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A CONSTRAINED LANGEVIN APPROXIMATION FOR CHEMICAL
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Continuous-time Markov chain models are often used to describe the
stochastic dynamics of networks of reacting chemical species, especially in
the growing field of systems biology. These Markov chain models are of-
ten studied by simulating sample paths in order to generate Monte-Carlo
estimates. However, discrete-event stochastic simulation of these models
rapidly becomes computationally intensive. Consequently, more tractable dif-
fusion approximations are commonly used in numerical computation, even
for modest-sized networks. However, existing approximations either do not
respect the constraint that chemical concentrations are never negative (linear
noise approximation) or are typically only valid until the concentration of
some chemical species first becomes zero (Langevin approximation).

In this paper, we propose an approximation for such Markov chains via
reflected diffusion processes that respect the fact that concentrations of chem-
ical species are never negative. We call this a constrained Langevin approx-
imation because it behaves like the Langevin approximation in the interior
of the positive orthant, to which it is constrained by instantaneous reflection
at the boundary of the orthant. An additional advantage of our approxima-
tion is that it can be written down immediately from the chemical reactions.
This contrasts with the linear noise approximation, which involves a two-
stage procedure—first solve a deterministic reaction rate ordinary differen-
tial equation, followed by a stochastic differential equation for fluctuations
around those solutions. Our approximation also captures the interaction of
nonlinearities in the reaction rate function with the driving noise. In simula-
tions, we have found the computation time for our approximation to be at least
comparable to, and often better than, that for the linear noise approximation.

Under mild assumptions, we first prove that our proposed approximation
is well defined for all time. Then we prove that it can be obtained as the weak
limit of a sequence of jump-diffusion processes that behave like the Langevin
approximation in the interior of the positive orthant and like a rescaled ver-
sion of the Markov chain on the boundary of the orthant. For this limit the-
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orem, we adapt an invariance principle for reflected diffusions, due to Kang
and Williams [Ann. Appl. Probab. 17 (2007) 741–779], and modify a result
on pathwise uniqueness for reflected diffusions due to Dupuis and Ishii [Ann.
Probab. 21 (1993) 554–580]. Some numerical examples illustrate the advan-
tages of our approximation over direct simulation of the Markov chain or use
of the linear noise approximation.
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1. Introduction. A chemical reaction network is a chemical system com-
posed of a set of molecular species which are involved in multiple reactions. One
is usually interested in the time evolution of molecular abundances, or their con-
centrations, as a series of reactions occurs. The most common model for these net-
works is the so-called Reaction Rate Equation (RRE) model, which is described
by the following ordinary differential equation (written in integrated form):

x̄(t)= x̄(0)+
∫ t

0
μ
(
x̄(s)

)
ds, t ≥ 0,(1.1)

where μ(x)= ∑r
k=1 vkλk(x) for x ∈ R

d+, {λk}rk=1 are the deterministic (nonnega-
tive) reaction rate functions, and the d-dimensional vectors {vk}rk=1 are such that
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vk = v+
k − v−

k denotes the change in the number of copies of each of the species
that occurs during the kth reaction, where v+

k , v
−
k have nonnegative integer-valued

entries. For i = 1, . . . , d , and t ≥ 0, the ith component x̄i (t) of x̄(t) represents the
concentration of molecular species i in the system at time t .

When the system is well stirred and under thermal equilibrium, the most widely
used stochastic model for this system is a continuous time Markov chain [10],
which tracks the number of molecules of each species and whose forward Kol-
mogorov equation is commonly known as the chemical master equation. For cer-
tain classes of chemical reaction networks, it has been shown [20, 22] that the RRE
model is the almost sure limit of a scaled version of this Markov chain model,
where the limit is taken as the volume of the vessel containing the molecules tends
to infinity. In particular, the RRE model is often adequate for modeling systems
containing large quantities of each molecular species.

However, in some application areas, such as molecular biology [27, 37, 43], the
number of molecules present in the system, at least for some species, is not large
enough to justify the use of the deterministic RRE model, since stochastic fluc-
tuations in the system are significant. In such cases, the Markov chain model is
most frequently used. Such a model is often studied by simulating sample paths.
These simulations are typically repeated many times to generate Monte Carlo es-
timates and they can become computationally expensive if performed by direct
methods [8, 9]. This can be aggravated in cases where the number of molecules
for some species are relatively large, since every reaction is tracked in these simu-
lations. Much effort has been given to finding efficient methods of simulation. One
approach to improve computational efficiency is through approximate simulation
algorithms, such as the τ -leaping method [12]. Another alternative is via diffusion
approximations, which are often seen as reliable and yield efficient computer sim-
ulation through commonly known methods for Stochastic Differential Equations
(SDEs), such as the Euler–Maruyama method [13, 14, 26, 29]. To set the scene
for our proposed approximation, we next briefly describe the existing diffusion ap-
proximations. Readers interested in a more expository introduction to this paper
are referred to [1], where additional examples can also be found.

1.1. Existing diffusion approximations. One diffusion approximation is the
so-called linear noise (or van Kampen) approximation, which was introduced in
[38]. This approximation can be understood as linearizing a scaled version of the
Markov chain about the solution of the deterministic RRE model, to capture the
effect of stochastic fluctuations. In fact, under certain conditions, it was shown in
[22] that one may construct stochastic processes X̄V , D, {Wk}rk=1 on the same
probability space such that X̄V is the scaled Markov chain, D is the solution of the
following SDE:

D(t)=
∫ t

0
Jμ

(
x̄(s)

)
D(s)ds +

r∑
k=1

∫ t

0
vk

√
λk

(
x̄(s)

)
dWk(s), t ≥ 0,
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and X̄V can be approximated by Z̃ = x̄ + V −1/2D, where the error in the approx-
imation is of order ξ log(V )/V on a bounded time interval. Here, V is a constant
proportional to the volume of the vessel containing the chemical system, ξ is a
random variable with a finite exponential moment, x̄ is the solution of the RRE
and Jμ(x) represents the Jacobian matrix of μ(x), defined below (1.1). By direct
substitution, one can write Z̃ as the solution of the following SDE:

Z̃(t)= x̄(0)+
∫ t

0

(
μ
(
x̄(s)

) + Jμ
(
x̄(s)

)(
Z̃(s)− x̄(s)

))
ds

+ 1√
V

r∑
k=1

∫ t

0
vk

√
λk

(
x̄(s)

)
dWk(s), t ≥ 0.

(1.2)

Since the linear noise approximation is an unconstrained diffusion process, it typ-
ically can take negative values, which may violate the natural nonnegativity of
concentrations. In addition, a two-stage procedure is required to use this approx-
imation: one must first solve the RRE for x̄ and then solve (1.2). Note that the
right-hand side of (1.2) is linear in Z̃. As a consequence, the linear noise approx-
imation can capture local fluctuations near a steady-state of the RRE quite well,
but it typically fails to capture global nonlinear behavior well (see the examples in
Section 8).

A more frequently used diffusion approximation for chemical reaction networks
is the Langevin approximation [21, 22] (see also [11]), obtained by solving the
(chemical) Langevin Equation (LE). Unfortunately, this approximation is typically
only valid until the concentration of some species first reaches zero. It is often pre-
ferred in practice because it is a direct approximation to the scaled Markov chain
model and it can capture nonlinear effects in the noise. The Langevin equation is
given by the following SDE:

Z(t)= X̄V (0)+
∫ t

0
μ
(
Z(s)

)
ds

+ 1√
V

r∑
k=1

∫ t

0
vk

√
λk

(
Z(s)

)
dWk(s), t ≥ 0,

(1.3)

where now one approximates X̄V directly by Z. While there are results on the
weak existence and uniqueness of solutions to such equations when the λk are de-
fined to be nonnegative everywhere on R

d (see e.g., [6], page 459), where d is the
number of species, there are no known general results for existence or uniqueness
of solutions of the SDE for the λk associated with chemical reaction networks. In-
deed, as has been pointed out, for example, in [25, 28, 36, 42], these SDEs may not
make sense for all times since they may predict negative molecular concentrations
and their dispersion coefficients involve square roots of these quantities.

To illustrate the last point, the Langevin equation proposed as an approximation
for the Markov chain model associated with the simple chemical reaction network
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composed of two species S1 and S2 and the reactions:

S1
α−⇀↽−
β
S2

is written in differential form as

dZ1(t)= (
βZ2(t)− αZ1(t)

)
dt + 1√

V

(√
βZ2(t) dW2(t)− √

αZ1(t) dW1(t)
)
,

dZ2(t)= (
αZ1(t)− βZ2(t)

)
dt + 1√

V

(√
αZ1(t) dW1(t)−

√
βZ2(t) dW2(t)

)
.

As pointed out in [42], when Z1 is near zero, the term
√
βZ2(t) dW2(t) may push

Z1 to take negative values and the equations become ill-posed, because one needs
to take the square root of the negative quantity αZ1. Similarly, there is a problem
when Z2 is near zero.

Consequently, the Langevin approximation for chemical reaction networks, ob-
tained by solving the Langevin equation (1.3), is usually only valid up until Z
reaches the boundary of the positive orthant. Sufficient conditions for the valid-
ity of such an approximation, which involves stopped diffusions, are given in the
paper of Kurtz [21]. Some authors also have considered extending the range of
solutions for the Langevin equation to the complex numbers [32]. Here, we focus
on an approximation that respects the physical constraints of the positive orthant.

1.2. Our constrained Langevin approximation. In this paper, we provide mo-
tivation to approximate the scaled Markov chain, X̄V , by a reflected diffusion pro-
cess that lives in the positive orthant of R

d , and thereby respects the fact that
chemical concentrations are never negative. We first propose approximating X̄V

by a jump-diffusion process. This jump-diffusion is a process that has the same
behavior as a solution of the Langevin equation in the interior of the positive or-
thant of Rd and behaves like the scaled Markov chain X̄V at the boundary. Then, in
order to obtain a continuous diffusion approximation, we let the size of the jumps
decrease to zero, while simultaneously increasing their frequency. The resulting
limit process Z is a continuous process that lives in the positive orthant Rd+ and
satisfies the following Stochastic Differential Equation with Reflection (SDER):

(1.4)

Z(t)= Z(0)+
∫ t

0
μ
(
Z(s)

)
ds

+ 1√
V

(∫ t

0
σ
(
Z(s)

)
dW(s)+

∫ t

0
γ
(
Z(s)

)
dL(s)

)
, t ≥ 0.

Here, μ(x) is defined below (1.1), σ(x) is the symmetric positive definite square
root of the diffusion matrix �(x) = ∑r

k=1 vkv
′
kλk(x), where ′ denotes transpose,

γ (x) = μ(x)/|μ(x)| defines the reflection vector field on the boundary of R
d+,

and W is a d-dimensional Brownian motion. The process L is a one-dimensional,
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continuous, increasing process that tracks the cumulative amount of pushing done
at the boundary (the process L is sometimes called a boundary “local time”). The
integral term involving L is called the reflection term; when Z is on the boundary,
L increases instantaneously to push Z in the state-dependent direction given by γ ,
in the minimal amount needed to keep Z in the positive orthant of Rd . Note that
the process Z has the same infinitesimal drift μ and infinitesimal covariance 1

V
�

as a solution of the Langevin equation (1.3). Consequently, the solutions of (1.3)
and (1.4) will have the same distributional behavior in the interior of the positive
orthant of d-dimensional Euclidean space.3

Assuming that the reaction network satisfies a mass-dissipating assumption,
augmented by inflows and outflows on all species, we show that the SDER is well
posed. We also prove that our sequence of jump-diffusion processes, with jump-
size tending to zero, converges weakly to a solution of the SDER. We call this
limit process, satisfying the SDER, the constrained Langevin approximation to the
scaled Markov chain.

1.3. Outline of the rest of the paper. The paper is structured as follows. We
begin in Section 2 by defining the common notation that will be used throughout
the paper. In Section 3, we introduce chemical reaction networks, present the as-
sociated Markov chain model for systems driven by the law of mass action and
introduce the assumptions that will be used throughout the paper. In particular, we
consider a class of chemical reaction networks that satisfy a “mass-dissipating”
assumption with additional inflow and outflow reactions for every species. In Sec-
tion 4, we present motivation to approximate the scaled Markov chain model for
this class of chemical reaction networks by a jump-diffusion process. We then
consider a family of such jump-diffusion processes, in which the size of the jumps
from the boundary is allowed to decrease to zero, and the frequency of the jumps
tends to infinity. We do this in such a way that the boundary terms stay of the
same order as the fluctuation terms, that is, of order 1√

V
, as the jump size goes to

zero and the frequency goes to infinity. We will prove that any sequence of these
jump-diffusion processes with jump size tending to zero converges weakly to a so-
lution of the SDER, which we call the Constrained Langevin Equation (CLE). In
Section 5, we give a precise definition for solutions of the CLE and, in Section 6,
we show that the equation satisfies pathwise uniqueness, which also implies weak
uniqueness. For the pathwise uniqueness, we modify a proof for reflected diffu-
sions on bounded domains due to Dupuis and Ishii4 [5]. In Section 7, we give the

3One might consider keeping the form of the diffusion term in (1.3) (which involves r indepen-
dent one-dimensional Brownian motions Wk ), for the diffusion term in (1.4). However, under our
assumptions, we will have r > d , and it is more efficient to combine the r terms into a term driven
by a d-dimensional Brownian motion W .

4This fixes an issue with the assumptions on the reflection vector field in [5], which as stated (in
their global form), are impossible to satisfy.
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proof that any sequence of our jump-diffusion processes, with jump size decreas-
ing to zero, converges weakly to a solution of the CLE. For this limit theorem, we
adapt an invariance principle for reflected diffusions in piecewise smooth domains,
due to Kang and Williams [17], and use the uniqueness in law established in Sec-
tion 6. Finally, in Section 8, the results of simulation experiments are provided
that demonstrate the effectiveness of our proposed constrained Langevin approxi-
mation.

2. Preliminaries and notation. For any integer d ≥ 1, let Zd+ denote the d-
dimensional lattice of points with nonnegative integer coordinates. We shall often
write Z+ instead of Z1+. Let Rd denote the d-dimensional Euclidean space and R

d+
denote the set of points in R

d whose coordinates are all nonnegative. When d = 1,
we usually write R and R+ for R1 and R

1+, respectively. The zero vector in R
d will

be simply written as 0. Similarly, the vector in R
d with all components set to 1 is

denoted by 1. For x ∈ R
d , let |x| = (

∑d
i=1 |xi |2)1/2 be the usual Euclidean norm,

and let |x|∞ = maxdi=1 |xi | be the maximum norm. Vectors will usually be column
vectors unless indicated otherwise. The transpose of a vector x or matrix A will
be denoted by x′ or A′, respectively. For two vectors x, y ∈ R

d , we use 〈x, y〉 to
denote the inner product between the two vectors. Inequalities between vectors are
to be interpreted componentwise, for example, x ≥ y for x, y ∈ R

d means xi ≥ yi
for i = 1, . . . , d . Let ei denote the unit vector in the ith coordinate direction in R

d .
The set of d × l matrices with real-valued entries will be denoted by R

d×l . For
A ∈ R

d×l , we denote by |A| = (
∑d

i=1
∑l

j=1 |Aij |2)1/2, the Frobenius norm of A.

Let Sd×d denote the set of d × d symmetric positive definite matrices with real-
valued entries. Here, positive definite means strictly positive definite: � ∈ S

d×d if
and only if there is a c > 0 such that x′�x ≥ c|x|2 for all x ∈R

d .
For a set S, we use |S| to denote the number of elements in S. For S ⊂ R

d , we
define dist(x, S)� inf{|x − y| : y ∈ S}. Let Br (x) denote the closed ball {y ∈ R

d :
|x − y| ≤ r} for all r > 0 and x ∈ R

d . In addition, for S ⊂ R
d , let Cb(S) denote

the set of functions f : S → R that are continuous and bounded on S; let C2
b(S)

denote the set of twice differentiable functions f : S → R that are continuous
and bounded together with their first and second partial derivatives; and let C2

c (S)

denote the set of twice continuously differentiable functions f : S → R that have
compact support.

We denote by C the set of continuous functions ω : [0,∞) → R
d , equipped

with the topology of uniform convergence on compact sets. In addition, let M
denote the Borel σ -algebra associated with C. The measurable space (C,M) is
endowed with the filtration {Mt }, where Mt � σ {ω(s) : 0 ≤ s ≤ t}, which denotes
the smallest σ -algebra of subsets of C that makes the coordinate maps ω → ω(s)

from C to R
d Mt -measurable for 0 ≤ s ≤ t . Denote by D the set of functions ω :

[0,∞)→ R
d that are right continuous and have finite left-hand limits on (0,∞),

equipped with Skorokhod’s J1-topology. We also denote the Borel σ -algebra on
D by M.
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Unless indicated otherwise, stochastic processes considered in this paper will
have sample paths living in R

d , that are right continuous with finite left limits. Oc-
casionally, we will consider stochastic processes with sample paths that live in R

d

or Rd+, augmented with an isolated cemetery state, to accommodate possible ex-
plosion in finite time. These stochastic processes will have right-continuous paths
with finite left limits at times when they are in R

d or Rd+, and if they reach the
cemetery state, they stay there forever after. Consider a sequence of d-dimensional
stochastic processes {Xn}∞n=1. This sequence is said to be tight if the probabil-
ity measures induced by the Xn on the measurable space (D,M) form a tight
sequence, that is, the induced probability measures form a weakly relatively com-
pact sequence in the space of probability measures on (D,M). The sequence of
processes {Xn}∞n=1 is called C-tight if it is tight and if each weakly converging
subsequence has a limit point that has sample paths in C almost surely.

3. Chemical reaction networks. Here, we introduce chemical reaction net-
works as described in [7]. For integers d ≥ 1 and r ≥ 1, a chemical reaction net-
work consists of a triple (S ,R,C ), where S consists of d molecular species
S � {S1, . . . , Sd} involved in r possible reactions R � {R1, . . . ,Rr}. For each
1 ≤ k ≤ r , let v−

k ∈ Z
d+ be a vector denoting the number of molecules of each

species consumed by the kth reaction Rk . That is, if the ith component v−
ik of v−

k

equals a, then a molecules of species Si are consumed by reaction Rk . Similarly,
let v+

k ∈ Z
d+ denote the number of molecules of each species produced by reac-

tion Rk . These vectors v−
k and v+

k are generally called complexes and form the set
C (i.e., C � {v−

k , v
+
k : 1 ≤ k ≤ r}). For example, in a chemical reaction network

involving three species, namely S1, S2 and S3, a reaction Rk , that consumes one
molecule of S2 and one of S3 and produces one molecule of S1 and one of S3, is
usually denoted by

S2 + S3 → S1 + S3

and is associated with vectors: v−
k = (0,1,1)′ and v+

k = (1,0,1)′. In general, the
kth reaction, Rk , is represented as follows:

d∑
i=1

v−
ikSi →

d∑
i=1

v+
ikSi,

for 1 ≤ k ≤ r . A reaction may consume zero molecules or not produce any
molecules at all. Such reactions are associated with vectors v−

k = 0 or v+
k = 0,

respectively, and are usually denoted by

∅→
d∑
i=1

v+
ikSi or

d∑
i=1

v−
ikSi →∅.

The interpretation for these reactions is that molecules are joining the system from
an external source or leaving the system, respectively.
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The most common stochastic models for these chemical reaction networks use
continuous-time Markov chains that track the number of molecules of each species
that are present in the system at each instant of time. These models assume that
the times between consecutive reactions (or inter-reaction times) are exponentially
distributed. The rate parameters for these exponential distributions are functions
of the numbers of molecules of each species that are present in the system and are
usually called propensity functions in the chemistry and systems biology literature.

For well-mixed systems, these propensity functions are given by the so-called
stochastic law of mass action. Suppose x ∈ Z

d+ is the number of molecules of each
species in the system at some time. For k = 1, . . . , r ,

(3.1) �k(x)� κk

d∏
i=1

(xi)v−
ik

is the rate of reaction Rk under the stochastic law of mass action when the sys-
tem is at the state x. Here, (xi)v−

ik
denotes the falling factorial: (xi)v−

ik
� xi(xi −

1) · · · (xi − v−
ik + 1), with the interpretation that (xi)0 = 1. Also, κk > 0 is a given

constant, that is usually called the reaction rate constant.
Reactions are typically ranked according to the number of molecules consumed.

For instance:

• Zero-order reactions correspond to inflow of molecules from an outside source.
The propensities are given by �k(x) = κk , where κk is a positive constant. An
example for this type of reaction is the following:

∅ → S1,

which corresponds to a molecule of S1 joining the system from an external
source.

