
The Annals of Applied Probability
2019, Vol. 29, No. 2, 1127–1187
https://doi.org/10.1214/18-AAP1431
© Institute of Mathematical Statistics, 2019
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This article is concerned with the fluctuation analysis and the stabil-
ity properties of a class of one-dimensional Riccati diffusions. These one-
dimensional stochastic differential equations exhibit a quadratic drift func-
tion and a non-Lipschitz continuous diffusion function. We present a novel
approach, combining tangent process techniques, Feynman–Kac path inte-
gration and exponential change of measures, to derive sharp exponential de-
cays to equilibrium. We also provide uniform estimates with respect to the
time horizon, quantifying with some precision the fluctuations of these dif-
fusions around a limiting deterministic Riccati differential equation. These
results provide a stronger and almost sure version of the conventional central
limit theorem. We illustrate these results in the context of ensemble Kalman–
Bucy filtering. To the best of our knowledge, the exponential stability and the
fluctuation analysis developed in this work are the first results of this kind for
this class of nonlinear diffusions.
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1. Introduction. Let Wt be a Wiener process, A ∈ R, R∧S > 0, and U ∧V ≥
0 some given parameters. We consider the diffusion process on the nonnegative
half-line R+ = [0,∞[ defined for any X0 ∈ R+ by the stochastic differential equa-
tion
(1.1) dXt = �(Xt) dt + σε(Xt) dWt,

with some Riccati-type drift function

�(x) = 2Ax +R − Sx2 and diffusion term σε(x) := ε

√
x
(
U + V x2

)
(1.2)

and some parameter ε ∈ R+. When ε = 0, x0 ∈ R+, the diffusion (1.1) reduces to
the deterministic Riccati dynamical system defined on R+ by the equation

(1.3) ∂txt = �(xt ) = −S(xt −�+)(xt −�−),
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with the equilibrium states (�−,�+) defined by

(1.4) S�− := A− λ/2 < 0 < S�+ := A+ λ/2 with λ := 2
√
A2 +RS.

We let �ε
s,t (Xs) = Xt , with s ≤ t , denote the stochastic flow associated with the

diffusion defined by (1.1). We also let φs,t (xs) = xt be the semigroup associated
with the Riccati equation (1.3). We may write �ε

0,t = �ε
t and φ0,t = φt , etc.

Under mild conditions discussed later, the Riccati diffusion Xt is well defined
on the half-line R+. In this case, the origin is a regular and repellent state in the
sense that the process can start at 0, but will never return to the origin.

Note the case V = 0 implying σε(x) := ε
√
Ux may act as a basic canonical

prototype for a quadratic (Riccati-type) diffusion equation on the nonnegative half-
line.

The analysis of one-dimensional diffusions of the form (1.1) acts as a basic
prototype for the study of various quadratic Riccati-type diffusions arising in mul-
tivariate statistics, signal processing, and econometrics and financial mathematics.
Other quadratic diffusion models, different from (1.1) also appear in the literature.
For example, backward-type matrix Riccati diffusions arise in linear-quadratic op-
timal control problems with random coefficients; see, for example, [15, 39, 51].
A different class of random Riccati equations arises in network control and filter-
ing with random observation losses; see [68] and references therein. Note also that
the Cox–Ingersoll–Ross process (i.e., the Wishart process in one-dimension [20])
can be viewed as special, linear, simplification of this model with A< 0 <R ∧U

and no quadratic term S = 0 = V . This latter case illustrates that taking A < 0
stable (i.e., Hurwitz stable) may significantly simplify the derivation of certain
fluctuation and stability estimates and reduces the broader applicability of related
results.

1.1. A related diffusion equation and ensemble Kalman–Bucy filtering. The
stochastic Riccati equations defined by (1.1) are motivated by applications
in signal processing and data assimilation problems, and more particularly in
the stochastic analysis of ensemble Kalman–Bucy-type [29] filters (abbreviated
EnKF). In this context, up to a change of probability space, the matrix-valued ver-
sion of the stochastic Riccati equation (1.1) represents the evolution of the sample
covariance associated with these filters. For more details, we refer to [24], as well
Section 2.3 and Section 7 in the present article. The one-dimensional case (1.1)
represents the flow of the sample variance.

We are also interested in a certain stochastic Ornstein–Uhlenbeck process of the
form,

dZt = 1

2
∂�(Xt)Zt dt + ςε(Xt) dW

′
t

with ς2
ε := ς2 + σ 2

ε and ς2(x) := R + Sx2,

(1.5)
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with a Wiener process W ′
t independent of Wt and some parameter ε ∈ [0,1]. Note

that (1.5) is coupled to (1.1) through both the drift and diffusion terms. We call this
process a stochastic Ornstein–Uhlenbeck process because of this coupling; that is,
the coefficients of this Ornstein–Uhlenbeck process are themselves stochastic. The
stochastic flow of the (R+ ×R)-valued diffusion (Xt ,Zt) defined by the stochastic
differential equations (1.1) and (1.5) is denoted by

(1.6) �
(ε,ε)
t (x, z) = (

�ε
t (x),�

(ε,ε)
t (x, z)

)
.

In the context of the EnKF, the parameters ε = 2/
√
N and ε = 1/

√
N + 1 are

related to the population size of a system of (N + 1) interacting particles. Up to a
change of probability space, the difference (error) between the EnKF sample mean
and the true signal state is described by a stochastic Ornstein–Uhlenbeck process
of the form (1.5).

When ε = 0 = ε, equivalently when (U,V ) = 0 or N → ∞, the diffusion Zt :=
Zt reduces to the difference (error) between the conventional Kalman–Bucy filter
(see [9]) and the true signal state. It is given by the nonhomogeneous Ornstein–
Uhlenbeck process

(1.7) dZt = 1

2
∂�(xt )Zt dt + ς(xt ) dW

′
t ,

where xt denotes the solution of the deterministic Riccati equation (1.3). For more
details on the derivation and origin of these coupled diffusion processes, and their
particle interpretations, we refer to Section 2.3 and later Section 7. Again, we
reiterate that (1.1) is of separate interest on its own, as a model for quite general
quadratic (Riccati-type) diffusion equations.

1.2. Objectives. The main results and paper organisation are given in Sec-
tion 2.

To the best of our knowledge, the time-uniform fluctuation and stability analysis
of Riccati-type diffusion equations have not been addressed in the literature. This
article addresses this problem in the one-dimensional setting. This diffusion may
be associated with the EnKF sample variance, and we accommodate the general
case, allowing the underlying signal (defined by A) to be unstable.

1.2.1. Uniform bias and fluctuation analysis. The first objective of this article
is to analyze the fluctuations of the pair of diffusion processes (Xt ,Zt) when the
parameters ε and ε tend to 0. We provide uniform fluctuation estimates w.r.t. the
time parameter, as well as sharp exponential decay rates for the fluctuations, in
the sense that they converge to the exponential decay of the Riccati equation (1.3)
toward its fixed point �+. See a statement of the main results in Section 2.1.

A matrix-valued version of (1.1) is studied in [12] where complete Taylor-type
expansions with remainder are developed at any order, and nonasymptotic fluctua-
tion, bias and central-limit theorems are also given. However, most of the uniform
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results in [12] only hold when A is stable. In this article, first- and second-order
nonasymptotic Taylor-type expansions are derived. In contrast to [12], the time-
uniform estimates in this article do not require stability of A, that is, A< 0 in this
case. The estimates here are valid for any value of A ∈ R, as soon as R ∧ S > 0.
However, unlike [12] we only consider a second-order expansion of the diffusion
here. The analysis in [12] also extends to full path-wise fluctuation properties. See
the later work also in [11] which deals with matrix-valued Riccati diffusions and
also accommodates unstable A matrices.

Some general perturbation results for vector-valued stochastic differential equa-
tions are studied in [40]. However, the analysis of [40] is not focused on time-
uniform estimates, but rather on a fluctuation analysis of perturbed stochastic pro-
cesses under some generalised coefficient (drift/diffusion) conditions. Here, we
restrict our fluctuations analysis to quadratic stochastic differential equations of
the Riccati-type (1.1), and to the specified stochastic Ornstein–Uhlenbeck process
(1.5).

Previewing later results, we note that for any n ≥ 1, any integrable initial state
E(X0) < ∞, and any A ∈ R we have the uniform moment estimates

(n− 1)
V

S
ε2 < 2 =⇒ sup

t≥0
E

(
Xn

t

)
< ∞.

The existence of these moments ensures there is no finite-time explosion, as well
as the positive-recurrence of the diffusion (1.1); for example, see [43]. Conversely,
starting in the stationary regime associated with the invariant measures introduced
in Section 5, we have

(n− 2)
V

S
ε2 ≥ 2 =⇒ ∀t ≥ 0, E

(
Xn

t

) = ∞.

Following [5], we may also arrive at these moment properties using the exponential
stability estimates given in Section 5.

