ∈ [0, t] when its length increased by one due to the routing of a job
to that queue. If � > 1, and a(s) was the age of the job in service at that queue
at time s, the job would still be in service at time t only if its service time were
greater than a(s) + t − s (given that it was clearly greater than a(s)), which has
probability G(a(s)+ t − s)/G(a(s)). Now, the (limit) distribution of ages in ser-
vice at queues of length � − 1 at time s is ν�−1(s) − ν�(s). When multiplied by
the (limit) rate at which jobs are routed to a random queue of length �− 1, which
is λPd(〈1, ν�−1(s)〉, 〈1, ν�(s)〉), yields η�(s). The case � = 1 can be argued simi-
larly. This explains the form of the third term on the right-hand side of (2.13). The
above discussion also suggests why the limit of a more general class of routing al-
gorithms could be characterized similarly, but with a suitably modified definition
of η�.

2.4. Convergence result. For H = E,D,ν�, ν, S�, we define the scaled ver-
sion of H(N) as follows:

(2.16) H
(N)

(t)= H(N)(t)

N
, N ∈N, t ≥ 0.

The following condition is imposed on the initial state of the network.

ASSUMPTION III. The sequence of initial conditions satisfies the following:

(a) For every N ∈ N, X(N)(0) = ∑
�≥1〈1, ν

(N)
� (0)〉 < ∞ almost surely, E(N)

and the random queue choices in the load balancing algorithm are independent
of ν(N)(0), and for each job j that is in service at time 0, its service time vj

is conditionally independent of ν(N)(0) given its initial age aj (0); see (4.4) for
further details.

(b) There exists ν(0) = (ν�(0);� ≥ 1) ∈ S such that ν(N)(0) → ν(0) in S,
P-almost surely, as N →∞.

(c) lim supN E[X(N)
(0)] < ∞, and X

(N)
(0) → X(0) as N → ∞, where

X(0) :=∑
�≥1〈1, ν�(0)〉.

We now state some immediate consequences of Assumptions I and III(c).

LEMMA 2.5. Suppose Assumption I holds. Then, as N →∞, E
(N) → λId in

DR[0,∞), P-almost surely. Moreover, for all t ≥ 0, E[E(N)
(t)]→ λt as N →∞,
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and hence,

(2.17) lim sup
N→∞

E
[
E

(N)
(t)

]
<∞.

In addition, if Assumption III(c) holds, then for every t ≥ 0,

(2.18) lim sup
N→∞

E
[
X

(N)
(0)+E

(N)
(t)

]
<∞.

PROOF. The almost-sure convergence of E
(N)

to λId in DR[0,∞) fol-
lows from Assumption I and the functional law of large numbers for renewal
processes (e.g., see Theorem 5.10 of [14]). Also, for t ≥ 0, by the elemen-

tary renewal theorem (e.g., see Proposition V.1.4 of [6]), limN→∞E[E(N)
(t)]

= limN→∞ Ẽ(Nt)/N = λt , where Ẽ is the delayed renewal process of Assump-
tion I. This implies (2.17), which along with Assumption III(c), implies (2.18).

�

We now state the second main result, whose proof is given in Section 6.2.3.

THEOREM 2.6. Suppose Assumptions I–III hold. Then there exists a unique
solution ν ∈CS to the hydrodynamic equations associated with (λ, ν(0)), and the
sequence {ν(N)} converges in distribution to ν.

REMARK 2.7. Theorem 2.6 implies that for every t ≥ 0, the (fluid-scaled)

number of jobs in the system X
(N)

(t) converges in distribution to X(t) =∑
�≥1〈1, ν�(t)〉. This follows from the dominated convergence theorem and the

fact that when X(0) =∑
�≥1〈1, ν�(0)〉 is finite, X(t) remains finite for all t ≥ 0,

that is, the solutions to the hydrodynamic equations preserves the set{
(μ�;�≥ 1) ∈ S;∑

�≥1

〈1,μ�〉<∞
}
.

To see this fact, note that for every L ∈ N, by summing over (2.11) and by the
definition (2.14) of η, we have

L∑
�=1

〈
1, ν�(t)

〉= L∑
�=1

〈
1, ν�(0)

〉+DL+1(t)−D1(t)+ λ

∫ t

0

(
1 − 〈

1, ν1(t)
〉d)

ds

≤ X(0)+ λt.

Letting L→∞ implies X(t)≤X(0)+ λt .

As a corollary, we establish a “propagation of chaos” result, whose proof is also
deferred to Section 6.2.3. Let X(N),i(t) be the length of the ith queue at time t ,
and if the queue is initially nonempty, let a(N),i(0) be the initial age of the job
receiving service at the ith queue.
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COROLLARY 2.8. Suppose Assumptions I–III hold, and the initial conditions
are exchangeable, that is, for every N and any permutation π of the queue indices
{1, . . . ,N}, the random vector(

X(N),π(i)(0), a(N),π(i)(0)1{X(N),π(i)(0)>0}; i = 1, . . . ,N
)
,

has the same distribution. Let ν be the solution to the hydrodynamic equations
associated with (λ, ν(0)) and let {S�, � ≥ 1} be as defined in (2.15). Then, for
every �≥ 1 and t ≥ 0,

(2.19) lim
N→∞P

{
X(N),1(t)≥ �

}= S�(t),

and for ever fixed k ≥ 0 and �1, . . . , �k ∈N,

(2.20) lim
N→∞P

{
X(N),1(t)≥ �1, . . . ,X

(N),k(t)≥ �k

}= k∏
m=1

S�m(t).

3. Analysis of the hydrodynamic equations. In Section 3.1, we prove The-
orem 2.4. In Section 3.2, we obtain a dynamical characterization of the hydrody-
namic equations in terms of a measure-valued PDE, which is used in Section 6.2.3
to prove Theorem 2.6.

3.1. Proof of uniqueness of the solution to the hydrodynamic equations.
PROOF OF THEOREM 2.4. Fix ν(0) ∈ S, λ > 0, and let ν and ν̃ both be solutions
to the hydrodynamic equations associated with (λ, ν(0)), and let D̃, η̃, S̃ be defined
as in (2.12)–(2.15), but with ν replaced by ν̃. For � ≥ 1, define �H� := H� − H̃�

for H = ν,D,η,S. Consider the parameterized family of continuous bounded
functions

F :=
{
ϑr := G(· + r)

G(·) ; r ≥ 0
}
⊂Cb[0,L)∩AC[0,∞),

where the last inclusion holds by Assumption II. Note that 1 = ϑ0 ∈ F, and for
every �≥ 1 and t ≥ 0, define

(3.1) V�(t) := sup
f∈F

∣∣〈f,�ν�(t)
〉∣∣.

By (2.14) with � = 1, (2.15) and (2.8), for s ≥ 0 and every f ∈ Cb[0,L) we
have 〈

f,�η1(s)
〉= λf (0)

((
S̃1(s)

)d − (
S1(s)

)d)
=−λf (0)Pd

(
S̃1(s), S1(s)

)〈
1,�ν1(s)

〉
.(3.2)

Therefore, for every f ∈ F, since Pd(x, y)≤ d and ‖f ‖∞ ≤ 1,

(3.3)
∣∣〈f,�η1(s)

〉∣∣≤ λd
∣∣〈1,�ν1(s)

〉∣∣≤ λdV1(s), f ∈ F.
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Next, for � ≥ 2, s ≥ 0 and f ∈ Cb[0,L), again invoking (2.14), (2.15) and (2.8),
we have 〈

f,�η�(s)
〉= λPd

(
S�−1(s), S�(s)

)〈
f,�ν�−1(s)−�ν�(s)

〉
+ λ

(
Pd

(
S�−1(s), S�(s)

)−Pd

(
S̃�−1(s), S̃�(s)

))
× 〈

f, ν̃�−1(s)− ν̃�(s)
〉
.(3.4)

Hence, for f ∈ F, given ‖f ‖∞ ≤ 1, ν�−1 ≥ ν�, ν̃�−1 ≥ ν̃�, ν�, ν̃� ∈ M≤1[0,L),
Pd(x, y)≤ d and inequality (2.9), we have

(3.5)
∣∣〈f,�η�(s)

〉∣∣≤ λ
(
d + d2)(V�−1(s)+ V�(s)

)
, f ∈ F.

Now, for f ∈Cb[0,∞)∩AC[0,∞) applying integration by parts to (2.13), we
obtain 〈

f, ν�(t)
〉= 〈

f (· + t)
G(· + t)

G(·) , ν�(0)

〉
+ f (0)D�+1(t)

+
∫
[0,t]

(f G)′(t − s)D�+1(s) ds

+
∫ t

0

〈
f (· + t − s)

G(· + t − s)

G(·) , η�(s)

〉
ds.(3.6)

Also, for every t ≥ s ≥ 0, r ≥ 0, we have ϑr(0) = G(r), (ϑrG)′(t − s)=−g(t −
s + r), and

ϑr(x + t − s)
G(x + t − s)

G(x)
= G(x + t − s + r)

G(x)
= ϑt−s+r (x), x ∈ [0,L).

Thus, substituting f = ϑr in (3.6), both as is and when ν�, D�, η� are replaced by
ν̃�, D̃�, η̃�, respectively, and recalling �ν�(0)= 0, we have〈

ϑr,�ν�(t)
〉= G(r)�D�+1(t)−

∫ t

0
g(t − s + r)�D�+1(s) ds

+
∫ t

0

〈
ϑt−s+r ,�η�(s)

〉
ds.(3.7)

Since ϑ0 = 1, equation (3.7) for r = 0 gives〈
1,�ν�(t)

〉= �D�+1(t)−
∫ t

0
g(t − s)�D�+1(s) ds

+
∫ t

0

〈
ϑt−s,�η�(s)

〉
ds.(3.8)

Since {ν�}�∈N and {ν̃�}�∈N satisfy (2.11) and its analog, and that �ν�(0) = 0, we
have

(3.9) �D�+1(t)= 〈
1,�ν�(t)

〉+�D�(t)−
∫ t

0

〈
1,�η�(s)

〉
ds.
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Combining (3.9) and (3.8), it follows that for � ≥ 2, �D� satisfies the renewal
equation

�D�(t)= g ∗�D�(t)+ F�(t),

with

F�(t) :=
∫ t

0

〈
1,�η�(s)

〉
ds + g ∗ 〈1,�ν�〉(t)−

(
g ∗

∫ ·
0

〈
1,�η�(s)

〉
ds

)
(t)

−
∫ t

0

〈
ϑt−s,�η�(s)

〉
ds.

Since �ν� is the difference of two measures in DMF [0,L)[0,∞), 〈1,�ν�(·)〉 and
〈f,�η�(·)〉, f ∈ Cb[0,∞), are also locally integrable, and hence F� is uniformly
bounded on finite intervals (i.e., ‖F‖t <∞ for all t ≥ 0). Moreover, (2.10) ensures
that �D� is also bounded on finite intervals. Therefore, by Theorem V.2.4 of [6],

(3.10) �D�(t)= F�(t)+ u ∗ F�(t),

where u is the renewal density of G on [0,L). Note that since G has density g, by
Proposition V.2.7 of [6], u exists and satisfies the equation u= u∗g+g. Moreover,
since g is locally bounded due to Assumption II(c), u is bounded on every finite
interval of [0,L) by another application of Theorem V.2.4 of [6]. Substituting the
definition of F� into equation (3.10) and using the relation u ∗ g + g = u, we have

�D�(t) =
∫ t

0

〈
1,�η�(s)

〉
ds + u ∗ 〈1,�ν�〉(t)−

∫ t

0

〈
ϑt−s,�η�(s)

〉
ds

−
(
u ∗

∫ ·
0

〈
ϑ ·−s,�η�(s)

〉
ds

)
(t).(3.11)

Next, we bound each term on the right-hand side of (3.11). Fix T ≥ 0. Then
(3.5) implies

(3.12)
∣∣∣∣∫ t

0

〈
1,�η�(s)

〉
ds

∣∣∣∣≤ λ
(
d + d2) ∫ t

0

(
V�−1(s)+ V�(s)

)
ds, t ≤ T .

Moreover, recalling the notation ‖f ‖T = supt∈[0,T ] |f (t)|, we also have

∣∣u ∗ 〈1,�ν�〉(t)
∣∣≤ ∫ t

0
u(t − s)

∣∣〈1,�ν�(s)
〉∣∣ds

≤ ‖u‖T

∫ t

0
V�(s) ds, t ≤ T .(3.13)

Furthermore, for the function ζ�(t) := ∫ t
0 〈ϑt−s,�η�(s)〉ds, the bound (3.5) with

f = ϑt−s implies

(3.14)
∣∣ζ�(s)

∣∣≤ λ
(
d + d2) ∫ s

0

(
V�−1(v)+ V�(v)

)
dv, s ≥ 0,
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and hence, applying Tonelli’s theorem in the third inequality below, we obtain∣∣u ∗ ζ�(t)
∣∣≤ ∫ t

0
u(t − s)

∣∣ζ�(s)
∣∣ds

≤ λ
(
d + d2) ∫ t

0

∫ s

0
u(t − s)

(
V�−1(v)+ V�(v)

)
dv ds

≤ λ
(
d + d2) ∫ t

0

(
V�−1(v)+ V�(v)

)(∫ t

v
u(t − s) ds

)
dv

≤ λ
(
d + d2)U(T )

∫ t

0

(
V�−1(s)+ V�(s)

)
ds, ∀t ≤ T ,(3.15)

where U(·)= 1+∫ ·
0 u(s) ds is the renewal function associated with G. From equa-

tion (3.11) and the bounds (3.12)–(3.15), for �≥ 2 we then have

(3.16) ‖�D�‖t ≤ C(T )

∫ t

0

(
V�−1(s)+ V�(s)

)
ds, ∀t ≤ T ,

with C(T ) := ‖u‖T + λ(d + d2)(2 + U(T )) < ∞. Finally, incorporating (3.3),
(3.5) and (3.16), with � replaced by �+ 1, into (3.7), we have∣∣〈f,�ν1(t)

〉∣∣≤ 3C(T )

∫ t

0

(
V1(s)+ V2(s)

)
ds, ∀f ∈ F,

and for every �≥ 2,∣∣〈f,�ν�(t)
〉∣∣≤ 3C(T )

∫ t

0

(
V�−1(s)+ V�(s)+ V�+1(s)

)
ds, ∀f ∈ F.

Taking the supremum over f ∈ F in the last two inequalities, for all t ≤ T we
obtain

(3.17) V�(t)≤

⎧⎪⎪⎨⎪⎪⎩
3C(T )

∫ t

0

(
V1(s)+ V2(s)

)
ds if �= 1,

3C(T )

∫ t

0

(
V�−1(s)+ V�(s)+ V�+1(s)

)
ds if �≥ 2.

Define V (t) :=∑∞
�=1 2−�V�(t). Then (3.17) implies

V (t)≤ 12C(T )

∫ t

0
V (s) ds.(3.18)

Also, since |〈f, ν�(t)〉| ≤ 1 for f ∈ F, (3.1) implies V�(t) ≤ 2 for all � ≥ 1, and
hence V (t) ≤ 2. Since V (0) = 0, an application of Gronwall’s inequality then
shows that V (t) = 0 for all t ≥ 0, and hence, V�(t) = 0 for all t ≥ 0 and � ≥ 1.
In particular, this shows that

(3.19) 〈1,�νk〉 ≡ 0, k ≥ 1.

Moreover, by (3.16), �D� ≡ 0 for all � ≥ 2. Taking the difference between equa-
tion (3.6), and the same equation, but with ν�, D�+1 and η� replaced by ν̃�, D̃�+1
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and η̃�, respectively, and using the identities �D�+1 ≡ 0 and �ν�(0) = 0, we see
that for �≥ 1 and f ∈Cb[0,∞)∩ACloc[0,∞),

(3.20)
〈
f,�ν�(t)

〉= ∫ t

0

〈
f (· + t − s)ϑt−s(·),�η�(s)

〉
ds.