• First-order reactions consume one molecule of a certain species. The propensi-
ties are given by �k(x)= κkxi , for some positive constant κk and i ∈ {1, . . . , d}.
An example for such a reaction is

S1 → S2,

where one molecule of S1 is consumed in order to produce a molecule of S2.
• Second-order reactions consume two molecules of one or more species. The

propensities are given by

�k(x)=
{
κkxixj for i �= j,

κkxi(xi − 1) otherwise

for some i, j ∈ {1, . . . , d} and positive constant κk . An example of this type of
reaction is the following:

S1 + S2 → ∅,

which corresponds to a molecule of S1 and one of S2 leaving the system to-
gether.
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The order of the reaction Rk is given by [v−
k ] � ∑d

i=1 v
−
ik . Reactions of third or-

der and higher are considered unlikely to occur in nature, since it would require
more than two molecules to collide at the same instant [10]. Generally, a reaction
involving more than two molecules may be regarded as the combination of two or
more reactions of second order. However, it is not uncommon to find higher order
reactions in the literature. These are often employed as a simplifying device to re-
duce the number of species tracked in the system. In this paper, to allow the most
generality, we do not limit the order of reactions that we consider.

Under the assumption that the inter-reaction times are exponentially distributed
and the rates satisfy the stochastic law of mass action, the number of occurrences
of reaction Rk by time t may be represented by

Uk(t)�Nk

(∫ t

0
�k

(
X(s)

)
ds

)
,

where Nk is a unit rate Poisson process and X(t) is a random vector taking values
in Z

d+ that tracks the number of molecules of each species that are present in the
system at time t . The Poisson processes {Nk}rk=1 are assumed to be mutually inde-
pendent. For notational convenience, it is sometimes useful to define the so-called
stoichiometric matrix which has columns vk � v+

k − v−
k , 1 ≤ k ≤ r , that is,

S � (v1, . . . , vr) ∈ Z
d×r ,

where Zd×r denotes the vector space of d× r matrices with integer-valued entries.
In addition, we define the vector valued process U � (U1, . . . ,Ur)

′.
The stochastic process X = {X(t)}t≥0 is a Markov chain and, provided it does

not explode in finite time, it can be represented as the solution of the following
equation:

(3.2) X(t)=X(0)+ SU(t),

for each t ≥ 0, where the random vector X(0) taking values in Z
d+ is the initial

configuration of the system, which is assumed to be independent of the driving
Poisson processes. If X explodes in finite time, (3.2) holds prior to the random
explosion time ζ . The function �k(X(·)) is the stochastic intensity of the point
process Uk , and we henceforth refer to �k(X(·)) as the intensity of reaction Rk .
Given X(0),N1, . . . ,Nr , there is a unique solution X of (3.2) up until ζ . For more
on this type of representation, see Anderson and Kurtz [2].

3.1. Assumptions on the chemical reaction network. Throughout this paper,
we consider the continuous-time Markov chain model X for the number of
molecules of each species in the chemical reaction network (S ,R,C ), where the
propensity function �k , for each 1 ≤ k ≤ r , is given by the stochastic law of mass
action (3.1). We suppose in addition that Assumptions 3.1 and 3.2, given below,
hold. We begin this subsection with the following definition. For this, recall that
the change in the state of X associated with reaction Rk is given by vk = v+

k − v−
k .
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DEFINITION 3.1. Let D ⊂ {1, . . . , r} be nonempty. The set of reactions {Rk :
k ∈D} is said to be:

(a) a mass-dissipating set if there exists a vector u ∈ R
d such that u ≥ 1 and

〈u, vk〉 ≤ 0 for all k ∈D;
(b) an external input set if v−

k = 0 for all k ∈D;
(c) an external output set if v+

k = 0 for all k ∈D,

where 1 is the vector of all ones and 0 is the zero vector in R
d .

The following is a fairly standard assumption in chemical reaction network the-
ory.

ASSUMPTION 3.1. The set of reactions R can be partitioned into sets R1,
R2, and R3 such that R1 is a mass-dissipating set, R2 is an external input set, and
R3 is an external output set.

REMARK 3.1. The partition of R in Assumption 3.1 need not be unique, since
the external output reactions are also mass-dissipating for any vector u≥ 1. In this
paper, however, we do not need this partition to be unique as long as it also satisfies
Assumption 3.2 below. Clearly, the partition can be made unique if we required no
external output reaction to be present in the mass-dissipating set R1.

Notice that Assumption 3.1 implies that the system does not produce extra
“mass” as it evolves in time, other than that which is received from an external
input source. In other words, if the effect of external input sources is ignored, the
process X can always be found within the half-space given by {x ∈ R

d : 〈x,u〉 ≤
〈u,X(0)〉}. With this assumption, we have the following result (see the Appendix
for the proof).

LEMMA 3.1. Suppose that (S ,R,C ) satisfies Assumption 3.1. Then a.s., X
does not explode in finite time.

The following assumption requires each molecular species to have an input re-
action and an output reaction involving only itself. These assumptions are needed
for technical reasons in our proofs.

ASSUMPTION 3.2. Let (S ,R,C ) be a chemical reaction network satisfying
Assumption 3.1. Suppose that for each 1 ≤ i ≤ d:

(a) the set of input reactions R2 contains a reaction R
k
↑
i

such that v+
k
↑
i

= ei ;

(b) the set of output reactions R3 contains a reaction R
k
↓
i

such that v−
k
↓
i

= ei .
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Recall that ei denotes the ith element of the canonical basis for the d-dimensional
Euclidean space.

Assumption 3.2 is quite often assumed for continuous-flow stirred-tank reac-
tors used in chemical engineering. For biochemical systems, Assumption 3.2(b)
is often assumed, since all species eventually degrade or are diluted away. Even
when these assumptions do not hold, in practice, one might artificially introduce
the missing input and output reactions with very, very small reaction rate constants,
so that Assumption 3.2 is satisfied and the added reactions occur so rarely that they
have a negligible effect on the dynamics of the system.

From a technical standpoint, Assumption 3.2(a) is used to show that the CLE
has well-defined solutions (at least prior to explosion) and to prove tightness of
our sequence of jump-diffusion processes. In particular, this assumption implies
that the reflection vector field at any point on the boundary of Rd+ points into the
interior of R

d+. It also ensures that the diffusion matrix � will be positive defi-
nite. Assumption 3.2(b) prevents explosion of solutions of the CLE, and is used
in showing that our sequence of jump-diffusion processes satisfies a compact con-
tainment condition. In particular, we use it to show that the drift in the CLE will
be negative when dotted with the vector u, given by Definition 3.1(a), whenever
the solution of the CLE is far enough from the origin. This further implies that the
reflection vector field at the boundary of Rd+ will point toward the origin, outside
of a sufficiently large compact set.

3.2. The scaled system. When the number of molecules in the system is high,
it is common to represent the state of the system in molecular concentrations rather
than the number of molecules. This is often done in order to approximate the sys-
tem by models whose state descriptor varies continuously with time.

For chemical reaction networks, the concentration of molecules of each species
is measured by dividing the number of molecules in the system by Avogadro’s
number times the volume of the vessel in which the molecules are contained. Let
us denote Avogadro’s number times the volume of the vessel by V . With no loss
of generality, we suppose throughout the paper that V ≥ 1. The vector of concen-
trations of each of the d species in the system at time t ≥ 0 is then given by

X̄V (t)� XV (t)

V
,

where XV is the stochastic process satisfying (3.2), which is now indexed with
the superscript V to indicate the volume in which the molecules are contained.
Then, by (3.2), the molecular concentrations in the network at time t ≥ 0 satisfy
the following equation:

(3.3) X̄V (t)= X̄V (0)+ 1

V
SUV (t),
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where X̄V (0)�X(0)/V , UV is the vector valued stochastic process U , which is
now indexed by the superscript V , and its components UV

k , 1 ≤ k ≤ r , are given
by

(3.4) UV
k (t)�Nk

(∫ t

0
�V
k

(
V X̄V (s)

)
ds

)
, t ≥ 0,

where �V
k denotes the propensity function for reaction Rk , given by (3.1), and the

superscript V was added to indicate its dependency on the volume of the vessel in
which the reactions occur. This dependency is via the reaction rate constant κVk .

It is useful to scale the propensity functions �V
k , 1 ≤ k ≤ r , so that they repre-

sent changes in concentrations rather than the number of molecules. This is done
by scaling the reaction rate constants κVk . The standard scaling for κVk , which is as-

sociated with reaction Rk of order [v−
k ] � ∑d

i=1 v
−
ik , is such that κVk = ckV

1−[v−
k ],

where ck > 0 is a constant independent of V (see for instance [11, 20], [43], Chap-
ter 6, and [2]). We call this constant ck the normalized reaction rate constant. Let
us define the lattice GV � {y/V : y ∈ Z

d+}. Then, for x ∈ GV and κVk scaled as
above, we have that

�V
k (V x)= ckV

1−[v−
k ]

d∏
i=1

(V xi)v−
ik

= ckV

d∏
i=1

v−
ik−1∏
l=0

(xi − l/V ),

with the interpretation that
∏−1
l=0 = 1. Therefore,

�V
k (V x)= V

[
ck

d∏
i=1

x
v−
ik

i + V −1εVk (x)

]
,

where y0 = 1 for any y ≥ 0 and εVk (x) is a multivariate polynomial in the coordi-
nates of x and 1/V that is uniformly bounded on compact sets in GV (as V ≥ 1
varies), for each 1 ≤ k ≤ r . Notice that the terms εVk (x), 1 ≤ k ≤ r , are nonzero
only when more than one molecule of the same species is consumed by reaction k.
For instance, if reaction Rk is a second-order reaction consuming two molecules
of Si , we have

(3.5) �V
k (V x)= ckV

−1V xi(V xi − 1)= V
(
ckx

2
i − V −1ckxi

)
,

where the term εVk (x) is given by −ckxi .
So far, �V (V ·) has only been defined on GV , where it is nonnegative. Since

εVk (x) is a multivariate polynomial in x and 1/V , it is well defined for x ∈ R
d+

and so we can define �V
k (V x) for all such x. We then define the scaled propensity

function λVk :Rd+ →R by

λVk (x)� V −1�V
k (V x)= ck

d∏
i=1

x
v−
ik

i + V −1εVk (x),(3.6)
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for each x ∈ R
d+. For large V , the contribution of the term V −1εVk (x) is small. Fur-

thermore, when X̄V is approximated by a process Z that takes values in R
d+, the

scaled propensity functions λVk (Z) may become negative for small values of Z and
thereby lose their meaning as rates. For instance, for some x ∈ R

d+ with ith compo-
nent given by xi = 1/(2V ), the value of λVk (x), with corresponding �V

k (V x) given
by (3.5), is −ck/(4V 2). Thus, in practice, when approximating X̄V by a process
taking values in all of Rd+, λVk is usually replaced by the deterministic rate function
for reaction Rk , λk : Rd+ →R

d+, which is defined by

(3.7) λk(x)� ck

d∏
i=1

x
v−
ik

i for x ∈ R
d+.

The name is a reference to the rate in the reaction rate equation (1.1), which is a
deterministic dynamical system describing an approximation to X̄V , obtained by
letting V → ∞.

4. Motivation and preparation for the constrained Langevin approxima-
tion. Let G�R

d+ denote the positive orthant of Rd and let G◦ and Gb denote its
interior and boundary, respectively. The Markov chain X̄V , represented by (3.3),
is equivalent in distribution5 to a Markov chain X̄V satisfying

X̄V (t)= X̄V (0)+ 1

V
S
(
UV,◦(t)+UV,b(t)

)
,(4.1)

where, for each α = ◦, b, UV,α is an r-dimensional stochastic process with com-
ponents UV,α

k , 1 ≤ k ≤ r , given by

U
V,α
k (t)=Nα

k

(
V

∫ t

0
λVk

(
X̄V (s)

)
1{X̄V (s)∈Gα} ds

)
,(4.2)

where {Nα
k ;1 ≤ k ≤ r, α = ◦, b} are independent unit rate Poisson processes, and

λVk is the scaled propensity function given by (3.6). Notice that UV,◦
k and U

V,b
k ,

for 1 ≤ k ≤ r , are equivalent in distribution to the contributions of the process UV
k ,

given by (3.4), within the interior of the domain G◦ and at the boundary Gb, re-
spectively. By defining the centered d-dimensional process ÛV,◦ with components
Û
V,◦
k , 1 ≤ k ≤ r , given by

Û
V,◦
k (t)�U

V,◦
k (t)− V

∫ t

0
λVk

(
X̄V (s)

)
1{X̄V (s)∈G◦} ds, t ≥ 0,

5Markov chains satisfying (3.3) and (4.1) are equivalent in distribution since they have the same
infinitesimal generator and so solve the same local martingale problem, which has a unique solution
by Theorem 4.1 of [6], Chapter 6, with the βl there defined to be zero outside of GV .
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and the vector-valued function λV � (λV1 , . . . , λ
V
r )

′, we may further rewrite (4.1)
as follows:

X̄V (t)= X̄V (0)+
∫ t

0
SλV

(
X̄V (s)

)
1{X̄V (s)∈G◦} ds

+ 1√
V

(
1√
V
SÛV,◦(t)+ 1√

V
SUV,b(t)

)
.

(4.3)

For V fixed, but large, we seek a diffusion approximation for X̄V . When λVk =
λk for all k, Theorem 3.13 of Kurtz [21] provides such an approximation up until
the time of first exit from a bounded domain whose closure is contained in the
interior of G. Under our assumptions, this approximation can be extended until
the first time that the boundary of G is reached. We first review that diffusion
approximation. We then propose a way to extend this approximation beyond the
first time that the boundary of G is reached, using a jump-diffusion process.

4.1. Approximation inside G. If E ⊂ G◦ is a bounded domain whose closure
is contained in G◦, then the closure of E is a positive distance from the com-
plement of G◦, and on E , λk is bounded and uniformly Lipschitz continuous,
and

√
λk is uniformly Lipschitz continuous. Supposing that λVk is replaced by

λk in the definition of X̄V (stopped at the boundary of E), then Theorem 3.13
and Lemma 3.7 of Kurtz [21] provide that the Poisson processes used in defin-
ing XV (·) can be defined on the same probability space (�,F,P) as independent
one-dimensional Brownian motions W̆1, . . . , W̆r such that X̄V (· ∧ ζ X̄

V
), where

ζ X̄
V � inf{t ≥ 0 : X̄V (t) /∈ E}, is well approximated by a stopped diffusion pro-

cess Z̆ that satisfies the following for t ≥ 0:

Z̆(t)= X̄V (0)+
∫ t∧ζ Z̆

0

r∑
k=1

vkλk
(
Z̆(s)

)
ds

+ 1√
V

r∑
k=1

vk

∫ t∧ζ Z̆

0

√
λk

(
Z̆(s)

)
dW̆k(s),

(4.4)

where ζ Z̆ � inf{t ≥ 0 : Z̆(t) /∈ E} and Z̆ is adapted to the filtration generated by
X̄V (0) and W̆1, . . . , W̆r . This approximation is good in the sense that for each
T > 0, V > e, Z̆ and X̄V can be realized on the same probability space such that

(4.5)
∣∣X̄V (t)− Z̆(t)

∣∣ ≤ ϒ̆
logV

V
for all 0 ≤ t ≤ ζ Z̆ ∧ ζ X̄

V

,

where ϒ̆ is a nonnegative random variable whose distribution depends on the
{λk, k = 1, . . . , r}, E , T and E[exp(c̆ϒ̆)]<∞ for some c̆ > 0. This result of Kurtz
is justified using an implied version of a well known strong approximation theo-
rem of Komlós, Major and Tusnády [19], combined with the fact that a continuous
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local martingale can be time changed to a Brownian motion (see Lemma 3.7 of
Kurtz [21]).

By Theorem 4.2 of [18], page 170, the local martingale stochastic integral terms
in (4.4) can be combined into a local martingale term having the same covariation
process, so that, on a possibly enlarged probability space, the process Z̆ is the
solution of the following stochastic differential equation for all t ≥ 0:

(4.6) Z̆(t)= X̄V (0)+
∫ t∧ζ Z̆

0
μ
(
Z̆(s)

)
ds + 1√

V

∫ t∧ζ Z̆

0
σ
(
Z̆(s)

)
dW(s),

where W is a standard d-dimensional Brownian motion, Z̆ is adapted to the filtra-
tion generated by X̄V (0) and W ,

μ(x)�
r∑

k=1

vkλk(x), x ∈G,(4.7)

and the dispersion coefficient σ : G → S
d×d is the symmetric, positive definite

square root of � defined by

�(x)�
r∑

k=1

vkv
′
kλk(x), x ∈G,(4.8)

which satisfies

( d

min
i=1

c
k
↑
i

)
|θ |2 ≤

d∑
i=1

θ2
i ck↑

i

≤ 〈
θ,�(x)θ

〉 ≤K(x)|θ |2,(4.9)

for all θ ∈ R
d , x ∈ G, where k

↑
i is given by Assumption 3.2(a) and K(x) �∑r

k=1 |vk|2λk(x). The function σ is well defined and continuously differentiable,
since � is continuously differentiable, being defined in terms of multivariate
polynomials in the coordinates of x, and the map A → A1/2 is analytic on
the set of positive definite d × d symmetric matrices, by Lemma 5.2.1 of [35],
page 131.

Under our assumptions (and with λk in place of λVk ), by using a sequence of
stopping times and showing nonexplosion of the approximating diffusion process,
one can extend the aforementioned approximation (with a relaxed error estimate)
to where the domain E is all ofGo. (The requisite nonexplosion is a consequence of
estimates that we give in Section 4.4.) However, this only gives an approximation
to X̄V up until the first time that the boundary Gb is reached. In the next subsection,
we propose an extension of this approximation, beyond the first hitting time of Gb,
by using a jump-diffusion process.

REMARK 4.1. The book of Ethier and Kurtz (see [6], page 459), is often cited
in the applied literature to justify a Langevin-type diffusion approximation to a
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chemical reaction network model. However, that book assumes that the analogues
of our λk (which are called βl in [6]) are nonnegative everywhere on all of d-
dimensional Euclidean space, not just on the positive orthant, and a Lipschitz con-
tinuity condition is usually imposed on

√
λk to ensure uniqueness of solutions of

the Langevin equation. We have cited the paper [21] here because its statement of
the diffusion approximation uses stopping times to restrict to a domain where the
requisite nonnegativity and Lipschitz conditions are satisfied.

REMARK 4.2. The process Z̆ in (4.6) can also be obtained as a weak limit
of a sequence of processes {Z̆δn} where δn tends to zero as n → ∞ and for any
0 < δ ≤ 1√

V
, Z̆δ satisfies for all t ≥ 0,

Z̆δ(t)= X̄V (0)+
∫ t∧ζ Z̆δ

0
μ
(
Z̆δ(s)

)
ds

+ 1√
V

(
δ

r∑
k=1

vkN̂
◦
k

(
δ−2

∫ t∧ζ Z̆δ

0
λk

(
Z̆δ(s)

)
ds

))

and N̂◦
k (t) = N◦

k (t) − t , ζ Z̆
δ = inf{t ≥ 0 : Z̆δ(s) /∈ E}. By comparison with (4.3),

we see that when λVk is replaced by λk , the equation for X̄V (· ∧ ζ X̄
V
) is the same

as that for Z̆δ(·) when δ = 1√
V

. Thus, one can view Z̆ as a limit of stopped ap-

proximations to X̄V in which the jump size and jump rate in the fluctuation term
in X̄V have been sent to zero and infinity, respectively, in a manner such that the
limit is a diffusion process with fluctuations of order 1√

V
. A similar type of limit,

involving rescaling of a boundary process, will be used in proposing a reflected
diffusion approximation for the unstopped process X̄V .

4.2. Jump-diffusion approximation. Our proposed jump-diffusion approxima-
tion to X̄V is a d-dimensional, adapted process Ẑ that is defined on a filtered
probability space (�,F, {Ft},P), on which there is also defined a standard d-
dimensional Brownian motion W that is a martingale with respect to {Ft }, a
random variable X̄V (0) that is F0-measurable, and r independent Poisson pro-
cesses {Nb

k ;1 ≤ k ≤ r} that are independent of W and X̄V (0), such that Ẑ(t) ∈
G for all t ≥ 0,

Ẑ(t)= X̄V (0)+
∫ t

0
μ
(
Ẑ(s)

)
1{Ẑ(s)∈G◦} ds

+ 1√
V

(∫ t

0
σ
(
Ẑ(s)

)
1{Ẑ(s)∈G◦} dW(s)+ Ỹ (t)

)
, t ≥ 0,

(4.10)
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where

Ỹ (t)� 1√
V
SŨb(t),

Ũ b
k (t)�Nb

k

(
V

∫ t

0
λk

(
Ẑ(s)

)
1
{Ẑ(s)∈Gb,Ẑi (s)≥ v

−
ik
V

for i=1,...,d}
ds

)
,

for 1 ≤ k ≤ r , and

(4.11)

Ûb
k (t)� Ũb

k (t)− V

∫ t

0
λk

(
Ẑ(s)

)
1
{Ẑ(s)∈Gb,Ẑi (s)≥ v

−
ik
V

for i=1,...,d}
ds,

Ŷ (t)� Ỹ (t)− √
V

r∑
k=1

vk

∫ t

0
λk

(
Ẑ(s)

)
1
{Ẑ(s)∈Gb,Ẑi (s)≥ v

−
ik
V

for i=1,...,d}
ds,

are local martingales with respect to the filtration {Ft }.
Notice that the process Ỹ is defined analogously to the jump process YV (·) �

1√
V
SUV,b(·) in (4.3), but where λVk is replaced by λk and the indicator function

of the set {Ẑi(s) ≥ v−
ik

V
for i = 1, . . . , d} is included in the definition of Ũ b

k . The

reason for the latter is that this prevents the process Ẑ from jumping to a point that
is outside of G. Such a constraint was not needed for X̄V as it lives on a lattice in
G and the form of the rates λVk prevents X̄V from jumping outside of G from these
lattice points. However, Ẑ diffuses in G◦ and so it may reach parts of the boundary
where more than one component of Ẑ is so small that certain jumps from there
would take it outside of G.