1.2.2. Contraction and stability analysis. The second objective of this article
is to analyse the stability properties of Riccati diffusions of the form (1.1). See a
statement of the main results in Section 2.2.

Since the pioneering articles of [31, 32], the theory of one-dimensional diffu-
sions has been developed in numerous directions, including using operator theory,
spectral analysis, and classical semigroups and stochastic differential techniques.
It is beyond the scope of this article to review these developments. We refer to the
seminal book of [18] and the references therein.

Several general conditions for the exponential decay to equilibrium of one-
dimensional diffusions have been proposed in the literature. Some of them are
based on the existence of a Poincaré or Hardy-type inequalities w.r.t. the invariant
measure, or related variational-type integral criteria w.r.t. the scale and the speed
measures; see, for instance, [18], as well as the articles [7, 60] and [17] for some
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particular classes of heavy tailed limiting distributions. Another more technical
route is to estimate the transition densities of the process, and to find judicious
Lyapunov functions as in [57], or to use coupling and transport techniques as in
[19, 34, 35]. Another strategy is to relate the spectrum of the diffusion with the one
of the Schrödinger-type operators as in [67], or in [76].

The sophisticated approaches discussed above are often not adapted for deriving
precise estimates of the spectral gap of nonlinear diffusions with nonlinear and
nonuniformly elliptic diffusions functions. In our case, the Riccati diffusions (1.1)
have a quadratic drift � and the diffusion function σ1 is not globally Lipschitz.
In addition, the function σ1 is not uniformly positive and the origin of the Riccati
diffusion (1.1) corresponds to a Neumann-type boundary condition. We note that
the drift function � = ∂F is the derivative of the double-well drift function

F(x) = −S

3
x(x − χ−)(x − χ+),

with roots (χ−, χ+) given by

χ− := 3A

2S
−

[(
3A

2S

)2
+ 3R

S

]1/2
< 0 < χ+ := 3A

2S
+

[(
3A

2S

)2
+ 3R

S

]1/2
.

This latter point implies that F is not convex and the diffusion function is not
constant, and hence the conventional tools of the Bochner–Bakry–Emery theory
[6] cannot be applied since these typically require that both −∂2F and σ1 are
uniformly lower bounded.

Also notice that the diffusion has a polynomial growth of order 3/2 as soon
as V > 0. It follows by [41] that a basic Euler time-discretization may blow
up, regardless of the boundedness properties of the diffusion. Although the Eu-
ler schemes may blow up, it is quite possible that their tamed versions converge.
In this one-dimensional case, one may also look at exact simulation methods of
the kind discussed in [8].

In the present article, we develop a new approach for studying the stability of
the equation (1.1), combining tangent processes with Feynman–Kac path integrals
and using a judicious exponential change of probability measure. We obtain sharp
estimates of exponential decays of Riccati diffusions for small values of the pa-
rameter ε.

1.2.3. Applications to ensemble Kalman filters. The EnKF can be interpreted
as the mean-field particle approximation of a nonlinear McKean–Vlasov-type dif-
fusion. These probabilistic models were introduced in [58]. For a detailed discus-
sion on these models and their domains of application, we refer the reader to the
lecture notes of [59, 69], and the monograph [23]. The EnKF is a key numerical
methods for solving high-dimensional forecasting and data assimilation problems;
see, for example, [29]. We refer to (some of) the seminal methodology papers in
[2–4, 16, 28, 36–38, 63, 64, 71, 77]. This list is by no means exhaustive; see also
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[30, 45, 52, 62] for more background, and the detailed chronological list of refer-
ences in Evensen’s text [30]. Our analysis here captures a one-dimensional, rather
toy (i.e., linear-Gaussian), EnKF setup.

Convergence and large-sample asymptotics of the discrete-time EnKF has been
studied in [54], and in [56], in the sense of taking the number of particles (N +
1) → ∞. Nonlinear state-space models are accommodated in this sense in [54].
In [53], the authors extend this idea to continuous-time non-Gaussian state-space
models (e.g., certain nonlinear diffusions). In [72], the authors analyse the long-
time behaviour of the EnKF, with finite ensemble size, using Foster–Lyapunov
techniques. Applying these results to basic linear-Gaussian filtering problems, the
analysis in [72] would require stability of the signal model, that is, stability of A.
In [50], again the long-time behaviour of the EnKF is analysed (with and without
so-called variance inflation) under a class of quadratic dissipative system models;
and which again if linearised equates to a form of stability on the signal model.
In [50] time-uniform results follow under a sufficiently large inflation regime. See
also [55, 73] for related stability analysis in the presence of adaptive covariance
inflation and projection techniques.

Ensemble Kalman methods for inverse problems have also been considered in
the literature [42] with some related analysis [65, 66]. See these references for
further details on this topic.

In the linear-Gaussian filtering domain specifically, uniform error estimates
w.r.t. the time horizon have been developed in [24]; for any ensemble size, with-
out inflation, but once again under the similarly strong assumption that the signal
is stable; that is, A < 0 in the one-dimensional case. And as noted previously,
nonasymptotic fluctuation, bias and central-limit theorems on the EnKF sample
covariance are given in [12]; with time-uniform results holding under a stability
condition on A. So-called variance inflation and localization are considered from
a purely mathematical vantage in the linear-Gaussian setting in [14]. We refer fur-
ther to [12, 14, 24] for some related and further background and references on
the mathematical properties of the EnKF in the linear-Gaussian setting. See also
[11] for a matrix-valued extension of the work considered herein, which seeks to
remove the strong stability results on the signal required in prior work.

Given (1.1), (1.5) and the preceding discussion, we note the convergence prop-
erties of the EnKF rely heavily on the fluctuations of a Riccati diffusion. In this
article, we study the fluctuation and stability of the one-dimensional model (1.1) as
the time horizon t tends to ∞, and as ε tends to 0. We make no assumption on the
stability of the underlying signal; that is, on the stability of A ∈ R. We emphasize
that the Riccati diffusion is reversible w.r.t. a probability measure for any value of
A as soon as R ∧ S > 0. However, the nature of these invariant measures depends
strongly on the choice of the parameters (U,V ). We refer to Section 5.1 for a de-
tailed exposition of these measures, and for an explicit description of the different
classes of stationary measure captured by different choices of (U,V ). Different
choices of (U,V ) correspond to different variants of the EnKF.
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Of course, we note that the one-dimensional models discussed in this article do
not capture faithfully the higher dimensional problems typically considered in the
filtering and data assimilation literature. Nevertheless, this analysis provides some
insight on the fluctuation and the stability properties of the EnKF when the signal
itself is unstable (i.e., A> 0 in this case). The stability properties of matrix-valued
Riccati diffusions with unstable signal models have been considered in the more re-
cent article [11]. The analysis developed in [11] extends the one-dimensional anal-
ysis here to multidimensional data assimilation problems and ensemble Kalman–
Bucy filters with unstable signals. However, in the multidimensional setting, the
decay rates to equilibrium are not sharp, and the stationary measures are not given
in closed form.

1.2.4. Remarks. To the best of our knowledge, the uniform fluctuation/
moment estimates and the exponential rates to equilibrium discussed in this ar-
ticle are the first results of this type for this class of models.

Moreover, while applications in data assimilation and the EnKF are partial mo-
tivators for this work, the one-dimensional diffusion (1.1) is also of interest in its
own mathematical right, as a prototype for quadratic (Riccati-type) stochastic dif-
ferential equations.

1.3. Some preliminary notation. Here, we introduce some notation necessary
for the statement of our main results which are stated in the next section. First,
given a probability measure π on R and some function f ∈ L1(π), we write π(f )

the Lebesgue integral

π(f ) :=
∫

f (x)π(dx) and we let θ be the identity function θ(x) := x.

Throughout this article, ∂nf stands for the nth derivative of some smooth function
x �→ f (x) w.r.t. the parameter x. When n = 1, we write ∂f instead of ∂1f .

Given some real valued stochastic process Xt , whenever they exist for any n ≥ 1
and any time horizon t ≥ 0, we set

|X| := sup
t≥0

|Xt |, |||Xt |||n := E
[‖Xt‖n]1/n and |||X|||n := sup

t≥0
|||Xt |||n.

The σ -distance on R+ and the corresponding Wasserstein distance (a.k.a.
Kantorovich–Monge–Rubinstein metric) is defined by the formula

dσ (x, y) :=
∣∣∣∣∫ y

x
σ−1(z) dz

∣∣∣∣ and

Dσ (μ1,μ2) := inf
{∫

dσ (x1, x2)μ
(
d(x1, x2)

)}
.

In the above display, σ stands for some positive function on R+, and the infimum
is taken over all coupling probability measures μ on R

2+ with the first and second
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marginals equal to μ1 and μ2. The variational form of the distance dσ is given by
the formula

dσ (x, y) = sup
{∣∣f (x)− f (y)

∣∣ f ∈ C∞(R+) s.t. ‖σ∂f ‖ ≤ 1
}
.