To complete the proof, we use induction on � to show that �ν� ≡ 0 for �≥ 1. Let
AC

′[0,L) := {f ∈ AC[0,L) : ||f ||∞ ≤ 1}. Since G has a density by Assumption
II, f (· + t − s)ϑt−s(·) ∈ AC

′[0,L) for all f ∈ AC
′[0,L) and t, s ≥ 0. For � = 1,

(3.2) and (3.19) with k = 1 imply 〈f (· + t − s)ϑt−s,�η1(s)〉 = 0 and, therefore,
�ν1 ≡ 0 by (3.20). Furthermore, if �ν�−1 ≡ 0 for some � ≥ 2, it follows from
(3.4), (2.9) and (3.19), both with k = �− 1 and k = �, that∣∣〈f (· + t − s)ϑt−s(·),�η�(s)

〉∣∣
≤ λPd

(〈
1, ν�−1(s)

〉
,
〈
1, ν�(s)

〉)〈
f (· + t − s)ϑt−s(·),�ν�(s)

〉
≤ λd sup

f∈AC′[0,L)

∣∣〈f,�ν�(s)
〉∣∣.

Together with (3.20) this implies

(3.21) sup
f∈AC′[0,L)

∣∣〈f,�ν�(t)
〉∣∣≤ d

∫ t

0
λ sup

f∈AC′[0,L)

∣∣〈f,�ν�(s)
〉∣∣ds, ∀t ≥ 0.

Since �ν�(0) = 0, Gronwall’s inequality shows |〈f,�ν�(t)〉| = 0 for f ∈
AC

′[0,L) and hence, by linearity and a density argument, for f ∈ Cb[0,L). This
proves �ν�(t)= 0 for all t ≥ 0. �

3.2. A measure-valued PDE associated with the hydrodynamic limit. The fol-
lowing is the main result of this section.

PROPOSITION 3.1. Given ν(0) = (ν�(0);� ≥ 1) ∈ S and λ > 0, suppose ν =
(ν�)�≥1 ∈ DS[0,∞) satisfies the following: (2.10) holds and for every � ≥ 1 and
t ≥ 0, (2.11) holds, with D� and η� defined as in (2.12) and (2.14), respectively,
and for ϕ ∈C

1,1
c ([0,L)×R+),〈

ϕ(·, t), ν�(t)
〉= 〈

ϕ(·,0), ν�(0)
〉+ ∫ t

0

〈
ϕx(·, s)+ ϕs(·, s)− ϕ(·, s)h(·), ν�(s)

〉
ds

+
∫ t

0
ϕ(0, s) dD�+1(s)+

∫ t

0

〈
ϕ(·, s), η�(s)

〉
ds.(3.22)

Then ν is a solution to the hydrodynamic equations associated with (λ, ν(0)).

The proof of Proposition 3.1 relies on the following lemma. Denote by M̃ the
space of Radon measures on R

2 whose supports lie in [0,L)×R+, and denote the
integral with respect to any Radon measure � on R

2 by

�(ϕ)=
∫
R2

ϕ(x, s)�(dx ds), ϕ ∈Cc

([0,L
)×R+).
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LEMMA 3.2. Given a Radon measure � ∈ M̃, suppose μ = {μ(t); t ≥ 0} in
DMF [0,L)[0,∞) satisfies

∫ t
0 〈h,μ(s)〉ds <∞, and and for every ϕ ∈C

1,1
c ([0,L)×

R+),

(3.23) −
∫ ∞

0

〈
ϕx(·, s)+ ϕs(·, s)− ϕ(·, s)h(·),μ(s)

〉
ds =�(ϕ).

Then, for every f ∈Cc[0,L) and t ≥ 0,

(3.24)
〈
f,μ(t)

〉= ∫
[0,L)×[0,t]

f (x + t − s)
G(x + t − s)

G(x)
�(dx ds).

Equation (3.23) is called the abstract age equation and was studied exten-
sively in Section 4.3. of [24] Lemma 3.2 essentially follows from Corollary 4.17
and equations (4.24), (4.45), (4.46) and (4.55) in [24]; for a detailed proof, see
Lemma 3.2 of [5].

PROOF OF PROPOSITION 3.1. Clearly, we only need to show that (2.13) holds
for all t ≥ 0, �≥ 1 and f ∈Cb[0,L). Fix �≥ 1, and consider the linear functional
ξ� on Cc(R

2) defined by

ξ�(ϕ) := 〈
ϕ(·,0), ν�(0)

〉+ ∫
[0,∞)

ϕ(0, s) dD�+1(s)

+
∫ ∞

0

〈
ϕ(·, s), η�(s)

〉
ds.(3.25)

By (2.14) and (2.9), for m ∈ [0,L), T ∈ [0,∞) and every ϕ ∈ Cc(R
2) with

supp(ϕ)⊂ [0,m] × [0, T ],
(3.26)

∣∣〈ϕ(·, s), η�(s)
〉∣∣≤ ‖ϕ‖∞λd.

Hence, since D�+1 is nondecreasing,

(3.27)
∣∣ξ�(ϕ)

∣∣≤ ‖ϕ‖∞(∣∣ν�(0)
∣∣
T V +D�+1(T )+C(T )

)
,

with C(T ) := λdT <∞, and D�+1(T ) <∞ by (2.10). Moreover, ξ�(ϕ)= 0 for all
ϕ such that supp(ϕ)∩ [0,L)×R+ =∅. Hence, ξ is a Radon measure on R

2 with
support in [0,L)×R+, that is, ξ ∈ M̃. Moreover, since ϕ has compact support, the
left-hand side of (3.22) is equal to zero for sufficiently large t . Therefore, sending
t →∞ in (3.22), we have for all ϕ ∈C

1,1
c ([0,L)×R+),

(3.28) −
∫ t

0

〈
ϕx(·, s)+ ϕs(·, s)− ϕ(·, s)h(·), ν�(s)

〉
ds = ξ�(ϕ).

Thus, ν� satisfies the abstract age equation associated with ξ� ∈ M̃ and h. There-
fore, by Lemma 3.2 and (3.25), for all f ∈Cc[0,L) and t ≥ 0,〈

f, ν�(t)
〉= ∫

[0,L)×[0,t]
f (x + t − s)

G(x + t − s)

G(x)
ξ�(dx ds)

=
〈
f (· + t)

G(· + t)

G(·) , ν�(0)

〉
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+
∫
[0,t]

f (t − s)G(t − s) dD�+1(s)

+
∫ t

0

〈
f (· + t − s)

G(· + t − s)

G(·) , η�(s)

〉
ds.(3.29)

Since for t ≥ 0, the right-hand side of (3.29) is finite for every f ∈ Cb[0,L), the
relation (3.29) can be extended to all f ∈Cb[0,L) by an application of the domi-
nated convergence theorem, and (2.13) follows. This completes the proof. �

4. State dynamics. In Section 4.1, we express the state descriptor ν(N) in
terms of primitives of the networks. This will be required to justify the existence of
compensators of certain processes in Section 5. We also introduce some auxiliary
processes in Section 4.2, and use them to derive dynamical equations for the state
variables in Section 4.3.

REMARK 4.1. To make it easy to follow the notation, throughout the paper,
we use the superscript i to denote queue indices and subscript j to denote jobs.

4.1. State variables. For each job j , let γ
(N)
j , α

(N)
j and β

(N)
j , respectively,

represent the time at which job j arrives into the system, enters service and departs
the queue on completing service. Note that γ

(N)
j = α

(N)
j if the job is routed to an

empty queue, and β
(N)
j = α

(N)
j + vj where {vj } is the i.i.d. sequence of service

times. We use the convention that jobs initially in the network are indexed by
nonpositive numbers j = j0, . . . ,0 with j0 := −X(N)(0) + 1 being the smallest
job index, where recall that X(N)(t) represents the total number of jobs in system
at time t . We also assume that jobs that entered service earlier get smaller indices.
Jobs that arrive after time 0 are given indices j ≥ 1 in the order of their arrival time
(0 < γ

(N)
j < γ

(N)
j+1 for j ≥ 1, almost surely). Then the age a

(N)
j (t) of job j at time

t takes the form

(4.1) a
(N)
j (t) :=

⎧⎪⎪⎨⎪⎪⎩
0 if t < α

(N)
j ,

t − α
(N)
j if α

(N)
j ≤ t < β

(N)
j ,

vj if t ≥ β
(N)
j .

We also assign to each queue an index i ∈ {1, . . . ,N}. To implement the SQ(d)

routing algorithm, upon arrival, each job j ≥ 1 chooses a vector ιj = (ιj (1), . . . ,

ιj (d)) of d indices, each chosen independently and uniformly at random from the
set {1, . . . ,N} (in practice, it would be more natural to sample d queues at random
without replacement, but we choose the former routing procedure for simplicity;
the effect of the difference vanishes in the hydrodynamic limit). The job is then
routed to the queue with the shortest length amongst the chosen indices, where if



2134 R. AGHAJANI AND K. RAMANAN

there are multiple queues of minimal length, then one of them is chosen uniformly
at random. We denote the index of the queue to which job j is routed by κ

(N)
j :

(4.2) κ
(N)
j ∼ Unif

(
argmin

{
X(N),ιj (1)(γ (N)

j −)
, . . . ,X(N),ιj (d)(γ (N)

j −)})
,

where recall X(N),i(t) is the number of jobs in the ith queue at time t . With a slight
abuse of notation, we also use κ

(N)
j (t) := 1{t≥γ

(N)
j }κ

(N)
j to denote the queue index

process.
In our Markovian description, the initial state of the network is completely de-

termined by R
(N)
E (0) from (2.2) and ν(N)(0). Since the routing allocation is sym-

metric with respect to queues, if the vector of initial queue lengths and ages is
symmetric, the vector of queue lengths at any time t is also exchangeable. Thus,
the empirical measure ν(N) captures the essential features of the dynamics. How-
ever, it will prove convenient to also refer to a more detailed description, in which
κ

(N)
j is specified for each job initially in the system. According to our index-

ing convention, the X(N)(0) job initially in the network have indices in the set
{j0 := −X(N)(0) + 1, . . . ,0}, and 〈1, ν1(0)〉 jobs initially in service have indices
in the set {j0, . . . , j0 + 〈1, ν

(N)
1 (0)〉 − 1}. Now, let

(4.3) I0 := (
R

(N)
E (0), a

(N)
j (0), κ

(N)
j ; j =−X(N)(0)+ 1, . . . ,0

)
.

Assumption III(a) can be expressed in terms of the above notation as follows: for
every finite subset K⊂ {−X(N)(0)+ 1, . . . , . . . ,0} of jobs initially in system,

(4.4) P{vj > bj ; j ∈K|I0} =
∏
j∈K

G(a
(N)
j (0)+ bj )

G(a
(N)
j (0))

, bj ≥ 0.

In other words, for every job j not initially in service, vj is independent of I0.

We now express the measures ν
(N)
� in terms of the primitives defined above.

A job j receives service during the interval [α(N)
j , β

(N)
j ), and hence,

(4.5) V(N)(t) := {
j ≥ j0 : α(N)

j ≤ t < β
(N)
j

}
is the set of indices of jobs receiving service at time t . Also, for t ∈ [γ (N)

j ,∞) let

χ
(N)
j (t) denote the length at time t of the queue to which job j was routed. In other

words,

(4.6) χ
(N)
j (t)=X

(N),κ
(N)
j (t), t ≥ γ

(N)
j .

The value of χ
(N)
j (t) for t < γ

(N)
j is irrelevant. Therefore, for �≥ 1,

(4.7) U (N)
� (t) := {

j ≥ j0 : 1{γ (N)
j ≤t}χ

(N)
j (t)≥ �

}
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is the set of jobs in queues with length at least � at time t . Using this notation, we
can write

ν
(N)
� (t) :=

∞∑
j=j0

1{α(N)
j ≤t}1{β(N)

j >t}1{χ(N)
j (t)≥�}δa

(N)
j (t)

(4.8)

=
∞∑

j=j0

1{j∈V(N)(t)}1{j∈U (N)
� (t)}δa

(N)
j (t)

.(4.9)

The pair (R
(N)
E , ν(N)) with ν(N) = (ν

(N)
� ;� ≥ 1) is the state descriptor of the

N -server network.

4.2. Auxiliary processes and filtration. To describe the dynamics of ν(N), it
will be convenient to introduce a number of auxiliary processes. For every queue
i ∈ {1, . . . ,N}, let E(N),i denote the cumulative arrival process to queue i, defined
as

(4.10) E(N),i(t) :=
∞∑

j=1

1{γ (N)
j ≤t}1{κ(N)

j =i}, t ≥ 0.

For � ≥ 1, let ν
(N),i
� (t) denote the measure that has a Dirac delta mass at the age

of the job in service at queue i at time t if that queue has length at least �: that is,
for t ≥ 0,

(4.11) ν
(N),i
� (t) :=

∞∑
j=j0

1{α(N)
j ≤t}1{β(N)

j >t}1{χ(N)
j (t)≥�}1{κ(N)

j =i}δa
(N)
j (t)

.

Note that ν
(N),i
� (t) always has mass either zero or 1, and clearly,

(4.12) ν
(N)
� =

N∑
i=1

ν
(N),i
� .

Fix � ≥ 1. For ϕ ∈ Cb([0,L) × R+), let R(N)
ϕ,� be the cumulative ϕ-weighted

routing measure process to queues with length exactly � − 1, defined as follows
for all t ≥ 0:

(4.13) R(N)
ϕ,� (t) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N∑
i=1

∫
(0,t]

ϕ(0, s)
(
1 − 〈

1, ν
(N),i
1 (s−)

〉)
dE(N),i(s)

if �= 1,
N∑

i=1

∫
(0,t]

〈
ϕ(·, s), ν(N),i

�−1 (s−)− ν
(N),i
� (s−)

〉
dE(N),i(s),

if �≥ 2.
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Roughly speaking, R(N)
ϕ,� (t) captures the cumulative effect on the measure ν

(N)
�

due to jobs routed in the interval [0, t]. Indeed, in both cases, ϕ(·, s) in the integral
is evaluated at the age of the job in service at queue i. Note that when �= 1, since
〈1, ν(N),i(s−)〉 =X(N),i(s−), we can also write

(4.14) R(N)
ϕ,1 (t)=

N∑
i=1

∫
(0,t]

ϕ(0, s)1{X(N),i (s−)=0} dE(N),i(s).

Next, we turn to the counting process D
(N)
� = {D(N)

� (t); t ≥ 0} of departures
from queues with length at least � right before departure. For conciseness, we use
the following notation for values of the queue length of job j right after its arrival
time or service entry and right before its departure time:

χ
E,(N)
j := χ

(N)
j

(
γ

(N)
j

)
,

χ
K,(N)
j := χ

(N)
j

(
α

(N)
j

)
,

χ
D,(N)
j := χ

(N)
j

(
β

(N)
j −)

,

(4.15)

where χ
(N)
j (·) is the queue length process defined in (4.6). Then we have

(4.16) D
(N)
� (t)=

∞∑
j=j0

1{β(N)
j ≤t}1{χD,(N)

j ≥�}, t ≥ 0.

Note that D(N) :=D
(N)
1 is the total cumulative departure process.

REMARK 4.2. Since a queue is never empty just prior to a departure or right
after a service entry, we have χ

D,(N)
j ≥ 1 and χ

K,(N)
j ≥ 1. Also, a simple mass

balance shows that

(4.17) D(N)(t)+ 〈
1, ν

(N)
1 (t)

〉≤X(N)(0)+E(N)(t).

For ϕ ∈ Cb([0,L) × R+), let D(N)
ϕ,� be the cumulative ϕ-weighted departure

process from queues of length at least �, defined by

(4.18) D(N)
ϕ,� (t) :=

∞∑
j=j0

ϕ
(
vj , β

(N)
j

)
1{β(N)

j ≤t}1{χD,(N)
j ≥�}, t ≥ 0.

Clearly, D(N)
1,� =D

(N)
� , and hence by (4.17),

(4.19)
∣∣D(N)

ϕ,� (t)
∣∣≤ ‖ϕ‖∞(

X(N)(0)+E(N)(t)
)
, t ≥ 0.
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For i ∈ {1, . . . ,N}, let D(N),i denote the departure process from queue i. Then

D(N),i(t) =
∞∑

j=j0

1{β(N)
j ≤t}1{κ(N)

j =i}, t ≥ 0,(4.20)

X(N),i(t) = X(N),i(0)+E(N),i(t)−D(N),i(t), t ≥ 0.(4.21)

Finally, we define the filtration {F (N)
t ; t ≥ 0} generated by the initial conditions

of the network, see (4.3), plus the filtrations {FE(N),i

t } and {FD(N),i

t } generated by
E(N),i and D(N),i , respectively, i = 1, . . . ,N . In other words,

(4.22) F (N)
t :=

N∨
i=1

(
FE(N),i

t ∨FD(N),i

t

)∨ σ(I0).