Since Ỹ cannot increase until Ẑ first reaches the boundary of G, the equation
for Ẑ and the equation (4.6) for Z̆ agree until the boundary of G is first reached.
Because of the uniqueness of solutions, it follows that Ẑ agrees with Z̆ until this
time. After this first hitting time, Ẑ continues by jumping in an analogous manner
to how X̄V does at the boundary (with λVk replaced by λk) and then as soon as Ẑ
jumps back into the interior of G, it continues on in the same manner as if it had
started from there. This defines a strong Markov process Ẑ that behaves like Z̆ in
the interior of G and jumps from the boundary in a similar manner to X̄V , except
for a small perturbation in the dynamics when more than one component of Ẑ is
near zero.

We emphasize that Ẑ is a formal approximation that we propose for X̄V , that is
based on the idea of extending the approximation of Kurtz beyond the first time that
the boundary of G is reached, where the extension is in a manner that is consistent
with the original behavior of X̄V on the boundary of G. We believe this jump-
diffusion process Ẑ should be a good approximation to X̄V . It would be interesting
to have error estimates to confirm this. However, the focus of our attention in this
paper is on proposing a continuous reflected diffusion approximation for X̄V . To
obtain this, we shall modify the boundary process Ỹ so that the jump sizes are of
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order δ rather than 1/
√
V and the rate of jumping is of order δ−2 rather than V .

This is similar to the kind of rescaling described in Remark 4.2 that leads to the
approximation of X̄V by a diffusion in the interior of G. We now define our family
of jump-diffusion processes, indexed by the parameter δ ∈ (0, 1√

V
]. A version of

the process Ẑ, just described, can be realized by setting δ = 1√
V

. We will obtain

our candidate reflected diffusion approximation for X̄V by letting δ → 0.

DEFINITION 4.1 (Family of jump-diffusion processes). For each δ ∈ (0, 1√
V

],
we suppose that there is a filtered probability space (�,F, {Ft},P) on which there
is defined a standard d-dimensional Brownian motion W that is a martingale with
respect to {Ft }, an F0-measurable random variable X̄V (0), independent Poisson
processes {Nb

k ;1 ≤ k ≤ r} that are independent of W and X̄V (0), and an adapted
d-dimensional process Zδ satisfying for all t ≥ 0, Zδ(t) ∈G and

Zδ(t)= X̄V (0)+
∫ t

0
μ
(
Zδ(s)

)
1{Zδ(s)∈G◦} ds

+ 1√
V

(∫ t

0
σ
(
Zδ(s)

)
1{Zδ(s)∈G◦} dW(s)+ Ỹ δ(t)

)
,

(4.12)

where

Ỹ δ(t)� δSŨδ,b(t),(4.13)

with Ũ δ,b = (Ũ
δ,b
1 , . . . , Ũ δ,b

r )′, where each component Ũ δ,b
k , 1 ≤ k ≤ r , is given

by

Ũ
δ,b
k (t)�Nb

k

(
δ−2

∫ t

0
λ̃δk

(
Zδ(s)

)
1{Zδ(s)∈Gb} ds

)
,(4.14)

the rates λ̃δk , 1 ≤ k ≤ r , are defined by

λ̃δk(x)� λk(x)1{xi≥ δv
−
ik√
V

for i=1,...,d}
, x ∈G,(4.15)

and the compensated processes Û δ,b = (Û
δ,b
1 , . . . , Û δ,b

r )′ and Ŷ δ = (Ŷ δ
1 , . . . , Ŷ

δ
r )

′
defined for 1 ≤ k ≤ r , t ≥ 0, by

Û
δ,b
k (t)� Ũb

k (t)− δ−2
∫ t

0
λ̃δk

(
Zδ(s)

)
1{Zδ(s)∈Gb} ds,(4.16)

Ŷ δ(t)� δ

r∑
k=1

vkÛ
δ,b
k (t)

= Ỹ δ(t)− δ−1
r∑

k=1

vk

∫ t

0
λ̃δk

(
Zδ(s)

)
1{Zδ(s)∈Gb} ds,

(4.17)

are local martingales with respect to the filtration {Ft }.
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REMARK 4.3. We note, by the right continuity of the sample paths of Û δ,b,
Ŷ δ , and W , that the (local)-martingale properties also hold with Ft replaced by
Ft+ � ⋂

s>t Fs , so we may assume that the filtration {Ft } is right continuous.
Now, a random variable ζ :�→ [0,∞], is a stopping time relative to {Ft+} if and
only if {ζ < t} ∈ Ft for all t ≥ 0. In particular, the first time that Zδ is in an open
set is an {Ft+}-stopping time.

The process Zδ is well defined as a strong Markov process up until the explosion
time,

(4.18) ζ δ∞ = lim
M→∞ ζ δM,

where ζ δM = inf{t ≥ 0 : 〈u,Zδ(t)〉>M}. (We shall shortly show that this explosion
time is +∞ almost surely, and so Zδ is well defined for all time, almost surely.)
Indeed, up until the explosion time and prior to hitting the boundary Gb, Zδ can
be constructed from a given standard d-dimensional Brownian motion W and ini-
tial condition, as a strong solution of a stochastic differential equation driven by
W with drift coefficient μ and dispersion coefficient σ . The stochastic differen-
tial equation is uniquely solvable until this time because the drift and dispersion
coefficients are continuously differentiable on G and the dispersion coefficient is
positive definite on G. Once Zδ has reached the boundary Gb, at some point x
say, it waits there for an exponentially distributed amount of time with parameter
δ−2 ∑r

k=1 λ̃
δ
k(x) before jumping to another state. For k = 1, . . . , r , with probability

(4.19) pδk(x)= λ̃δk(x)∑r
�=1 λ̃

δ
�(x)

,

Zδ jumps to x + δ√
V
vk . Then Zδ continues on from there, as a strong Markov

process, as if it had started there. Note that Zδ does not get stuck on the boundary
and the jump times do not accumulate because λ̃δk(x)= ck > 0 for all k ∈ I and x ∈
Gb, where I denotes the set of external input reactions. By the construction, the
strong Markov property of Brownian motion and the exponential holding times on
the boundary, Zδ is well defined as a strong Markov process up until the explosion
time ζ δ∞. To make Zδ well defined for all time, we define Zδ(t)= ∂ for all t ≥ ζ δ∞,
where ∂ is a “cemetery state” that is disjoint and isolated from G. Let G∂ denote
G augmented with this isolated state, endowed with the usual augmented topology
where {∂} is an open (and closed) set.

The space where the paths of Zδ lie is

(4.20)
D∂ = {

ω : [0,∞)→G∂,ω is right continuous with finite left limits

at t ∈ [0, ζ∞), and ω(t)= ∂ for all t ≥ ζ∞
}
,

where ζ∞ � inf{s ≥ 0 : ω(s)= ∂}. We endow this space with the σ -algebra

M∂ = σ
{
ω(s) : 0 ≤ s <∞,ω ∈ D∂},
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and filtration

(4.21) M∂
t = σ

{
ω(s) : 0 ≤ s ≤ t,ω ∈ D∂}, t ≥ 0.

Although we have defined Zδ above with initial condition X̄V (0), for some devel-
opments below, we shall need to consider arbitrary starting states z ∈ G for Zδ .
Thus, for each z ∈ G, if Zδ starts from z ∈ G, we let P δ

z denote the probability
measure induced on (D∂ ,M∂) by this process:

(4.22) P δ
z (A)= P

(
Zδ ∈A

)
for all A ∈ M∂ .

We let ω(·) denote the canonical process on (D∂ ,M∂). The function z → P δ
z (A)

can be shown to be Borel measurable on G for each set A ∈ M∂ .

4.3. Inequalities for μ and μ̃δ . In this subsection, we obtain some important
inequalities involving μ and μ̃δ , where the latter function is defined analogously to
μ but with λ̃δk replacing λk . That is, for each δ ∈ (0, 1√

V
], μ̃δ :G→ R

d is defined
as follows:

μ̃δ(x)�
r∑

k=1

vkλ̃
δ
k(x), x ∈G.(4.23)

Recall that λ̃δk , 1 ≤ k ≤ r , are defined by (4.15). These inequalities enable us to
show nonexplosion of Zδ , almost surely, and they are also used in the proof of
tightness in a later section.

For 1 ≤ j ≤ d , let nj be the unit normal vector on the face

(4.24) Fj � {x ∈G : xj = 0}.
For x ∈ Gb, define I (x) � {1 ≤ j ≤ d : x ∈ Fj }. The proofs of Lemmas 4.1 and
4.2 below are given in the Appendix.

LEMMA 4.1. Let I be the set of indices of external input reactions [as in
Assumption 3.2(a)] and let M∗ be the constant defined by

M∗ �
∑

k∈I ck|〈vk, u〉|
mindi=1 ck↓

i

+ 1.(4.25)

There exists an α > 0 such that:

(i) 〈μ(x), nj 〉 ≥ α, for all j ∈ I (x) and x ∈Gb;
(ii) 〈μ(x),−u〉 ≥ α for all x ∈G such that 〈x,u〉>M∗,

where u is the vector given in Definition 3.1(a).
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LEMMA 4.2. Let u be as in Definition 3.1(a) and define the constant

M̃∗ �M∗ + 1

V

d∑
i=1

ui,(4.26)

where M∗ is defined by (4.25). Then, there exists a constant α > 0 such that for all
δ ∈ (0, 1√

V
]:

(i) 〈μ̃δ(x), nj 〉 ≥ α, for all j ∈ I (x) and x ∈Gb;
(ii) 〈μ̃δ(x),−u〉 ≥ α for all x ∈G such that 〈x,u〉> M̃∗.

4.4. Estimates for hitting times by Zδ . In the following, the stopping times for
Zδ will be with respect to the right-continuous filtration {Ft } and for ω(·) will be
with respect to the right-continuous filtration {M∂

t+}.
In the next lemma, we develop an estimate which implies that almost surely Zδ

does not explode in finite time for any δ ∈ (0, 1√
V

]. For M > 0, recall the definition

of ζ δM from (4.18). We also define on the canonical space (D∂ ,M∂), the following
stopping time:

(4.27) ζM = inf
{
t ≥ 0 : 〈u,ω(t)〉>M

}
,

where ζM = 0 if ω(t)= ∂ for all t ≥ 0. The proof of the lemma is deferred to the
Appendix.

LEMMA 4.3. For each δ ∈ (0, 1√
V

], t > 0 and m> 0,

(4.28) sup
z∈G:〈u,z〉≤m

P δ
z (ζM ≤ t)→ 0 as M → ∞.

REMARK 4.4. Since the law of Zδ given Zδ(0) = z is P δ
z for each z ∈ G,

it follows immediately from the lemma that almost surely, Zδ , with initial state
X̄V (0), does not explode in finite time. Consequently, without loss of generality,
we may and do assume henceforth that Zδ surely does not explode in finite time.

The following result will be used in a subsequent section to establish a compact
containment condition as part of a proof of tightness for a sequence of processes
{Zδn}∞n=1, where δn → 0 as n → ∞. In preparation for the lemma, we make the
following definitions. Let

(4.29) ρ = 1 ∨ r
max
k=1

∣∣〈u, vk〉∣∣.
Note that, since δ ∈ (0, 1√

V
], V ≥ 1, and the jumps of Zδ are of the form δ√

V
vk ,

the sizes of the jumps of 〈u,Zδ〉 are bounded by 1
V
ρ ≤ ρ. We also define for each

m> 0,

(4.30) τ δm = inf
{
t ≥ 0 : 〈u,Zδ(t)

〉
<m

}
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and the set

(4.31) �m = {
z ∈G :m≤ 〈u, z〉 ≤m+ ρ

}
.

The proof of the following lemma can be found in the Appendix.

LEMMA 4.4. For each fixed m ≥ M̃∗ + ρ and t ≥ 0, there is δ0 ∈ (0, 1√
V

]
(depending on m, t), such that

(4.32) sup
0<δ≤δ0

sup
z∈�m

P δ
z (ζM ≤ t)→ 0 as M → ∞.

5. Definition of the constrained Langevin equation (CLE). Recall the def-
initions of μ and σ from Section 4.1. Let S1 denote the unit sphere in R

d centered
at 0, that is S1 � {x ∈R

d : |x| = 1}. Define a reflection field on the boundary of G,
γ :Gb → S1, by

(5.1) γ (x)� μ(x)

|μ(x)| for x ∈Gb,

where |μ(x)| �= 0 since we have that for x ∈ Gb, |μ(x)| ≥ |〈μ(x), nj 〉| ≥ α for
j ∈ I (x), by Lemma 4.1.

In the following, we define the notion of a (weak) solution to the constrained
Langevin equation. This is similar to the definition of a (weak) solution of a
stochastic differential equation with reflection (SDER) used in [16].

DEFINITION 5.1 (Solution of the CLE). Given a Borel probability measure ϑ
on G, a solution of the Constrained Langevin Equation (CLE), with initial distribu-
tion ϑ , is a d-dimensional {Ft }-adapted process Z defined on a filtered probability
space (�,F, {Ft},Pϑ), on which there are also defined auxiliary processes W and
L, such that:

(i) Z(t) ∈G for all t ≥ 0, Pϑ -a.s., and the distribution of Z(0) is given by ϑ ;
(ii) under Pϑ , W is a standard d-dimensional Brownian motion that is a mar-

tingale with respect to {Ft };
(iii) L is a continuous, {Ft }-adapted, one-dimensional process that is nonde-

creasing, Pϑ -a.s., and satisfies

L(t)=
∫ t

0
1{Z(s)∈Gb} dL(s) for all t ≥ 0,Pϑ -a.s.,

that is, Pϑ -a.s., L only increases when Z is on Gb;
(iv) the triple (Z,W,L) satisfies equation (1.4) Pϑ -a.s.

REMARK 5.1. In addition to the conditions stated in Definition 5.1, it is usu-
ally required for solutions of an SDER that the following condition holds:

P
ϑ

(∫ t

0

∣∣μ(
Z(s)

)∣∣ + ∣∣σ (
Z(s)

)∣∣2 ds <∞
)

= 1
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for every 0 ≤ t <∞. However, since the paths of Z are continuous Pϑ -a.s. and μ,
σ are continuous, the above condition is automatically satisfied.

REMARK 5.2. The auxiliary process L is sometimes referred to as a local time
process associated with Z. We shall occasionally use this terminology to refer to
this auxiliary process. We shall refer to the triple (Z,W,L) as a solution of the
CLE along with its auxiliary processes.

Our definition of a solution of the CLE uses a stochastic differential equation
with reflection (SDER) approach. An alternative approach to describing such re-
flected diffusion processes is via submartingale problems. In the recent work [16],
Kang and Ramanan give sufficient conditions (which are satisfied for the situation
considered in this paper) for the SDER and submartingale problem approaches to
be equivalent, in that they both characterize the law of the process given the initial
condition. While we do not use the submartingale problem approach here, it can
be useful, for example, for characterizing the stationary distribution of a solution
of an SDER, as seen in [16].

6. Pathwise and weak uniqueness for the CLE. In this section, we first
prove pathwise uniqueness for the CLE. Our proof relies on the work of Dupuis
and Ishii [5], which gives sufficient conditions for pathwise uniqueness, and then
for strong existence and uniqueness of solutions, for certain SDERs on bounded
domains. (In fact, we use a slight modification of the pathwise uniqueness argu-
ment in [5], as we explain in the proof of our Theorem 6.1 below.) In order to use
the work of [5], which is for bounded domains, we let

GM �
{
x ∈G : 〈x,u〉 ≤M

}
,(6.1)

for each M >M∗, where M∗ is defined in (4.25), and u is the vector associated
with the mass-dissipating reactions of Assumption 3.1. The vector nj is the unit
normal vector on the face FM

j � {x ∈GM : xj = 0}, for j = 1, . . . , d . Let us define

in addition nd+1 �−u/|u| to be the inward unit normal vector on the face FM
d+1 �

{x ∈GM : 〈x,u〉 =M}. Let Gb
M denote the boundary of GM and let IM(x)� {j :

1 ≤ j ≤ d + 1, x ∈ FM
j }, for x ∈Gb

M . Then we have the following result.

LEMMA 6.1. Fix M > M∗. Then there are functions μM : Rd → R
d , �M :

R
d → S

d×d that coincide with μ, �, respectively, on GM , and γM :Rd →R
d that

coincides with γ on G̃b
M � {x ∈Gb

M : x /∈G◦}, such that:

(i) 〈θ,�M(x)θ〉 ≥ kM |θ |2, for all x, θ ∈ R
d , for some constant kM > 0;

(ii) |μM(x)−μM(y)| ∨ |σM(x)− σM(y)| ≤KM |x − y|, for all x, y ∈ R
d , for

some constant KM > 0, where σM(x) is the symmetric positive definite square root
of �M(x) for x ∈ R

d ;
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(iii) γM is twice continuously differentiable, |γM | = 1 in a neighborhood of
Gb
M , γM is a constant vector outside of a compact set, and there is a β ∈ (0,1)

such that ⋃
0≤t≤β

Btβ

(
x − tγM(x)

) ⊂ (
G◦
M

)c for x ∈Gb
M,

where Bp(x)� {y ∈ R
d : |x−y| ≤ p} for x ∈R

d and p ∈ R+, (G◦
M)

c = R
d \G◦

M ,
and G◦

M is the interior of GM .

The proof of Lemma 6.1 is given in the Appendix. We now present the main the-
orem of this section, which states that pathwise uniqueness holds for the CLE. As
we will show in a subsequent corollary, this implies weak uniqueness for solutions
of the CLE, which is actually the result we shall use in the next section.

THEOREM 6.1. Fix a Borel probability measure ϑ on G. Suppose that
(Z(1),W,L(1)) and (Z(2),W,L(2)) are two solutions to the CLE (together with
their associated auxiliary processes) defined on the same filtered probability space
(�,F, {Ft},Pϑ), with the same initial condition, so that Z(1)(0) = Z(2)(0) = ξ

P
ϑ -a.s., where ξ is a random variable taking values in G with distribution ϑ . (Note

that the Brownian motion W is common to the two solutions.) Then (Z(1),L(1))

and (Z(2),L(2)) are indistinguishable under Pϑ , that is,

P
ϑ ((

Z(1),L(1))(t)= (
Z(2),L(2))(t) for all t ≥ 0

) = 1.(6.2)

PROOF. For a fixed M >M∗, let μM , �M,σM and γM be the functions de-
scribed in Lemma 6.1. Define

τ̌M � inf
{
t ≥ 0 : 〈u,Z(1)(t)

〉
>M or

〈
u,Z(2)(t)

〉
>M

}
.

Then, since μ, �, σ coincide with μM , �M , σM on GM , and γ coincides with
γM on G̃b

M , P
ϑ -a.s. on {ξ ∈ GM}, up until the time τ̌M , (Z(1),W,L(1)) and

(Z(2),W,L(2)) solve an SDER on GM , with drift and dispersion coefficients given
by μM and σM/

√
V , respectively, with reflection vector field given by γM on the

boundary Gb
M of GM , and with initial condition given by ξ . In particular, if we let

Ž(1), Ľ(1), Ž(2), Ľ(2), W̌ , ξ̌ be defined for t ≥ 0 by

Ž(1)(t)� Z(1)(t ∧ τ̌M)1{ξ∈GM }, Ľ(1)(t)� L(1)(t ∧ τ̌M)1{ξ∈GM },

Ž(2)(t)� Z(2)(t ∧ τ̌M)1{ξ∈GM }, Ľ(2)(t)� L(2)(t ∧ τ̌M)1{ξ∈GM },

W̌ (t)�W(t ∧ τ̌M)1{ξ∈GM }, ξ̌ � ξ1{ξ∈GM },

then equation (5.3) in [5] holds P
ϑ -a.s. with (Ž(1), Ž(1), W̌ , 1√

V
Ľ(1), ξ̌ ,

t ∧ τ̌M,μM,
σM√
V
, γ (Ž(1))) [resp., (Ž(2), Ž(2), W̌ , 1√

V
Ľ(2), ξ̌ , t ∧ τ̌M,μM,

σM√
V
,

γ (Ž(2)))] in place of (Y,X,M, |k|, x, t, b, σ, γ ) there.
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We would like to use the result of Theorem 5.1 in [5], to establish the desired
uniqueness. It turns out that we need to make a slight modification to the argument
in [5], in order to obtain the result. The reason is revealed when one attempts to
check the conditions in [5]. First, we can complete the probability space and aug-
ment the filtration so that the filtered probability space (�,F, {Ft},Pϑ) satisfies
the usual conditions assumed in Section 5 of [5]. Furthermore, by Lemma 6.1, the
drift, dispersion and domain, μM , σM , and G◦

M , satisfy the conditions of Section 5
and Case 1 in [5]. An issue arises with the vector field γM , which satisfies the con-
ditions of Case 1 of [5], except that it is only of unit length in a neighborhood of
Gb
M , whereas the paper [5], and the paper [4] on which [5] relies for the existence

of the functions fε and h in Theorem 3.2 (Case 1) of [5], assumes γM is of unit
length everywhere on R

d . (In fact, due to homotopy considerations,6 one cannot
extend γM continuously from Gb

M to R
d such that it is nonzero everywhere on R

d .)
However, this issue can be resolved as follows. (We are grateful to Paul Dupuis for
a private communication related to resolving this issue.)