In the above display ‖f ‖ = supx≥0 |f (x)| stands for the uniform norm. In the same
vein, we have the Kantorovich–Rubinstein duality relation:

(1.8) Dσ (μ1,μ2) = sup
{∣∣μ1(f )−μ2(f )

∣∣ : f ∈ Lipσ (R+)
}
.

In the above display, Lipσ (R+) stands for the space of Lipschitz functions f on
the metric space (R+, dσ ) with unit Lipschitz constant; that is, such that∣∣f (x)− f (y)

∣∣ ≤ dσ (x, y).

The Kantorovich–Rubinstein theorem (1.8) on arbitrary compact metric spaces has
been presented in [46, 47]. The extension to separable metric spaces can be found
in [21, 26, 27]; see also [49] for an extension to general metric spaces and Radon
measures. Further details on optimal transport and Wasserstein distance can be
found in the books [74, 75].

The article discusses several Ln-mean error fluctuation estimates as well as a
series of exponential asymptotic stability inequalities. Special attention is paid to
the quantitative nature of the fluctuation and stability results. We track closely the
dependency of the estimation constants and the convergence decays in terms of the
parameters of the model.

We shall distinguish two classes of parameters. First, we introduce parameters
that depend solely on the kinetic parameters of the drift function (A,R,S). Sec-
ond, we introduce parameters that also depend on the choice of the diffusion pa-
rameters (U,V ):

• The first set of parameters depending on the drift parameters (A,R,S) is the
collection of parameters (ı, j, ıκ, jκ) indexed by κ ≥ 0 and defined by

ı := j√
1 + j2

, j := A√
RS

ıκ := κ(1 + ı) and

jκ + 1

ıκ + 1
:= (1 + ı)2(

1 + j2)
.

(1.9)

The above parameters can alternatively be defined in terms of the equilibrium
states (�−,�+) introduced in (1.4) using the formulae

(1.10) � := 1 −�+/�− = 2(1 − ı)−1 ⇐⇒ ı = 1 − 2/�.

Observe the uniform estimates w.r.t. the model parameters

−1 ≤ ı ≤ 1, 0 ≤ jκ + 1

j2 + 1
≤ 4(1 + 2κ) as well as 0 ≤ ıκ ≤ 2κ.
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• Define U := U/R and V := V/S. We also consider the collection of positive
parameters (ζ, ζκ) dependent on the diffusion parameter (U,V ) (as well as on
(A,R,S)) and defined by the formulae

(1.11) ζ := ı + 1

j2 + 1
U and ζκ := ıκ + 1

j2 + 1
U + jκ + 1

j2 + 1
V .

Observe the uniform estimates w.r.t. the drift parameter A given by

0 ≤ ζ ≤ 2U with 0 ≤ ζκ ≤ (2κ + 1)(U + 4V ).

As mentioned above, these parameters allow us to quantify with some precision
the constants arising in the fluctuation and the stability inequalities in terms of the
model parameters. For instance, when A = 0 the above parameters resume to

ı = j = 0 and ıκ = jκ = κ

=⇒ � = 2 and ζ = U and ζκ = (κ + 1)(U + V ).

Also observe that

(1.12) σ̂ (x) := xı+1 =⇒ dσ̂ (x, y) := |ı|−1∣∣x−ı − y−ı
∣∣,

with the convention dσ̂ (x1, x2) = | logx1 − logx2| when ı = 0.
Finally, we write c, cn, ci,n, ci,n(x), . . . some positive universal constants and

parameters whose values may vary from line to line, but they only depend on
some parameters i, n, x, etc., as well as on the parameters of the Riccati processes
(A,R,S,U,V ), but importantly not on the time horizon.

2. Statement of the main results and article organisation.

2.1. A uniform bias and fluctuation theorem. The first main objective of this
article is to quantify the bias and the fluctuations of the diffusion process Xt in
(1.1) around the limiting Riccati equation xt in (1.3) as ε → 0. These regular-
ity properties are also used to analyse the fluctuations of the stochastic Ornstein–
Uhlenbeck process Zt in (1.5) around the limiting diffusion Zt introduced in (1.7).
In both situations, we provide a series of refined uniform Ln-type estimates w.r.t.
the time horizon.

Our first main result takes basically the following form.

THEOREM 2.1. The nth moments of the stochastic flow �ε(x) are uniformly
bounded as soon as n ≥ 1 and ε ≥ 0 are chosen so that (n − 1)ε2V < 2. In this
situation, for any x ∈ R+ we have the uniform estimates∣∣∣∣∣∣�ε(x)− φ(x)

∣∣∣∣∣∣
n ∨ |||Z − Z |||n ≤ c1,n(x)ε.

In addition, we have the uniform fluctuation and bias estimates∣∣∣∣∣∣�ε(x)− φ(x)− εV(x)
∣∣∣∣∣∣
n ≤ c2,n(x)ε

2 and∣∣E(
�ε(x)

) − φ(x)− ε2
W(x)

∣∣ ≤ c3,n(x)ε
3,
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for some processes (Vt (x),Wt (x)) and some finite functions ci,n(x) which are
explicitly defined in terms of the model parameters.

For a more precise statement and a detailed description of (Vt (x),Wt (x)) and
ci,n(x), we refer the reader to Section 4 and Section 6; see, for instance, Theo-
rem 4.2 and Corollary 6.2.

In contrast with the multivariate stochastic analysis developed in [12], we em-
phasise that the uniform estimates w.r.t. the time horizon in the one-dimensional
models considered in this article do not require stability of A.

The stochastic analysis developed in the present work relies on specific prop-
erties of one-dimensional diffusions. Section 3 provides a brief review on the
regularity properties of Riccati semigroups. Their smoothness and the continuity
properties are discussed in Section 3.1 and in Section 3.2. The stochastic analysis
developed in this article combines Riccati semigroup techniques with fluctuating
random fields methods. This methodology, as well as a precise description of the
bias and fluctuation estimates of stochastic Riccati diffusions are described in Sec-
tion 4. The analysis of stochastic Ornstein–Uhlenbeck processes is discussed in
Section 6

2.2. Contraction and stability theorems. The second objective in this article
is to analyze the stability properties of the Riccati diffusion Xt in (1.1) as t → ∞.
We denote by P ε

t be the semigroup associated with the stochastic flow �ε
t ; that is

for any bounded measurable function f and any probability measure μ on R+ we
have

P ε
t (f )(x) := E

(
f

(
�ε

t (x)
))

and μ = Law(X0)

=⇒ μPε
t := Law(Xt).

(2.1)

The stability of the Riccati diffusion (1.1) is quite generally considered in Sec-
tion 5. In Section 6, these stability properties are used to analyse the long-time
behaviour of the stochastic Ornstein–Uhlenbeck process (1.5).

The description of the reversible measures πε of the semigroup P ε
t are discussed

in some details in Section 5.1. We preview that discussion and note that πε is a
heavy-tailed distribution whenever V > 0. When V = 0, the stationary measure
πε is a weighted Gaussian distribution restricted to the half-line. This means that
we must carefully account for the values of the parameters (U,V ) in the diffusion
function (1.2) in every estimate.

To describe precisely our main results, we need to introduce some terminology.
The stability of the linear process (1.5) is dictated by the stability of the exponential
semigroups defined by

Eε
s,t (x) := exp

[∫ t

s

1

2
∂�

(
�ε

u(x)
)
du

]
and

Es,t (x) := exp
[∫ t

s

1

2
∂�

(
φu(x)

)
du

]
.

(2.2)
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When s = 0, we simplify notation and we write (Eε
t (x),Et (x)) instead of

(Eε
0,t (x),E0,t (x)).
We also recall that the decay rate to equilibrium of xt is given for any time

horizon t ≥ υ > 0 by

c1,υ exp [−λt] ≤ sup
x≥0

∣∣φt(x)−�+
∣∣ ∨ sup

x≥0
Et (x)2 ≤ c2,υ exp [−λt].

The proof of this assertion is provided in Section 3.1; see also the explicit formula
(3.1).

Thus we can expect that the Riccati diffusion (1.1) tends to equilibrium with an
exponential rate that converges toward λ as the parameter ε → 0. We consider the
parameters

(2.3) λ̂ε := λ

(
1 − ε2

2
ζ

)
and λ̂ε,κ := λ

(
1 − ε2

2
ζκ

)
,

where it is implicitly assumed that ε ∈ R+ is chosen s.t. λ̂ε,κ ≥ 0. In this case, we
have

κ ≥ 1 =⇒ ζ ≤ ζκ =⇒ λ̂ε ≥ λ̂ε,κ .

With this notation, our second main result takes basically the following form.

THEOREM 2.2. There exists some parameter ε� ∈ R+ such that for any time
horizon t > 0, any ε ∈ [0, ε�], and any probability measures μ1, μ2 on R+ we have
the contraction inequality

(2.4) Dσ̂

(
μ1P

ε
t ,μ2P

ε
t

) ≤ exp [−λ̂εt]Dσ̂ (μ1,μ2).