It is easy to see that all state variables and auxiliary processes are {F (N)
t }-adapted.

REMARK 4.3. It is possible to show that {F (N)
t } is also equal to the filtration

generated by the age and queue index processes a
(N)
j (·), κ(N)

j (·); j ≥ 1. However,
our definition allows us to exploit results from [12] in Section 5 to identify com-
pensators of certain processes.

REMARK 4.4. One can also show that {(R(N)
E (t), ν(N)(t)); t ≥ 0} is a Markov

process with respect to the filtration {F (N)
t ; t ≥ 0}; but, since we do not use this

property, we do not prove it.

4.3. Equations governing the dynamics of the N-server network. We now de-
scribe the dynamics of the state descriptor ν(N) for a fixed N . Our main result
(Proposition 4.5) does not require all our assumptions on the arrival process and
service time distribution, but instead holds for a very general class of networks
and load balancing algorithms, as long as all arrival and departure times are dis-
tinct, almost surely. To make this notion precise, denote by �s,δ the set of real-
izations for which at most one arrival or one departure occurs during (s, s + δ].
Also, define �t to be the set of realizations for which there exists a partition
{( k

n
, k+1

n
];k = 0, . . . , �nt�} of (0, t] such that at most one arrival or one departure

occurs in each subinterval, that is,

(4.23) �t :=
∞⋃

n=1

�nt�⋂
k=0

�k
n
, 1
n
.

Proposition 4.5 below establishes an implicit relation between νN
� (t) and the de-

parture and routing processes. This result is not specific to the SQ(d) algorithm,
and in fact, we believe that it holds true for any arbitrary algorithm that routes jobs
immediately upon arrival, should the appropriate arrival processes E(N),i corre-
sponding to the algorithm be substituted in (4.13).
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PROPOSITION 4.5. Consider an N -server network with any arrival process,
service times and load balancing algorithm such that P{�t } = 1 for every t ≥ 0.
Then, for ϕ ∈C

1,1
c ([0,L)×R+), almost surely, for �≥ 1 and t ≥ 0,〈

ϕ(·, t), ν(N)
� (t)

〉= 〈
ϕ(·,0), ν

(N)
� (0)

〉
+
∫ t

0

〈
ϕs(·, s)+ ϕx(·, s), ν(N)

� (s)
〉
ds −D(N)

ϕ,� (t)

+
∫
[0,t]

ϕ(0, s) dD
(N)
�+1(s)+R(N)

ϕ,� (t)(4.24)

and

(4.25)
〈
1, ν

(N)
� (t)

〉= 〈
1, ν

(N)
� (0)

〉−D
(N)
� (t)+D

(N)
�+1(t)+R(N)

1,� (t).

The rest of this section is devoted to the proof of this proposition. Throughout
this section, for ease of notation,

∑
j is used to denote the sum over all job indices

j ∈ {j0, . . . ,−1,0,1, . . .}.
Fix � ≥ 1, t ≥ 0. For ϕ ∈ Cb([0,L) × [0,∞)), since s �→ 〈ϕ(·, s), ν(N)

� (s)〉 is
right-continuous, we can write〈

ϕ(·, t), ν(N)
� (t)

〉− 〈
ϕ(·,0), ν

(N)
� (0)

〉
= lim

n→∞
�nt�∑
k=0

[〈
ϕ

(
·, k + 1

n

)
, ν

(N)
�

(
k + 1

n

)〉
−
〈
ϕ

(
·, k

n

)
, ν

(N)
�

(
k

n

)〉]

= lim
n→∞

(
I(n)

1 + I(n)
2

)
,(4.26)

where

(4.27) I(n)
1 (t) :=

�nt�∑
k=0

〈
ϕ

(
·, k + 1

n

)
− ϕ

(
·, k

n

)
, ν

(N)
�

(
k + 1

n

)〉
and

(4.28) I(n)
2 (t) :=

�nt�∑
k=0

〈
ϕ

(
·, k

n

)
, ν

(N)
�

(
k + 1

n

)〉
−
〈
ϕ

(
·, k

n

)
, ν

(N)
�

(
k

n

)〉
.

By Riemann integrability (see page 21 of [5] for full details), we have

(4.29) lim
n→∞I(n)

1 (t)=
∫ t

0

〈
ϕs(·, s), ν(N)

� (s)
〉
ds.

To compute the limit of I(n)
2 (t), first fix s, δ ≥ 0 and use the expressions for ν

(N)
� ,

a
(N)
j V(N) and U (N)

� in (4.9), (4.1), (4.5) and (4.7) to write

ν
(N)
� (s + δ) =∑

j

1{j∈V(N)(s+δ)∩U (N)
� (s+δ)}δa

(N)
j (s+δ)

= J1 +J2 +J3,(4.30)
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where

J1 :=
∑
j

1{j∈V(N)(s+δ)∩U (N)
� (s+δ)\V(N)(s)}δa

(N)
j (s+δ)

,

J2 :=
∑
j

1{j∈V(N)(s+δ)∩V(N)(s)∩U (N)
� (s+δ)\U (N)

� (s)}δa
(N)
j (s)+δ

,

J3 :=
∑
j

1{j∈V(N)(s+δ)∩V(N)(s)∩U (N)
� (s+δ)∩U (N)

� (s)}δa
(N)
j (s)+δ

.

Next, applying the identity C ∩ F ∩ F̃ = F̃\{[F̃\C] ∪ [(F̃ ∩ C)\F ]} with C =
V(N)(s + δ), F = U (N)

� (s + δ) and F̃ = V(N)(s)∩ U (N)
� (s), we have

J3 =
∑
j

1{j∈V(N)(s)∩U (N)
� (s)}δa

(N)
j (s)+δ

−J ′
3

−∑
j

1{j∈[V(N)(s)∩U (N)
� (s)∩V(N)(s+δ)]\U (N)

� (s+δ)}δa
(N)
j (s)+δ

,(4.31)

where

J ′
3 :=

∑
j

1{j∈[V(N)(s)∩U (N)
� (s)]\V(N)(s+δ)}δa

(N)
j (s)+δ

.

Note we have not used any property of U (N)
� in this calculation. We now restrict to

realizations �s,δ when there is only a single arrival or departure during (s, s + δ].

LEMMA 4.6. For � ≥ 1 and ϕ ∈ Cb([0,L) × [0,∞)), s ≥ 0 and δ > 0, on
�s,δ , 〈

ϕ(·, s), ν(N)
� (s + δ)

〉
= 〈

ϕ(· + δ, s), ν
(N)
� (s)

〉
−∑

j

ϕ
(
a

(N)
j (s)+ δ, s

)
1{β(N)

j ∈(s,s+δ]}1{χD,(N)
j ≥�}

+∑
j

ϕ
(
a

(N)
j (s + δ), s

)
1{α(N)

j ∈(s,s+δ]}1{χK,(N)
j ≥�}

+ 1{�≥2}
∑
j

ϕ
(
a

(N)
j (s + δ), s

)
1{α(N)

j ≤s}1{β(N)
j >s}

× 1{χ(N)
j (s)=�−1}

∑
j ′≥1

1{γ (N)

j ′ ∈(s,s+δ]}1{κ(N)

j ′ =κ
(N)
j }.(4.32)
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REMARK 4.7. Since χ
D,(N)
j ≥ 1 and χ

K,(N)
j ≥ 1, for �= 1 (4.32) reduces to〈

ϕ(·, s), ν(N)
1 (s + δ)

〉= 〈
ϕ(· + δ, s), ν

(N)
1 (s)

〉
−∑

j

ϕ
(
a

(N)
j (s)+ δ, s

)
1{β(N)

j ∈(s,s+δ]}

+∑
j

ϕ
(
a

(N)
j (s + δ), s

)
1{α(N)

j ∈(s,s+δ]}.(4.33)

PROOF OF LEMMA 4.6. We first simplify the terms J1, J2 and J3 in (4.30).
A job j receives service at time s + δ, but not at s if and only if it entered service
during (s, s + δ]. Moreover, on �s,δ , there could have been no arrivals in (s, s + δ]
and so, the length of the job’s queue is constant from the service entry time to
s + δ. This implies j ∈ U (N)

� (s + δ) if and only if χ
K,(N)
j ≥ �. Thus,

J1 =
∑
j

1{α(N)
j ∈(s,s+δ]}1{χK,(N)

j ≥�}δa
(N)
j (s+δ)

.(4.34)

We now analyze the term J2. If a job j received service throughout the period
(s, s+δ], that is j ∈ V(N)(s)∩V(N)(s+δ), then the corresponding queue could not
have been empty at time s, and on �s,δ , the difference between the queue length
at time s + δ and time s is either zero (if there were no arrivals to that queue) or
one (if there was precisely one arrival to that queue). Therefore, when �= 1,

(4.35) V(N)(s)∩ V(N)(s + δ)∩ U (N)
1 (s + δ)\U (N)

1 (s)=∅,

and J2 = 0, whereas for �= 2, using the representation (4.10) for E(N),i ,

J2 =
∑
j

1{α(N)
j ≤s}1{β(N)

j >s}1{χ(N)
j (s)=�−1}E

(N),κ
(N)
j (s, s + δ]δ

a
(N)
j (s+δ)

=∑
j

1{α(N)
j ≤s}1{β(N)

j >s}1{χ(N)
j (s)=�−1}δa

(N)
j (s+δ)

∑
j ′≥1

1{γ (N)

j ′ ∈(s,s+δ],κ(N)

j ′ =κ
(N)
j }.

For the third term J3, we use (4.31). First, note that by the form (4.9) of ν
(N)
� ,〈

ϕ(·, s),∑
j

1{j∈V(N)(s)∩U (N)
� (s)}δa

(N)
j (s)+δ

〉
= 〈

ϕ(· + δ), s), ν
(N)
� (s)

〉
.(4.36)

Next, note that a job j departed a queue during (s, s + δ] if and only if j ∈
V(N)(s)\V(N)(s + δ). Moreover, on �s,δ there were no arrivals during (s, s + δ],
and hence, the queue length was constant on (s, β

(N)
j −). Therefore, j ∈ U (N)

� (s) if

and only if χ
D,(N)
j ≥ �. Hence,

J ′
3 =

∑
j

1{β(N)
j ∈(s,s+δ]}1{χD,(N)

j ≥�}δa
(N)
j (s)+δ

.(4.37)
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Finally, for the last term on the right-hand side of (4.31), note that if a job j re-
ceives service at a queue during (s, s + δ], then that queue length is nondecreasing
on that interval. Therefore,

(4.38)
[
V(N)(s)∩ V(N)(s + δ)∩ U (N)

� (s)
]\U (N)

� (s + δ)=∅.

The result follows from (4.30), (4.31) and (4.34)–(4.38). �

We continue with the identification of the limit of I(n)
2 (t). Since P{�t } = 1 by

assumption, there exists n0 ∈ N such that almost surely, the identity (4.32) holds
with δ = 1/n and s = k/n simultaneously for every n≥ n0 and k = 0,1, . . . , �nt�.
Substituting (4.32) with δ = 1/n and s = k/n into (4.28), we have almost
surely

I(n)
2 (t) =

�nt�∑
k=0

[〈
ϕ

(
· + 1

n
,
k

n

)
− ϕ

(
·, k

n

)
, ν

(N)
�

(
k

n

)〉]

−
�nt�∑
k=0

∑
j

ϕ

(
a

(N)
j

(
k

n

)
+ 1

n
,
k

n

)
1{β(N)

j ∈( k
n
, k+1

n
]}1{χD,(N)

j ≥�}

+
�nt�∑
k=0

∑
j

ϕ

(
a

(N)
j

(
k + 1

n

)
,
k

n

)
1{α(N)

j ∈( k
n
, k+1

n
]}1{χK,(N)

j ≥�}

+ 1{�≥2}
�nt�∑
k=0

∑
j

∑
j ′≥1

ϕ

(
a

(N)
j

(
k + 1

n

)
,
k

n

)
1{α(N)

j ≤ k
n
}1{β(N)

j > k
n
}

× 1{χ(N)
j ( k

n
)=�−1}1{γ (N)

j ′ ∈( k
n
, k+1

n
]}1{κ(N)

j ′ =κ
(N)
j }.(4.39)

For ϕ ∈ C
1,1
c ([0,L) × R+), using computations analogous to the derivation of

the limit of I(n)
1 in (4.27), the limit of the first term on the right-hand side of (4.39)

is

lim
n→∞

�nt�∑
k=0

[〈
ϕ

(
· + 1

n
,
k

n

)
− ϕ

(
·, k

n

)
, ν

(N)
�

(
k

n

)〉]

=
∫ t

0

〈
ϕx(·, s), ν(N)

� (s)
〉
ds.(4.40)

For the second term, setting β
(N)
j,n := 1

n
�nβ(N)

j �, noting that β
(N)
j,n ↑ β

(N)
j as

n → ∞, using the continuity of ϕ and a
(N)
j , and the identity a

(N)
j (β

(N)
j ) = vj ,
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we have

lim
n→∞

�nt�∑
k=0

∑
j

ϕ

(
a

(N)
j

(
k

n

)
+ 1

n
,
k

n

)
1{β(N)

j ∈( k
n
, k+1

n
]}1{χD,(N)

j ≥�}

= lim
n→∞

∑
j

�nt�∑
k=0

ϕ

(
a

(N)
j

(
k

n

)
+ 1

n
,
k

n

)
1{β(N)

j ∈( k
n
, k+1

n
]}1{χD,(N)

j ≥�}

= lim
n→∞

∑
j

ϕ

(
a

(N)
j

(
β

(N)
j,n

)+ 1

n
,β

(N)
j,n

)
1{β(N)

j ≤�nt�
n

}1{χD,(N)
j ≥�}

=∑
j

ϕ
(
vj , β

(N)
j

)
1{β(N)

j ≤t}1{χD,(N)
j ≥�}

=D(N)
ϕ,� (t),(4.41)

where the last equality follows from (4.18).
Likewise, for the third term, setting α

(N)
j,n := 1

n
�nα

(N)
j �, and noting that

a
(N)
j (α

(N)
j )= 0 and α

(N)
j,n ↑ α

(N)
j as n→∞, we obtain

lim
n→∞

�nt�∑
k=0

∑
j

ϕ

(
a

(N)
j

(
k + 1

n

)
,
k

n

)
1{α(N)

j ∈( k
n
, k+1

n
]}1{χK,(N)

j ≥�}

= lim
n→∞

∑
j

ϕ

(
a

(N)
j

(
α

(N)
j,n + 1

n

)
, α

(N)
j,n

)
1{0≤α

(N)
j ≤�nt�

n
}1{χK,(N)

j ≥�}

=∑
j

ϕ
(
0, α

(N)
j

)
1{0≤α

(N)
j ≤t}1{χK,(N)

j ≥�}.(4.42)

Further simplification of (4.42) is slightly different for � = 1 and � ≥ 2. When
� ≥ 2, due to the nonidling assumption, the service entry time of any job to a
queue of length at least � just after service entry coincides with the departure time
of another job from the same queue, which had length at least �+ 1 just before the
departure. Therefore, for �≥ 2, by definition (4.16) of D

(N)
� we have∑

j

ϕ
(
0, α

(N)
j

)
1{0≤α

(N)
j ≤t}1{χK,(N)

j ≥�} =
∑
j

ϕ
(
0, β

(N)
j

)
1{β(N)

j ≤t}1{χD,(N)
j ≥�+1}

=
∫
[0,t]

ϕ(0, s) dD
(N)
�+1(s).(4.43)

To simplify (4.42) for �= 1, we first define the cumulative service entry process:

(4.44) K(N)(t) :=
∞∑

j=j0

1{0≤α
(N)
j ≤t}, t ≥ 0.
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LEMMA 4.8. Given D
(N)
2 and E(N),i defined in (4.16) and (4.10), respec-

tively,

(4.45) K(N)(t)=D
(N)
2 (t)+

N∑
i=1

∫ t

0
1{X(N),i (u−)=0} dE(N),i(u), t ≥ 0.