Scrutiny of the proof of Case 1 of Theorem 5.1 in [5] reveals what is needed
for this proof to apply is the existence of functions fε and h satisfying Case 1 of
Theorem 3.2 in [5], where (3.15) there only need hold for x ∈Gb

M and (3.16) there
only need hold for y ∈Gb

M . In fact, the function h is readily seen to exist since it
can be made zero off a neighborhood of Gb

M . The function fε can be defined using
a localization of the procedure used to define the function wε on pages 1136–1137
of [4]. In particular, we can define fε = εh̃(x,

x−y
ε
), for

h̃(x,p)= 1 +ψη/2(x)

(
g(p, γM(x))

θ

)
+ (

1 −ψη/2(x)
)〈p,p〉

for x ∈G,p ∈R
d,

(6.3)

where ψη/2 is as in our construction of γM [see (A.61)] in our proof of Lemma 6.1
in the Appendix, and g, θ are as defined in Lemma 4.4 of [4] (with a suitable value
of δ there related to θ in Theorem 3.2 of [5]). The function g(p, ξ) is a function of
p ∈ R

d and ξ lying on the unit sphere in R
d . The second term in the right member

of (6.3) is well defined since it is defined to be zero where ψη/2 is zero, and on

the support of ψη/2 [which is contained in the set Gb,η/2
M defined by (A.59)], the

vector field γM has unit length. We note that ψη/2 is equal to one on G
b,η/4
M . The

function fε satisfies the conditions (3.13)–(3.19) in Case 1 of Theorem 3.2 and can
be used in the proof of Theorem 5.1 in [5]. (We note in passing that this same line
of reasoning shows that the results for Case 1 in [5] only require the vector field to
be of unit length on the boundary of the domain.)

6The simplest example illustrating the problem occurs when G is the unit interval (0,1) and the
associated vector field γ is such that γ (0)= 1 and γ (1) = −1; any continuous extension of γ to R

must cross 0 at some point x ∈G.
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With the above modification, it follows by the proof of Theorem 5.1 (Case 1) in
[5], that for each T ≥ 0, there is a constant CT > 0 such that for 0 ≤ t ≤ T ,

(6.4)

E
ϑ
[

sup
0≤s≤t

∣∣Ž(1)(s)− Ž(2)(s)
∣∣2]

≤ CT

∫ t

0
E
ϑ
[

sup
0≤υ≤s

∣∣Ž(1)(υ)− Ž(2)(υ)
∣∣2]ds,

where E
ϑ denotes expectation with respect to P

ϑ and we used the fact that
Ž(1)(0)= Ž(2)(0)= ξ̌ , Pϑ -a.s. (although the stochastic processes in Theorem 5.1
of [5] are not stopped and the initial condition is constant, rather than random as
we have here, Theorem 5.1 in [5] still applies. Indeed, the proof of Theorem 5.1
on page 575 of [5] still holds with t there replaced by t ∧ τ̌M and, since the ini-
tial condition is almost surely the same for Ž(1) and Ž(2), these conditions cancel
one another.). Using Gronwall’s inequality, and because T ≥ 0 was arbitrary, we
conclude from (6.4) that

P
ϑ (
Ž(1)(t)= Ž(2)(t) for all t ≥ 0

) = 1.

Rewriting this in terms of the original processes Z(1),Z(2), and using the fact that
on {ξ /∈GM} we have τ̌M = 0 and Z(1)(0)= Z(2)(0), Pϑ -a.s., we see that

P
ϑ (
Z(1)(t ∧ τ̌M)= Z(2)(t ∧ τ̌M) for all t ≥ 0

) = 1.(6.5)

Since Z(1) and Z(2) have continuous paths in G for all time, it follows that τ̌M →
∞ P

ϑ -a.s. as M → ∞. Therefore, letting M → ∞ in (6.5) yields

P
ϑ (
Z(1)(t)= Z(2)(t) for all t ≥ 0

) = 1.(6.6)

It follows from this and the CLE satisfied by Z(1) (resp., Z(2)) that we also have
P
ϑ -a.s., for all t ≥ 0,

(6.7) V(1)(t)�
∫ t

0
γ
(
Z(1)(s)

)
dL(1)(s)=

∫ t

0
γ
(
Z(2))(s) dL(2)(s)� V(2)(t).

Combining (6.6)–(6.7) with the facts that γ is a unit length vector field on Gb,
and L(1) (resp., L(2)) can increase only when Z(1) (resp., Z(2)) is on Gb, we have
P
ϑ -a.s., for all t ≥ 0,

(6.8)

L(1)(t)=
∫ t

0

〈
γ
(
Z(1)(s)

)
, γ

(
Z(1)(s)

)〉
dL(1)(s)=

∫ t

0
γ
(
Z(1)(s)

)
dV(1)(s)

=
∫ t

0
γ
(
Z(2)(s)

)
dV(2)(s)=

∫ t

0

〈
γ
(
Z(2)(s)

)
, γ

(
Z(2)(s)

)〉
dL(2)(s)

=L(2)(t).

The desired result (6.2) then follows from (6.6) and (6.8). �
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COROLLARY 6.1. Fix a Borel probability measure ϑ on G. Suppose that
(Z,W,L) is a solution of the CLE (together with its auxiliary processes) with
initial distribution ϑ . Then the law of (Z,L) is unique.

PROOF. Since we have proven pathwise uniqueness in the previous theorem
and the corollary assumes the existence of a solution with initial distribution ϑ , the
result follows by a standard argument due to Yamada and Watanabe, which usually
is summarized as “pathwise uniqueness implies uniqueness in law.” Although the
original argument of Yamada and Watanabe was given for stochastic differential
equations without reflection, the argument is quite general and easily extends to the
situation with reflection. See, for example, Step 1 of the proof of Theorem V.17.1
in [31]. In that proof, one replaces (X,W) there with our (Z,L,W). �

7. Weak convergence of a sequence of jump-diffusion processes. This sec-
tion is devoted to showing that the jump-diffusion process Zδ of Definition 4.1
converges in distribution to a solution of the constrained Langevin equation as
δ ↓ 0 through a monotonic decreasing sequence {δn}∞n=1 of positive real num-
bers. We begin by showing, in Section 7.1, that such a sequence {Zδn} of jump-
diffusion processes, along with certain interior processes and boundary processes,
is C-tight. The results are based on the conditions for C-tightness given by Kang
and Williams [17] for approximately reflected processes in domains with piece-
wise smooth boundaries. Next, in Section 7.2, we prove that any weak limit point
of the C-tight sequence yields a solution of the CLE. Using uniqueness in law for
solutions of the CLE, we then conclude that {Zδn} converges weakly to a solution
of the CLE.

7.1. Tightness. Let {δn}∞n=1 be a monotonic decreasing sequence of positive
real numbers such that δ1 ≤ 1/

√
V and δn → 0 as n→ ∞. Recall the definition of

λ̃
δn
k , for 1 ≤ k ≤ r , given by (4.15) and that of μ̃δn

k given by (4.23). For notational

convenience, we write λ̃nk instead of λ̃δnk and also write μ̃n instead of μ̃δn . For later
reference, we define the vector field γ̃ n :Gb → S1 by

γ̃ n(x)� μ̃n(x)

|μ̃n(x)| for x ∈Gb.(7.1)

Notice that γ̃ n(x) is well defined for x ∈Gb, since |μ̃n(x)|> 0 for all such x, by
Lemma 4.2. The following lemma establishes a property involving the vector fields
γ̃ n and γ , where γ :Gb → S1 is given by (5.1). The proof is in the Appendix.

LEMMA 7.1. For each M > 1, the functions γ, γ̃ n : Gb → S1 satisfy the fol-
lowing condition: for each ε > 0 there is a nε > 1, which may depend on M , such
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that ∣∣γ (x)− γ̃ n(x)
∣∣< ε,

for all n≥ nε and x ∈Gb such that |x| ≤M .

Recall the definition of the stochastic processes Zδn , Û δn,b and Ŷ δn , from Defi-
nition 4.1. For notational convenience, we shall simply denote these by Zn ≡Zδn ,
Ûn,b ≡ Û δn,b and Ŷ n ≡ Ŷ δn , where the superscript δn was replaced by n. The fam-
ily {(Zn, Ûn,b, Ŷ n)}∞n=1 of processes can be defined on a single probability space
(�,F,P), on which the driving Brownian motion W and Poisson processes Nb

k ,
k = 1, . . . , r are defined. For each n, let {Fn

t } be the filtration defined by Fn
t = Gnt+

where Gnt � σ {Zn(s),W(s), Ûn,b(s), Ŷ n(s),0 ≤ s ≤ t} for t ≥ 0. The processes
W , Ûn,b and Ŷ n are local martingales with respect to {Fn

t }, for each n.
We now rewrite the equation (4.12) satisfied by Zn, using (4.12)–(4.17), (4.23)

and (7.1), as follows:

Zn(t)= X n(t)+Yn(t)+ 1√
V

∫ t

0
γ̃ n

(
Zn(s)

)
dLn(s), t ≥ 0,(7.2)

where for t ≥ 0,

X n(t)� X̄V (0)+
∫ t

0
μ
(
Zn(s)

)
1{Zn(s)∈G◦} ds

+ 1√
V

∫ t

0
σ
(
Zn(s)

)
1{Zn(s)∈G◦} dW(s),

(7.3)

Yn(t)= δn√
V

r∑
k=1

vkÛ
n,b
k (t),(7.4)

Û
n,b
k (t)=Nb

k

(
δ−2
n

∫ t

0
λ̃nk

(
Zn(s)

)
1{Zn(s)∈Gb} ds

)

− δ−2
n

∫ t

0
λ̃nk

(
Zn(s)

)
1{Zn(s)∈Gb} ds,

(7.5)

and

Ln(t)� 1

δn

∫ t

0

∣∣μ̃n(Zn(s)
)∣∣1{Zn(s)∈Gb} ds.(7.6)

For completeness, we include the following proposition, which will be used to
verify that a sequence of processes is C-tight.

PROPOSITION 7.1. Suppose �≥ 1 and that for each n, ςn is an �-dimensional
stochastic process defined on (�,F,P). The sequence {ςn} is C-tight if and only
if the following two conditions hold:
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(i) for each T > 0, ε > 0, there are K > 0 and n0 > 0 such that

P

(
sup

0≤t≤T
∣∣ςn(t)∣∣>K

)
≤ ε for all n≥ n0,

(ii) for each T > 0, ε > 0 and η > 0, there are ν ∈ (0, T ) and n0 > 0 such that

P
(
wT

(
ςn, ν

)
> η

) ≤ ε for all n≥ n0,

where for ω ∈ D,

wT (ω, ν)� sup
{

sup
υ1,υ2∈[t,t+ν]

∣∣ω(υ2)−ω(υ1)
∣∣ : 0 ≤ t < t + ν ≤ T

}
.

PROOF. See, for example, Proposition 3.26 of Chapter VI in [15], page 351.
�

REMARK 7.1. The first condition in Proposition 7.1 is usually referred to as
a compact containment condition.

LEMMA 7.2. The sequence of processes {Zn} satisfies the compact contain-
ment condition (i) of Proposition 7.1.

PROOF. Fix T > 0 and ε > 0. Recall the vector u from Assumption 3.1. Since
X̄V (0) is a finite random variable, there is Kε > 0 such that

P
(〈
u, X̄V (0)

〉
>Kε

)
< ε/2.

Note that since u ≥ 1, for z ∈G, 〈u, z〉 ≥ ∑d
i=1 zi ≥ |z|. Thus, if |Zn(t)| >K for

some K > 0, then 〈u,Zn(t)〉 >K as well. Now suppose K >m+ ρ where m =
max(Kε, M̃

∗ + ρ) and ρ is given by (4.29). We use the notation of Section 4 with
the superscript n in place of δn; in particular, ζ nm = inf{s ≥ 0 : 〈u,Zn(s)〉 > m}.
Note that, on {〈u, X̄V (0)〉 ≤ Kε}, if |Zn| exceeds the level K by time T , then Zn

must reach �m = {x ∈ G : m ≤ 〈u,x〉 ≤ m + ρ} by time T and the supremum
of {〈u,Zn(ζ nm + t)〉,0 ≤ t ≤ T } will exceed K . Consequently, using the strong
Markov property of Zn, we have

(7.7)

P

(
sup

0≤t≤T
∣∣Zn(t)

∣∣>K
)

≤ P
(〈
u, X̄V (0)

〉
>Kε

) + P

(〈
u, X̄V (0)

〉 ≤Kε, ζ
n
m ≤ T , sup

0≤t≤T
∣∣Zn(t)

∣∣>K
)

≤ ε

2
+ P

(〈
u, X̄V (0)

〉 ≤Kε, ζ
n
m ≤ T , sup

0≤t≤T
〈
u,Zn(ζ nm + t

)〉
>K

)

≤ ε

2
+E

[
1{〈u,X̄V (0)〉≤Kε,ζnm≤T }P

n
Zn(ζnm)

(ζK ≤ T )
]
.
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Let n0 be such that δn ≤ δ0 for all n ≥ n0, where δ0 (depending on m and T ) is
defined in Lemma 4.4. Then, by that lemma, we can choose K sufficiently large
that

sup
z∈�m

Pn
z (ζK ≤ T ) <

ε

2
(7.8)

for all n ≥ n0. Since Zn(ζ nm) ∈ �m on {〈u, X̄V (0)〉 ≤ Kε}, it then follows from
(7.7) and (7.8) that

P

(
sup

0≤t≤T
∣∣Zn(t)

∣∣>K
)
< ε

for all n≥ n0. �

THEOREM 7.1. For each n, let ςn = (Zn,X n,Yn,Ln). The sequence of
(3d + 1)-dimensional processes {ςn} is C-tight.

PROOF. For T > 0, ε > 0, η > 0, ν > 0, M > 0, K > 0, recalling the defini-
tion of GM from (6.1), we have

P

(
sup

0≤t≤T
∣∣ςn(t)∣∣>K

)

≤ P

(
sup

0≤t≤T
〈
u,Zn(t)

〉
>M

)
+ P

(
sup

0≤t≤T
〈
u,Zn(t)

〉 ≤M, sup
0≤t≤T

∣∣ςn(t)∣∣>K
)

≤ P

(
sup

0≤t≤T
∣∣Zn(t)

∣∣> M

|u|
)

+ P

(
ζ nM ≥ T , sup

0≤t≤T
∣∣ςn(t ∧ ζ nM

)∣∣>K
)

≤ P

(
sup

0≤t≤T
∣∣Zn(t)

∣∣> M

|u|
)

+ P

(
Zn(0) ∈GM, sup

0≤t≤T
∣∣ςn(t ∧ ζ nM

)∣∣>K
)

and similarly,

P
(
wT

(
ςn, ν

)
> η

)
≤ P

(
sup

0≤t≤T
∣∣Zn(t)

∣∣> M

|u|
)

+ P
(
Zn(0) ∈GM,wT

(
ςn

(· ∧ ζ nM
)
, ν

)
> η

)
.

By Lemma 7.2, there is Mε > M̃∗ and nε > 0 such that

P

(
sup

0≤t≤T
∣∣Zn(t)

∣∣> Mε

|u|
)

≤ ε

2
for all n≥ nε.

Thus, for all n≥ nε , we have

(7.9) P

(
sup

0≤t≤T
∣∣ςn(t)∣∣>K

)
≤ ε

2
+ P

(
Zn(0) ∈GMε, sup

0≤t≤T
∣∣ςn(t ∧ ζ nMε

)∣∣>K
)
,
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and

(7.10) P
(
wT

(
ςn, ν

)
> η

) ≤ ε

2
+ P

(
Zn(0) ∈GMε,wT

(
ςn

(· ∧ ζ nMε

)
, ν

)
> η

)
.

Let ς̃n(·)= ςn(· ∧ ζ nMε
)1{Zn(0)∈GMε }. To estimate the last probabilities in (7.9) and

(7.10), we consider Zn(· ∧ ζ nMε
)1{Zn(0)∈GMε } as living in the bounded polyhedron

GM for a suitable M >Mε . Then we can apply a C-tightness criterion developed
by Kang and Williams [17] for approximations of reflected processes in domains
with piecewise smooth boundary, to prove that {ς̃n} is C-tight. We can then use this
to estimate the last terms in (7.9) and (7.10). The result we will use from [17] is
Theorem 4.2. This requires that various assumptions on the domain and directions
of reflection be satisfied (see Assumptions (A1)–(A5) in [17]) as well as by the
processes ς̃n (see Assumption 4.1 in [17]).

We first make the choice of M for GM and define faces and directions of reflec-
tion associated with GM . We also develop several properties of these quantities.
Then we verify that Assumptions (A1)–(A5) in [17] hold.

Truncated State Space GM , Faces of GM and Reflection Fields {γ̂ i : i =
1, . . . , d + 1}. Let M =Mε + 2ρ be fixed, where ρ is given by (4.29). Then

GM = {
x ∈G : 〈x,u〉 ≤M

}
,

and we define

FM
i = {x ∈GM : xi = 0}, i = 1, . . . , d,

FM
d+1 = {

x ∈GM : 〈x,u〉 =M
}
,

nd+1 = −u/|u|,
and let Gb

M denote the boundary of GM . Then Gb
M = ⋃d+1

i=1 F
M
i .

By Lemmas 4.1 and 4.2, there is α > 0 such that for i = 1, . . . , d ,

(7.11)
〈
ni,μ(x)

〉 ≥ α,
〈
ni, μ̃

n(x)
〉 ≥ α for each x ∈ FM

i , n= 1,2, . . . ,

and

(7.12)

〈
nd+1,μ(x)

〉 ≥ α

|u| ,〈
nd+1, μ̃

n(x)
〉 ≥ α

|u| for each x ∈ FM
d+1, n= 1,2, . . . .

In particular, this implies that

(7.13)
∣∣μ(x)∣∣ ≥ α

|u| ,
∣∣μ̃n(x)

∣∣ ≥ α

|u| for each x ∈Gb
M,n= 1,2, . . . .

Since the right-hand sides of equations (3.7) and (4.7) are well defined as infinitely
differentiable functions on all of Rd , we can use these to extend the definitions of
the λk , k = 1, . . . , r and μ to infinitely differentiable functions defined on all of Rd .
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It then follows from the continuity of μ and (7.11)–(7.12) that there is ϕ > 0 such
that 〈

ni,μ(x)
〉 ≥ α

2|u| for each x ∈ F
M,ϕ
i , i = 1, . . . , d + 1,

where FM,ϕ
i � {x ∈ R

d : dist(x,FM
i )≤ ϕ}, i = 1, . . . , d + 1, and so

∣∣μ(x)∣∣ ≥ α

2|u| for each x ∈G
b,ϕ
M ,

where Gb,ϕ
M � {x ∈R

d : dist(x,Gb
M)≤ ϕ}.