In addition, for any x, x1, x2 ∈R+ we have∣∣∣∣∣∣Eε
t (x)

2∣∣∣∣∣∣
n ≤ c1,n(x) exp [−λ̂ε,nt]

and ∣∣∣∣∣∣�ε
t (x1)−�ε

t (x2)
∣∣∣∣∣∣
n ≤ c2,ndσ̂ (x1, x2) exp [−λ̂εt]

and for any z = (z1, z2) ∈ (R+ ×R)2 we have∣∣∣∣∣∣�(ε,ε)
t (z1)−�

(ε,ε)
t (z2)

∣∣∣∣∣∣2
n/2 ≤ c3,n(z) exp [−λ̂ε,nt].

For a more precise statement of these results, and a description of the param-
eters ε�, c1,n(x), c2,n and c3,n(z), we refer the reader to Section 5.3, Section 5.4
and Section 6; see, for instance, Theorem 5.6, Theorem 5.8, Theorem 5.10 and
Theorem 6.1.

Poincaré inequalities and contraction estimates w.r.t. the Wasserstein distance
associated with the diffusion function σ1 can also be derived under more restrictive
conditions. For example, we have the following result.
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THEOREM 2.3. Assume that V = 0 and 0 ≤ ε2U ≤ 2 and A ∈ R is chosen
such that

λε = −A+
√

3RS

(
1 − ε2

2
U

)
> 0.

In this case, for any probability measures μ1, μ2 on R+ we have the contraction
inequality

(2.5) Dσ1

(
μ1P

ε
t ,μ2P

ε
t

) ≤ exp [−λεt]Dσ1(μ1,μ2).

In addition, the reversible measure πε of the semigroup P ε
t satisfies the Poincaré

inequality

2λε
[
πε

(
f 2) − πε(f )2] ≤ πε

(
σ 2
ε (∂f )2) =⇒

πε

([
P ε
t (f )− πε(f )

]2)1/2 ≤ exp [−λεt]πε

([
f − πε(f )

]2)1/2
.

(2.6)

We refer to Lemma 5.3 and Theorem 5.4 in Section 5.3 for a more detailed
exposition of this result with various combinations of (U,V ). For example, other
estimates of λε are given in Lemma 5.3 in Section 5.3 for other combinations of
the parameters (U,V ).

Surprisingly, when V = 0, and for negative values of A, the parameter λε is
greater than the decay rate λ of the deterministic Riccati semigroup. That is, the
Riccati diffusion converges faster to the invariant measure than the deterministic
Riccati does to its fixed point. More specifically, under the assumptions of the
above theorem, when U = R we have

dσ1(x1, x2) = 2√
R

|√x1 − √
x2| and

λε

λ
= |j | +

√
3(1 − ε2/2)√
1 + j2

> 1.

In this case, a closer inspection shows that the invariant measure πε with these
parameters has lighter-weighted Gaussian-type tails; see (5.5) in Section 5.1.

In a different direction, whenever U = 0, Theorem 5.4 shows that the parameter
λε is larger than the decay rate λ of the Riccati semigroup for any positive values
of A. For instance, using the estimates stated in Lemma 5.3 when A ≥ 0 = U and
V = S we have

dσ1(x1, x2) = 2√
S

∣∣∣∣ 1√
x1

− 1√
x2

∣∣∣∣ and
λε

λ
= j +

√
3(1 − 3ε2/2)√
1 + j2

> 1.

Finally, we point to the later work also in [11], for a matrix-valued (partial) ex-
tension of the stability analysis considered herein, and which also accommodates
unstable A matrices.
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2.3. Applications to ensemble Kalman filters. Lastly, Section 7 is dedicated
to the illustration of these results in the context of ensemble Kalman–Bucy filters
(EnKF) which are of interest in data assimilation problems. To underline the im-
pact of our results, we preview several corollaries which can be derived as direct
consequences of the main theorems stated above.

Consider a time-invariant linear-Gaussian filtering model of the following form:

(2.7) dXt = AXt dt +R1/2 dWt and dYt = BXt dt +�1/2 dVt ,

where (Wt ,Vt ) is an 2-dimensional Brownian motion, X0 is a Gaussian random
variable with mean and variance (E(X0),P0) (independent of (Wt ,Vt )), �,R > 0,
A,B ∈ R, Y0 = 0 and we set S = B2/�. We let Yt = σ(Ys, s ≤ t) be the σ -
algebra filtration generated by the observations. The conditional distribution ηt =
Law(Xt |Yt ) of the signal internal states Xt given Yt is a Gaussian distribution
with a conditional mean and a conditional variance given by

Mt := E(Xt |Yt ) and Pt := E
([

Xt −E(Xt |Yt )
]2)

.

Ensemble Kalman–Bucy filters can be interpreted as a (nonunique) mean field
particle approximation of the Kalman–Bucy filtering equation. We refer to Sec-
tion 7 for a more description of the sample mean M̂t and the sample variance P̂t

associated with the three different versions of the EnKF discussed in the present
article. We consider also the “re-centered” process Ẑt := (M̂t −Xt ) that measures
the difference between the sample mean and the true signal state.

As shown in Sections 7.1 and 7.2, the evolution equations of the three different
versions of (P̂t , Ẑt ) coincide with the ones of (Xt ,Zt ) defined in (1.1) and in
(1.5) with the three combinations of parameters (U,V ) ∈ {(R,S), (R,0), (0,0)}.
Each of these three combinations corresponds to a particular instance of the EnKF
algorithm; see Section 7.1.

We begin with uniform fluctuation estimates w.r.t. the time horizon.

COROLLARY 2.4. Suppose that M̂0 = M0 and P̂0 = P0. For any n ≥ 1 and
for sufficiently large N ≥ 1, we have the uniform estimates:√

N |||P̂ − P|||n ≤ c1,n and
√
N |||M̂ − M |||n ≤ c2,n.

The l.h.s. assertion in the above corollary is a direct consequence of Theo-
rem 2.1. The r.h.s. estimate is given in Corollary 7.1.

To give a flavour of our stability results in this context, the next corollary of
Theorem 2.2 concerns the stability and the fluctuation of the EnKF associated
with the parameters (U,V ) = (R,0). In this case, the parameters introduced in
(2.3) resume to

ζ := ı + 1

j2 + 1
≤ 2 and ζκ := ıκ + 1

j2 + 1
≤ 2κ + 1,

with the parameters (ı, j, ıκ) defined in (1.9). We denote by (P̂t ,M̂t ) and
(P̂ ′

t ,M̂
′
t ) the processes starting from two possibly different initial conditions.
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COROLLARY 2.5. For any n ≥ 1 and any t > 0, we have

(2.8) N > 2ζ2n =⇒ ∣∣∣∣∣∣M̂t − M̂ ′
t

∣∣∣∣∣∣
n ≤ c1,n exp

[
−λ

(
1

2
− ζ2n

N

)
t

]
,

and

(2.9) N > 2ζ =⇒ ∣∣∣∣∣∣P̂t − P̂ ′
t

∣∣∣∣∣∣
n ≤ c2,n exp

[
−λ

(
1 − 2ζ

N

)
t

]
.

The first assertion is a consequence of Corollary 7.3. The second asser-
tion is a direct consequence of Corollary 7.2. The other cases of (U,V ) ∈
{(R,S), (R,0), (0,0)} are considered in Section 7.3.

The exponential decay of the exponential semigroup (2.2) discussed in Theo-
rem 2.2 play a central role in the stability of the pair process (P̂t , Ẑt ). For large
time horizons, the Lyapunov exponent of the stochastic Ornstein–Uhlenbeck pro-
cess (1.5) can be estimated by the formula

(2.10)
1

t
logEε

t (P̂0) = 1

t

∫ t

0
(A− P̂sS) ds �t→∞ A− πε(θ)S,

where πε stands for the reversible measure (5.3) when V > 0 and in (5.5) when
V = 0. The next corollary is a restatement of Corollary 5.1 and provides estimates
of the Lyapunov exponent (2.10).

COROLLARY 2.6. Assume that V = 0 and let Law(P̂0) = πε be the re-
versible probability measure defined in (5.5) with ε = 2/

√
N . In this situation,

for any t > 0 we have

N > 4 =⇒ −
√
A2 +RS ≤ A−E(P̂t )S ≤ −

√
A2 +RS

(
1 − 4

N

)
< 0.

Now assume that V = S and let Law(P̂0) = πε be the reversible probability mea-
sure defined in (5.3) with ε = 2/

√
N . In this situation, for any t > 0 we have

N > 4 =⇒

−
√
A2 +RS ≤ A−E(P̂t )S ≤ −

√
A2 +RS(1 − (4/N)2)− 4A/N

1 + 4/N
< 0.