PROOF. Service entries can be classified into two types, based on whether or
not the queue was empty right before service entry. Thus, we can expand (4.44) as

K(N)(t)=∑
j

1{0≤α
(N)
j ≤t}1{χ(N)

j (α
(N)
j −)≥1} +

∑
j

1{0≤α
(N)
j ≤t}1{χ(N)

j (α
(N)
j −)=0}.

Due to the nonidling assumption, the service entry time of the first type coincides
with the departure time of another job from the same queue, which had length of at
least 2 just before departure. On the other hand, a service entry time of the second
type coincides with the arrival time of the same job to an empty queue. Recalling
that κ

(N)
j is the queue index of job j , we can then write

K(N)(t) =∑
j

1{β(N)
j ≤t}1{χD,(N)

j ≥2} +
∑
j≥1

1{γ (N)
j ≤t}1{χE,(N)

j =1}

=∑
j

1{β(N)
j ≤t}1{χD,(N)

j ≥2}

+
N∑

i=1

∞∑
j=1

1{X(N),i (γ
(N)
j −)=0}1{γ (N)

j ≤t}1{κ(N)
j =i}.

Equation (4.45) then follows from (4.16) and (4.10). �

By (4.44) and (4.45), the fact that 1{χK,(N)
j ≥1} = 1 (see Remark 4.2), and (4.14),

we have∑
j

ϕ
(
0, α

(N)
j

)
1{0≤α

(N)
j ≤t}1{χK,(N)

j ≥1}

=
∫
[0,t]

ϕ(0, u) dD
(N)
2 (u)+

N∑
i=1

∫ t

0
ϕ(0, u)1{X(N),i (u−)=0} dE(N),i(u)

=
∫
[0,t]

ϕ(0, u) dD
(N)
2 (u)+R(N)

ϕ,1 (t).(4.46)

Finally, the last term on the right-hand side of (4.39) is zero for �= 1. For �≥ 2,
changing the order of summation, setting γ

(N)
j ′,n = 1

n
�nγ

(N)
j ′ �, noting that on �t , the

arrival of j ′ is the only event taking place in the interval (k/n, (k+1)/n], the limit
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of the last term on the right-hand side of (4.39) is equal to

lim
n→∞

∑
j ′≥1

∑
j

ϕ

(
a

(N)
j

(
γ

(N)
j ′,n + 1

n

)
, γ

(N)
j ′,n

)
1{α(N)

j ≤γ
(N)

j ′,n}
1{β(N)

j >γ
(N)

j ′,n}

× 1{χ(N)
j (γ

(N)

j ′,n)=�−1}1{γ (N)

j ′ ≤ �nt�
n

}1{κ(N)

j ′ =κ
(N)
j }.

Since γ
(N)
j ′,n ↑ γ

(N)
j ′ as n→∞, the fact that on �t , α

(N)
j , β

(N)
j �= γ

(N)
j ′ for all j �= j ′,

and by the continuity of ϕ and a
(N)
j , the last display is equal to∑

j ′≥1

∑
j

ϕ
(
a

(N)
j

(
γ

(N)
j ′

)
, γ

(N)
j ′

)
1{α(N)

j <γ
(N)

j ′ ≤t∧β
(N)
j }1{χ(N)

j (γ
(N)

j ′ −)=�−1}1{κ(N)

j ′ =κ
(N)
j }.

Partitioning jobs in terms of their queues, and using (4.11), the last display equals
N∑

i=1

∑
j ′≥1

1{κ(N)

j ′ =i}1{γ (N)

j ′ ≤t}
∑
j

ϕ
(
a

(N)
j

(
γ

(N)
j ′

)
, γ

(N)
j ′

)
1{α(N)

j <γ
(N)

j ′ }

× 1{β(N)
j ≥γ

(N)

j ′ }1{χ(N)
j (γ

(N)

j ′ −)=�−1}1{κ(N)
j =i}

=
N∑

i=1

∑
j ′≥1

1{κ(N)

j ′ =i}1{γ (N)

j ′ ≤t}
〈
ϕ
(·, γ (N)

j ′
)
, ν

(N),i
�−1

(
γ

(N)
j ′ −)

− ν
(N),i
�

(
γ

(N)
j ′ −)〉

=
N∑

i=1

∫
(0,t]

〈
ϕ(·, s), ν(N),i

�−1 (s−)− ν
(N),i
� (s−)

〉
dE(N),i(s)

=R(N)
ϕ,� (t),(4.47)

where E(N),i and R(N)
ϕ,� (t) are defined in (4.10) and (4.13), respectively.

We now combine the above observations to conclude the proof.

PROOF OF PROPOSITION 4.5. Equation (4.24) follows from (4.26), (4.29),
(4.39)–(4.43), (4.46) and (4.47). To establish (4.25), note that for ϕ = 1, I(n)

1 (t)

and the first term on the right-hand side of (4.39) are zero for all t ≥ 0. Since
Lemma 4.6 and the calculation of other terms on the right-hand side of (4.39) are
valid for all ϕ ∈ Cb([0,L) × [0,∞)), (4.25) follows on setting ϕ = 1 in (4.24).

�

REMARK 4.9. Equation (4.24) remains valid for functions ϕ on [0,L)×R+
of the form ϕ(x, s)= f (x) for some f ∈C

1
c[0,L), even though they are not com-

pactly supported on [0,L)×R+ (because the compact support condition on the s

variable is only used in the computation of I1 in (4.29), which is zero for functions
of the above form). This property is used in the proof of Proposition 6.15.
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5. Martingale decomposition for routing and departure processes. Fix
N ∈ N. In Section 5.1, we state a martingale decomposition result for the ϕ-
weighted routing process R(N)

ϕ,� and departure process D(N)
ϕ,� defined in (4.13) and

(4.18), respectively. The proofs are given in Section 5.3, and rely on an alterna-
tive characterization of the filtration {F (N)

t } in terms of a marked point process
introduced in Section 5.2. Unlike Proposition 4.5, these results are specific to our
assumptions on the arrival process and load balancing algorithm, although the gen-
eral method can be adapted to analyze other models.

5.1. The form of compensators. For ϕ ∈Cb([0,L)×R+), define

(5.1) B
(N)
ϕ,1 (t) :=

∫ t

0
h

(N)
E

(
R

(N)
E (u)

)
ϕ(0, u)

(
1 − (

S
(N)

1 (u)
)d)

du,

where h
(N)
E is the hazard rate of the interarrival distribution, and for �≥ 2, set

B
(N)
ϕ,� (t) :=

∫ t

0
h

(N)
E

(
R

(N)
E (u)

)
Pd

(
S

(N)

�−1(u), S
(N)

� (u)
)

× 〈
ϕ(·, u), ν

(N)
�−1(u)− ν

(N)
� (u)

〉
du.(5.2)

PROPOSITION 5.1. Suppose Assumptions I, II(a) and III(a) hold. Then, for
�≥ 1 and ϕ ∈Cb([0,L)×R+), the process

(5.3) N (N)
ϕ,� :=R(N)

ϕ,� −B
(N)
ϕ,� ,

is a local {F (N)
t }-martingale, with quadratic variation

(5.4)
[
N (N)

ϕ,�

]
(t)=R(N)

ϕ2,�
(t), t ≥ 0.

Proposition 5.1 is a key result and its proof is given in Section 5.3. Next, for ϕ ∈
Cb([0,L)×R+), define

(5.5) A
(N)
ϕ,� (t) :=

∫ t

0

〈
ϕ(·, s)h(·), ν(N)

� (s)
〉
ds, ∀t ≥ 0.

PROPOSITION 5.2. Suppose Assumptions I, II(a) and III(a) hold. Then, for
�≥ 1 and ϕ ∈Cb([0,L)×R+), the process

(5.6) M(N)
ϕ,� :=D(N)

ϕ,� −A
(N)
ϕ,� ,

is a local {F (N)
t }-martingale, with quadratic variation

(5.7)
[
M(N)

ϕ,�

]
(t)=D(N)

ϕ2,�
(t), t ≥ 0.
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Since the proof of Proposition 5.2 is similar to (in fact much simpler than) that
of Proposition 5.1, it is omitted (full details can be found in Appendix B of [5]).
A similar result for a different model and filtration can also be found in [24], (5.24),
(5.25) and Lemma 5.4.

REMARK 5.3. Substituting (5.3), (5.6) and (5.5) into (4.24), we have〈
ϕ(·, t), ν(N)

� (t)
〉= 〈

ϕ(·,0), ν
(N)
� (0)

〉
+
∫ t

0

〈
ϕs(·, s)+ ϕx(·, s)− ϕ(·, s)h(·), ν(N)

� (s)
〉
ds

+
∫
[0,t]

ϕ(0, s) dD
(N)
�+1(s)+B

(N)
ϕ,� (t)−M(N)

ϕ,� (t)+N (N)
ϕ,� (t).(5.8)

We now state an elementary lemma used in the proof of Proposition 5.1. Sup-
pose (�,G, {Gt},P) is a filtered probability space that satisfies the usual condi-
tions, and let ξ = {ξ(t); t ≥ 0} be a point process adapted to {Gt }. Recall that a
nonnegative {Gt }-progressive process {�(t); t ≥ 0} is called a {Gt }-intensity of ξ

if for all t ≥ 0,
∫ t

0 �(s) ds < ∞ almost surely, and for every nonnegative {Gt }-
predictable processes H , E[∫∞0 H(t) dξ(t)] = E[∫∞0 H(s)�(s) ds]. The next re-
sult is elementary (e.g., it follows from Lemma II.L3 of [12] and equation (18.1),
Chapter IV of [32], as elaborated in the Proof of Lemma 5.4 in [5]).

LEMMA 5.4. Let � be a {Gt }-intensity of a point process ξ on (�,G,

{Gt },P), and given a locally bounded, {Gt }-predictable process θ , define ζ(t) :=∫ t
0 θ(s) dξ(s). Then ζ(t) − ∫ t

0 θ(s)�(s) ds, t ≥ 0, is a local {Gt }-martingale, with
quadratic variation

(5.9) [ζ ](t)=
∫ t

0
θ2(s) dξ(s), t ≥ 0.

5.2. A marked point process representation. In this section, we construct a
point process T (N) consisting of all arrival and departure times, marked by their
type and their corresponding queue index. This point process has the property that
its natural filtration, together with the σ -algebra generated by initial conditions, is
equivalent to the filtration {F (N)

t ; t ≥ 0} defined in (4.22). Moreover, each auxiliary
process defined in Section 4.2 can be represented as an integral with respect to
T (N), which allows us to more easily identify its compensator.

Consider the set

T
(N) := {(

γ
(N)
j ,

(
E, κ

(N)
j

)); j ≥ 1
}∪ {(

β
(N)
j ,

(
D, κ

(N)
j

)); j ≥ j0
}
,

which is the union of all arrival times γ
(N)
j , marked by the tag E (indicating that

it is an arrival time) and the index of the queue to which job j is routed, and
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all departure times β
(N)
j , marked by the tag D (indicating that it is a departure

time) and the index of the queue from which job j departed. Since the interarrival
and service distributions G

(N)
E and G are absolutely continuous with respect to

Lebesgue measure, by Assumptions I and II(a), almost surely at most one arrival
to and at most one departure from each queue can occur at any given time. Let
τ0 := 0 and z0 be a constant (whose value is irrelevant), and define the sequence
of events {(τ (N)

k , z
(N)
k );k ≥ 1}, each composed of an event time τ

(N)
k and an event

mark z
(N)
k , to be the relabeling (i.e., a one-to-one correspondence) of TN sorted

by lexicographic order, assuming D < E. That is, events are ordered first by event
times (τ (N)

k ≤ τ
(N)
k+1), then by event type (departure first, then arrival) and finally

by queue index (with smaller indices first). Let T (N) = {T (N)(t); t ≥ 0} be the
corresponding marked point process. Clearly, for every index i ∈ {1, . . . ,N},
(5.10) T (N)(E, i; t) :=∑

k≥1

1{τ (N)
k ≤t}1{z(N)

k =(E,i)} =E(N),i(t)

and

(5.11) T (N)(D, i; t) :=∑
k≥1

1{τ (N)
k ≤t}1{z(N)

k =(D,i)} =D(N),i(t).

These relations show that the filtration {F (N)
t } in (4.22) has the representation

(5.12) F (N)
t = σ(I0)∨FT ,(N)

t , t ≥ 0,

where {FT ,(N)
t } is the filtration generated by the marked point process T (N); see

equation (1.2), page 57 of [12].
At any time t , server i is called busy if X(N),i(t) ≥ 1, and is called idle oth-

erwise. By the nonidling assumption, there is a job receiving service at any busy
server i at time t , and we define a(N),i(t) to be the age of that job. Using this
notation, for �≥ 1, we can rewrite the definition (4.11) of ν

(N),i
� as

(5.13) ν
(N),i
� (t)= 1{X(N),i (t)≥�}δa(N),i (t),

which when combined with (4.12), yields

(5.14) ν
(N)
� (t)=

N∑
i=1

1{X(N),i (t)≥�}δa(N),i (t).

For k ≥ 0, define

(5.15) B
(N)
k := {

i :X(N),i(τ (N)
k

)≥ 1
}

to be the set of busy servers at time τ
(N)
k , and note that for i ∈B

(N)
k , a(N),i(τ

(N)
k )

is well defined. Define ξ
(N)
k+1 to be the next arrival time strictly after τ

(N)
k , and for

i = 1, . . . ,N , define σ
(N),i
k+1 to be the next time strictly after τ

(N)
k when there is a
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departure from queue i if i ∈B
(N)
k , and σ

(N),i
k+1 =∞, otherwise. When the event

time τ
(N)
k is distinct, that is, τ

(N)
k �= τ

(N)
k′ for all k′ �= k, the next event time will be

the minimum among the first arrival time after τk and the next departure time from
queues that are busy at time τk . Therefore, defining

(5.16) �̃k := {
ω ∈�; τk �= τk′,∀k′ �= k

}
,

to be the set of realizations on which the event time τ
(N)
k is distinct, we have

(5.17) τ
(N)
k+1 = min

(
ξ

(N)
k+1, σ

(N),i
k+1 ; i = 1, . . . ,N

)
on �̃k.

The next lemma identifies the joint distribution of the next arrival and departure
times given F (N)

τ
(N)
k

.

LEMMA 5.5. Suppose Assumptions I, II(a) and III(a) hold. Then, for k ≥ 0,
P{�̃k} = 1, ξ

(N)
k+1 and σ

(N),i
k+1 , i = 1, . . . ,N , are conditionally independent given

F (N)

τ
(N)
k

, and

(5.18) P
{
ξ

(N)
k+1 − τ

(N)
k > b|F (N)

τ
(N)
k

}= G
(N)

E (R
(N)
E (τ

(N)
k )+ b)

G
(N)

E (R
(N)
E (τ

(N)
k ))

, b > 0,

and for i = 1, . . . ,N ,

1{i∈B(N)
k }P

{
σ

(N),i
k+1 − τ

(N)
k > b|F (N)

τ
(N)
k

}
= 1{i∈B(N)

k }
G(a(N),i(τ

(N)
k )+ b)

G(a(N),i(τ
(N)
k ))

, b > 0.(5.19)

The result in Lemma 5.5 is intuitive and follows from the independence of the
interarrival and service times. However, a completely rigorous proof is rather in-
volved and technical, although involving fairly routine calculations. Hence, we
omit the proof, and refer the reader to Appendix A of [5] for all details. Using
Lemma 5.5, we can rewrite (5.17) as

(5.20) τ
(N)
k+1 = min

(
ξ

(N)
k+1, σ

(N),i
k+1 ; i = 1, . . . ,N

)
, a.s.

We now state a consequence of Lemma 5.5. Recall that a sequence {tn;n ∈ N} is
called nonexplosive if for every T <∞, there are finitely many n with tn ≤ T .

COROLLARY 5.6. Suppose Assumptions I, II(a) and III(a) hold. Then, almost
surely, the sequence of event times {τ (N)

k ;k ≥ 0} is nonexplosive, and P{�t } = 1,
t ≥ 0.
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PROOF. Fix t ≥ 0, define �̂t = �̂
(N)
t = {ω : X(N)(0) < ∞,E(N)(t) < ∞}.