For i = 1, . . . , d+1, letψM
i ∈ C∞

c (Rd) such that 0 ≤ψM
i (x)≤ 1 for all x ∈ R

d ,

ψM
i (x) = 1 for all x ∈ FM

i and ψM
i (x) = 0 outside of FM,ϕ

i . Define, for each
x ∈ R

d , i = 1, . . . , d + 1,

μ̂i,M(x)=ψM
i (x)μ(x)+ (

1 −ψM
i (x)

)
ni.(7.14)

Then, for each i = 1, . . . , d+1, μ̂i,M is infinitely differentiable on R
d and we have

for all x ∈ R
d , 〈

ni, μ̂
i,M(x)

〉 =ψM
i (x)

〈
ni,μ(x)

〉 + (
1 −ψM

i (x)
)

(7.15)

≥ψM
i (x)

α

2|u| + (
1 −ψM

i (x)
)

(7.16)

≥ α̂,(7.17)

where α̂ � min( α
2|u| ,1) > 0. Thus, for all x ∈ R

d and i = 1, . . . d + 1, |μ̂i,M(x)| ≥
α̂. It follows that for each i = 1, . . . , d + 1,

γ̂ i,M(x)� μ̂i,M(x)/
∣∣μ̂i,M(x)

∣∣ for x ∈ R
d,(7.18)

is well defined as an infinitely differentiable, unit length vector field on R
d , and

since it is equal to a constant vector outside of some compact set, it is uniformly
Lipschitz continuous on R

d . For each n, i = 1, . . . , d + 1, we define

γ̂ i,M,n(x)=
{
γ̃ n(x) if x ∈ FM

i ,

γ̂ i,M(x) if x /∈ FM
i ,

(7.19)

where γ̃ n is given by (7.1), (4.23) and (4.15). Then, for each n, i, γ̂ i,M,n :Rd → S1
is Borel measurable, and∣∣γ̂ i,M(x)− γ̂ i,M,n(x)

∣∣ ≤ ∣∣γ (x)− γ̃ n(x)
∣∣1{x∈FM

i }.(7.20)

Combining this with Lemma 7.1, it follows that, for every M , γ̂ i,M,n converges
uniformly to γ̂ i,M on FM

i [and hence on R
d by (7.19)] as n → ∞ for each i =

1, . . . , d + 1.
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From the above, we see that GM is a bounded, convex polyhedron with
nonempty interior, satisfying

G◦
M =

d⋂
i=1

{
x ∈ R

d : 〈ni, x〉> 0
} ∩ {

x ∈ R
d : 〈u,x〉<M

}
.(7.21)

It follows that GM satisfies Assumptions (A1)–(A3) of Kang and Williams [17].
The vector fields {γ̂ i,M, i = 1, . . . , d+ 1} defined by (7.18), being uniformly Lips-
chitz continuous, unit length vector fields on R

d , satisfy Assumption (A4) of [17].
Furthermore, they satisfy Assumption (A5) of [17]. To see this, we note that if
x ∈ FM

i for some i ∈ {1, . . . , d + 1}, then by (7.14), (7.15) and (7.18), we have

〈
ni, γ̂

i,M(x)
〉 = 〈ni, μ̂i,M(x)〉

|μ̂i,M(x)| = 〈ni,μ(x)〉
|μ(x)| ≥ α̂

|μ(x)| ≥ α̂

cM
,(7.22)

where cM = supy∈Gb
M

|μ(y)| < ∞. Thus, for x ∈ Gb
M , letting IM(x) = {1 ≤

i ≤ d + 1 : x ∈ FM
i } and bi(x) = 1/|IM(x)| for i ∈ IM(x) and bi(x) = 0 for

i /∈ IM(x), we have for j ∈ IM(x),〈 ∑
i∈IM(x)

bi(x)ni, γ̂
j,M(x)

〉
= 1

|IM(x)|
∑

i∈IM(x)

〈
ni,

μ(x)

|μ(x)|
〉
≥ α̂

cM
,(7.23)

and 〈 ∑
i∈IM(x)

bi(x)γ̂
i,M(x), nj

〉
=

〈
μ(x)

|μ(x)| , nj
〉
≥ α̂

cM
.(7.24)

This establishes Assumption (A5) of [17]. So far, we have established the assump-
tions on the state space and the directions of reflection in Kang and Williams [17].
We now turn to verifying the assumptions on the stochastic processes required by
Assumption 4.1 in [17].

Properties of {ς̃n}. For each n, the process ς̃ n = (Z̃n, X̃ n, Ỹn, L̃n), where

Z̃n(·)= Zn(· ∧ ζ nMε

)
1{Zn(0)∈GMε },

X̃ n(·)= X n(· ∧ ζ nMε

)
1{Zn(0)∈GMε },

Ỹn(·)= Yn(· ∧ ζ nMε

)
1{Zn(0)∈GMε },

L̃n(·)= Ln(· ∧ ζ nMε

)
1{Zn(0)∈GMε }.

(7.25)

Then the process Z̃n lives in GMε ⊂GM and, because M >Mε + ρ, Z̃n does not
reach FM

d+1. Therefore, Z̃n(s) ∈ Gb if and only if Z̃n(s) ∈ Gb
M . Furthermore, Z̃n

agrees with Zn on the random time interval (0, ζ nMε
]. Consequently, by (7.2)–(7.6)



CONSTRAINED LANGEVIN APPROX. FOR REACTION NETWORKS 1575

and (7.19) we have the following for all t ≥ 0:

Z̃n(t)= X̃ n(t)+ Ỹn(t)+ 1√
V

∫ t

0
γ̃ n

(
Z̃n(s)

)
dL̃n(s)

= X̃ n(t)+ Ỹn(t)+
d+1∑
i=1

∫ t

0
γ̂ i,M,n(Z̃n(s)

)
dL̃n

i (s),

where for i = 1, . . . , d + 1,

(7.26) L̃n
i (t)= 1

δn
√
V

∫ t∧ζ nMε

0
1{Z̃n(s)∈FM

i ,Z̃n(s)/∈FM
j for any j<i}

∣∣μ̃n(Z̃n(s)
)∣∣ds.

Here, we have split 1√
V
L̃n(·) into a disjoint sum

∑d+1
i=1 L̃n

i (·) of contributions for

each i = 1, . . . , d + 1 from when Z̃n is in FM
i and not in any of the FM

j for j < i.

Note that if Zn(0) /∈GMε , then ζ nMε
≡ 0 and L̃n

i ≡ 0 for each i = 1, . . . , d + 1. We

let L̃n = (L̃n
1, . . . , L̃n

d+1).
From the above, it follows that conditions (i)–(v) of Assumption 4.1 of [17]

are satisfied with Wn = W̃n,Xn,αn,Y n = Ỹ n, βn, δn in [17] replaced by our
Z̃n, X̃ n+ Ỹn,0, L̃n,0, δn, respectively, and with γ i(x), γ i,n(y, x) in [17] replaced
by our γ̂ i,M(x), γ̂ i,M,n(x), respectively, for all y, x ∈ R

d . In particular, note that
L̃n is continuous, so it has no jumps, and condition (iv) holds because γ̂ i,M,n con-
verges uniformly to γ̂ i,M as n→ ∞, for i = 1, . . . , d+1. The remaining condition
of Assumption 4.1 to be verified is that {X̃ n + Ỹn} is C-tight. For this, we shall
prove that {(X̃ n, Ỹn)} is C-tight. Once this is verified, it follows using Theorem 4.2
of [17], that {(Z̃n, X̃ n, Ỹn, L̃n)} is C-tight, and hence, since L̃n = √

V
∑d+1

i=1 L̃n
i ,

that {
ς̃n = (

Z̃n, X̃ n, Ỹn, L̃n)} is C-tight.(7.27)

This, together with (7.9), (7.10) and Proposition 7.1, gives that {ςn} is C-tight.
Thus, to complete the proof of Theorem 7.1, we only need to show that {(X̃ n, Ỹn)}
is C-tight. We now prove this.

{(X̃ n, Ỹn)} is C-tight. To verify the C-tightness of {(X̃ n, Ỹn)}, we use a well-
known variant of the C-tightness conditions given in Proposition 7.1, that employs
Aldous’ criterion. First, since X̃ n is continuous and the jump sizes of Ỹn satisfy
the following inequality for each T̃ > 0:

sup
0≤t≤T̃

∣∣Ỹn(t)− Ỹn(t−)∣∣ ≤ δn√
V

max
1≤k≤r |vk| → 0 as n→ ∞,(7.28)

where Ỹ(0−)= Ỹ(0), it suffices to prove that {(X̃ n, Ỹn)} is tight (see, e.g., Propo-
sition 3.26, page 351, of [15]). To prove the tightness, by Theorem 4.5 on page 356
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of [15], it suffices to prove compact containment and the following, which is
known as Aldous’ condition: for each T̃ > 0, η̃ > 0,

(7.29)

lim
θ→0

lim sup
n→∞

sup
τ1,τ2∈T n

T̃
τ1≤τ2≤τ1+θ

P
(|X̃ n(τ2)− X̃ n(τ1)| ∨

∣∣Ỹn(τ2)− Ỹn(τ1)
∣∣ ≥ η̃

)

= 0,

where T n

T̃
denotes the set of stopping times relative to {Fn

T̃
} that are bounded by T̃ .

In fact, if Aldous’ criterion holds, the compact containment condition follows im-
mediately using this and the facts that X̃ n(0) = 1{Zn(0)∈GMε }Z

n(0) is bounded in

norm by Mε and Ỹn(0)= 0. Thus, it suffices to prove (7.29) for each T̃ > 0, η̃ > 0.
For this, fix T̃ > 0, η̃ > 0. Then, for θ > 0, τ1, τ2 ∈ T n

T̃
such that τ1 ≤ τ2 ≤

τ1 + θ , we have by (7.3) and (7.25) that

∣∣X̃ n(τ2)− X̃ n(τ1)
∣∣2 ≤ 2

d∑
i=1

(∫ τ2

τ1

μi

(
Z̃n(s)

)
1{Z̃n(s)∈G◦,s≤ζ nMε

} ds
)2

+ 2

V

d∑
i=1

(
d∑

j=1

∫ τ2

τ1

σij
(
Z̃n(s)

)
1{Z̃n(s)∈G◦,s≤ζ nMε

} dWj(s)

)2

and

∣∣Ỹn(τ2)− Ỹn(τ1)
∣∣2 ≤

d∑
i=1

(
Yn
i

(
τ2 ∧ ζ nMε

) −Yn
i

(
τ1 ∧ ζ nMε

))2
.

Then, on taking expectations in the above, using the fact that μ and σ are bounded
on GMε , together with the L2-isometry for the stopped stochastic integrals with
respect to W and for the stopped compensated terms involving Poisson processes,
we have

(7.30)

E
[∣∣X̃ n(τ2)− X̃ n(τ1)

∣∣2]

≤ 2θ2K1 + 2d

V

d∑
i=1

d∑
j=1

E

[∫ τ2

τ1

σ 2
ij

(
Z̃n(s)

)
1{Z̃n(s)∈G◦,s≤ζ nMε

} ds
]

≤ 2
(
θ2K1 + θ dK2

V

)
and

E
[∣∣Ỹn(τ2)− Ỹn(τ1)

∣∣2]

≤ δ2
nr

V

d∑
i=1

r∑
k=1

v2
ikE

[
δ−2
n

∫ τ2

τ1

λ̃nk
(
Z̃n(s)

)
1{Z̃n(s)∈Gb,s≤ζ nMε

} ds
]

≤ rθK3

V
,

(7.31)
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where for the last double sum we have used the fact that 0 ≤ λ̃nk ≤ λk on
G, for all n and k = 1, . . . , r , and K1 � supx∈GMε+ρ

∑d
i=1 |μi(x)|2, K2 �

supx∈GMε+ρ
∑d

i=1
∑d

j=1 σ
2
ij (x), and K3 � supx∈GMε+ρ

∑d
i=1

∑r
k=1 v

2
ik|λk(x)| are

all finite constants. Hence, using Markov’s inequality and taking the supremum
over the set of τ1, τ2 under consideration, we have for each n and θ that

sup
τ1,τ2∈T n

T̃
τ1≤τ2≤τ1+θ

P
(|X̃ n(τ2)− X̃ n(τ1)| ∨ |Ỹn(τ2)− Ỹn(τ1)| ≥ η̃

)

≤ η̃−2
(

2θ2K1 + 2dθK2 + rθK3

V

)
.

Since the bound above does not depend on n and tends to zero as θ → 0, it follows
that (7.29) holds. This completes the proof of the tightness of {(X̃ n, Ỹn)}, and
hence the theorem is proved. �

The following is a corollary of Theorem 7.1 and the proof of Lemma 7.2.

COROLLARY 7.1. For each T ≥ 0,∫ T

0
1{Zn(s)∈Gb} ds → 0 in probability as n→ ∞.(7.32)

PROOF. Given T ≥ 0 and ε > 0, by the proof of Lemma 7.2, there is Mε > M̃∗
and nε > 0, such that

P
(
ζ nMε

≤ T
)
<
ε

2
for all n≥ nε.(7.33)

Then, for η > 0, using the fact from Lemma 4.2 that |μ̃n(x)| ≥ α > 0 for all x ∈Gb

and all n, we have for all n≥ nε ,

P

(∣∣∣∣
∫ T

0
1{Zn(s)∈Gb} ds

∣∣∣∣ ≥ η

)

≤ P
(
ζ nMε

≤ T
) + P

(
ζ nMε

> T ,

∣∣∣∣
∫ T∧ζ nMε

0
1{Zn(s)∈Gb} ds

∣∣∣∣ ≥ η

)

≤ ε

2
+ P

(
ζ nMε

> T ,
1

δn

∫ T∧ζ nMε

0

∣∣μ̃n(Zn(s)
)∣∣1{Zn(s)∈Gb} ds ≥ αη

δn

)

≤ ε

2
+ P

(
ζ nMε

> T ,Ln(T ∧ ζ nMε

) ≥ αη

δn

)
.

Now, from Theorem 7.1, we know that {Ln} is C-tight, and hence satisfies the
compact containment condition of Proposition 7.1. Therefore, since δn → 0 as
n→ ∞, there is nη,ε ≥ nε such that

P

(
Ln(T )≥ αη

δn

)
<
ε

2
for all n≥ nη,ε.
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Combining all of the above, we have that for all n≥ nη,ε ,

P

(∣∣∣∣
∫ T

0
1{Zn(s)∈Gb} ds

∣∣∣∣ ≥ η

)
≤ ε.

Since η > 0, ε > 0 were arbitrary, the desired result follows. �

7.2. Characterization of the weak-sense limit. In this subsection, we show that
{Zn} converges weakly to a solution of the constrained Langevin equation with
initial condition having the same distribution as X̄V (0). As we have noted previ-
ously, such a solution is unique in law. For convenience, in this subsection, we let
ϑV denote the distribution of X̄V (0), which is fixed, since we are fixing V .

Our main technical result is the following.

THEOREM 7.2. The sequence of processes {(Zn,W,X n,Yn,Ln)} is C-tight
and any weak limit point, (Z∗,W ∗,X ∗,Y∗,L∗), is such that (Z∗,W ∗,L∗) sat-
isfy the conditions of the Definition 5.1 of a solution of the constrained Langevin
equation, and

Z∗(t)= X ∗(t)+ 1√
V

∫ t

0
γ
(
Z∗(s)

)
dL∗(s), t ≥ 0,(7.34)

X ∗(t)= X ∗(0)+
∫ t

0
μ
(
Z∗(s)

)
ds

+ 1√
V

∫ t

0
σ
(
Z∗(s)

)
dW ∗(s), t ≥ 0,

(7.35)

Y∗ ≡ 0,(7.36)

where X ∗(0) has distribution ϑV , and W ∗ is a martingale with respect to the
filtration generated by (Z∗,W ∗,L∗).

PROOF. Since W is a continuous process and it does not depend on n, it fol-
lows immediately from Theorem 7.1 that {(Zn,W,X n,Yn,Ln)} is C-tight. Sup-
pose that (Z∗,W ∗,X ∗,Y∗,L∗) is a weak limit point of the aforementioned se-
quence. For notational convenience, we shall denote the weakly converging subse-
quence again by {(Zn,W,X n,Yn,Ln)}. Because of the C-tightness, the weak limit
(Z∗,W ∗,X ∗,Y∗,L∗) may be assumed to have continuous paths (surely). Since
W does not depend on n, W ∗ will be a standard d-dimensional Brownian motion.
Furthermore, for every n, W is a martingale with respect to the filtration gener-
ated by (Zn,W, Ûn,b, Ŷ n) and so W is a martingale with respect to the smaller
filtration generated by (Zn,W), to which it is still adapted. Since Ln is adapted
to the filtration generated by Zn, it follows that, for every n, W is a martingale
with respect to the filtration generated by (Zn,W,Ln). Thus, for any 0 ≤ s ≤ t ,
any positive integer p, any continuous bounded function g : Rp(2d+1) → R,
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0 ≤ s1 < s2 < · · · sp ≤ s, we have by the continuous mapping theorem and domi-
nated convergence that

E
[(
W ∗(t)−W ∗(s)

)
g
(
Z∗(s1),W

∗(s1),L
∗(s1), . . . ,Z

∗(sp),W ∗(sp),L∗(sp)
)]

= lim
n→∞E

[(
W(t)−W(s)

)
× g

(
Zn(s1),W(s1),L

n(s1), . . . ,Z
n(sp),W(sp),L

n(sp)
)]

= 0,

where we used the martingale property of W for the last equality. It follows that
W ∗ is a martingale with respect to the filtration generated by (Z∗,W ∗,L∗).

For the purposes of verifying the other properties associated with (Z∗,W ∗,L∗)
being a solution of the CLE and that (7.34)–(7.36) hold, by using the Skorokhod
representation theorem, we may suppose that the convergence of {(Zn,W,X n,

Yn,Ln)} to (Z∗,W ∗,X ∗,Y∗,L∗) is almost sure uniform convergence on compact
time intervals, rather than just weak convergence.

Let Ft = σ {(Z∗(s),W ∗(s),L∗(s)) : 0 ≤ s ≤ t} for all t ≥ 0. Then Z∗,W ∗,L∗
are adapted to this filtration. Since Zn(t) ∈G for all t ≥ 0, it follows that the limit
process Z∗ satisfies Z∗(t) ∈ G for all t ≥ 0, almost surely. Furthermore, since
Zn(0) has the same distribution ϑV for all n, it follows that Z∗(0) will have this
same distribution.

The process L∗ will be nondecreasing (a.s.) because it is the a.s. limit under
uniform convergence on compact time intervals of the nondecreasing processes
Ln. To establish the integral property in (iii) of the definition of a solution of the
CLE, for each ε > 0, let fε : Rd →R be a continuous function such that 0 ≤ fε ≤
1, fε = 0 on Gb, fε(x) = 1 when dist(x,Gb) ≥ ε. Then by Lemma A.4 of Kang
and Williams [17], since a.s., (Zn,Ln) → (Z∗,L∗) uniformly on compact time
intervals, Ln is nondecreasing for each n, and fε is continuous, we have a.s. for
each ε > 0 and t > 0,∫ t

0
fε

(
Z∗(s)

)
dL∗(s)= lim

n→∞

∫ t

0
fε

(
Zn(s)

)
dLn(s)= 0,

where the last equality follows because Ln can only increase when Zn is on Gb

and fε is zero there. On letting ε → 0, we obtain by the bounded convergence
theorem that a.s., ∫ t

0
1{Z∗(s)/∈Gb} dL∗(s)= 0 for all t ≥ 0,

from which it follows that a.s., L∗ can increase only when Z∗ is on Gb.
It remains to verify that (7.34)–(7.36) hold, since property (iv) of the defini-

tion of a solution of the CLE follows from (7.34)–(7.35). We shall verify this for
stopped versions of the processes and then let the stopping times tend to infinity to
obtain the desired result. We first define the stopping times that we will use.
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For each M > 0, recall that

ζ nM = inf
{
t ≥ 0 : 〈u,Zn(t)

〉
>M

}
(7.37)

and define

ζ ∗
M = inf

{
t ≥ 0 : 〈u,Z∗(t)

〉
>M

}
.(7.38)

Then there is an increasing sequence of positive constants, {M�,�= 1,2, . . .}, such
that M� > M̃∗ for all �, M� → ∞ as �→ ∞, and for each �,

P

(
lim
n→∞ ζ nM�

= ζ ∗
M�

)
= 1;(7.39)

see [23], pages 13–14. Thus, for each �, the sequence of stopping times {ζ nM�
}∞n=1

converges a.s. to ζ ∗
M�

.
We first consider the convergence of {X n}. Fix T > 0, � ∈ {1,2, . . .}. Then for

each t ∈ [0, T ],

(7.40)

X n(t ∧ ζ nM�

) = X n(0)+
∫ t∧ζ nM�

0
μ
(
Zn(s)

)
ds

+ 1√
V

∫ t∧ζ nM�

0
σ
(
Zn(s)

)
dW(s)

−
∫ t∧ζ nM�

0
μ
(
Zn(s)

)
1{Zn(s)∈Gb} ds

− 1√
V

∫ t∧ζ nM�

0
σ
(
Zn(s)

)
1{Zn(s)∈Gb} dW(s).

Now, on {ζ ∗
M�

> 0}, we have that as n→ ∞, a.s., uniformly on [0, T ],
μ
(
Zn(· ∧ ζ nM�

)) → μ
(
Z∗(· ∧ ζ ∗

M�

))
,

σ
(
Zn(· ∧ ζ nM�

)) → σ
(
Z∗(· ∧ ζ ∗

M�

))
.

It follows from this and the fact that ζ nM�
→ ζ ∗

M�
a.s. as n→ ∞, that on {ζ ∗

M�
> 0},

as n→ ∞, almost surely, uniformly on [0, T ],∫ ·∧ζ nM�

0
μ
(
Zn(s)

)
ds →

∫ ·∧ζ ∗
M�

0
μ
(
Z∗(s)

)
ds.(7.41)

Furthermore, by Theorem VI.6.22 and Corollary VI.6.29 of [15], on {ζ ∗
M�

> 0}, as
n→ ∞, in the uniform norm on [0, T ],

(7.42)
∫ ·∧ζ nM�

0
σ
(
Zn(s)

)
dW(s)→

∫ ·∧ζ ∗
M�

0
σ
(
Z∗(s)

)
dW ∗(s) in probability.