3. Properties of Riccati semigroups.

3.1. Smoothness properties. We recall that the Riccati semigroup φt associ-
ated with the parameters (A,R,S) is given in closed form by the formula

(3.1) φt(x) = �+ + (x −�+)
(�+ −�−)e−λt

(�+ −�−)e−λt + (x −�−)(1 − e−λt )
.
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The regularity properties Riccati semigroups are rather well understood in any
dimension. We refer to [9, 10] for a review on the stability properties of Riccati
semigroups and related Kalman–Bucy diffusion processes. In the one-dimensional
case, these properties can be easily checked using the explicit form given above.
For instance, for any υ > 0 we have the uniform estimates

0 < φυ(0)

≤ inf
x≥0

inf
t≥υ

φt (x)

≤ sup
x≥0

sup
t≥υ

φt (x)

≤ �+ + (
eλυ − 1

)−1
(�+ −�−) ≤ cυ(2�+ −�−).

(3.2)

When x ≤ �+, we have φt (x) ≤ �+. When x >�+ for any t ≥ υ , we have

φt(x)−�+
�+ −�−

= x −�+
(�+ −�−)eλt + (x −�+)(eλt − 1)

≤ e−λt

1 − e−λυ
.

We also have

φt(x) = �+ + �+ −�−
λ

∂t log
[
(�+ −�−)e−λt + (x −�−)

(
1 − e−λt )].

This yields for any s ≤ t the formula

Et (x) = exp [−λt/2] 1

(�+ −�−)e−λt + (x −�−)(1 − e−λt )

≤ exp [−λt/2] 1

�+e−λt −�−
=⇒ Eε

t (x)
2 ≤ (−�−)−1 exp [−λt].

We also have the rather crude estimates

(3.3) x ∧�+ ≤ inf
t≥0

φt(x) ≤ φ�(x) := sup
t≥0

φt(x) = �+ ∨ x.

Observe that the inverse flow φ−1
t (x) = 1/φt (x) satisfies the same equation as

in (1.3) by replacing (A,R,S) by (A−,R−, S−) := (−A,S,R). The extension of
this result to the inverse of the stochastic flow is given below. The proof is a direct
application of Itô’s formula, thus it is skipped.

LEMMA 3.1. Assume that R ≥ ε2U . For any x > 0, the inverse semigroup
�−ε

t (x) := 1/�ε
t (x) satisfies the stochastic Riccati equation

(3.4) d�−ε
t (x) = �−ε

(
�−ε

t (x)
)
dt + σ−ε

(
�−ε

t (x)
)
dWt,

with the drift and the diffusion functions

�−ε(x) = 2A−x +R−ε − S−εx
2, σ−ε(x) = ε

√
x
[
U− + V−x2

]
,
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defined respectively in terms of the parameters

A− = −A, R−ε := (
S + ε2V

)
,

S−ε := (
R − ε2U

)
and (U−,V−) = (V ,U).

(3.5)

Using elementary differentiations, we check the following lemma.

LEMMA 3.2. For any x ∈R+ and n ≥ 1, we have

(3.6) ∂nφt (x) = n!(−1)n+1 (�+ −�−)2[1 − e−λt ]n−1e−λt

[e−λt (�+ −�−)+ (1 − e−λt )(x −�−)]n+1 .

In addition, we have the exponential semigroup formula

∂φt (x) = Et (x)2

and the estimates
∣∣∂nφt (x)

∣∣ ≤ n!� 2|�−|−(n−1) exp [−λt].
(3.7)

The l.h.s. formula in (3.7) comes from the evolution equation

∂t
(
∂φt (x)

) = 2
(
A− Sφt (x)

)
∂φt (x).

For instance, we have

� 2 ≥ eλt∂φt (x) ≥ �(x)2

with the function �(x) := 1 − (�+ ∨ x)−�+
(�+ ∨ x)−�−

.
(3.8)

In the same vein, we have � 2e−λt/�− ≤ 2−1∂2φt(x) < 0. This shows that x �→
φt(x) is a concave increasing function.

3.2. Robustness properties. Let φt(x) be the Riccati semigroup associated
with some parameters (R,S) such that

R ≥ R and S ≥ S.

We denote by (λ,�+,�−) the parameters defined as (λ,�+,�−) by replac-
ing (R,S) by (R,S). To simplify the presentation, we write (λ,λ) instead of
(λ(R,S), λ). In this notation, it is easily checked that

(3.9) �− ≤ �− < 0 <�+ ≤ �+.

PROPOSITION 3.3. For any x ∈ R+, we have the estimate

(3.10) 0 ≤ φt(x)− φt(x) ≤ 2(λ+ λ)−1��
([R −R] + [S − S]φ�(x)

2)
.
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PROOF. We have
∂t

[
φt(x)− φt(x)

] = (
2A− S

[
φt (x)+ φt(x)

])[
φt(x)− φt(x)

]
+ [R −R] + [S − S]φt(x)

2.

On the other hand, we have

exp
[∫ t

s

(
A− Sφu(x) du

)]
exp

[∫ t

s

(
A− Sφu(x) du

)]
≤ ��e−[λ+λ](t−s)/2 exp

[∫ t

s
(S − S)φu(x) du

]
≤ ��e−[λ+λ](t−s)/2

⇐= S ≤ S.

This yields the formula

0 ≤ φt(x)− φt(x)

=
∫ t

0
exp

[∫ t

s

(
2A− S

[
φu(x)+ φu(x)

]
du

)]([R −R] + [S − S]φs(x)
2)
ds,

from which the proof of the proposition is easily completed. �

4. Fluctuation analysis of Riccati diffusions.

4.1. Fluctuation random fields. Consider the first- and second-order fluctua-
tion random fields defined by the formulae

V
ε
t (x) := ε−1[

�ε
t (x)− φt(x)

]
,

W
ε
t (x) := ε−1[

V
ε
t (x)−Vt (x)

]
, and set

W
ε

t (x) := ε−1[
E

(
W

ε
t (x)

) −Wt (x)
]
.

In the above display, Vt (x) and Wt (x) stands for the processes defined by

Vt (x) :=
∫ t

0
(∂φt−s)

(
φs(x)

)
σ1

(
φs(x)

)
dWs,

Wt (x) := 1

2

∫ t

0

(
∂2φt−s

)(
φs(x)

)
σ 2

1
(
φs(x)

)
ds < 0.

The bias and the fluctuation of �ε
t around φt as ε → 0 are encapsulated respec-

tively in the deterministic and the stochastic processes Wt (x) and Vt (x). More
precisely, we have

�ε
t (x) = φt(x)+ εVt (x)+ ε2

W
ε
t (x) and

E
[
�ε

t (x)
] = φt(x)+ ε2

Wt (x)+ ε3
W

ε

t (x).

The first part of the article is concerned with quantitative and uniform estimates
of the fluctuation random fields introduced above. Most of the estimates developed
in the article are expressed in terms of judiciously chosen collections of Riccati
semigroups.
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4.2. Uniform fluctuation estimates. The objective of this section is to analyse
the fluctuations of the random fields Vε

t and W
ε
t in terms of the collection of Riccati

semigroups defined below.

DEFINITION 4.1. We let φ(ε,n) be the collection of Riccati semigroups in-
dexed by the parameters ε ∈ R+ and n ∈ R, and defined as φt by replacing (R,S)

by the parameters

(4.1)
(
R(ε,n), S(ε,n)) := (R,S)+ (n− 1)

ε2

2
(U,−V ).

We also denote by (�
(ε,n)
− ,�

(ε,n)
+ , φ

(ε,n)
� , . . .), the objects defined similar to

(�−,�+, φ�, . . .) but with (R,S) replaced by the parameters (R(ε,n), S(ε,n)) in
the corresponding definition.

The semigroups φ(ε,n)
t , resp. φ(ε,−n)

t indexed by n ≥ 0 are well founded as soon
as

(4.2) (n− 1)ε2V < 2 and respectively (n+ 1)ε2U < 2.

Observe that when V = 0 the flow φ(ε,n) is well defined for any ε ∈ R+ and any
n ≥ 0. In addition, we have

ε = 0 =⇒ φ
(0,n)
t = φt = φ

(0,−n)
t and φt = φ

(ε,1)
t .

The Ln-norm of the fluctuation random fields V
ε
t (x) will be estimated in term

of the collection of functions vεn(x) defined by

vεn(x) := �λ

[
ε√
2λ

σ 2
1
(
φ(ε,3n)
� (x)

) − n

2
�−σ1

(
φ(ε,3n/2)
� (x)

)]

−→
ε→0

n� 2
√

2λ
σ1

(
φ�(x)

)
with the parameter �λ = −� 2

�−

√
2

λ
.