Since X(N)(0) <∞ almost surely by Assumption III(a) and E(N) is a renewal pro-
cess with nondegenerate interarrival time distribution by Assumption I, P{�̂t } = 1.
Moreover, D(N)(t) is also finite on �̂t by (4.17). Thus, on �̂t , and hence, almost
surely, the total number of events up to t is finite and {τ (N)

k } is nonexplosive.
Moreover, the set �̃ := ⋃

k≥0 �̃k of realizations on which all events are dis-
tinct has full measure by Lemma 5.5. For every ω ∈ �̂t ∩ �̃, the quantity �(ω) =
�(N)(ω) := inf

k:τ (N)
k ≤t

(τ
(N)
k+1 − τ

(N)
k ), is strictly positive because it is the infimum

of finitely many positive numbers. This means that for n > 1/�, the distance
between any two events prior to time t exceeds 1/n. Therefore, ω ∈ �k

n
, 1
n

for

all k = 0, . . . , �nt�, and hence, ω ∈ �t . This implies �̂t ∩ �̃ ⊆ �t , and hence,
P{�t } = 1. �

5.3. Compensator for the weighted routing measure. We state our first result.

LEMMA 5.7. Suppose Assumptions I, II(a) and III(a) hold. Then, for i =
1, . . . ,N , the process E(N),i defined in (4.10) has the following {F (N)

t }-intensity
process:{

1

N
h

(N)
E

(
R

(N)
E (t−)

) ∞∑
�=1

1{X(N),i (t−)=�−1}Pd

(
S

(N)

�−1(t−), S
(N)

� (t−)
); t ≥ 0

}
.

(5.21)

PROOF. Throughout this proof, we omit the superscript (N) for ease of nota-
tion. Suppose that for k ≥ 0 and i = 1, . . . ,N , the conditional density f

E,i
k+1 defined

by

P
{
τk+1 − τk ∈A,zk+1 = (E, i)|Fτk

}= ∫
A

f
E,i
k+1(ω, r) dr,

ω ∈�,A ∈ B[0,∞),(5.22)

exists. Then, by the representation in (5.10) of Ei in terms of T (N), and the fact
that the sequence {τk} is nonexplosive by Corollary 5.6, it follows from Theorem
III.T7 of [12], comment (β) and (2.10), that the process

(5.23)
∞∑

k=0

f
E,i
k+1(ω, t − τk)

P{τk+1 > t |Fτk
}1{τk<t≤τk+1}

is an {Ft }-intensity of Ei .
We now show that f

E,i
k+1 in (5.22) exists. First, note that by (5.20), the next event

after τk is an arrival to queue i, that is, zk+1 = (E, i), if the next arrival occurs
before the next departure from any queue and the arriving job, which has index
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E(τk+1), is routed to queue i. Hence, defining σk+1 := min(σ i′
k+1; i ′ = 1, . . . ,N),

we have

P
{
τk+1 − τk > t, zk+1 = (E, i)|Fτk

}
= P{ξk+1 > τk + t, σk+1 > ξk+1, κE(τk+1) = i|Fτk

}
= E

[
1{ξk+1>τk+t,σk+1>ξk+1}P{κE(τk+1) = i|Fτk

, ξk+1, σk+1}|Fτk

]
.(5.24)

The queue to which job j =E(τk+1) is routed is given by (4.2), which is a function
of the random queue choices vector ιj , queue lengths at time τk and random tie-
breakers. According to (4.2), this job is routed to a queue of length exactly �− 1,
if and only if all selected queue indices ιj have lengths at least �− 1, and at least
one of them has length exactly �− 1. Since ιj is independent of all other random
variables, the conditional probability (given Fτk

, σk+1 and ξk+1) that the job is
routed to a queue of length �− 1 is (S�−1(τk))

d − (S�(τk))
d . Moreover, the job is

equally likely to be routed to any queue of length �−1. Since there are S�−1(τk)−
S�(τk) such queues, on the event Xi(τk)= �− 1, we have

P{κE(τk+1) = i|Fτk
, ξk+1, σk+1} = (S�−1(τk))

d − (S�(τk))
d

S�−1(τk)− S�(τk)

= 1

N
Pd

(
S�−1(τk), S�(τk)

)
,

where the polynomial Pd is defined in (2.8). Therefore,

P{κE(τk+1) = i|Fτk
, ξk+1, σk+1}

=
∞∑

�=1

1{Xi(τk)=�−1}P{κE(τk+1) = i|Fτk
, ξk+1, σk+1}

= 1

N

∞∑
�=1

1{Xi(τk)=�−1}Pd

(
S�−1(τk), S�(τk)

)
.(5.25)

Moreover, using (5.18) and Lemma 5.5, we have

P{ξk+1 > τk + t, σk+1 > ξk+1|Fτk
}

= 1

GE(RE(τk))

∫ ∞
t

P{σk+1 − τk > s|Fτk
}gE

(
s +RE(τk)

)
ds.(5.26)

Therefore, by (5.24)–(5.26) and the fact that the right-hand side of (5.25) is Fτk
-

measurable, for k ∈ Z+, i ∈ {1, . . . ,N}, the density f
E,i
k+1 exists, and for t ≥ τk ,

f
E,i
k+1(t − τk) = P{σk+1 > t |Fτk

}gE(t − τk +RE(τk))

NGE(RE(τk))

×
∞∑

�=1

1{Xi(τk)=�−1}Pd

(
S�−1(τk), S�(τk)

)
.(5.27)
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Similarly, by (5.20), Lemma 5.5 and (5.18), for every k ≥ 0 and t ≥ τk we have

P{τk+1 > t |Fτk
} = P{ξk+1 ∧ σk+1 > t |Fτk

}
= P{σk+1 > t |Fτk

}P{ξk+1 > t |Fτk
}

= P{σk+1 > t |Fτk
}GE(t − τk +RE(τk))

GE(RE(τk))
.(5.28)

Combining (5.27) and (5.28) with (5.23), recalling that hE = gE/GE is the
hazard rate function of the interarrival times, and noting that on (τk, τk+1], Xi , S�

are constant and RE has a unit slope, we see that

1

N

∞∑
k=0

hE

(
t − τk +RE(τk)

)

×
∞∑

�=1

1{Xi(τk)=�−1}Pd

(
S�−1(τk), S�(τk)

)
1{τk<t≤τk+1}

= 1

N

∞∑
k=0

hE

(
RE(t−)

)

×
∞∑

�=1

1{Xi(t−)=�−1}Pd

(
S�−1(t−), S�(t−)

)
1{τk<t≤τk+1}

= 1

N
hE

(
RE(t−)

)
×

∞∑
�=1

1{Xi(t−)=�−1}Pd

(
S�−1(t−), S�(t−)

)
, t ≥ 0,(5.29)

is a {Ft }-intensity of E(N),i . �

We now use Lemma 5.7 to prove the martingale decomposition for R(N)
ϕ,� .

PROOF OF PROPOSITION 5.1. We only give the proof for � ≥ 2. The proof
for � = 1 is similar; see the proof of Proposition 5.1 in [5] for details. Note from
(4.13) that

(5.30) R(N)
ϕ,� =

N∑
i=1

R(N),i
ϕ,� ,
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where

(5.31) R(N),i
ϕ,� (t) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∫
(0,t]

ϕ(0, s)1{X(N),i (s−)=0} dE(N),i(s)

if �= 1,∫
(0,t]

〈
ϕ(·, s), ν(N),i

�−1 (s−)− ν
(N),i
� (s−)

〉
dE(N),i(s)

if �≥ 2.

Consider the setup of Lemma 5.4 with ξ , {Gt } as above, but with θ(s) replaced by〈
ϕ(·, s), ν(N),i

�−1 (s−)− ν
(N),i
� (s−)

〉= ϕ
(
a(N),i(s−), s

)
1{X(N),i (s−)=�−1}

and hence, ζ replaced by R(N),i
ϕ,� . Since a(N),i and X(N),i are {F (N)

t }-adapted, θ is

bounded, {F (N)
t }-adapted and left-continuous. Thus, using the fact that (5.21) is

an intensity of E(N),i , and by the identity

1

N
ϕ
(
a(N),i(t−), t

)
1{X(N),i (t−)=�−1}h

(N)
E

(
R

(N)
E (t−)

)
×

∞∑
�′=1

1{X(N),i (t−)=�′−1}Pd

(
S

(N)

�′−1(t−), S
(N)

�′ (t−)
)

= 1

N
ϕ
(
a(N),i(t−), t

)
1{X(N),i (t−)=�−1}

× h
(N)
E

(
R

(N)
E (t−)

)
Pd

(
S

(N)

�−1(t−), S
(N)

� (t−)
)
,

which holds since 1{X(N),i (t−)=�−1}1{X(N),i (t−)=�′−1} �= 0 if and only if �′ = �, it

follows from Lemma 5.4 that the process N (N),i
ϕ,� :=R(N),i

ϕ,� − R̃
(N),i
ϕ,� , with

R̃
(N),i
ϕ,� (t) := 1

N

∫ t

0
ϕ
(
a(N),i(s), s

)
1{X(N),i (s)=�−1}h

(N)
E

(
R

(N)
E (s)

)
×Pd

(
S

(N)

�−1(s), S
(N)

� (s)
)
ds,

is a local {F (N)
t }-martingale. Again, by (5.2) and (5.13),

R̃
(N),i
ϕ,� (t) = 1

N

∫ t

0
h

(N)
E

(
R

(N)
E (s)

)
Pd

(
S

(N)

�−1(s), S
(N)

� (s)
)

×
N∑

i=1

ϕ
(
a(N),i(s), s

)
1{X(N),i (s)=�−1} ds

= B
(N)
ϕ,� (t).
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Using (5.30), it follows that
∑N

i=1 N
(N),i
ϕ,� = R(N)

ϕ,� − B
(N)
ϕ,� = N (N)

ϕ,� , and hence,

N (N)
ϕ,� is also a local {F (N)

t }-martingale. Also, in the setup above, we have

θ2(s) = ϕ2(a(N),i(s−), s
)
1{X(N),i (s−)=�−1}

= 〈
ϕ2(·, s), ν(N),i

�−1 (s−)− ν
(N),i
� (s−)

〉
,

and so (5.9) of Lemma 5.4 implies[
R(N),i

ϕ,�

]
(t)=

∫ t

0

〈
ϕ2(·, s), ν(N),i

�−1 (s−)− ν
(N),i
� (s−)

〉
dE(N),i(s)=R(N),i

ϕ2,�
.

Finally, by the same reasoning as in the case � = 1, for � ≥ 2 we have [N (N)
ϕ,� ] =

[R(N)
ϕ,� ] =R(N)

ϕ2,�
. This completes the proof. �

6. Proof of convergence results. In Section 6.1, we prove relative com-
pactness of the state and auxiliary processes. In Section 6.2, we first show
that subsequential limits of the state processes satisfy the hydrodynamic equa-
tions, and then prove Theorem 2.6 and Corollary 2.8 in Section 6.2.3. For H =
Dϕ,�,Aϕ,�,Mϕ,�,Rϕ,�, Bϕ,�, and Nϕ,�, let

(6.1) H
(N)

(t) := H(N)(t)

N
, N ∈N, t ≥ 0.

6.1. Relative compactness. The relative compactness results are summarized
in Theorem 6.16 of Section 6.1.4. They are established in Sections 6.1.2–6.1.4 by
verifying the well-known criteria of Kurtz and Jakubowski summarized in Sec-
tion 6.1.1.

6.1.1. Review of relative compactness criteria. Recall from Section 1.4 that
w′(f, ·, ·) denotes the modulus of continuity of a function f in DR[0,∞). The
first result follows from Theorems 3.7.2, and and 3.8.6 and Remark 3.8.7 of [17].

PROPOSITION 6.1 (Kurtz’s criteria). A sequence of R-valued càdlàg pro-
cesses {Y (N)}N∈N is relatively compact if and only if {Y (N)}N∈N satisfies the fol-
lowing:

K1. For every rational t ≥ 0,

(6.2) lim
r→∞ sup

N

P
{∣∣Y (N)(t)

∣∣ > r
}= 0;

K2a. For every η > 0 and T > 0, there exists δ > 0 such that

(6.3) sup
N

P
{
w′(Y (N), δ, T

)≥ η
}≤ η.

Moreover, {Y (N)}N∈N is relatively compact if it satisfies K1 and the condition K2b:
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K2b. For each T ≥ 0, there exists β > 0 such that

(6.4) lim
δ→0

sup
N

E

[
sup

0≤t≤T

∣∣Y (N)(t + δ)− Y (N)(t)
∣∣β]= 0.

If Z = [0,L) or Z = [0,L)× [0,∞), equipped with the Euclidean metric, then
MF (Z) (defined in Section 1.4) is a separable metric space, and hence, a com-
pletely regular topological space with metrizable compacts. Thus, the next result
follows from Theorem 4.6 of [21] and Theorem 5.1 in Chapter 1 of [7]. Recall that
a family F of real continuous functionals on MF (Z) is said to separate points in
MF (Z) if for every distinct μ, μ̃ ∈MF (Z), there exists a function f ∈ F such that
f (μ) �= f (μ̃).

PROPOSITION 6.2 (Jakubowski’s criteria). For Z = [0,L) or Z = [0,L) ×
[0,∞), A sequence {π(N)}N∈N of DMF (Z)[0,∞)-valued random elements is tight
if and only if:

J1. (Compact containment condition.) For each T > 0 and η > 0, there exists
a compact set KT ,η ⊂MF (Z) such that

lim inf
N

P
{
π

(N)
t ∈KT ,η for all t ∈ [0, T ]} > 1 − η.

J2. There exists a family F of real continuous functionals on MF (Z) that (i) is
closed under addition, and (ii) separates points in MF (Z), such that {π(N)} is
F-weakly tight, that is, for every F ∈ F, the sequence {F(π

(N)
s ); s ≥ 0}N∈N is tight

in DR[0,∞).

In particular, {π(N)}N∈N is relatively compact if it satisfies J1 and J2.

REMARK 6.3. A set that satisfies properties (i) and (ii) in condition J2 is

F= {
F : ∃f ∈C

1
c(Z) such that F(μ)= 〈f,μ〉,∀μ ∈MF (Z)

}
.

6.1.2. Relative compactness of sequences of departures and auxiliary pro-
cesses. First, note that using (4.19) and (2.18), we have for ϕ ∈Cb([0,L)×R+)

and �≥ 1,

(6.5) lim sup
N→∞

E
[
D(N)

ϕ2,�(t)
]≤ ‖ϕ‖2∞ lim sup

N→∞
E
[
X

(N)
(0)+E

(N)
(t)

]
<∞.

LEMMA 6.4. Suppose Assumptions I, II(a) and III(a) hold, and fix ϕ ∈
Cb([0,L)×R+), �≥ 1. Then M(N)

ϕ,� is a square integrable martingale. Moreover,
for t ≥ 0,

(6.6) lim sup
N→∞

P

{∣∣∣ sup
0≤s≤t

M(N)

ϕ,� (s)
∣∣∣ > ε

}
= 0, ε > 0,

and M(N)

ϕ,� ⇒ 0 in DR[0,∞), as N →∞.
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PROOF. By Proposition 5.2, M(N)
ϕ,� is a local martingale with [M(N)

ϕ,� ] =D(N)

ϕ2,�
.