(We note that in [15], stochastic integrands are left-continuous modifications of the
ones used here. However, when integrating against the continuous martingale W ,
it does not matter whether one uses the left-continuous modification or the original
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right-continuous process, the value of the stochastic integral is the same.) Finally,
using Corollary 7.1 and the L2-isometry for stochastic integrals, it follows that on
{ζ ∗
M�

> 0}, as n→ ∞, in the uniform norm on [0, T ],
∫ ·∧ζ nM�

0
μ
(
Zn(s)

)
1{Zn(s)∈Gb} ds → 0 in probability,(7.43)

∫ ·∧ζ nM�

0
σ
(
Zn(s)

)
1{Zn(s)∈Gb} dW(s)→ 0 in probability.(7.44)

Substituting (7.41)–(7.44) in (7.40) and letting n → ∞, using the convergence of
X n to X ∗, we see that on {ζ ∗

M�
> 0}, we have that almost surely,

(7.45)

X ∗(t ∧ ζ ∗
M�

) = X ∗(0)+
∫ t∧ζ ∗

M�

0
μ
(
Z∗(s)

)
ds

+ 1√
V

∫ t∧ζ ∗
M�

0
σ
(
Z∗(s)

)
dW ∗(s).

We note that on {ζ ∗
M�

= 0}, this equation holds trivially. Since Z∗ is almost surely
continuous, ζ ∗

M�
→ ∞ a.s. when � → ∞. So on letting � → ∞ in (7.45), we see

that (7.35) holds a.s. for all t ∈ [0, T ].
To show the convergence of {Yn} to the zero process, we first estimate the ex-

pectation of the square of Yn(t ∧ ζ nM�
). For T > 0, � fixed, i ∈ {1, . . . , d}, we have

for t ∈ [0, T ],

E
[(
Yn
i

(
t ∧ ζ nM�

))2] ≤ δ2
n

V

(
r∑

k=1

v2
ik

)
r∑

k=1

E
[(
Ûb
k

(
t ∧ ζ nM�

))2]

≤ δ2
n

V

(
r∑

k=1

v2
ik

)
r∑

k=1

E

[
δ−2
n

∫ t∧ζ nM�

0
λ̃nk

(
Zn(s)

)
1{Zn(s)∈Gb} ds

]

≤ 1

V

(
r∑

k=1

v2
ik

)
rKM�

E

[∫ t∧ζ nM�

0
1{Zn(s)∈Gb} ds

]

→ 0 as n→ ∞,

where KM�
= suprk=1 supx∈GM�

λk(x), we have used the fact that λ̃nk(x) ≤ λk(x)

for all x ∈ R
d+ and we have used Corollary 7.1 and dominated convergence for

the last line. Thus, for each t ∈ [0, T ], {Yn(t ∧ ζ nM�
)} converges in L2 to the zero

vector as n → ∞. Since we already know that {Yn(t ∧ ζ nM�
)} converges a.s. to

Y∗(t ∧ ζ ∗
M�
), it follows that a.s., Y∗(· ∧ ζ ∗

M�
)= 0 on [0, T ]. On letting �→ ∞, we

see that a.s., Y∗(·)= 0 on [0, T ].
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For the convergence of the integral with respect to Ln in (7.2), fix T > 0, �. For
each t ∈ [0, T ],

(7.46)

lim sup
n→∞

∣∣∣∣
∫ t∧ζ ∗

M�

0
γ
(
Z∗(s)

)
dL∗(s)−

∫ t∧ζ nM�

0
γ̃ n

(
Zn(s)

)
dLn(s)

∣∣∣∣
≤ lim sup

n→∞

∣∣∣∣
∫ t

0
γ
(
Z∗(s ∧ ζ ∗

M�

))
dL∗(s ∧ ζ ∗

M�

)

−
∫ t

0
γ
(
Zn(s ∧ ζ nM�

))
dLn(s ∧ ζ nM�

)∣∣∣∣
+ lim sup

n→∞

∣∣∣∣
∫ t

0

(
γ − γ̃ n

)(
Zn(s ∧ ζ nM�

))
dLn(s ∧ ζ nM�

)∣∣∣∣.
Now a.s., L∗(· ∧ ζ ∗

M�
) [resp., Ln(· ∧ ζ nM�

)] can increase only when Z∗(· ∧ ζ ∗
M�
) ∈

G̃b
M�

= {x ∈Gb
M�

: x /∈G◦} [resp., Zn(· ∧ ζ nM�
) ∈ G̃b

M�
], and γM�

of Lemma 6.1 is

a continuous, bounded extension of γ from G̃b
M�

to R
d . Then, since, a.s., (Zn(· ∧

ζ nM�
),Ln(· ∧ ζ nM�

)) converges to (Z∗(· ∧ ζ ∗
M�
),L∗(· ∧ ζ ∗

M�
)) uniformly on [0, T ]

and Ln is nondecreasing for each n, it follows from Lemma A.4 of [17] that a.s.,
as n→ ∞, uniformly for t ∈ [0, T ],

∫ t

0
γ
(
Zn(s ∧ ζ nM�

))
dLn(s ∧ ζ nM�

)

=
∫ t

0
γM

(
Zn(s ∧ ζ nM�

))
dLn(s ∧ ζ nM�

)

→
∫ t

0
γM

(
Z∗(s ∧ ζ ∗

M�

))
dL∗(s ∧ ζ ∗

M�

)

=
∫ t

0
γ
(
Z∗(s ∧ ζ ∗

M�

))
dL∗(s ∧ ζ ∗

M�

)
.

It follows that a.s., for all t ∈ [0, T ], the first lim sup in the right-hand side of the
inequality in (7.46) is zero. For the second lim sup in the right-hand side of that
inequality, we have by Lemma 7.1 that given ε > 0, there is nε > 1 (depending on
M�) such that for all n≥ nε and x ∈ G̃b

M�
,

∣∣γ (x)− γ̃ n(x)
∣∣< ε.

(Here, we used the fact that |x| ≤ 〈u,x〉 ≤M� for x ∈ G̃b
M�

.) It follows that a.s., for
all t ∈ [0, T ], the second lim sup in the right-hand side of the inequality in (7.46)
is bounded for each ε > 0 by

ε lim sup
n→∞

Ln(t ∧ ζ nM�

) = εL∗(t ∧ ζ ∗
M�

)
.
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On letting ε tend to zero, we see that a.s., the right-hand side of (7.46) is zero for
all t ∈ [0, T ]. Thus, a.s., for all t ∈ [0, T ],∫ t∧ζ nM�

0
γ̃ n

(
Zn(s)

)
dLn(s)→

∫ t∧ζ ∗
M�

0
γ (Z∗(s) dL∗(s).(7.47)

On letting n → ∞ in (7.2) stopped at ζ nM�
, since a.s., (Zn(· ∧ ζ nM�

), X n(· ∧
ζ nM�

,Yn(· ∧ ζ nM�
)) converges to (Z∗(· ∧ ζ ∗

M�
),X ∗(· ∧ ζ ∗

M�
),0) uniformly on [0, T ]

as n→ ∞, and we have (7.47), we see that a.s., for all t ∈ [0, T ],

Z∗(t ∧ ζ ∗
M�

) = X ∗(t ∧ ζ ∗
M�

) + 0 + 1√
V

∫ t∧ζ ∗
M�

0
γ
(
Z∗(s)

)
dL∗(s).(7.48)

On letting �→ ∞, we see that a.s., (7.34) holds for all t ∈ [0, T ]. Since T > 0 was
arbitrary, the desired result follows. �

The following is immediate from the above theorem and weak uniqueness for
solutions of the CLE.

COROLLARY 7.2. The sequence {(Zn,Ln)} converges weakly to (Z∗,L∗) as
n → ∞, where Z∗ is a solution of the constrained Langevin equation with initial
distribution ϑV , and L∗ is the associated auxiliary local time process.

PROOF. Since we have C-tightness and uniqueness in law for solutions of the
CLE, this follows from a standard real analysis argument. Indeed, by the preced-
ing theorem, any subsequence of {(Zn,W,Ln)} has a further subsequence that
converges to some (Z∗,W ∗,L∗), which defines a solution of the CLE, together
with its two auxiliary processes, where the initial distribution of Z∗ is ϑV . By
the uniqueness in law of Corollary 6.1, given ϑV , the distribution of (Z∗,L∗) is
unique, no matter what converging subsequence was used. It follows, by a stan-
dard argument by contradiction, that the sequence {(Zn,Ln)} converges weakly to
(Z∗,L∗), where Z∗ is a solution of the CLE with initial distribution ϑV and L∗ is
the associated local time process. �

8. Numerical examples. In this section, we present results of some numerical
experiments, to illustrate the practical use of the constrained Langevin approxima-
tion proposed here. We consider three different examples of reaction networks: in
the first example, a simple chemical reaction network whose deterministic model
RRE has only one stable steady-state (near the boundary) is considered; for the sec-
ond example, we consider the Brusselator chemical reaction set that has a limit cy-
cle for the deterministic RRE; and, for the third example, we consider a (bistable)
chemical reaction network for which the RRE has two stable fixed points.

For the first and second examples, we performed simulations of the system
evolving over a long period of time to observe the system near steady state. These
simulations were repeated for 10 different runs in order to calculate confidence
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intervals. For each example, we performed simulations for the scaled Markov
Chain Model (MCM), the Linear Noise Approximation (LNA) and the Constrained
Langevin Approximation (CLA) proposed here. For the first example, in order to
compare the behavior near the boundary, we also simulated two modifications of
the Langevin approximation that guarantee nonnegative concentrations. First, we
considered a Langevin approximation in the interior of the orthant, extended by
normal reflection at the boundary. Notice that this contrasts with the CLA pro-
posed here since, in our approximation, the directions of reflection at the boundary
are often oblique. We also considered a modification of the Langevin approxima-
tion which chops off negative values. That is, we simulated a discrete approxi-
mation to the Langevin equation but, after each step of the simulation, any neg-
ative concentrations of chemical species were set to zero. We call the first exten-
sion the “Langevin Equation with Normal Reflection (LE-NR)” and the second the
“Langevin Equation with Chopping (LE-Chop).”

In order to simulate LNA and LE-Chop, the Euler–Maruyama method for SDEs
was used [26, 29]. For the constrained diffusions, that is, for the CLA and LE-
NR, we used the method proposed by Bossy et al. [3], which is also based on the
Euler–Maruyama method for the interior behavior and approximates the reflection
at the boundary by jumping in the direction of γ . It is important to mention here
that the method proposed by Bossy et al. [3] assumes that the SDER has reflection
on a smooth boundary. Although this assumption does not hold here, this was not
a problem for our simulations since they did not cross more than one face of Rd+ in
one simulation step, and hence the boundary was treated as though it were smooth.
Bossy et al. also assumed a bounded domain, but since our simulations were for
a finite time, with finite replication, we used an approximation by a sufficiently
large bounded domain. Indeed, we believe that the results in [17] could be used to
prove that the processes used in our simulation scheme approximate the SDER so-
lution in distribution. This is an interesting avenue for future research; furthermore,
it would be interesting to develop convergence rate guarantees for such numerical
approximations. In order to simulate the deterministic model, which is used during
the LNA simulation, we used a fourth-order Runge–Kutta method to increase ac-
curacy. For simulating the Markov chain model, the discrete-event Doob–Gillespie
algorithm was implemented. The codes were written in the R programming lan-
guage [30] and ran on a 2.6 GHz Intel Core i5 processor.

8.1. Example 1. In this subsection, we consider the following simple example
of a chemical reaction network comprised of two species S1 and S2 which are
involved in six reactions, as follows:

S1
c1−⇀↽−
c2

∅, S2
c3−⇀↽−
c4

∅, S1
c5−⇀↽−
c6
S2.

Notice that we labeled each reaction arrow with their respective normalized re-
action rate constants. In order to observe a system with a low concentration of
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S1 near steady state, we used the following values: c1 = 10−4, c2 = 1, c3 = 1,
c4 = 10−4, c5 = 100, c6 = 1. The constant V , which denotes the volume of the
vessel times Avogadro’s number, was set to 100. As a starting point for the sim-
ulations, we used the steady-state for the deterministic model, which is approx-
imately given by x̄o = (0.02,1.00)′. For the Markov chain simulation, we used
the rounded starting point x̄o in order to have an initial condition in the lattice
GV � {y/V : y ∈ Z

2+}. For the simulation of the diffusion approximations using
the Euler–Maruyama method (or the method proposed by Bossy et al. [3]), we
used the following time step h= 0.01. The simulations were performed up to time
T = 104, and sampled every ! = 0.1. This sampling was performed in order to
compare the Markov chain and the approximations over the same discrete time
steps.

Figure 1 gives a scatter plot of the points sampled during the 10 runs of the
simulation. In this plot, the points corresponding to the Markov chain simulation
lay on the lattice GV . Notice LE-NR and LE-Chop are shifted upwards. This can
be explained by the the influence of the reflection direction at the boundary, since
the “correct” reflection direction, as in the CLA, should be oblique, and, near the
origin, is approximately 45◦ from the inward normal, pointing toward the origin.
Also, the LE-Chop spends more time at the boundary than the Markov chain, sug-
gesting that this truncated approximation is inappropriate to represent the behavior
of the Markov chain near the boundary. In addition, the linear noise approximation
predicts negative concentration values. The mean time consumed to generate the

FIG. 1. (Example 1) “Heat” scatter plot of the points generated by 10 runs of the simulations up
to time T = 104 (the figures were generated with the LSD R package [33]). The axis labels x1 and
x2 denote concentrations of species S1 and S2, respectively (or their appropriate approximations).
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TABLE 1
(Example 1) Mean running time in seconds for the simulations. The mean running
time is calculated by averaging the running times over the 10 independent runs.

The 95%-confidence interval for this average is also calculated

Model Mean running time 95%-C.I.

MCM 310.338 s (309.624, 311.052)
LNA 320.178 s (319.645, 320.711)
CLA 308.922 s (307.686, 310.159)
LE-NR 282.607 s (281.706, 283.509)
LE-Chop 251.664 s (251.584, 251.743)

simulations is reported in Table 1. Notice that the time is approximately the same
for every algorithm, since the number of molecules of each species is low. This
example was chosen to show the influence of the oblique reflection direction at the
boundary.

In order to have a more precise measure of the quality of the approximations,
we estimated a discrete density by counting the number of points that lay within
a regular grid of square bins with side lengths given by 1/V , which are centered
around each point of the Markov chain state space (i.e., the two-dimensional lat-
tice GV ). The density is estimated by counting the number of points within each
bin divided by the total number of points and the area of the square bin. This pro-
cess is performed for every approximation algorithm at each run. In addition, the
absolute error is calculated by integrating the modulus of the difference between
the discrete density of an approximation and that of the Markov chain. The results
are displayed in Table 2. Since the densities integrate to 1, the maximum possi-
ble absolute error is 2. Notice that CLA gives the lowest error with respect to the
Markov chain.

TABLE 2
(Example 1) Mean absolute error calculated by integrating the absolute difference
between the discrete density for the approximation and that of the Markov chain.
The mean error is calculated by averaging this result over 10 independent runs.

The 95%-confidence interval for this average is also calculated

Model Mean absolute error 95%-C.I.

LNA 0.395791 (0.393330, 0.398252)
CLA 0.206943 (0.203844, 0.210042)
LE-NR 1.775523 (1.770973, 1.780073)
LE-Chop 1.234770 (1.225156, 1.244384)
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8.2. Example 2. In this subsection, we consider the Brusselator reaction set,
where both species S1 and S2 have inflow and outflow reactions. The reactions are
as follows:

S1
c1−⇀↽−
c2

∅, S2
c3−⇀↽−
c4

∅, S1
c5→ S2, 2S1 + S2

c6→ 3S1.

The following normalized rate constants were chosen for this example: c1 = 1,
c2 = 1, c3 = 10−4, c4 = 10−4, c5 = 11 and c6 = 10. With these parameters,
the deterministic RRE model for this chemical reaction system exhibits a sta-
ble limit cycle. The constant V , which denotes the volume of the vessel times
Avogadro’s number, is set to 100. The starting point for the simulations was set
to x̄o = (2,1)′. For the simulations of diffusion approximations using the Euler–
Maruyama method (or the method proposed by Bossy et al. [3]), we used the fol-
lowing time step h = 0.01. The simulations were performed up to time T = 104,
and sampled every != 0.1.

Figure 2 gives a scatter plot of the points generated by the simulations. Here,
we can observe that the Markov chain model displays fluctuation around a limit
cycle, which the CLA captures well. However, as has been noted in previous
works (e.g., [34, 39]), LNA does not capture this behavior properly. In fact, os-
cillations build up as time progresses. In Figure 3, plots of x1 and x2 as func-
tions of time are shown, which shows that LNA oscillates and diverges. The mean
times taken for the simulations are given in Table 3. The mean running time for
LNA is omitted since the simulations diverge when executed for a long period
of time. Notice now that there is a gain in simulating the CLA with respect to
the Markov chain since the number of molecules in the system is larger than in
Example 1.

FIG. 2. (Example 2) “Heat” scatter plot of the points generated by 10 runs of the simulations
up to time T = 104 (the figures were generated with the LSD R package [33]). The axis labels
x1 and x2 denote concentrations of species S1 and S2, respectively (or their appropriate approx-
imations). The scatter plot for LNA is not shown since LNA oscillates and diverges during a long
simulation.
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FIG. 3. (Example 2) This figure displays plots of x1 and x2 versus time over a time period of
T = 100, where x1 and x2 denote the concentration of molecular species S1 and S2, respectively (or
their approximations). This illustrates that LNA increases in oscillation and diverges during a long
simulation.

8.3. Example 3. For this example, we consider a reaction set that was intro-
duced in [41]. We modify this system slightly by allowing inflow and outflow
reactions for every species and also by keeping track of the substrate concentra-
tion in order to satisfy the mass-dissipating assumption (given by Assumption 3.1).

TABLE 3
(Example 2) Mean running time in seconds for the simulation of MCM and CLA.

The mean running time is calculated by averaging the running times over 10
independent runs. The 95%-confidence interval from this average is also calculated

Model Mean running time 95%-C.I.

MCM 915.332 s (912.949, 917.715)
CLA 255.127 s (254.843, 255.410)
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The reactions are as follows:

S1
c1−⇀↽−
c2

∅, S2
c3−⇀↽−
c4

∅, S3
c5−⇀↽−
c6

∅,

S3 + S2
c7→ 2S1, 2S1

c8→ S1 + S2, S1 + S2
c9→ S2.

The following values for the normalized reaction rate constants were used: c1 =
1/

√
10, c2 = 0.01, c3 = 1, c4 = 0.01, c5 = 1, c6 = 10, c7 = 8/10, c8 = 1,

c9 = 1.5/
√

10. With these parameters, the deterministic model of this system ex-
hibits bistability with two real stable points near x̄∗ � (1.2679 · 10−1,2.90328 ·
10−3,9.97683) and x̄† � (2.96686,2.31681,3.50454). For the simulations of dif-
fusion approximations using the Euler–Maruyama method (or the method pro-
posed by Bossy et al. [3]), we used the time step h = 0.005. The constant V
was again set to 100 and the starting point for the simulations was fixed at
x̄o = (0.1,0.1,10).

With this starting point, the deterministic model converges to the first stable
point x̄∗. However, the Markov chain model, starting at the same point x̄o, spends
some time near the first stable point x̄∗, but eventually moves away to the vicinity
of the second stable point x̄†, where it stays for a longer period of time.

In order to capture this change of stable points and illustrate this behavior, the
system was simulated during a shorter time period of T = 100. Simulation sam-
ples were collected for every time period of size ! = 0.1. A total of 100 runs of
duration T were constructed for each algorithm and used to generate the scatter
plot of Figure 4. From this figure, we see that the Markov chain spends some time
near x̄∗, but eventually reaches x̄†. This behavior is reproduced by the CLA. How-
ever, since LNA is a linear noise approximation, it only captures the behavior near
the first stable point.

Table 4 shows the average running time taken for each simulation. Again, we
can observe that the mean simulation time for CLA is shorter than that for the
Markov chain. For the LNA, the mean running time is longer than the time for
the CLA due to the fact that we used the fourth-order Runge–Kutta method for
its deterministic part. (It took on average 3.301 seconds to run LNA using Euler’s
method for its deterministic part.)

APPENDIX: PROOFS OF SOME LEMMAS

PROOF OF LEMMA 3.1. Let ζ denote the explosion time for X: ζ =
limn→∞ τn, where τn = inf{t ≥ 0 : |X(t)| ≥ n}. We shall prove that ζ = ∞ a.s.
For a proof by contradiction, suppose that P(ζ < ∞) > 0 and let t > 0 be such
that P(�t) > 0 for �t = {ζ < t}. Let I denote the index set for the external input
reactions. Let u ∈ R

d , u ≥ 1, be a vector such that 〈u, vk〉 ≤ 0 for all k such that
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FIG. 4. (Example 3) “Heat” scatter plot of the points generated by 100 runs of the simulations up
to T = 100 (the figures were generated with the LSD R package [33]). The axis labels x1, x2 and x3
denote concentrations of species S1, S2 and S3, respectively (or their appropriate approximations).

TABLE 4
(Example 3) Mean running time in seconds for each simulation. The mean running
time is calculated by averaging the running times over 100 independent runs. The

95%-confidence interval from this average is also calculated

Model Mean running time 95%-C.I.