The Ln-norm of the random field W
ε
t (x) will be estimated in term of the col-

lection of functions:

wε
n := wε

1,n(x)+wε
2,n(x) and vε,n(x) := 1 ∨ ∣∣∣∣∣∣Vε(x)

∣∣∣∣∣∣
n,

with

wε
1,n(x) := �λ

[
nvε,n(x)σ1

(
φ�(x)

) + 1√
2λ

σ 2
1
(
φ(ε,3n)
� (x)

)]
,

wε
2,n(x) := 3n

2
�λ

[
Uφ−

� (x)+ √
UV + V φ(ε,n)

� (x)/2
]1/2

× [
2εv2

ε,4n − vε,2n(x)�−
]
.
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In the above display, φ−
� (x) stands for the supremum of the inverse φ−1

t (x) Riccati
semigroup w.r.t. the time horizon. Finally, the estimate of the bias W

ε

t (x) devel-
oped below is expressed in terms of the functions:

wε(x) := �λvε,4(x)
2[
σ 2

1
(
φ�(x)

) + (
U/3 + 4V φ(ε,4)

� (x)2)
(3ε −�−)

]
with �λ := 3

λ

(
�

�−

)2
.

We are now in a position to state the main result of this section.

THEOREM 4.2. For any x ∈R+, ε ∈ R+, and any n ≥ 1 such that (4.2) holds,
we have the norm estimates

φ
(ε,−1)
t (x) ≤ ∣∣∣∣∣∣�ε

t (x)
∣∣∣∣∣∣
n ≤ φ

(ε,n)
t (x) and

φ
(ε,−n)
t (x) ≤ ∣∣∣∣∣∣�ε

t (x)
−1∣∣∣∣∣∣−1

n ≤ φt(x).

(4.3)

In addition, we have the uniform fluctuation estimates∣∣∣∣∣∣Vε(x)
∣∣∣∣∣∣
n ≤ vεn(x),

∣∣∣∣∣∣Wε(x)
∣∣∣∣∣∣
n ≤ wε

n(x) and

sup
t≥0

∣∣Wε

t (x)
∣∣ ≤ wε(x).

(4.4)

The proof of the nth moment estimates (4.3) and the uniform estimates (4.4) are
lengthy and technical. They are provided respectively in Section A.1–A.2.

The estimates stated in the above theorem are sharp when ε → 0, in the sense
that all the Riccati semigroups discussed above converge to φt as ε ↓ 0. We end
this section with some comments about these properties.

First, observe that for any parameters 0 ≤ ε2 ≤ ε1 and 1 ≤ n1 ≤ n2 satisfying
(4.2) we have the following monotonicity properties:

φ
(ε1,−n2)
t ≤ φ

(ε1,−n1)
t ≤ φ

(ε2,−n1)
t ≤ φt ≤ φ

(ε2,n1)
t

≤ φ
(ε1,n1)
t ≤ φ

(ε1,n2)
t .

(4.5)

The above inequalities are direct consequences of the estimate (3.10) stated in
Proposition 3.3. The difference between φ

(ε,n)
t and φt can be quantified in terms

of the parameter ε using the estimates stated in Proposition 3.3.
When V > 0 we emphasise that the Riccati semigroups φ

(ε,n)
t (x) are only de-

fined when the l.h.s. condition in (4.2) is satisfied. Therefore, we cannot expect
to have an uniform estimate of φ(ε,n)

� (x) w.r.t. the fluctuation parameter ε for any
values of n.
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5. Stability analysis of Riccati diffusions.

5.1. Reversible probability measures. The infinitesimal generator L of the dif-
fusion Xt defined in (1.1) is given by the differential operator

(5.1) L = 1

2
σ 2
ε ∂

2 +�∂ =⇒ df (Xt) = L(f )(Xt) dt + dMt(f ).

Recall that the martingale dMt(f ) := σε(Xt)∂f (Xt) has an angle bracket given
for any smooth functions f and g on R by

∂t
〈
M(f ),M(g)

〉
t = �L(f,g)(Xt),

with the “carré du champ” operator

�L(f,g) := L(fg)− gL(f )− fL(g) = σ 2
ε ∂f ∂g.

The second-order differential operator L discussed above can be rewritten as

(5.2) L(f ) = 1

2
σ 2
ε e

−Uε ∂
(
eUε ∂f

)
with Uε(x) := 2

∫ x

p

�(y)

σ 2
ε (y)

dy,

where p is an arbitrary point in ]0,∞[. We set

mε(x) =:
∫ x

0
qε(y) dy with qε(x) := 2σ−2

ε (x) exp
(
Uε(x)

)
and

sε(x) :=
∫ x

p
exp

(−Uε(y)
)
dy.

The unnormalized measure with density mε(x) is often called a speed measure,
and sε a scale function. We further assume that 0 ≤ ε2U < 2.

The Sturm–Liouville formulation of the generator L given in (5.2) shows that a
reversible measure of the Riccati diffusion (1.1) is given by the formula

πε(dx) = 1

Zε

1R+(x)
1

σ 2
ε (x)

exp
(
Uε(x)

)
dx,

where Zε stands for some normalizing constant. Different type of reversible prob-
ability distributions can obtained depending on the choice of the parameters.

• When U ∧ V > 0, the measure πε is the heavy tailed probability measure

πε(dx) ∝ 1R+(x)
x

2
ε2

R
U

−1

[U + V x2]1+ 1
ε2 (

R
U

+ S
V
)

× exp
[

4

ε2

A√
UV

tan−1
(
x

√
V

U

)]
dx.

(5.3)

Observe that

(5.4)
∫ ∞

0
x−ıπε(dx) < ∞ ⇐⇒ −ıε2V < 2 and ıε2U < 2,
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with the parameter ı defined in (1.9). More specifically, when A< 0 the condi-
tion ıε2U < 2 is automatically satisfied. Conversely, when A> 0, the condition
−ıε2V < 2 is satisfied.

• When U > 0 and V = 0, the probability measure πε reduces to

(5.5) πε(dx) ∝ 1R+(x)x
2
ε2

R
U

−1
exp

[
− S

Uε2

(
x − 2

A

S

)2]
dx.

Observe that

(5.6)
∫ ∞

0
x−ıπε(dx) < ∞ ⇐⇒ ıε2U < 2.

In contrast with (5.4), the r.h.s. condition of (5.6) is automatically satisfied for
any A< 0.

• When V > 0 and U = 0, the probability measure πε takes the form

πε(dx) ∝ 1R+(x)x
−[ 2

ε2
S
V

+3]
exp

[
− R

V ε2

(
1

x
+ 2

A

R

)2]
dx.

Observe that ∫ ∞
0

x−ıπε(dx) < ∞ ⇐⇒ ıε2V < 2.

• When U > 0 and V = 0 = S > A, the probability measure πε reduces to the
Gamma distribution

πε(dx) ∝ 1R+(x)x
2
ε2

R
U

−1
exp

(
4

ε2

A

U
x

)
dx.

When ε2U < 2, the function ∂xsε is not integrable around the origin so that 0 is
repelling. On the other hand, the function qε is integrable around the origin so
that 0 is also a regular boundary state. We also have limx→∞ mε(x) < ∞ and
limx→∞ sε(x) = ∞. This shows that the boundary states 0 and ∞ are both regular
and repellent. For a more thorough discussion on the classification of boundary
states, we refer to [1, 44], and the more recent review articles [33] and [61].

Applying (4.3) with n = 1 and letting t → ∞, we have the bias estimate

A+
√
A2 +RS(1 − ε2U)(1 + ε2V )

S(1 + ε2V )
≤ πε(θ) ≤ �+

with θ(x) := x. This yields the following corollary.

COROLLARY 5.1. For any ε2U < 1, we have

(5.7) A−�+S ≤ A− πε(θ)S ≤ −
√
A2 +RS(1 − ε2U)(1 + ε2V )− ε2AV

1 + ε2V
.
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5.2. Tangent processes. The second part of the article is dedicated to the sta-
bility properties of the Riccati diffusion process. First, observe that the long time
behaviour of one-dimensional Riccati semigroups is encapsulated into the expo-
nential decays of the tangent process τt (x) defined below

(3.7) and (3.8)

=⇒ �(x)2e−λt ≤ τt (x) := ∂φt (x) = Et (x)2 ≤ � 2 exp [−λt]

=⇒ 1

t
log τt (x) −→

t→∞∂�(�+) = −λ.

(5.8)

In the same manner, x → �ε
t (x) is almost surely differentiable, and the tangent

process

T ε
t (x) := ∂�ε

t (x) =⇒ dT ε
t (x) = [

∂�
(
�ε

t (x)
)
dt + ∂σε

(
�ε

t (x)
)
dWt

]
T ε
t (x)

is given by the exponential formula

σ1(x)T ε
t (x) = σ1

(
�ε

t (x)
)

exp
[
−

∫ t

0
Hε(�ε

s(x)
)
ds

]
≤ σ1

(
�ε

t (x)
)

exp [−λεt],
(5.9)

with the potential function Hε on R+ defined by

Hε := σ−1
ε L(σε)− ∂� = −∂�+ ∂σ1

σ1
�+ ε2

2
σ1∂

2σ1 and

λε := inf
x≥0

Hε(x).