By (6.5) and Theorem 7.35 of [25], M(N)
ϕ,� is a square integrable {F (N)

t }-martingale

and for all t ≥ 0, E[(M(N)
ϕ,� (t))2] = E[D(N)

ϕ2,�
(t)]. By Doob’s inequality and (6.1),

for every T ≥ 0 and ε > 0, P{| supt∈[0,T ]M
(N)

ϕ,� (t)| > ε} ≤ E[D(N)

ϕ2,�(T )]/Nε2. To-

gether with (6.5), this implies (6.6), which in turn shows that M(N)

ϕ,� converges to
zero in DR[0,∞) in probability, and hence, in distribution. �

To obtain further tightness results on the departure processes, we recall another
many-server model, the so-called GI/GI/N queue, studied in [24]. In a GI/GI/N
queue, arriving jobs choose an idle server at random if there exists one, or if all
servers are busy, join a common queue and enter service in a FCFS manner when
servers become free. Equivalently, one can view the GI/GI/N as a network of N

parallel servers in which each server has its own queue and newly arriving jobs
join the queue that has the least residual work (see Section XII.1 of [6]). A fluid
limit for the GI/GI/N queue in the same regime (i.e., when N →∞ and the ar-
rival rate is proportional to N ) is obtained in [24]. Although the SQ(d) and the
GI/GI/N models have very different routing mechanisms (leading to completely
different dynamics of the cumulative service entry process K(N)) the total depar-
ture process D

(N)
1 and the measure-valued process ν

(N)
1 that keeps track of ages

of all jobs in service in the SQ(d) model share some common properties with
their counterparts (denoted in [24] by D(N) and ν(N), resp.) in the GI/GI/N model.
As a result, the very same techniques used in [24] to prove certain tightness esti-
mates for {D(N)}N∈N and {ν(N)}N∈N in the GI/GI/N model can be applied to also
prove analogous tightness estimates for the particular processes {D(N)

1 }N∈N and

{ν(N)
1 }N∈N in the SQ(d) model. Thus, the latter are summarized in Lemmas 6.5–

6.9 below, with only references to the corresponding result for the GI/GI/N queue
of which they are a routine adaptation, rather than full proofs. However, for com-
pleteness, a more detailed justification of these results is also provided in provided
in Appendix D of an extended version of this paper [5].

The first result is used to prove Lemma 6.6 below and, along with Lemma 6.8, to
prove relative compactness of the sequence of state processes in Proposition 6.15.

LEMMA 6.5. Suppose Assumptions I, II(a) and III(a) hold. Then, for � ≥ 1

and ϕ ∈ Cb([0,L) × R+), {A(N)

ϕ,� }N∈N, {D(N)

� }N∈N and {D(N)

ϕ,� }N∈N are relatively
compact in DR[0,∞).

PROOF. One can verify Kurtz’s conditions for {A(N)

ϕ,1 }N∈N, {D(N)

1 }N∈N and

{D(N)

ϕ,1 }N∈N by establishing analogous estimates as in Lemmas 5.7 and 5.8 of [24]
using exactly the same techniques. Moreover, Kurtz’s conditions are satisfied for
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{A(N)

ϕ,� }N∈N for � ≥ 2 because the fact that 〈f, ν
(N)
1 〉 ≥ 〈f, ν

(N)
� 〉 for every nonneg-

ative function f , implies that for 0 ≤ s ≤ t , we have |A(N)
ϕ,� (t)| ≤ A

(N)
|ϕ|,1(t), and

|A(N)
ϕ,� (t) − A

(N)
ϕ,� (s)| ≤ |A(N)

|ϕ|,1(t) − A
(N)
|ϕ|,1(s)|. This proves the relative compact-

ness of {A(N)

ϕ,� }N∈N for �≥ 2. By Lemma 6.4, the sequence {M(N)

ϕ,� }N∈N converges
weakly to zero and thus is relatively compact, and hence, by (5.6), the sequence

{D(N)

ϕ,� } is also relatively compact. Setting ϕ = 1, this implies relative compactness

of {D(N)

� }N∈N for �≥ 2. �

It follows from (4.19) that the linear functional D(N)
·,� (t) : ϕ �→ D(N)

ϕ,� (t) can be
identified with a random finite nonnegative (Radon) measure on [0,L)×R+ (see
Section 1.4) and D(N)

·,� = {D(N)
·,� (t), t ≥ 0} can be viewed as an MF ([0,L)×R+)-

valued process.

LEMMA 6.6. Suppose Assumptions I–III hold. Then, for � ≥ 1, {D(N)

·,� } is rel-
atively compact in DMF ([0,L)×R+)[0,∞).

PROOF. For � ≥ 1, Jakubowski condition J2 holds by Lemma 6.5. For � = 1,
condition J1 can be verified using the exact same techniques as in the proof of
Lemma 5.13 of [24]. Specifically, one can show that for η > 0 and T ≥ 0, there
exist a constant B(η) <∞ and a sequence {m(n,η)} with m(n,η)→ L as n→∞
such that

(6.7) P
{
D(N)

·,1 (t) /∈Kη for some t ∈ [0, T ]}≤ η,

for the compact subset Kη ⊂MF ([0,L)×R+) defined by

Kη :=
{
μ ∈MF

([0,L
)×R+) :

〈1,μ〉 ≤ B(η),μ
((

m(n,η),L
)×R+

)≤ 1

n
∀n ∈N

}
.

Furthermore, for � ≥ 2, by (4.18), for every nonnegative measurable function ϕ

and t ≥ 0, D(N)
ϕ,� (t)≤D(N)

ϕ,1 (t). Thus, the bound (6.7) holds with the same compact

set Kη when D(N)
ϕ,1 is replaced by D(N)

ϕ,� , and so condition J1 holds for {D(N)

·,� }. �

The next two results are on properties of ν
(N)
1 . Lemma 6.7 is used to prove

relative compactness of the routing sequence in Lemma 6.14, while Lemma 6.8 is
used to prove relative compactness of {ν(N)

� } in Lemma 6.15.

LEMMA 6.7. Suppose Assumption III holds. Then

(6.8) lim
m→L

sup
N

E
[
ν

(N)
1

(
0, (m,L)

)]= 0,
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and if L <∞,

(6.9) lim
m→L

sup
N

E

[∫
[0,m)

G(m)

G(x)
ν

(N)
1 (0, dx)

]
= 0.

PROOF. The result follows from Assumption III utilizing the exact same tech-
niques as those used in the proof of Lemma 5.12 of [24]. �

LEMMA 6.8. If Assumption III holds, then {ν(N)
1 }N∈N satisfies condition J1

with

(6.10) Kη,T = {
μ ∈MF

([0,L)
) : ν([m,L)

)≤ η
}
,

for some m < L, if L <∞, and with

(6.11) Kη,T =
{
μ ∈MF (R+) : μ(r(n)+ T ,∞)≤ 1

n
for all n <−�logη/ log 2�

}
for some sequence r(n) ↑∞ if L=∞.

PROOF. The proof of this result parallels the proof of Lemma 5.12 of [24].
�

The next result, along with Lemma 6.4, is used in Section 6.1.4 to identify the
limit of the weighted departure processes (Proposition 6.17).

LEMMA 6.9. Suppose Assumptions I–III hold. For every � ≥ 1, suppose
{ν(N)

� }N∈N converges almost surely to some ν� ∈ DMF [0,L)[0,∞) along a subse-
quence. Then

(6.12) lim sup
N→∞

E

[∣∣∣∣A(N)

ϕ,� (t)−
∫ t

0

〈
ϕ(·, s)h(·), ν�(s)

〉
ds

∣∣∣∣]= 0.

PROOF. For � = 1, the result can be established following the techniques of
the proofs of Lemmas 5.16 and 6.17 of [24]. It can be verified that the same tech-
niques also apply for � ≥ 2 because 〈f, ν

(N)
� (t)〉 ≤ 〈f, ν

(N)
1 (t)〉, and 〈f, ν�(t)〉 ≤

〈f, ν1(t)〉 for all t ≥ 0, � ≥ 1 and every nonnegative measurable function f ; see
the proof of Lemma 6.9 of [5] for more details. �

6.1.3. Relative compactness of arrival and routing processes. We first estab-
lish relative compactness of the arrival process sequence.

LEMMA 6.10. Suppose Assumption I holds. Then {E(N)}N∈N is relatively
compact in DR[0,∞), and

(6.13) lim sup
N→∞

E
[
E

(N)
(t)2] <∞, t ≥ 0.
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PROOF. Since E
(N) → λId in DR[0,∞) by Lemma 2.5, {E(N)}N∈N is rela-

tively compact. Moreover, by Assumption I there exists a delayed renewal process
Ẽ such that E(N)(t)= Ẽ(Nt). Let UẼ be the renewal measure associated with the
interarrival distribution GẼ . Then basic calculations (see equation (2.3) of [16])
show that

E
[
Ẽ(t)2]≤UẼ(t)+

∫ t

0
UẼ(t − s) dUẼ(s)≤ 2UẼ(t)2.

Hence, by the elementary renewal theorem (see, e.g., Proposition V.1.4 of [6]),

lim sup
N→∞

E
[
E

(N)
(t)2]= lim sup

N→∞
1

N2E
[
Ẽ(Nt)2]

≤ 2t2 lim sup
N→∞

(
UẼ(Nt)

Nt

)2
= 2λ2t2,

which proves (6.13). �

Next, we focus on the sequence {R(N)
ϕ,� }N∈N. By (4.13), for �≥ 1 and 0 ≤ s ≤ t ,

(6.14)
∣∣R(N)

ϕ,� (t)−R(N)

ϕ,� (s)
∣∣≤ ‖ϕ‖∞(

E
(N)

(t)−E
(N)

(s)
)
.

LEMMA 6.11. Suppose Assumption I holds. For ϕ ∈ Cb([0,L) × R+) and
�≥ 1,

(6.15) lim sup
N→∞

E
[
R(N)

ϕ,� (t)
]≤ ‖ϕ‖∞ lim sup

N→∞
E
[
E

(N)
(t)

]
<∞, t ≥ 0,

and {R(N)

ϕ,� }N∈N is relatively compact in DR[0,∞).

PROOF. Inequality (6.15) follows from (6.14) with s = 0, and (2.17). More-

over, (6.14) shows that the modulus of continuity w′ for R(N)

ϕ,� is bounded by that

of E
(N)

. Relative compactness of {R(N)

ϕ,� }N∈N then follows from that of {E(N)}
proved in Lemma 6.10, and the necessity and sufficiency of Kurtz’s criteria K1
and K2a stated in Proposition 6.1. �

Next, recall the definitions of B
(N)
ϕ,� and N (N)

ϕ,� in (5.2) and (5.3), respectively.

LEMMA 6.12. Suppose Assumptions I, II(a) and III(a) hold. Then, for ϕ ∈
Cb([0,L)×R+) and �≥ 1, N (N)

ϕ,� is a square integrable {F (N)
t }-martingale. More-

over, for t ≥ 0,

(6.16) lim sup
N→∞

P

{∣∣∣ sup
0≤s≤t

N (N)

ϕ,� (s)
∣∣∣ > ε

}
= 0 ∀ε > 0,

and N (N)

ϕ,� ⇒ 0 in DR[0,∞), as N →∞.
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PROOF. By Proposition 5.1, N (N)
ϕ,� is a local martingale with [N (N)

ϕ,� ] =R(N)

ϕ2,�
.

Since E[R(N)

ϕ2,�
(t)] < ∞ by (6.15), by Theorem 7.35 of [25], N (N)

ϕ,� is a square

integrable martingale, and E[(N (N)
ϕ,� (t))2] = E[R(N)

ϕ2,�
(t)]. By Doob’s inequality,

for ε > 0, P{| supt∈[0,T ]N
(N)

ϕ,� (t)|> ε} ≤ E[R(N)

ϕ2,�(T )]/Nε2. Together with (6.15),

this implies (6.16), which implies N (N)

ϕ,� converges to zero in distribution. �

The following result is a direct corollary of Lemmas 6.11 and 6.12.

COROLLARY 6.13. Suppose Assumptions I, II(a) and III(a) hold. Then, for

ϕ ∈Cb([0,L)×R+) and �≥ 1, {B(N)

ϕ,� }N∈N is relatively compact in DR[0,∞).

Analogous to D(N)
·,� , due to (6.14), the linear functional R(N)

·,� : ϕ �→R(N)
ϕ,� can

be identified with a random finite nonnegative measure on [0,L)×R+, and hence,
R(N)

·,� = {R(N)
·,� (t), t ≥ 0}, can be viewed as an MF ([0,L)×R+)-valued process.

LEMMA 6.14. Suppose Assumptions I, II(a) and III hold. Then, for every

�≥ 1, the sequence {R(N)

·,� }N∈N is relatively compact in DMF ([0,L)×R+)[0,∞).

PROOF. By definition, R(N)

·,� is a pure jump process, and hence, lies in
DMF ([0,L)×R+)[0,∞). Lemma 6.11 implies that for ϕ ∈ Cb([0,L) × R+),

{R(N)

ϕ,� }N∈N is relatively compact (and, therefore, tight by Prohorov’s theorem)

in DR[0,∞). It only remains to show that {R(N)

·,� }N∈N satisfies condition J1. We
first claim that for �≥ 1,

(6.17) lim
m→L

sup
N

E
[
R(N)

1(m,L),�
(T )

]= 0.

Fix m > 0. Substituting ϕ(x, s) = 1(m,L)(x) in (4.14), we see that R(N)

1(m,L),1 ≡ 0.
This proves (6.17) for �= 1. For �≥ 2, substituting ϕ(x, s)= 1(m,L)(x) in (4.47),
we have

R(N)
1(m,L),�

(T ) = ∑
j≥j0

∑
j ′≥1

1{γ (N)

j ′ ≤T }1{a(N)
j (γ

(N)

j ′ )>m}1{α(N)
j <γ

(N)

j ′ ≤β
(N)
j }

× 1{χ(N)
j (γ

(N)

j ′ −)=�−1}1{κ(N)

j ′ =κ
(N)
j }.(6.18)

For every j ≥ j0, consider the (random) set

J (N)
j,� (T ) := {

j ′ ≥ 1 : γ (N)
j ′ ≤ T ,γ

(N)
j ′ ∈ [α(N)

j , β
(N)
j ),

χ
(N)
j

(
γ

(N)
j ′ −)= �− 1, κ

(N)
j ′ = κ

(N)
j

}
,
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of jobs j ′ that arrive prior to T while job j is receiving service, and are routed
to the same queue κ

(N)
j as job j , and this queue has length � − 1 right before the

arrival of j ′. During the time (α
(N)
j , β

(N)
j ) when job j is in service at queue κ

(N)
j ,

there are no departures from the queue and so its length is nondecreasing. Thus,
there can be at most one job j ′ that arrives during that period and finds the queue
length equal to � − 1. In other words, when J (N)

j,� (T ) �= ∅, J (N)
j,� (T ) = {j∗} for

some j∗ = j∗(j, �,N,T ). Also, for j > E(N)(T ), γ
(N)
j > T , and thus, J (N)

j,� (T )=
∅. Therefore, since all departure and arrival times are almost surely distinct (i.e.,
P(�̃T )= 1 by Corollary 5.6), almost surely,

R(N)
1(m,L),�

(T ) = ∑
j≥j0

∑
j ′∈J (N)

j,� (T )

1{a(N)
j (γ

(N)

j ′ )>m}

=
E(N)(T )∑

j=j0

1{J (N)
j,� (T ) �=∅}1{a(N)

j (γ
(N)
j∗ )>m}.(6.19)

Now we consider two possible cases. If L = ∞ and a job j has initial age
a

(N)
j (0)≤m, then a

(N)
j (t)≤m+ T for all t ∈ [0, T ]. Therefore, (6.19) implies

E
[
R(N)

1(m+T ,L),�
(T )

]≤ E

[
1

N

∑
j≥j0

1{a(N)
j (0)>m}

]
= E

[
ν

(N)
1

(
0, (m,∞)

)]
.(6.20)

On the other hand, if L <∞, using (6.19) and the fact that the age process a
(N)
j (·)

is nondecreasing and bounded by the service time vj , we have

R(N)
1(m,L),�

(T ) ≤
0∑

j=j0

1{a(N)
j (0)>m} +

0∑
j=j0

1{a(N)
j (0)≤m}1{vj>m}

+
E(N)(T )∑

j=1

1{vj>m}.(6.21)

Using the fact that j0, a
(N)
j (0), and ν

(N)
1 (0) are F (N)

0 -measurable, we then have

E

[ 0∑
j=j0

1{a(N)
j (0)≤m}1{vj>m}

]
= E

[ 0∑
j=j0

1{a(N)
j (0)≤m}E

[
1{vj>m}|F (N)

0

]]

= E

[ 0∑
j=j0

1{a(N)
j (0)≤m}

G(m)

G(a
(N)
j (0))

]

= E

[∫
[0,m)

G(m)

G(x)
ν

(N)
1 (0, dx)

]
.
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Hence, taking expectations in (6.21) and using the independence of the initial con-
ditions and the arrival process for the third term on the right-hand side, we have

E
[
R(N)

1(m,L),�
(T )

]≤ E
[
ν

(N)
1

(
0, (m,L)

)]+E

[∫
[0,m)

G(m)

G(x)
ν

(N)
1 (0, dx)

]
+G(m)E

[
E

(N)
(T )

]
.(6.22)

Taking first the supremum over N and then the limit as m → L of both sides of
(6.20) and (6.22), the claim (6.17) for both cases follows by using (6.8) and (6.9)
in Lemma 6.7, the bound (2.17) and the elementary identity limm→L G(m)= 0.