MCM 9.1989 s (8.782, 9.615)
LNA 4.4227 s (4.398, 4.448)
CLA 2.5721 s (2.518, 2.626)
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Rk ∈ R1. Then on �t , for 0 ≤ s < ζ < t , we have

〈
u,X(s)

〉 = 〈
u,X(0)

〉 + r∑
k=1

〈u, vk〉Nk

(∫ s

0
�k

(
X(w)

)
dw

)

≤ 〈
u,X(0)

〉 + ∑
k∈I

〈u, vk〉Nk

(∫ s

0
�k

(
X(w)

)
dw

)

≤ 〈
u,X(0)

〉 + max
k∈I

{〈u, vk〉}∑
k∈I

Nk(κkt),

(A.1)

where we used the facts that 〈u, vk〉 ≤ 0 for all k /∈ I in the first inequality, that
�k(x)= κk for all k ∈ I , and that Nk is nondecreasing and s < t in the last line.

Then, on �t ,

sup
s<ζ

d∑
i=1

∣∣Xi(s)
∣∣ ≤ sup

s<ζ

〈
u,X(s)

〉

≤ 〈
u,X(0)

〉 + max
k∈I

{〈u, vk〉}∑
k∈I

Nk(κkt) <∞ a.s.,

since Nk(κkt) < ∞ a.s. for all k ∈ I . Since all Euclidean norms are equivalent,
we have that sups<ζ |X(s)| < ∞ a.s. on �t . However, by the definition of ζ ,
sups<ζ |X(s)| = ∞ on {ζ <∞}, which contains �t . This contradicts the assump-
tion that P(�t) > 0. �

PROOF OF LEMMA 4.1. Let x ∈Gb and j ∈ I (x). Using the fact that xj = 0
and the definition of λk , we have

〈
μ(x), nj

〉 = r∑
k=1

ck

(
d∏
l=1

x
v−
lk

l

)
〈vk, nj 〉 =

r∑
k=1

ck

(
d∏

l=1(l �=j)
x
v−
lk

l

)
x
v−
jk

j vjk

= ∑
k:v−

jk=0

ck

(
d∏
l=1

x
v−
lk

l

)(
v+
jk − 0

)
,

(A.2)

since the kth summand in the second equality will be zero if v−
jk > 0 because

xj = 0. Now the summands in the last equality in (A.2) are nonnegative and so by
Assumption 3.2(a), which implies that all species have inflows, we have〈

μ(x), nj
〉 ≥ c

k
↑
j

� αj > 0,(A.3)

where the last line defines the constant αj .
Now, let x ∈ G and let I be the set of indexes associated with external input

reactions. Then we have

(A.4)
〈
μ(x),−u〉 = r∑

k=1

λk(x)〈vk,−u〉 = ∑
k /∈I

λk(x)
∣∣〈vk, u〉∣∣ − ∑

k∈I
ck

∣∣〈vk, u〉∣∣,
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where we used the fact that 〈vk, u〉 ≤ 0 for k /∈ I , by Assumption 3.1, and that
〈vk, u〉 > 0 for k ∈ I , since u ≥ 1. Let k↓

i , i = 1, . . . , d , be as in Assumption 3.2,
then

〈
μ(x),−u〉 ≥ ( d

min
i=1

c
k
↓
i

) d∑
i=1

xiui −
∑
k∈I

ck
∣∣〈vk, u〉∣∣

=
( d

min
i=1

c
k
↓
i

)
〈x,u〉 − ∑

k∈I
ck

∣∣〈vk, u〉∣∣.
(A.5)

Then, there exists an αd+1 > 0 such that 〈μ(x),−u〉 ≥ αd+1 for all x ∈ G such
that 〈x,u〉>M∗. Therefore the proof is complete with α = mind+1

j=1 αj . �

PROOF OF LEMMA 4.2. Let δ ∈ (0, 1√
V

], x ∈ Gb and j ∈ I (x). Then, using
analogous arguments to those used to derive (A.2), we have that

〈
μ̃δ(x), nj

〉 = ∑
k:v−

jk=0

ck

(
d∏
l=1

x
v−
lk

l 1{xl≥δv−
lk/

√
V }

)(
v+
jk − 0

)
.

Since the summands on the right-hand side of the equation are all nonnegative and
at least one of them corresponds to an input reaction by Assumption 3.2, we have
that 〈

μ̃δ(x), nj
〉 ≥ c

k
↑
j

� αj > 0,

where the constant αj is defined by the last line.
Now let x ∈ G be such that 〈x,u〉 > M̃∗. Define the vectors xδ, x̄δ ∈ R

d as
follows:

xδi = xi1{xi≥δ/
√
V } and x̄δi = δ√

V
1{xi<δ/

√
V },

for 1 ≤ i ≤ d . Then we have that 〈xδ + x̄δ, u〉 ≥ 〈x,u〉> M̃∗ =M∗ +∑d
i=1 ui/V ,

which implies that

(A.6)
〈
xδ, u

〉
>M∗ + 1

V

d∑
i=1

ui − 〈
x̄δ, u

〉
>M∗ + 1

V

d∑
i=1

ui − δ√
V

d∑
i=1

ui ≥M∗,

since δ ≤ 1/
√
V . Then, by analogous arguments to those used to derive (A.5), we

have that

〈
μ̃δ(x),−u〉 ≥ d

min
i=1

c
k
↓
i

d∑
i=1

uixi1{xi≥δv−
ik

↓
i

/
√
V } − ∑

k∈I
ck

∣∣〈vk, u〉∣∣

=
( d

min
i=1

c
k
↓
i

)〈
u,xδ

〉 − ∑
k∈I

ck
∣∣〈vk, u〉∣∣,
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since v−
k
↓
i

= ei . Then (A.6) implies that there is an αd+1 > 0 such that 〈μ̃δ(x),

−u〉 ≥ αd+1. The result follows by setting α = mind+1
j=1 αj . �

PROOF OF LEMMA 4.3. Fix m> 0, M >m, and suppose that Zδ starts from
z ∈ G satisfying 〈u, z〉 ≤ m. Then by (4.12)–(4.17), and the facts that μ(x) =∑r

k=1 vkλk(x) for all x ∈ G, 〈u, vk〉 ≤ 0 for all k /∈ I , and λk(x) = ck for k ∈ I ,
we have that for t ≥ 0,

(A.7)

〈
u,Zδ(t ∧ ζ δM

)〉 ≤ 〈u, z〉 + ∑
k∈I

〈u, vk〉
∫ t∧ζ δM

0
ck1{Zδ(s)∈G◦} ds

+ 1√
V

∫ t∧ζ δM
0

〈
u,σ

(
Zδ(s)

)〉
1{Zδ(s)∈G◦} dW(s)

+ δ√
V

∑
k∈I

〈u, vk〉Nb
k

(
δ−2

∫ t∧ζ δM
0

ck1{Zδ(s)∈Gb} ds
)
.

Let

(A.8) Cδ(t)=
(

1 + δ−1
√
V

)∑
k∈I

∣∣〈u, vk〉∣∣ckt.
Then, on taking expectations in (A.7), we have that

(A.9) E
[〈
u,Zδ(t ∧ ζ δM

)〉] ≤m+Cδ(t),

where we have used the martingale properties of the stopped stochastic integral
with respect to W and the fact that

Nb
k

(
δ−2

∫ t∧ζ δM
0

ck1{Zδ(s)∈Gb} ds
)

− δ−2
∫ t∧ζ δM

0
ck1{Zδ(s)∈Gb} ds

is a martingale with respect to a right-continuous filtration to which it is adapted.
From (A.9), we conclude that

(A.10) MP
(
ζ δM ≤ t

) ≤m+Cδ(t)

and so

(A.11) sup
z∈G:〈u,z〉≤m

P δ
z (ζM ≤ t)≤ m+Cδ(t)

M
,

from which the desired result follows. �

PROOF OF LEMMA 4.4. Recall the definitions of ρ and �m from (4.29) and
(4.31). For 0 < δ ≤ 1√

V
, t ≥ 0, m≥ M̃∗ + ρ, M >m+ 5ρ, let

(A.12) Cδ
m,M(t)= sup

z∈�m

P δ
z (ζM ≤ t).
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For any z ∈ G such that m ≤ 〈u, z〉 ≤ M , for Zδ starting from z, we have by
(4.12)–(4.17), (4.23) and (4.30) that for each t ≥ 0,

(A.13)

〈
u,Zδ(t ∧ τ δm ∧ ζ δM

)〉 = 〈u, z〉 +
∫ t∧τ δm∧ζ δM

0

〈
u,μ

(
Zδ(s)

)〉
1{Zδ(s)∈G◦} ds

+ 1√
V

∫ t∧τ δm∧ζ δM
0

〈
u,σ

(
Zδ(s)

)〉
1{Zδ(s)∈G◦} dW(s)

+ 1√
V

〈
u, Ŷ δ(t ∧ τ δm ∧ ζ δM

)〉

+ δ−1
√
V

∫ t∧τ δm∧ζ δM
0

〈
u, μ̃δ(Zδ(s)

)〉
1{Zδ(s)∈Gb} ds.

Since M∗ ≤ M̃∗ <m≤ 〈u,Zδ(s)〉 ≤M for all s ∈ (0, t∧τ δm∧ζ δM), it follows from
Lemmas 4.1 and 4.2 that there is a constant α > 0 such that for all s ∈ (0, t ∧ τ δm ∧
ζ δM),

(A.14)
〈
u,μ

(
Zδ(s)

)〉 ≤ −α and
〈
u, μ̃δ(Zδ(s)

)〉 ≤ −α.
Thus, we have that

(A.15)

〈
u,Zδ(t ∧ τ δm ∧ ζ δM

)〉
≤ 〈u, z〉 + 1√

V

∫ t∧τ δm∧ζ δM
0

〈
u,σ

(
Zδ(s)

)〉
1{Zδ(s)∈G◦} dW(s)

+ 1√
V

〈
u, Ŷ δ(t ∧ τ δm ∧ ζ δM

)〉
.

Upon taking expectations in the above expression, using the martingale property of
the stopped stochastic integrals with respect to W and of the stopped compensated
Poisson process Ŷ δ(· ∧ τ δm ∧ ζ δM), we obtain

(A.16) E
[〈
u,Zδ(t ∧ τ δm ∧ ζ δM

)〉] ≤ 〈u, z〉.
Writing this in terms of the law of Zδ on the canonical space (D∂ ,M∂), we have

(A.17) EPδ
z
[〈
u,ω(t ∧ τm ∧ ζM)

〉] ≤ 〈u, z〉,
where τm = inf{s ≥ 0 : 〈u,ω(s)〉 < m}, τm = +∞ if ω(s) = ∂ for all s ≥ 0, and
〈u, ∂〉 = 0. We will shortly prove that for any m ≥ M̃∗ + ρ, M > m + 5ρ, m ≤
〈u, z〉 ≤M ,

(A.18) P δ
z (τm ∧ ζM <∞)= 1.

Assuming this holds for the moment, on letting t → ∞ in (A.17), we obtain

(A.19) EPδ
z
[〈
u,ω(τm ∧ ζM)

〉] ≤ 〈u, z〉.
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Taking account of the fact that ω(·) may jump as it exits {x ∈G :m≤ 〈u,x〉 ≤M},
we have that P δ

z -a.s., 〈u,ω(τm)〉 ≥ m− ρ on {τm < ζM} and M ≤ 〈u,ω(ζM)〉 on
{ζM < τm}. Hence, (A.19) yields

(A.20) (m− ρ)P δ
z (τm < ζM)+MPδ

z (ζM < τm)≤ 〈u, z〉.
This implies that

(A.21) P δ
z (ζM < τm)≤ 〈u, z〉 −m+ ρ

M −m+ ρ
,

and so for any m≥ M̃∗ + ρ, M >m+ 5ρ, m≤K <M , we have

(A.22) sup
z∈G:m≤〈u,z〉≤K

P δ
z (ζM < τm)≤ K −m+ ρ

M −m+ ρ
.

Now, for m ≥ M̃∗ + ρ, m̃ > m+ 4ρ and M > m̃+ ρ, for z ∈ �m̃, we have by
the strong Markov property that

(A.23)

P δ
z (τm+ρ < ζM ≤ t)≤EPδ

z
[
1{τm+ρ<ζM }P δ

ω(τm+ρ)(ζM ≤ t)
]

≤ P δ
z (τm+ρ < ζM)C

δ
m,M(t)

≤ Cδ
m,M(t).

Then for z ∈�m, using the strong Markov property again, we have

(A.24)

P δ
z (ζM ≤ t)

= P δ
z (ζm̃ ≤ t, ζM ≤ t)

≤EPδ
z
[
1{ζm̃≤t}P δ

ω(ζm̃)
(ζM ≤ t)

]
=EPδ

z
[
1{ζm̃≤t}

(
P δ
ω(ζm̃)

(τm+ρ < ζM ≤ t)

+ P δ
ω(ζm̃)

(ζM < τm+ρ, ζM ≤ t)
)]

≤EPδ
z

[
1{ζm̃≤t}

(
Cδ
m,M(t)+ sup

x∈�m̃

P δ
x (ζM < τm+ρ)

)]

≤EPδ
z

[
1{ζm̃≤t}

(
Cδ
m,M(t)+ m̃−m+ ρ

M −m

)]
,

for M >m+ 5ρ, where we used (A.23) in the second to last line and (A.22) in the
last line, with m replaced by m+ ρ and K = m̃+ ρ.

Letting εδ
m,m̃

(t) = supz∈�m
P δ
z (ζm̃ ≤ t) and taking the supremum over z ∈ �m

in (A.24), we have

(A.25) Cδ
m,M(t)≤ εδm,m̃(t)

(
Cδ
m,M(t)+ m̃−m+ ρ

M −m

)
.
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If we can prove that there is δ0 (depending on m,m̃, t) such that 0 < δ0 ≤ 1√
V

and

(A.26) ε̂m,m̃(t)� sup
0<δ≤δ0

εδm,m̃(t) < 1,

then we have that

(A.27) sup
0<δ≤δ0

Cδ
m,M(t)≤ ε̂m,m̃(t)

1 − ε̂m,m̃(t)

m̃−m+ ρ

M −m
,

where the right member tends to zero as M → ∞, which proves the desired result.
Thus, it remains to prove (A.26) and (A.18). We first prove (A.18). For m,M as

at the beginning of this proof, Zδ starting from z ∈ G satisfying m ≤ 〈u, z〉 ≤ M ,
on {τ δm ∧ ζ δM = +∞}, we have from (A.15) that for all t ≥ 0,

(A.28)
〈
u,Zδ(t)

〉 ≤ 〈u, z〉 + 1√
V
Mδ(t),

where

(A.29) Mδ(t)�
∫ t

0

〈
u,σ

(
Zδ(s)

)〉
1{Zδ(s)∈G◦} dW(s)+ 〈

u, Ŷ δ(t)
〉
, t ≥ 0,

defines a local martingale with respect to the filtration {Ft } and Ŷ δ is given by
(4.17). The predictable quadratic variation of Mδ is given by

〈
Mδ 〉(t)=

∫ t

0
u′�

(
Zδ(s)

)
u1{Zδ(s)∈G◦} ds +

∫ t

0
u′�̃δ(Zδ(s)

)
u1{Zδ(s)∈Gb} ds,

where

(A.30) �̃δ(x)�
r∑

k=1

vkv
′
kλ̃

δ
k(x), x ∈G.

In a similar manner to that for (4.9), we have

(A.31)
( d

min
i=1

c
k
↑
i

)
|θ |2 ≤ 〈

θ, �̃δ(x)θ
〉 ≤ K̃(x)|θ |2 for all θ ∈ R

d, x ∈Gb,

where K̃(x)= ∑r
k=1 |vk|2λk(x)≥ ∑r

k=1 |vk|2λ̃δk(x), since λ̃δk is a truncation of λk .
It then follows that

(A.32)
〈
Mδ 〉(t)≥

( d

min
i=1

c
k
↑
i

)
|u|2t → ∞ as t → ∞,

where we have used (4.9) and (A.31). By a law of the iterated logarithm for local
martingales [24] (see also [40]), it follows that a.s., on {τ δm ∧ ζ δM = +∞},

(A.33) lim inf
t→∞

Mδ(t)√〈Mδ〉(t) = −∞.
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Combining (A.28), (A.32) and (A.33), we see that on {τ δm ∧ ζ δM = +∞}, a.s.,

(A.34) lim inf
t→∞

〈
u,Zδ(t)

〉 = −∞.

But on {τ δm ∧ ζ δM = +∞},
(A.35)

〈
u,Zδ(t)

〉 ≥m,

for all t ≥ 0, and so we must have that

(A.36) P
(
τ δm ∧ ζ δM = +∞) = 0.

Hence, (A.18) holds.
We now fix m ≥ M̃∗ + ρ, m̃ > m + 4ρ, t ≥ 0, and prove that (A.26) holds

for some δ0 ∈ (0, 1√
V

]. For Zδ starting from z ∈ �m, in a similar manner to
that in which (A.28) was derived, we have that if 0 ≤ s1 < s2 ≤ t are such that
m≤ 〈u,Zδ(s)〉 ≤ m̃ for s1 < s < s2, then

(A.37)
〈
u,Zδ(s2)

〉 − 〈
u,Zδ(s1)

〉 ≤ 1√
V

(
Mδ(s2)−Mδ(s1)

)
,

where Mδ is defined by (A.29). Now, the stochastic integral with respect to W in
Mδ can be time-changed to a Brownian motion, Bδ,1, so that

(A.38) Mδ,1(v)�
∫ v

0

〈
u,σ

(
Zδ(s)

)〉
1{Zδ(s)∈G◦} dW(s)= Bδ,1(〈Mδ,1〉(v)),

where the quadratic variation of Mδ,1 is given by

(A.39)
〈
Mδ,1〉(v)=

∫ v

0

〈
u,�

(
Zδ(s)

)
u
〉
1{Zδ(s)∈G◦} ds.

Let C(V,m, m̃) =
√
V (m̃−(m+4ρ))

4 and Km̃ be a constant such that for all x ∈ G

satisfying 〈u,x〉 ≤ m̃ we have

(A.40) u′�̃δ(x)u≤ u′�(x)u≤Km̃.

Then

(A.41)

P

(
max

0≤s≤t
∣∣Mδ,1(s ∧ ζ δm̃

)∣∣ ≥ C(V,m, m̃)
)

≤ P
(〈
Mδ,1〉(t ∧ ζ δm̃

) ≥ϒδ(m, m̃)
)

≤ P
(
Km̃t ≥ϒδ(m, m̃)

) = β,

where ϒδ(m, m̃) = inf{s ≥ 0 : |Bδ,1(s)| ≥ C(V,m, m̃)} is the first time that the
absolute value of a one-dimensional Brownian motion is of size C(V,m, m̃), and
β ∈ (0,1) depends only on t,m, m̃, but not on δ or the starting point z ∈�m for Zδ .
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Considering upcrossings from where 〈u,Zδ〉 ≤ m + 2ρ to where 〈u,Zδ〉 > m̃

that are needed to ensure that ζ δ
m̃

≤ t , for any 0 < δ ≤ δ0, z ∈�m with Zδ(0)= z,
we have

(A.42)

P δ
z (ζm̃ ≤ t)≤ P

(〈
u,Zδ(s2)

〉 − 〈
u,Zδ(s1)

〉 ≥ m̃− (m+ 4ρ)

and m+ 2ρ <
〈
u,Zδ(s)

〉
< m̃ for all s ∈ (s1, s2),

for some 0 ≤ s1 < s2 ≤ ζ δm̃ ≤ t
)

≤ P

(
max

0≤s≤t
∣∣Mδ,1(s ∧ ζ δm̃

)∣∣ ≥ C(V,m, m̃)
)

+ P
(〈
u, Ŷ δ(s2)

〉 − 〈
u, Ŷ δ(s1)

〉 ≥ √
V

(
m̃− (m+ 4ρ)

)
/2

and m+ 2ρ <
〈
u,Zδ(s)

〉
< m̃ for all s ∈ (s1, s2),

for some 0 ≤ s1 < s2 ≤ ζ δm̃ ≤ t
)
.

By the preceding paragraph, the second last probability in the above is bounded by
β ∈ (0,1) that is independent of δ and z ∈�m. We now focus on showing that the
last probability can be made arbitrarily small [in particular, less than (1 − β)/2,
uniformly for all z ∈�m], provided that δ is sufficiently small.

First, notice that for z ∈G satisfying m+ρ ≤ 〈u, z〉 ≤ m̃, (A.13) holds with the
stopping time τ δm ∧ ζ δM replaced by τ δm+ρ ∧ ζ δ

m̃
. Therefore, using (A.14) and in a

similar manner to how (A.16) was derived, we have

m≤ E
[〈
u,Zδ(t ∧ τ δm+ρ ∧ ζ δm̃

)〉]

≤ 〈u, z〉 − δ−1α√
V

E

[∫ t∧τ δm+ρ∧ζ δ
m̃

0
1{Zδ(s)∈Gb} ds

]
.

Hence, for any z ∈G satisfying m+ ρ ≤ 〈u, z〉 ≤m+ 3ρ, we have

EPδ
z

[∫ t∧τm+ρ∧ζm̃
0

1{ω(s)∈Gb} ds
]

≤
√
V 3ρδ

α
.(A.43)

We shall use this inequality further below.
Now, let τ δ,0m+ρ = 0 and for k = 1,2, . . . , inductively define

ζ
δ,k−1
m+2ρ = inf

{
s ≥ τ

δ,k−1
m+ρ : 〈u,Zδ(s)

〉
>m+ 2ρ

}
,

τ
δ,k
m+ρ = inf

{
s ≥ ζ

δ,k−1
m+2ρ : 〈u,Zδ(s)

〉
<m+ ρ

}
.