(5.10)

The r.h.s. estimate in (5.9) provides an almost sure exponential decay of the tangent
process. In addition, using (2.1) for any bounded differentiable function f on R+
and any x > 0 we have the formula

(5.11) ∂P ε
t (f )(x) = E

[
∂f

(
�ε

t (x)
)
T ε
t (x)

]
.

To get one step further in our discussion, let �
ε
t be the stochastic Riccati flow

associated with the parameters

(5.12) Rε := R

(
1 + ε2

2
U

)
and Sε = S

(
1 − 3ε2

2
V

)
.

In this notation, the stochastic version of (5.8) is given by the following proposi-
tion.

PROPOSITION 5.2. For any bounded measurable function f on R+, any x ∈
R+, and any time horizon t ≥ 0 we have the Feynman–Kac formula

(5.13) E
[
f

(
�ε

t (x)
)
T ε
t (x)

] = E

[
f

(
�

ε
t (x)

)
exp

[∫ t

0
∂�

(
�

ε
s(x)

)
ds

]]
.

The proof of the above proposition is provided in Section C.1.
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5.3. Contraction inequalities. The next lemma that can be used to quantify the
almost sure decay rate of the tangent process (5.9) in terms of the drift parameters
(A,R,S) and the diffusion parameters (U,V ).

LEMMA 5.3. Let λε be the parameter defined in (5.10). The following asser-
tions hold:

V = 0 and ε2U ≤ 2 =⇒ λε = −A+
√

3RS

(
1 − ε2

2
U

)
;

U = 0 and ε2V ≤ 2/3 =⇒ λε = A+
√

3RS

(
1 − 3ε2

2
V

)
;

ε2U ≤ 2 and
3ε2V

1 + 3ε2V
≤ 2/3 =⇒

λε ≥ −|A| +
√
RS

[
1 − ε2

2
U

][
1 + 3ε2V

(
S − 3

2

)]
.

The proof of this lemma is technical, and it is given in the Appendix C.2.

THEOREM 5.4. Assume that λε defined in (5.10) is positive. The Wasserstein
contraction inequality (2.5), and the Poincaré inequality (2.6), stated in Theo-
rem 2.3 are satisfied.

The proof of the preceding theorem is given in Section B.2. The preceding the-
orem is more general than the example case given in Theorem 2.3 with V = 0.

The estimates stated in Lemma 5.3 and Theorem 5.4 are clearly not satisfactory
when U �= 0 and A > 0 as they require that A <

√
RS. However, when U = 0,

the estimates are not really useful when A< 0, as they require that |A| < √
3RS.

Roughly speaking, to improve the estimates discussed above, we need to interpo-
late between these two cases. More precisely, observe that the semigroup deriva-
tive formula (5.11) is expressed in terms of the exponential type process (5.9).
Formula (5.11) can be seen as the expectation w.r.t. to law of the process �ε

t (x)

weighted by some exponential potential function. In terms of importance sam-
pling techniques, these Feynman–Kac formulae can be seen as the integral w.r.t.
a twisted process which is more likely to visit regions with low energy type Hε-
values. The state regions with negative Hε-values are more likely to be visited but
the lower bound λε < 0 doesn’t give any information on the killing rate of the
process.

To obtain some more useful estimates, we seek a judicious change of measure
under which the potential function is an absorbing potential. To describe pre-
cisely these twisted models, we need to introduce some additional notation. We
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set

(5.14) R̂ε = R

(
1 − ε2

(
1

2
+ ı

)
U

)
and Ŝε = S

(
1 − ε2

(
1

2
− ı

)
V

)
.

Let ε̂ be the smallest parameter ε ∈R+ such that R̂ε ∧ Ŝε > 0.

DEFINITION 5.5. For any ε ∈ [0, ε̂], let �̂ε
t (x) be the stochastic Riccati flow

associated with the parameters (R̂ε, Ŝε), and denote by P̂ ε
t the corresponding tran-

sition semigroup

P̂ ε
t (f )(x) = E

(
f

(
�̂ε

t (x)
))
.

We also let Ĥε be the collection of potential functions on R+ defined by

Ĥε(x) = 2ı
[
A−

[
1 + ε2

2
ı1V

]
Sx

]
+ ı1

([
1 − ε2

2
ı1U

]
R

x
+

[
1 + ε2

2
ı1V

]
Sx

)
and we consider the the tangent-type process T̂ ε

t (x) defined by

σ̂ (x)T̂ ε
t (x) := σ̂

[
�̂ε

t (x)
]
exp

[
−

∫ t

0
Ĥε

(
�̂ε

s (x)
)
ds

]
with σ̂ (x) := xı1 .

(5.15)

We are now in a position to state the main result of this section.

THEOREM 5.6. For any x ∈ R+, any bounded differentiable function f on
R+, any ε ∈ [0, ε̂], and any time horizon t ≥ 0, we have the Feynman–Kac formu-
lae

(5.16) E
[
f

(
�ε

t (x)
)
T ε
t (x)

] = E
[
f

(
�̂ε

t (x)
)
T̂ ε
t (x)

]
and inf

x≥0
Ĥε(x) ≥ λ̂ε.

In this situation, for any smooth function f , we have the commutation formula

σ̂
∣∣∂P ε

t (f )
∣∣ ≤ exp [−λ̂εt]P̂ ε

t

(
σ̂ |∂f |) =⇒ (2.4).

The proof of the above theorem is given in Section B.3. The proof of the impli-
cation of (2.4) in Theorem 2.2 follows the same line of arguments as the proof of
(2.5), so it is omitted.

Then next corollary is a direct consequence of (2.4) and the estimates (5.4) and
(5.6).

COROLLARY 5.7. For any x > 0, we have

ε2[
ζ ∨ (ıU)∨ (−ıV )

]
< 2 =⇒ lim

t→∞Dσ̂

(
δxP

ε
t , πε

) = 0,

where πε is the measure defined in (5.3) when V > 0, and in (5.5) when V = 0.
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5.4. Exponential semigroups. Our next result is expressed in terms of the col-
lection of uniformly bounded functions

ρε,κ(x) :=
[
1 + �+

φ
(ε,−(ıκ∨1))
1 (0)∨ x

]ı1
exp [3λ] ≤ ρ̂ε,κ

:= sup
x≥0

ρε,κ(x) = ρε,κ(0).
(5.17)

By (4.5), one can check that ε → ρε,κ(0) is a decreasing function. For any κ > 0,
we define εκ be the smallest parameter ε ∈ R+ s.t. λ̂ε,κ ≥ 0, that is,

(5.18) εκ := inf
{
ε ∈ R+ s.t.

ε2

2
ζκ < 1

}
.

We have the following moment stability result on the stochastic exponential
semigroup. The stability of the deterministic version of this semigroup is a funda-
mental result in Kalman–Bucy filtering due originally to Bucy; see [9, 10].

THEOREM 5.8. For any κ > 0, let εκ be defined as in (5.18). For any x ∈ R+,
any time horizon t ≥ 0, and any ε ∈ [0, εκ ], we have the Laplace estimates

(5.19) �(x)2 exp [−λt] ≤ E
[
Eε
t (x)

2κ ]1/κ ≤ ρε,κ(x) exp [−λ̂ε,κ t].

The proof of the preceding theorem is provided in Appendix B.4. Observe that

κ1 ≤ κ2 and ε1 ≤ ε2 =⇒
λκ2,ε2 ≤ λκ1,ε1 and ρε1,κ1(x) ≤ ρε2,κ2(x).

(5.20)

To get one step further, note that

(5.21) �(x1)−�(x2) = [
(A− Sx1)+ (A− Sx2)

]
(x1 − x2).

For any x1, x2 ∈ R+ we set Eε
s,t (x1, x2) = Eε

s,t (x1)Eε
s,t (x2) with the exponential

semigroup Eε
s,t (x) defined in (2.2). Using (5.21), we have

�ε
t (x1)−�ε

t (x2) = Eε
0,t (x1, x2)(x1 − x2)

+ ε

∫ t

0
Eε
s,t (x1, x2)

[
σ1

(
�ε

t (x1)
) − σ1

(
�ε

t (x2)
)]
dWs.

This implies that

E
[
�ε

t (x1)−�ε
t (x2)

] = E
[
Eε

0,t (x1, x2)
]
(x1 − x2).

Combining Theorem 5.8 with the Cauchy–Schwarz inequality we readily get the
following proposition.
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PROPOSITION 5.9. Let ε1 be a parameter defined as in (5.18). For any x1 ≥
x2 ∈ R+, any ε ∈ [0, ε1], and any time horizon t ≥ 0 we have

0 ≤ E
[
�ε

t (x1)
] −E

[
�ε

t (x2)
] ≤ ρ̂ε,1 exp [−λ̂ε,1t](x1 − x2),

with the parameters λ̂ε,1 and ρ̂ε,1 introduced in (2.3) and (5.17).