We now use the claim (6.17) to complete the proof of the lemma. Fix η > 0 and
apply (6.15) with ϕ = 1 and t = T , to conclude that the constant

(6.23) C(η,T ) := 2

η
sup
N

E
[
R(N)

1,� (T )
]

is finite. Also, by (6.17), there exists a sequence {m(n,η)} with limn→∞ m(n,η)=
L such that

(6.24) sup
N

E
[
R(N)

1(m(n,η),L),�
(T )

]≤ η

n2n+1 .

The subset Kη,T of MF ([0,L)×R+) defined as

Kη,T :=
{
μ ∈MF

([0,L)×R+
) :

〈1,μ〉 ≤ C(η,T ),μ
((

m(n,η),L
)×R+

)≤ 1

n
∀n ∈N

}
,

is compact because supμ∈Kη,T
μ([0,L)×R+)≤ C(η,T ) and

inf
C⊂[0,L)×R+

C compact

sup
μ∈Kη,T

μ
(
Cc)≤ inf

n
sup

μ∈Kη,T

μ
((

m(n,η),L
)×R+

)= 0.

Finally, using (6.23) and (6.24), for W := {R(N)

·,� (t) /∈Kη for some t ∈ [0, T ]}, we
have

P{W } ≤ P
{
R(N)

1,� (T )≥ C(η,T )
}+ ∑

n∈N
P

{
R(N)

1(m(n,η),L),�
(T ) >

1

n

}

≤ sup
N

E[R(N)

1,� (T )]
C(η,T )

+ ∑
n∈N

nE
[
R(N)

1(m(n,η),L),�
(T )

]
≤ η.

This shows that {R(N)

·,� }N∈N satisfies condition J1, and completes the proof. �
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6.1.4. Relative compactness of state variables.

PROPOSITION 6.15. Suppose Assumptions I, II(a) and III(a) hold. Then, for
every �≥ 1, the sequence {ν(N)

� }N∈N is relatively compact in DMF [0,L)[0,∞).

PROOF. By Lemma 6.7, the sequence {ν(N)
1 }N∈N satisfies condition J1 with

the compact set Kη,T equal to either (6.11) or (6.10) depending on whether L

is finite or infinite. Moreover, for every interval I , t ≥ 0 and � ≥ 2, ν
(N)
� (t, I ) ≤

ν
(N)
1 (t, I ), and hence, condition J1 also holds for {ν(N)

� } with the same set Kη,T .

It remains to prove that {ν(N)
� } satisfies condition J2, for which it suffices, by

Remark 6.3, to show that for f ∈C
1
c[0,L), {〈f, ν

(N)
� (t)〉}N∈N is tight in DR[0,∞).

It follows from Proposition 4.5 and Remark 4.9 that

〈
f, ν

(N)
� (t)

〉= 〈
f, ν

(N)
� (0)

〉+ ∫ t

0

〈
f ′, ν(N)

� (s)
〉
ds −D(N)

f,� (t)

+ f (0)D
(N)

�+1(t)+R(N)

f,� (t).

Relative compactness of {〈f, ν
(N)
� (0)〉}N∈N follows from Assumption III(b), rel-

ative compactness of {D(N)

�+1}N∈N and {D(N)

f,� }N∈N follow from Lemma 6.5 and

relative compactness of {R(N)

f,� }N∈N follows from Lemma 6.11. Moreover, the fact

that {∫ ·0〈f ′, ν(N)
� (s)〉ds}N∈N satisfies both criteria K1 and K2b, and hence, is rel-

atively compact, follows from the bound | ∫ t+δ
t 〈f ′, ν(N)

� (s)〉ds| ≤ δ‖f ′‖∞, which

uses the fact that ν
(N)
� (s) is a subprobability measure. Therefore, for all �≥ 1 and

f ∈ C
1
b[0,∞), {〈f, ν

(N)
� (t)〉}N∈N is relatively compact in DR[0,∞) (and, there-

fore, tight by Prohorov’s theorem since DR[0,∞) is Polish). �

We summarize all the results of this section in the following theorem.

THEOREM 6.16. Suppose Assumptions I, II(a) and III hold. Then, for each

�≥ 1, the sequence {(ν(N),D(N)

·,� ,R(N)

·,� )}N∈N is relatively compact in DS[0,∞)×
DMF ([0,L)×R+)[0,∞)2.

PROOF. By Proposition 6.15, for each � ≥ 1, {ν(N)
� }N∈N is relatively com-

pact in MF [0,L). Therefore, by a diagonalization argument, every subsequence
of {ν(N)}N∈N = {(ν(N)

� ;� ≥ 1)}N∈N has a further subsequence that is convergent,
simultaneously for all �≥ 1. This means that the sequence {ν(N)}N∈N ⊂ S is rela-
tively compact with respect to the metric dS defined in (2.5). Relative compactness
of the other two components are proved in Lemmas 6.6 and 6.14, respectively. �
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6.2. Characterization of subsequential limits. We now show that any subse-
quential limit of the sequence {ν(N)}N∈N is a solution to the hydrodynamic equa-
tions. Section 6.2.3 contains the proofs of Theorem 2.6, and Corollary 2.8.

6.2.1. Limit of the departure processes.

PROPOSITION 6.17. Suppose Assumptions I–III hold, and fix � ≥ 1. If

(D(N)

·,� , ν(N)) converges to (D·,�, ν) in DMF ([0,L)×[0,∞))[0,∞)×DS[0,∞) almost
surely, then, for every ϕ ∈Cb([0,L)×R+), Dϕ,� is continuous and for every t ≥ 0,

(6.25) Dϕ,�(t)=
∫ t

0

〈
ϕ(·, s)h(·), ν�(s)

〉
ds, a.s.

PROOF. Using (5.6), the difference of the two sides of (6.25) is equal to

(6.26) Dϕ,�(t)−D(N)

ϕ,� (t)+M(N)

ϕ,� (t)+A
(N)

ϕ,� (t)−
∫ t

0

〈
ϕ(·, s)h(·), ν�(s)

〉
ds.

By the hypothesis of this proposition, D(N)

ϕ,� converges to Dϕ,� almost surely, as
N →∞. Moreover, by Lemma 5.5, only one departure can occur at each time, and

hence, the jump size of D(N)

ϕ,� is bounded by ‖ϕ‖∞/N. Therefore, by Theorem 13.4
of [7], Dϕ,� is continuous and the convergence also holds uniformly on compact

sets, almost surely. Since M(N)

ϕ,� (t) also converges to zero in probability by Lemma
6.4, in view of (6.26) to prove (6.25) it suffices to show that

(6.27) lim sup
N→∞

E

[∣∣∣∣A(N)

ϕ,� (t)−
∫ t

0

〈
ϕ(·, s)h(·), ν�(s)

〉
ds

∣∣∣∣]= 0.

However, (6.27) follows from Lemma 6.9(b). �

6.2.2. Limit of the routing processes. Analysis of the limit of the sequence

of routing processes R(N)

ϕ,� is far more subtle than of the sequence of departure
processes. This is because the backward recurrence time of the arrival process
component R

(N)
E of the state variable evolves at a faster time scale compared to

the measure-valued process ν̄(N). Hence, computation of the limit of the sequence

of compensators B
(N)

ϕ,� of the routing processes requires establishing a form of
averaging principle for the fast and slow components. We begin with a preliminary
result, which uses the bounds obtained in Lemma A.1.

LEMMA 6.18. Suppose Assumption I holds. Then the following statements are
true:

1. For every 0 ≤ s ≤ t , the following limit holds in probability as N →∞:

(6.28)
1

N

∫ t

s
h

(N)
E

(
R

(N)
E (u)

)
du→ (t − s)λ.
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2. For every t ≥ 0,

(6.29) CE(t) := lim sup
N→∞

E

[(
1

N

∫ t

0
h

(N)
E

(
R

(N)
E (u)

)
du

)2]
<∞.

PROOF. By Assumption I, E(N) is a pure renewal process with interarrival
distribution G

(N)
E and backward recurrence time R

(N)
E . Applying Lemma A.1 with

P ∗, G∗, h∗, r∗ and r∗0 replaced by E(N), G
(N)
E , h

(N)
E , R

(N)
E and R(N), respectively,

it follows from (A.3) that for every t ≥ 0,

P

{∣∣∣∣ 1

N

∫ t

0
h

(N)
E

(
R

(N)
E (s)

)
ds − λt

∣∣∣∣ > 2ε

}

≤ 1

ε2E

[(
1

N

∫ t

0
h

(N)
E

(
R

(N)
E (s)

)
ds −E

(N)
(t)

)2]
+ P

{∣∣E(N)
(t)− λt

∣∣ > ε
}

≤ 3

Nε2

(
4

N
+E

[
E

(N)
(t)

])+ P
{∣∣E(N)

(t)− λt
∣∣ > ε

}
.

By (2.17), E[E(N)
(t)] is finite, and E

(N)
(t) converges in expectation, and hence,

in probability, to λt by Lemma 6.10. Hence, the right-hand side of display above
converges to zero as N → ∞. Since both sides of (6.28) are linear in t , (6.28)
follows.

To establish (6.29), by another application of (A.3) we have

E

[(
1

N

∫ t

0
h

(N)
E

(
R

(N)
E (s)

)
ds

)2]

≤ 2

N2E

[(∫ t

0
h

(N)
E

(
R

(N)
E (s)

)
ds −E(N)(t)

)2]
+ 2E

[
E

(N)
(t)2]

≤ 24

N2 + 6

N
E
[
E

(N)
(t)

]+ 2E
[
E

(N)
(t)2].

Taking the limit superior as N →∞ of both sides of the inequality above and using

(2.17), (6.29) follows with CE(t)= 2 lim supN→∞E[E(N)
(t)2], which is finite by

(6.13). �

PROPOSITION 6.19. Suppose Assumptions I, II(a) and III hold, fix � ≥ 1,

and let η� be defined as in (2.14). If (R(N)

·,� , ν(N)) converges to (R·,�, ν) in
DMF ([0,L)×[0,∞))[0,∞) × DS[0,∞), almost surely as N → ∞, then for every
ϕ ∈Cb([0,L)×R+), Rϕ,� is continuous and satisfies for every t ≥ 0,

(6.30) Rϕ,�(t)=
∫ t

0

〈
ϕ(·, s), η�(s)

〉
ds, a.s.
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PROOF. Fix ϕ ∈Cb([0,L)×R+), ε > 0 and let W := {|Rϕ,�(t)− ∫ t
0 〈ϕ(·, s),

η�(s)〉ds|> 3ε}. Using the relation R(N)

ϕ,� = B
(N)

ϕ,� +N (N)

ϕ,� from (5.3), we have

P{W} ≤ P
{∣∣Rϕ,�(t)−R(N)

ϕ,� (t)
∣∣ > ε

}+ P
{∣∣N (N)

ϕ,� (t)
∣∣ > ε

}
+ P

{∣∣∣∣B(N)

ϕ,� (t)−
∫ t

0

〈
ϕ(·, s), η�(s)

〉
ds

∣∣∣∣ > ε

}
.(6.31)

By the hypothesis of this proposition, R(N)

ϕ,� converges almost surely to Rϕ,�, in

DR[0,∞). Also, by (6.14), the jump sizes of R(N)

ϕ,� are bounded by ‖ϕ‖∞ times

the jump sizes of E
(N)

, which are at most 1/N . Therefore, the maximum jump

size of R(N)

ϕ,� converges to zero as N →∞, and by Theorem 13.4 of [7], Rϕ,� is

almost surely continuous and R(N)

ϕ,� converges to Rϕ,�, almost surely, uniformly on
compact sets:

(6.32) lim sup
N→∞

P
{∣∣Rϕ,�(t)−R(N)

ϕ,� (t)
∣∣ > ε

}= 0, t ≥ 0.

Moreover, by (5.2) and (2.14), we can write

B
(N)

ϕ,� (t)−
∫ t

0

〈
ϕ(·, s), η�(s)

〉
ds

=
∫ t

0

(
1

N
h

(N)
E

(
R

(N)
E (u)

)− λ

)
fϕ,�(u) du

+ 1

N

∫ t

0
h

(N)
E

(
R

(N)
E (u)

)(
f

(N)
ϕ,� (u)− fϕ,�(u)

)
du,(6.33)

with

fϕ,�(u) :=
{
ϕ(0, u)

(
1 − S1(u)d

)
if �= 1,〈

ϕ(·, u), ν�−1(u)− ν�(u)
〉
Pd

(
S�−1(u), S�(u)

)
if �≥ 2,

and f (N) defined analogously, but with S� and ν� replaced by S
(N)

� and ν(N),
respectively, for � ≥ 1. By the hypothesis of this proposition, almost surely,

ν
(N)
� converges weakly to ν�, and hence, almost surely, S

(N)

� = 〈1, ν
(N)
� 〉 and

〈ϕ, ν
(N)
�−1 − ν

(N)
� 〉 converge to S� = 〈1, ν�〉 and 〈ϕ, ν�−1 − ν�〉, respectively. By

Lemma 5.5, there is at most one arrival or departure at each time, and hence,

the maximum jump sizes of S
(N)

� and 〈ϕ, ν
(N)
�−1 − ν

(N)
� 〉 are bounded by 1/N and

‖ϕ‖∞/N , respectively. Therefore, by Theorem 13.4 of [7], S� and 〈ϕ, ν�−1 − ν�〉
are continuous. Consequently, fϕ,� is continuous, and f

(N)
ϕ,� converges to fϕ,� uni-

formly on compact sets, almost surely.
Fix t ≥ 0 and δ > 0, and let wfϕ,�

(δ, t) be the modulus of continuity of fϕ,�,
and define P = {0 = t0 < t1 < · · ·< tn = t} to be a partition of size δ = maxj |tj −



2166 R. AGHAJANI AND K. RAMANAN

tj−1|. We have

lim
N→∞P

{
n−1∑
j=0

fϕ,�(tj )

∣∣∣∣ 1

N

∫ tj+1

tj

h
(N)
E

(
R

(N)
E (u)

)
du− (tj+1 − tj )λ

∣∣∣∣ > ε

}
= 0

(6.34)

and, by the Markov and Cauchy–Schwarz inequalities and (6.29),

P

{
wfϕ,�

(δ, t)

n−1∑
j=0

∫ tj+1

tj

∣∣∣∣ 1

N
h

(N)
E

(
R

(N)
E (u)

)− λ

∣∣∣∣du > ε

}

≤ 1

ε
E

[
wfϕ,�

(δ, t)

(
1

N

∫ t

0
h

(N)
E

(
R

(N)
E (u)

)
du+ λt

)]

≤
√

2

ε
E
[
w2

fϕ,�
(δ, t)

] 1
2

(
E

[(
1

N

∫ t

0
h

(N)
E

(
R

(N)
E (u)

)
du

)2]
+ λ2t2

) 1
2
.

Taking the limit superior as N → ∞ of both sides of the display above, using
(6.29) and (6.34), we conclude that

lim sup
N→∞

P

{∣∣∣∣∫ t

0

(
1

N
h

(N)
E

(
R

(N)
E (u)

)− λ

)
fϕ,�(u) du

∣∣∣∣ > 2ε

}

≤ C(t)

ε

(
E
[
w2

fϕ,�
(δ, t)

])1/2
,

where C(t) := √
2(CE(t)+λ2t2)1/2. Since fϕ,� is continuous on [0, t], w2

fϕ,�
(δ, t)

is bounded and converges almost surely to zero as δ → 0. Sending δ → 0 in the
last display and applying the bounded convergence theorem, we see that

(6.35) lim sup
N→∞

P

{∣∣∣∣∫ t

0

(
1

N
h

(N)
E

(
R

(N)
E (u)

)− λ

)
fϕ,�(u) du

∣∣∣∣ > 2ε

}
= 0.