Also, in order to simplify the notation in the expression below, let us define Dk �
max

ζ
δ,k−1
m+2ρ≤s≤τ δ,km+ρ∧t∧ζ δ

m̃

|〈u, Ŷ δ(s)〉 − 〈u, Ŷ δ(ζ
δ,k−1
m+2ρ )〉| on {ζ δ,k−1

m+2ρ ≤ t ∧ ζ δ
m̃
}. Then,
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for Zδ(0)= z ∈�m, we have

P
(〈
u, Ŷ δ(s2)

〉 − 〈
u, Ŷ δ(s1)

〉 ≥ √
V

(
m̃− (m+ 4ρ)

)
/2 and

m+ 2ρ <
〈
u,Zδ(s)

〉
< m̃ for all s ∈ (s1, s2),

for some 0 ≤ s1 < s2 ≤ ζ δm̃ ≤ t
)

≤
∞∑
k=1

P
(
Dk ≥ C(V,m, m̃) and ζ δ,k−1

m+2ρ ≤ t ∧ ζ δm̃
)

≤
∞∑
k=1

E
[
P
(
Dk ≥ C(V,m, m̃)|F

ζ
δ,k−1
m+2ρ

)
1{ζ δ,k−1

m+2ρ≤t∧ζ δ
m̃

}
]
.

(A.44)

On {ζ δ,k−1
m+2ρ ≤ t ∧ ζ δ

m̃
}, we have, using a conditional version of Doob’s L2-

maximal inequality and the strong Markov property of Zδ , that

(A.45)

P

(
max

ζ
δ,k−1
m+2ρ≤s≤τ δ,km+ρ∧t∧ζ δ

m̃

∣∣〈u, Ŷ δ(s)
〉 − 〈

u, Ŷ δ(ζ δ,k−1
m+2ρ

)〉∣∣ ≥ C(V,m, m̃)
∣∣∣F

ζ
δ,k−1
m+2ρ

)

≤ 4

(C(V,m, m̃))2
E

[∫ τ
δ,k
m+ρ∧t∧ζ δ

m̃

ζ
δ,k−1
m+2ρ

u′�̃δ(Zδ(s)
)
u1{Zδ(s)∈Gb} ds

∣∣∣F
ζ
δ,k−1
m+2ρ

]

≤ 4Km̃

(C(V,m, m̃))2
E
Pδ

ζ
δ,k−1
m+2ρ

[∫ τm+ρ∧t∧ζm̃
0

1{ω(s)∈Gb} ds
]

≤ 12Km̃

(C(V,m, m̃))2

√
V ρδ

α
,

where we used (A.43) for the last inequality.
Substituting the above in (A.44) and then using that in (A.42), we obtain for all

δ and z ∈�m,

(A.46)

P δ
z (ζm̃ ≤ t)≤ β + δC̃(V ,m, m̃, ρ)

∞∑
k=1

P
(
ζ
δ,k−1
m+2ρ ≤ t ∧ ζ δm̃

)

≤ β + δC̃(V ,m, m̃, ρ)

∞∑
k=1

P
(
τ
δ,k−1
m+ρ ≤ t ∧ ζ δm̃

)
,

where C̃(V ,m, m̃, ρ) = 12Km̃

√
V ρ

α(C(V,m,m̃))2
and we have used the fact that ζ δ,k−1

m+2ρ ≥
τ
δ,k−1
m+ρ .

We now proceed to estimate the sum in (A.46). We first note that

(A.47)
∞∑
k=1

E
[
E
[(
ζ
δ,k−1
m+2ρ − τ

δ,k−1
m+ρ

) ∧ t |F
τ
δ,k−1
m+ρ

]
1{τ δ,k−1

m+ρ ≤t∧ζ δ
m̃

}
] ≤ 2t.
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On {τ δ,k−1
m+ρ ≤ t ∧ ζ δ

m̃
}, we have Zδ(τ

δ,k−1
m+ρ ) ∈�m and by the strong Markov prop-

erty of Zδ ,

(A.48) E
[(
ζ
δ,k−1
m+2ρ − τ

δ,k−1
m+ρ

) ∧ t |F
τ
δ,k−1
m+ρ

] ≥ inf
x∈�m

EPδ
x [ζm+2ρ ∧ t].

Let f be a twice continuously differentiable, nondecreasing function on the
real line that is an approximation to the function y → (y −m)+. In particular, we
choose f such that f (y)= 0 for y ≤m and f (y) = (y −m)+ for y ≥m+ ρ, f ′
is nondecreasing, 0 ≤ f ′′(y) ≤ 2 for m ≤ y ≤ m + ρ. [Note that f ′′(y) = 0 for
y ≤ m and y ≥ m + ρ.] Then by applying Itô’s formula (see [15], page 57) to f

and 〈u,Zδ〉 [cf. (A.13)], with Zδ(0) ∈ �m, for any stopping time η ≤ t ∧ ζ δ
m̃

, we
have

U δ(η)� f
(〈
u,Zδ(η)

〉)
= f

(〈
u,Zδ(0)

〉) +
∫ η

0
f ′(〈u,Zδ(s)

〉)〈
u,μ

(
Zδ(s)

)〉
1{Zδ(s)∈G◦} ds

+ 1

δ
√
V

∫ η

0
f ′(〈u,Zδ(s)

〉)〈
u, μ̃δ(Zδ(s)

)〉
1{Zδ(s)∈Gb} ds

+ 1√
V

∫ η

0
f ′(〈u,Zδ(s)

〉)〈
u,σ

(
Zδ(s)

)〉
1{Zδ(s)∈G◦} dW(s)

+ 1√
V

∫ η

0
f ′(〈u,Zδ(s−)〉)d 〈u, Ŷ δ(s)

〉

+ 1

2V

∫ η

0
f ′′(〈u,Zδ(s)

〉)
u′�

(
Zδ(s)

)
u1{Zδ(s)∈G◦} ds

+ ∑
0<s≤η

(
f
(〈
u,Zδ(s)

〉) − f
(〈
u,Zδ(s−)〉)

− f ′(〈u,Zδ(s−)〉)〈u,!Zδ(s)
〉)
,

(A.49)

where !Zδ(s)= Zδ(s)−Zδ(s−) denotes the jump of Zδ at s (if there is one). By
using Taylor’s theorem with remainder the last term above equals

1

2

∑
0<s≤η

f ′′(〈u, Z̃δ(s−)〉)(〈u,!Zδ(s)
〉)2

= δ2

2V

∑
0<s≤η

f ′′(〈u, Z̃δ(s−)〉) r∑
k=1

〈u, vk〉2!Ũ
δ,b
k (s),

(A.50)

where Z̃δ(s) is a point on the line segment between Zδ(s−) and Zδ(s). Substi-
tuting this in (A.49), and using the facts that 0 ≤ f ′ ≤ 1 everywhere, f ′ = 0 and
f ′′ = 0 on (−∞,m], f ′′ = 0 on [m + ρ,∞), 0 ≤ f ′′ ≤ 2, and 〈u,μ(x)〉 ≤ −α,
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〈u, μ̃δ(x)〉 ≤ −α whenever 〈u,x〉 ≥m, we obtain

(A.51)

U δ(η)≤ U δ(0)− α

∫ η

0
f ′(〈u,Zδ(s)

〉)
1{〈u,Zδ(s)〉>m,Zδ(s)∈G◦} ds

− α

δ
√
V

∫ η

0
f ′(〈u,Zδ(s)

〉)
1{〈u,Zδ(s)〉>m,Zδ(s)∈Gb} ds

+ 1√
V

∫ η

0
f ′(〈u,Zδ(s)

〉)〈
u,σ

(
Zδ(s)

)〉
× 1{〈u,Zδ(s)〉>m,Zδ(s)∈G◦} dW(s)

+ 1√
V

∫ η

0
f ′(〈u,Zδ(s−)〉)d 〈u, Ŷ δ(s)

〉

+ 1

V

∫ η

0
u′�

(
Zδ(s)

)
u1{m<〈u,Zδ(s)〉<m+ρ,Zδ(s)∈G◦} ds

+ δ2

V

r∑
k=1

〈u, vk〉2Ũ
δ,b
k (η).

Now, with Zδ(0) ∈ �m, for a ∈ (0, t), since f is nondecreasing and f (y) =
(y −m)+ for y ≥m+ ρ, we have

P
(
ζ δm+2ρ ≥ a

) ≥ 1 − P

(
sup

0≤s≤a
(
U δ(s ∧ ζ δm̃

) − U δ(0)
) ≥ ρ

)

≥ 1 − P

(
max

0≤η≤a∧ζ δ
m̃

N δ,i(η)≥ ρ/4 for some i ∈ {1,2,3,4}
)
,

where we have used (A.51) for the second inequality and

N δ,1(η)= 1√
V

∫ η

0
f ′(〈u,Zδ(s)

〉)〈
u,σ

(
Zδ(s)

)〉
1{〈u,Zδ(s)〉>m,Zδ(s)∈G◦} dW(s),

N δ,2(η)= 1√
V

∫ η

0
f ′(〈u,Zδ(s−)〉)d 〈u, Ŷ δ(s)

〉
,

N δ,3(η)= 1

V

∫ η

0
u′�

(
Zδ(s)

)
u1{m<〈u,Zδ(s)〉<m+ρ,Zδ(s)∈G◦} ds,

N δ,4(η)= δ2

V

r∑
k=1

〈u, vk〉2Ũ
δ,b
k (η).

The quadratic variation for
√
VN δ,1 satisfies

〈√
VN δ,1〉(η)=

∫ η

0

(
f ′(〈u,Zδ(s)

〉))2
u′�

(
Zδ(s)

)
u1{〈u,Zδ(s)〉>m,Zδ(s)∈G◦} ds

≤Km̃η,
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whenever η ≤ ζ δ
m̃

. It follows in a similar manner to (A.41) that

P

(
max

0≤s≤a∧ζ δ
m̃

N δ,1(s)≥ ρ/4
)

≤ P
(
Km̃a ≥ϒ(

√
V ρ/4)

)
,

where ϒ(
√
V ρ/4) is the first time a one-dimensional Brownian motion reaches

the level
√
V ρ/4. The right-hand side above tends to zero as a → 0 and so there

is a1 ∈ (0, t) (not depending on δ and valid for all initial values of Zδ in �m)
such that the probability on the right above is less than 1/8 for all 0 < a ≤ a1. By
Doob’s L2 maximal inequality, we have in a similar manner to that in (A.45)

P

(
max

0≤s≤a∧ζ δ
m̃

∣∣N δ,2(s)
∣∣ ≥ ρ/4

)
≤ 64

Vρ2E

[∫ a∧ζ δ
m̃

0
u′�̃δ(Zδ(s)

)
u1{Zδ(s)∈Gb} ds

]

≤ 64Km̃a

Vρ2 .

Let a2 ∈ (0, a1) such that the last expression is less than 1/8 for all a ≤ a2. For
N δ,3, we will have max0≤s≤a∧ζ δ

m̃
N δ,3(s) < ρ/4 whenever a ≤ a3 = ρV/(8Km̃).

Since N δ,4 is an increasing process, we have by Markov’s inequality

P

(
max

0≤s≤a∧ζ δ
m̃

N δ,4(s)≥ ρ/4
)

≤ 4δ2

ρV

r∑
k=1

〈u, vk〉2
E
[
Ũ
δ,b
k

(
a ∧ ζ δm̃

)]

≤ 4δ2

ρV

r∑
k=1

〈u, vk〉2
E

[
δ−2

∫ a∧ζ δ
m̃

0
λ̃δk

(
Zδ(s)

)
1{Zδ(s)∈Gb} ds

]

≤ 4Cm̃a

ρV
,

where Cm̃ = ∑r
k=1〈u, vk〉2 sup{λk(x) : x ∈ G, 〈u,x〉 ≤ m̃} and we have used the

fact that λ̃δk(x) ≤ λk(x) for x ∈ G. Let a4 ∈ (0, a2 ∧ a3) such that the last term
above is less than 1/8 for all a ≤ a4.

Combining all of the above, it follows that for all a ∈ (0, a4],
P
(
ζ δm+2ρ ≥ a

) ≥ 1 − 3

8
≥ 1/2.

This is true for all starting points of Zδ in �m, and so it follows that since a4 < t ,

(A.52) inf
x∈�m

EPδ
x [ζm+2ρ ∧ t] ≥ a4

2
.

Combining this with (A.48) and (A.47), we obtain

(A.53)
∞∑
k=1

E[1{τ δ,k−1
m+ρ ≤t∧ζ δ

m̃
}] ≤ 4t

a4
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and substituting this in (A.46), we obtain

(A.54) P δ
z (ζm̃ ≤ t)≤ β + 4δtC̃(V ,m, m̃, ρ)

a4
.

It follows that there is δ0 ∈ (0,1/
√
V ) such that the above expression on the right

is strictly less than (1 − β)/2, for all z ∈ �m and all 0 < δ ≤ δ0. This completes
the proof of (A.26). �

PROOF OF LEMMA 6.1. Consider λk , k = 1, . . . , r , μ, and � to be defined on
R
d by (3.7), (4.7) and (4.8), respectively. We begin with the definition of �M . For

ε ∈ (0,1), define Gε
M � {x ∈ R

d : dist(x,GM) ≤ ε}. Notice that for x ∈ Gε
M , we

have −ε ≤ xi ≤M/ui + ε for each 1 ≤ i ≤ d . Since u≥ 1 and ε < 1, we have that
M/ui + ε ≤M + 1 for 1 ≤ i ≤ d . Then, for x ∈Gε

M ,

λk(x)= ck

d∏
i=1

x
v−
ik

i = ck

( ∏
i:xi<0

x
v−
ik

i

)( ∏
i:xi≥0

x
v−
ik

i

)

≥ ck(−ε)
( ∏
i:xi≥0

(M + 1)v
−
ik

)
≥ −ckε(M + 1)[v

−
k ],

(A.55)

where [v−
k ] � ∑d

i=1 v
−
ik . Let θ ∈ R

d, x ∈Gε
M , and denote by I the index set asso-

ciated with the external input reactions. Then

(A.56)
〈
θ,�(x)θ

〉 = r∑
k=1

λk(x)〈θ, vk〉2 = ∑
k∈I

ck〈θ, vk〉2 + ∑
k /∈I

λk(x)〈θ, vk〉2.

Let {k↑
i ,1 ≤ i ≤ d} denote the indices for the input reactions of Assumption 3.2(a).

Then, by (A.55) and (A.56),

〈
θ,�(x)θ

〉 ≥ d∑
i=1

c
k
↑
i

θ2
i − ∑

k /∈I
ckε(M + 1)[v

−
k ]|θ |2|vk|2 ≥ |θ |2(b0 − εb1),

where b0 � mindi=1 ck↑
i

and b1 � ∑
k /∈I ck(M + 1)[v−

k ]|vk|2. Therefore, � is uni-

formly elliptic on Gε
M for ε < b0/b1. Fix an ε ∈ (0, b0/b1) and let ϕε ∈ C∞

c (Rd)

be such that 0 ≤ ϕε(x) ≤ 1 for all x ∈ R
d , ϕε = 1 on GM and ϕε = 0 outside of

Gε
M . Then the function �M :Rd → S

d×d defined as

�M(x)� ϕε(x)�(x)+ (
1 − ϕε(x)

)
I(A.57)

is uniformly elliptic on R
d . In fact, for x, θ ∈ R

d ,〈
θ,�M(x)θ

〉 ≥ |θ |2((b0 − εb1)∧ 1
)
.

Now we show that the symmetric positive definite square root σM of �M is uni-
formly Lipschitz continuous on R

d . First, note that � is continuously differentiable



1604 S. C. LEITE AND R. J. WILLIAMS

on R
d , and it, together with its first partial derivatives, is uniformly bounded on the

compact set Gε
M . It follows from (A.57) that �M is continuously differentiable on

R
d and its first partial derivatives are bounded on R

d . Hence �M is uniformly
Lipschitz continuous on R

d . Then, by Theorem 5.2.2 of [35], we have that σM is
uniformly Lipschitz continuous on R

d .
Similarly, define μM : Rd → R

d by μM(x) � ϕε(x)μ(x). Since μ is contin-
uously differentiable on R

d and μM has compact support, it follows that μM is
uniformly Lipschitz continuous on R

d .
We now define γM . Lemma 4.1, together with the fact that nd+1 = −u/|u|,

implies that there is a constant αM > 0 such that〈
μ(x), nj

〉 ≥ αM for all j ∈ IM(x), x ∈Gb
M.(A.58)

For η ∈ (0,1), let

G
b,η
M �

{
x ∈ R

d : dist
(
Gb
M,x

) ≤ η
}
.(A.59)

We have that |μ(x)| ≥ αM for all x ∈Gb
M by (A.58). Then by the continuity of μ,

there is an η ∈ (0,1) such that∣∣μ(x)∣∣ ≥ αM

2
for all x ∈G

b,η
M .(A.60)

Let ψη ∈ C∞
c (Rd) be such that 0 ≤ ψη(x) ≤ 1, ψη(x) = 1 for x ∈ G

b,
η
2

M and

ψη(x)= 0 outside of Gb,η
M . Define γM : Rd →R

d as follows:

γM(x)�ψη(x)
μ(x)

|μ(x)| + (
1 −ψη(x)

)
e1.(A.61)

Then since μ is twice continuously differentiable on R
d and we have (A.60), γM

is twice continuously differentiable on R
d , and γM agrees with γ = μ

|μ| on G̃b
M .

Moreover, γM = μ
|μ| on G

b,
η
2

M and so is of unit length in a neighborhood of Gb
M .

Also, being equal to a constant vector outside of Gb,η
M , γM is a constant vector

outside of a compact set.
It remains to show that there is a β ∈ (0,1) such that⋃

0≤t≤β
Btβ

(
x − tγM(x)

) ⊂ (
G◦
M

)c for x ∈Gb
M.

Let

β ∈
(

0,
αM

supz∈Gb
M

|μ(z)| ∧ 1
)
.

Suppose x ∈ Gb
M , t ∈ [0, β] and y ∈ Btβ(x − tγM(x)). To prove that y ∈ (G◦

M)
c,

since G◦
M = {z ∈ R

d : 〈z,nj 〉 > 0, for j = 1, . . . , d, and 〈z,nd+1〉 > −M/|u|}, it
suffices to show that

〈nj , y − x〉 ≤ 0 for some j ∈ IM(x).
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Indeed, since y ∈ Btβ(x − tγM(x)), there is dy ∈ R
d such that |dy | ≤ tβ and

y = x − tγM(x)+ dy,

and then for j ∈ IM(x),

〈nj , y − x〉 = 〈
nj ,−tγM(x)+ dy

〉
= −t 〈nj , γM(x)〉 + 〈nj , dy〉
≤ −t 〈nj , γM(x)〉 + |nj ||dy |
≤ −tαM

supz∈Gb
M

|μ(z)| + tβ ≤ 0,

by (A.58), the definition of γM and choice of β . Thus, y ∈ (G◦
M)

c. �

PROOF OF LEMMA 7.1. Let x ∈ Gb, we have the following by the triangle
inequality and Lemma 4.1(i):

∣∣γ̃ n(x)− γ (x)
∣∣ ≤ 2

α

∣∣μ̃n(x)−μ(x)
∣∣ ≤ 2

α

r∑
k=1

|vk|
∣∣λ̃nk(x)− λk(x)

∣∣.
Therefore, it is enough to show that the statement holds with λ̃nk and λk replacing
γ̃ n and γ , respectively, for 1 ≤ k ≤ r .

Let M > 1 and ε > 0. Since δn decreases monotonically to zero as n increases,
there is nε > 1 such that

δn <
ε
√
V

maxk,j ckv
−
jkM

[v−
k ] + 1

,(A.62)

for all n ≥ nε , where [v−
k ] � ∑d

i=1 v
−
ik . Then, for x ∈ Gb such that |x| ≤ M , and

n≥ nε , let us define

N k
n (x)=

{
1 ≤ j ≤ d : 0 ≤ xj <

v−
jkδn√
V

}
,

for 1 ≤ k ≤ r . Notice that if N k
n (x)=∅, then λk(x)= λ̃nk(x), which implies that∣∣λ̃nk(x)− λk(x)

∣∣< ε.(A.63)

Suppose now that there is a j ∈N k
n (x). Then we have

∣∣λ̃nk(x)− λk(x)
∣∣ =

∣∣∣∣∣0 − ck

d∏
i=1

x
v−
ik

i

∣∣∣∣∣ = ckx
v−
jk

j

d∏
i=1
i �=j

x
v−
ik

i ≤ ck
v−
jkδn√
V

M [v−
k ],

where we used the facts that xj < v−
jkδn/

√
V and that |xi | ≤ M , for 1 ≤ i ≤ d .

Since n ≥ nε , δn satisfies (A.62), and therefore (A.63) holds. Since the choice of
x ∈Gb such that |x| ≤M , n≥ nε , and 1 ≤ k ≤ r , was arbitrary, the result follows.

�
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