Similarly, applying the Markov and Cauchy–Schwarz inequalities, we have

P

{∣∣∣∣ 1

N

∫ t

0
h

(N)
E

(
R

(N)
E (u)

)(
f

(N)
ϕ,� (u)− fϕ,�(u)

)
du

∣∣∣∣ > ε

}

≤ 1

ε
E

[
sup

u∈[0,t]
∣∣f (N)

ϕ,� (u)− fϕ,�(u)
∣∣2] 1

2
E

[(
1

N

∫ t

0
h

(N)
E

(
R

(N)
E (u)

)
du

)2] 1
2
.

Together with (6.29), the almost-sure uniform convergence of f
(N)
ϕ,� to the bounded

function f ϕ,�, and the bounded convergence theorem, this implies

(6.36) lim sup
N→∞

P

{∣∣∣∣ 1

N

∫ t

0
h

(N)
E

(
R

(N)
E (u)

)(
f

(N)
ϕ,� (u)− fϕ,�(u)

)
du

∣∣∣∣ > ε

}
= 0.
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From (6.33), (6.35) and (6.36), it follows that

(6.37) lim sup
N→∞

P

{∣∣∣∣B(N)

ϕ,� (t)−
∫ t

0

〈
ϕ(·, s), η�(s)

〉
ds

∣∣∣∣ > ε

}
= 0.

Finally, (6.30) follows on sending first N →∞ on the right-hand side of (6.31),
next invoking (6.32), (6.16) of Lemma 6.12 and (6.37), and then sending ε ↓ 0.

�

6.2.3. Proofs of the convergence theorem and propagation of chaos.

PROOF OF THEOREM 2.6. By Assumption III, Lemma 6.10 and Theorem
6.16, the sequence

(6.38) Y (N) := (
ν(N)(0),E

(N)
, ν(N),D(N)

·,� ,R(N)

·,� ;�≥ 1
)
, N ∈N,

is relatively compact in

Y := S×DR[0,∞)×DS[0,∞)×DMF ([0,L)×R+)[0,∞)N0

×DMF ([0,L)×R+)[0,∞)N0 .(6.39)

Therefore, for every subsequence {YNk }, there exists a further subsequence {Nkj
},

such that as j →∞, Y
Nkj converges in distribution to a random element

(6.40) Y := (
ν(0), λId, ν,D·,�,R·,�;�≥ 1

)
,

that takes values in Y . It follows from the Skorokhod representation theorem that
there exists a probability space that supports Y-valued random elements ỸNkj

and

the Y-valued random element Ỹ , such that Ỹ(Nkj
) d= Y

(Nkj
) for every j , Y

d= Ỹ ,
and as j →∞, Ỹ(Nkj

) → Ỹ almost surely in Y . With a slight abuse of notation,
since we are only interested in distributional properties, we denote the subsequence
{Nkj

} just as {N} and identify Ỹ (N) and Ỹ with Y (N) and Y , respectively. Using
this convention, we have

(6.41) Y (N) → Y in Y, a.s.

Now, we uniquely characterize the subsequential limit Y . Fix � ≥ 1. For f ∈
Cb[0,L), by (6.41), 〈f, ν

(N)
� 〉 converge almost surely to 〈f, ν�〉 in DR[0,∞). Since

for every N ∈ N, the maximum jump size of 〈f, ν
(N)
� 〉 is bounded by ‖f ‖∞/N

(due to Lemma 5.5) the limit 〈f, ν�〉 is continuous, and hence ν is a continuous
S-valued process, almost surely. Next, let T be a countable dense subset of R+
which contains 0 (say the diadic numbers). For t ∈ T , it follows from Proposition

6.17, with ϕ = 1, that the limit D1,� of D
(N)

� =D(N)

1,� takes the form

(6.42) D1,�(t)=
∫ t

0

〈
h, ν�(s)

〉
ds <∞.



2168 R. AGHAJANI AND K. RAMANAN

Therefore, sending N →∞ on both sides of (4.25) in Proposition 6.19, for every
t ∈ T , the identity

(6.43)
〈
1, ν�(t)

〉− 〈
1, ν�(0)

〉=D�+1(t)+
∫ t

0

〈
1, η�(s)

〉
ds −D�(t),

holds almost surely, where η is defined by (2.14). Moreover, almost surely the
relations (6.42) and (6.43) hold simultaneously for all � ≥ 1 and t ∈ T because
T is countable and, therefore, for all t ≥ 0 since both sides are continuous by
Propositions 6.17 and 6.19.

Furthermore, let C be a countable dense subset of C1,1
c ([0,L) × R+), and fix

ϕ ∈ C and t ∈ T . By Proposition 4.5, for every � ≥ 1 and N ∈ N, Y (N) satis-
fies the equation (4.24). Since ϕ, ϕx and ϕs are all bounded continuous functions,
〈ϕ(·, t), ν(N)

� (t)〉 and
∫ t

0 〈ϕs(·, s) + ϕx(·, s), ν(N)
� (s)〉ds converge almost surely to

〈ϕ(·, t), ν�(t)〉 and
∫ t

0 〈ϕs(·, s)+ ϕx(·, s), ν�(s)〉ds, respectively. Also, as we have

already shown, D
(N)

�+1 converges to D�+1 almost surely in DR[0,∞) and, therefore,

the associated sequence of Stieltjes integrals
∫
[0,t] ϕ(0, s) dD

(N)

�+1(s) converges al-
most surely to

∫
[0,t] ϕ(0, s) dD�+1(s). Finally, by Proposition 6.17, the sequence

D(N)

ϕ,� (t) converges to
∫ t

0 〈ϕ(·, s)h(·), ν�(s)〉ds, and by Proposition 6.19, R(N)

ϕ,� (t)

converge to
∫ t

0 〈ϕ(·, s), η�(s)〉ds. Sending N → ∞ on both sides of (4.24), we
then have〈

ϕ(·, t), ν�(t)
〉= 〈

ϕ(·,0), ν�(0)
〉+ ∫ t

0

〈
ϕx(·, s)+ ϕs(·, s), ν�(s)

〉
ds

−
∫ t

0

〈
ϕ(·, s)h(·), ν�(s)

〉
ds +

∫ t

0
ϕ(0, s) dD�+1(s)

+
∫ t

0

〈
ϕ(·, s), η�(s)

〉
ds,(6.44)

almost surely. Equation (6.44) above holds with probability one, simultaneously
for all � ≥ 1, ϕ ∈ C and t ∈ T , because both C and T are countable. Moreover,
since both sides of the equation above are continuous functions of t , the identity
holds simultaneously for all t ≥ 0, and since ν�, D·,� and R·,� are finite Radon
measures, the identity holds simultaneously for all ϕ ∈ C

1,1
c ([0,L) × R+) using

the dominated convergence theorem.
Consequently, it follows from (6.42), (6.43) and (6.44) and Proposition 3.1 that

ν is a solution to the hydrodynamic equations (2.10)–(2.14) associated to (λ, ν(0)),
which is proved to be unique in Theorem 2.4. This provides a unique characteriza-
tion of all subsequential limits of {ν(N)} and completes the proof. �

PROOF OF COROLLARY 2.8. Since queues and servers are homogeneous and
the routing algorithm is symmetric with respect to the queue indices, the queue
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lengths and age distributions remain exchangeable for all finite times t ≥ 0. In
particular, for any permutation π : {1, . . . ,N} �→ {1, . . . ,N},
(6.45)

(
X(N),i(t); i = 1, . . . ,N

) d= (
X(N),π(i)(t); i = 1, . . . ,N

)
.

Recall that S
(N)
� (t) is the number of queues of length of at least �, that is, with

X(N),i(t)≥ 1. Therefore,

(6.46)
E
[
S

(N)

� (t)
]= 1

N
E

[
N∑

i=1

1{X(N),i (t)≥�}

]
= 1

N

N∑
i=1

P
{
X(N),i(t)≥ �

}
= P

{
X(N),1(t)≥ �

}
,

where the last equality is due to (6.45). By Theorem 2.6, and since the solution ν

to the hydrodynamic equations is continuous, for every t ≥ 0, ν(N)(t)⇒ ν(t) in S.

Hence, by the continuous mapping theorem, S
(N)

� (t) ⇒ S�(t). Since supN S
(N)

� (t)

is bounded by 1, {S(N)

� } is uniformly integrable and so the convergence also holds
in expectation.

To prove the second claim, note that by (6.45),

E

[
k∏

m=1

S
(N)

�m
(t)

]

= 1

Nk
E

[
N∑

i1=1

, . . . ,

N∑
ik=1

1{X(N),i1 (t)≥�1}, . . . ,1{X(N),ik (t)≥�k}

]

= 1

Nk

N∑
i1=1

. . .

N∑
ik=1

P
{
X(N),i1(t)≥ �1, . . . ,X

(N),ik (t)≥ �k

}
= P

{
X(N),1(t)≥ �1, . . . ,X

(N),k(t)≥ �k

}
.(6.47)

Since ν(N)(t) ⇒ ν(t) in S, by the continuous mapping theorem,
∏n

m=1 S
(N)

�m
(t) ⇒∏n

m=1 S�m(t) and, since supN

∏n
m=1 S

(N)

�m
(t) is bounded by 1, the convergence also

holds in expectation. Taking the limit as N →∞ of both sides of (6.47), (2.20)
follows. �

APPENDIX: A BOUND FOR RENEWAL PROCESSES

Fix r∗0 ∈ R+ and let P ∗(t) be a delayed renewal process with interarrival times
{u∗n;n≥ 1} with common distribution G∗ and delay u∗0 with distribution G∗

r∗0
:

(A.1) P
{
u∗0 ≤ x

}=G∗
r∗0

(x) := G∗(x + r∗0 )−G∗(r∗0 )

1 −G∗(r∗0 )
.
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Assume G∗ has a density, denote G∗ := 1 − G∗ and let h∗ be the corresponding
rate function. Also, let r∗(t) denote the backward recurrence time of the renewal
process P ∗. By convention, r∗(t)= r∗0 + t for t < u∗0, and in particular, r∗(0)= r∗0 .

LEMMA A.1. Given the quantities described above, for every t ≥ 0,

(A.2) E

[∫ t

0
h∗

(
r∗(s)

)
ds

]
<∞

and

(A.3) E

[(∫ t

0
h∗

(
r∗(s)

)
ds − P ∗(t)

)2]
≤ 12 + 3E

[
P ∗(t)

]
.

PROOF. Define the epoch times {tj ; j ≥ 0} as t0 = u∗0 and tj = tj−1 + u∗j for
j ≥ 1. Then we have∫ t

0
h∗

(
r∗(s)

)
ds =

∫ t0

0
h∗

(
r∗(s)

)
ds +

P ∗(t)∑
n=1

∫ tn

tn−1

h∗
(
r∗(s)

)
ds

−
∫ tP∗(t)

t
h∗

(
r∗(s)

)
ds

=
∫ r∗0+u∗0

r∗0
h∗(v) dv +

P ∗(t)∑
n=1

∫ u∗n

0
h∗(v) dv −

∫ u∗
P∗(t)

r∗(t)
h∗(v) dv.(A.4)

Defining the random variables yn,n ∈N, s as yn := ∫ u∗n
0 h∗(v) dv, the second term

on the right-hand side of (A.4) can be written as
∑P ∗(t)

n=1 yn. Since the renewal times
{u∗n;n≥ 1} are i.i.d. the sequence {yn}n∈N is also i.i.d. with

E[y1] =
∫ ∞

0

(∫ s

0
h∗(v) dv

)
G∗(s) ds =

∫ ∞
0

G∗(s)
G∗(s)

(∫ ∞
s

G∗(v) dv

)
ds = 1,

and E[(y1)
2] is equal to∫ ∞

0

(∫ s

0
h∗(v) dv

)2
G∗(s) ds =

∫ ∞
0

(
log

(
G∗(s)

))2
G∗(s) ds

=
∫ 1

0

(
log(s)

)2
ds = 2.

Thus, the mean and variance of yn are both equal to 1. Now, define the discrete-
time filtration {Gn;n ≥ 0} by Gn = σ(u∗j ; j = 0, . . . , n). Note that u∗n, and
hence, yn, are Gn-measurable. Also, since the interarrival times are independent,
yn+1, yn+2, . . . are independent of Gn. Finally, the random variable P ∗(t) sat-
isfies E[P ∗(t)] ≤ U∗(t) < ∞. where U∗ is the renewal measure corresponding
to the distribution G∗. The inequality can be replaced by an equality if P ∗ is
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replaced with a pure renewal process P̃ ∗; see Theorem 2.4.(iii) in Section V
of [6], and P ∗ and P̃ ∗ can be coupled such that almost surely, P ∗(t) ≤ P̃ ∗(t)
for all t ≥ 0. Moreover, P ∗(t) is an integrable {Gn}-stopping time because
{P ∗(t) = n} = {tn−1 ≤ t < tn} ∈ Gn since both tn−1 and tn are Gn-measurable.
Hence, by Wald’s lemma (see Proposition A.10.2 of [6]),

(A.5) E

[
P ∗(t)∑
n=1

∫ u∗n

0
h∗(v) dv

]
= E

[
P ∗(t)∑
n=1

yn

]
= E

[
P ∗(t)

]
E[y1] = E

[
P ∗(t)

]
<∞,

and E[(∑P ∗(t)
n=1

∫ u∗n
0 h∗(v) dv − P ∗(t))2] is equal to

(A.6) E

[(
P ∗(t)∑
n=1

yn − P ∗(t)
)2]

= E
[
P ∗(t)

]
Var(y1)= E

[
P ∗(t)

]
.

Now, for the first term on the right-hand side of (A.4), using (A.1), we obtain

E

[∫ r∗0+u∗0

r∗0
h∗(v) dv

]

= 1

G∗(r∗0 )

∫ ∞
0

(∫ r∗0+u

r∗0
h∗(v) dv

)
G∗(r∗0 + u

)
du

= 1

G∗(r∗0 )

∫ ∞
0

(
log

(
G∗(r∗0 ))− log

(
G∗(r∗0 + u

)))
G∗(r∗0 + u

)
du

= log(G∗(r∗0 ))

G∗(r∗0 )

∫ ∞
r∗0

G∗(u) du− 1

G∗(r∗0 )

∫ G∗(r∗0 )

0
log(v) dv

= 1,(A.7)

and E[(∫ r∗0+u∗0
r∗0

h∗(v) dv)2] is equal to

1

G∗(r∗0 )

∫ ∞
0

(∫ r∗0+u

r∗0
h∗(v) dv

)2
G∗(r∗0 + u

)
du

= 1

G∗(r∗0 )

∫ ∞
0

(
log

(
G∗(r∗0 ))− log

(
G∗(r∗0 + u

)))2
G∗(r∗0 + u

)
du

= log
(
G∗(r∗0 ))2 − 2

log(G∗(r∗0 ))

G∗(r∗0 )

∫ G∗(r∗0 )

0
log(v) dv

+ 1

G∗(r∗0 )

∫ G∗(r∗0 )

0

(
log(v)

)2
dv

= log
(
G∗(r∗0 ))2 − 2 log

(
G∗(r∗0 ))(log

(
G∗(r∗0 ))− 1

)
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+ (
log

(
G∗(r∗0 ))2 − 2 log

(
G∗(r∗0 ))+ 2

)
= 2.(A.8)

For the last term on the right-hand side of (A.4), since r∗(t)≥ 0,

(A.9) E

[∫ u∗
P∗(t)

r∗(t)
h∗(v) dv

]
≤ E

[∫ u∗
P∗(t)

0
h∗(v) dv

]
= E[yP ∗(t)] = 1

and

E

[(∫ u∗
P∗(t)

r∗(t)
h∗(v) dv

)2]
≤ E

[(∫ u∗
P∗(t)

0
h∗(v) dv

)2]
= E

[
(yP ∗(t))

2]= 2.(A.10)

Then (A.5) follows on taking expectations of both sides of (A.4) and using (A.5),
(A.7) and (A.9), while (A.3) follows on again applying (A.4), the elementary
bound (a + b + c)2 ≤ 3(a2 + b2 + c2), and invoking (A.6), (A.8) and (A.10).
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