Recall that �̂ε
t (x) is the stochastic Riccati flow associated with the parameters

(R̂ε, Ŝε). Following Theorem 4.2, the n-moments of this flow can be estimated in
terms of the Riccati semigroups φ̂

(ε,n)
t (x) associated with the parameters

(5.22)
(
R̂(ε,n), Ŝ(ε,n)) = (R̂ε, Ŝε)+ (n− 1)

ε2

2
(U,−V ).

Let (�̂ (ε,n)
− , �̂

(ε,n)
+ ) be the parameters defined as (�−,�+) by replacing the pair

(R,S) by (5.22). In this notation, we have the following theorem.

THEOREM 5.10. For any x ∈ R+, any t > 0, any n ≥ 1, and any ε ∈ R+ s.t.

ε2[
ζ ∨ (

(ın−2 + 2)V
)]
< 2,

we have the contraction inequality

(5.23)
∣∣∣∣∣∣�ε

t (x1)−�ε
t (x2)

∣∣∣∣∣∣
n ≤ [

2�̂ (ε,ın)+ − �̂
(ε,ın)−

]ı1dσ̂ (x1, x2) exp [−λ̂εt].

The proof of the preceding theorem is given in Section B.5.

6. Stochastic Ornstein–Uhlenbeck processes.

6.1. Stability properties. Recalling that Xt is πε-reversible as soon as
Law(X0) = πε , we can easily check that

�
(ε,ε)
t (X0,Z0)

law= �
(ε,ε)
t (X0,Z0)

:= Eε
t (X0)Z0 +

∫ t

0
Eε
s (X0)ςε(Xs) dW ′

s −→
t→∞

∫ ∞
0

Eε
s (X0)ςε(Xs) dW ′

s .

Given the Riccati diffusion Xt , the process Zt is the nonhomogeneous Ornstein–
Uhlenbeck process; that is, we have that

�
(ε,ε)
t (x, z) = Eε

0,t (x)z +
∫ t

0
Eε
s,t (x)ςε

(
�ε

s(x)
)
dW ′

s

=⇒ �
(ε,0)
t (x, z) = Eε

0,t (x)z +
∫ t

0
Eε
s,t (x)ς

(
�ε

s(x)
)
dW ′

s .

(6.1)

We have the following uniform moment bound and stability result.
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THEOREM 6.1. For any (x, z) ∈ (R+ × R), any n ≥ 1, any t ≥ 0, any ε ∈
[0, ε2n], and any ε ∈ [0,1], we have

(6.2)
∣∣∣∣∣∣�(ε,ε)(x, z)

∣∣∣∣∣∣
n ≤ c1,n

(
1 + |z| + x3/2)

with ε2n defined in (5.18). In addition, for any (x1, z1), (x2, z2) ∈ (R+ × R) we
have ∣∣∣∣∣∣�(ε,ε)

t (x1, z1)−�
(ε,ε)
t (x2, z2)

∣∣∣∣∣∣
n

≤ c2,ng(x1, z1, x2, z2) exp [−λ̂ε,2nt/2],
(6.3)

with the function

g(x1, z1, x2, z2) := (
1 + (|z1| ∧ |z2|))(1 + x1 + x2)

3 |x1 − x2|
x1 ∧ x2

+ |z1 − z2|.

The proof of this theorem follows from standard stochastic calculus tools, and
is in Appendix C.3.

6.2. Fluctuation-type properties. Several interesting results can be derived
from the Ornstein–Uhlenbeck formula (6.1):

• The robustness properties w.r.t. the parameter ε are encapsulated into the cen-
tered Gaussian process defined by the formula

�
(ε,ε)
t (x, z)−�

(ε,0)
t (x, z)

= ε2
∫ t

0
Eε
s,t (x)

[
(σ1/ς)

2

1 +
√

1 + ε2(σ1/ς)2

](
�ε

s(x)
)
ς

(
�ε

s(x)
)
dW ′

s .

COROLLARY 6.2. Keeping the hypotheses and notation of Theorem 6.1, we
have

(6.4)
∣∣∣∣∣∣�(ε,ε)(x, z)−�(ε,0)(x, z)

∣∣∣∣∣∣
n ≤ ε2cn(1 + x).

PROOF. Combining Burkholder–Davis–Gundy inequality and the generalized
Minkowski inequality for any n ≥ 1, we have

E
[∣∣�(ε,ε)

t (x, z)−�
(ε,0)
t (x, z)

∣∣n]2/n

≤ ε4n2R−1
∫ t

0
E

[
Eε
s,t (x)

nσ 2n
1

(
�ε

s(x)
)]2/n

ds

≤ ε4n2R−1
∫ t

0
E

[
Eε
s,t (x)

2n]1/n
E

[
σ 4n

1
(
�ε

s(x)
)]1/n

ds.
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Using the uniform moment estimates (4.3) and the Laplace estimates (5.19) we
conclude that∣∣∣∣∣∣�(ε,ε)(x, z)−�(ε,0)(x, z)

∣∣∣∣∣∣
n

≤ ε2nρ̂ε,2n(2Rλ̂ε,2n)
−1/2[

Uφ(ε,2n)
� (x)+ V φ(ε,6n)

� (x)
]
.

This completes the proof of the corollary. �

• When ε = 0 = ε, the flow �
(0,0)
t (x, z) reduces to the nonhomogeneous

Ornstein–Uhlenbeck driven by the Riccati flow φt (x); that is, we have that

�
(0,0)
t (x, z) = E0,t (x)z +

∫ t

0
Es,t (x)ς

(
φs(x)

)
dW ′

s .

COROLLARY 6.3. For any (x, z) ∈ (R+ × R), any n ≥ 1, any t ≥ 0, any ε ∈
[0, ε3n], and any ε ∈ [0,1], we have,

(6.5)
∣∣∣∣∣∣�(ε,ε)(x, z)−�(0,0)(x, z)

∣∣∣∣∣∣
n ≤ cn[1 + x][ε2 + εvε4n(x)(1 + z)

]
with ε3n defined in (5.18).

The proof of the preceding corollary is in Appendix C.4.

7. Ensemble Kalman–Bucy filters. Because of their practical importance,
this section is dedicated to the illustration of our main results within the EnKF
framework. We consider the filtering problem introduced in (2.7).

7.1. A class of McKean–Vlasov diffusions. For any probability measure η on
R, we let Pη be the η-variance

Pη := η
([
θ − η(θ)

]2)
and 2Qη := RP−1

η −PηS with S := B�−1B,

as soon as Pη > 0, with the identity function θ(x) := x. We now consider three
different classes of conditional nonlinear McKean–Vlasov type diffusion processes

(1) dXt = AXt dt +R1/2 dWt

+PηtB�−1[
dYt − (

BXt dt +�1/2 dV t

)];
(2) dXt = AXt dt +R1/2 dWt

(7.1)

+PηtB�−1
[
dYt −B

(
Xt + ηt (θ)

2

)
dt

]
;

(3) dXt = [
AXt +Qηt

(
Xt − ηt (θ)

)]
dt

+PηtB�−1[
dYt −Bηt(θ) dt

]
.
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In all cases, (W t ,V t ,X0) are independent copies of (Wt ,Vt ,X0) (thus indepen-
dent of the signal and the observation path) and

(7.2) ηt = Law(Xt |Yt ).

These diffusions are time-varying Ornstein–Uhlenbeck processes [24], and conse-
quently ηt is Gaussian; see also [9]. These Gaussian distributions have the same
conditional mean Mt = ηt (θ) and the same conditional variance Pt = Pηt = Pηt .
They satisfy the Kalman–Bucy filter

dMt = 1

2
∂�(Pt )Mt dt

+ PtB�−1 dYt with the Riccati equation ∂tPt = �(Pt ).

For a more detailed discussion on the origins, and the nonuniqueness of these
nonlinear McKean interpretations, see [30, 63, 64, 70]. In particular, the case (1)
corresponds to the limiting object in the continuous-time version of the “vanilla”
EnKF [30]; while (2) is the limiting continuous-time object of the (perhaps con-
fusingly named) “deterministic” EnKF of [64], see also [63, 77]; and (3) is a fully
deterministic optimal-transport-inspired version of an ensemble Kalman–Bucy fil-
ter [63, 70].

7.2. Mean field particle interpretations. Ensemble Kalman–Bucy filters
(EnKF) coincide with the mean-field particle interpretation of the nonlinear diffu-

sion processes defined in (7.1). To be more precise, let (W
i

t , V
i

t ,X
i

0)1≤i≤N+1 be
(N + 1) independent copies of (W t ,V t ,X0).

The EnKF associated with the first class (1) of nonlinear process Xt defined in
(7.1) is given by the Mckean–Vlasov type interacting diffusion process

(7.3) dX
i

t = AX
i

t dt +R1/2 dW
i

t + P̂tB�−1[
dYt − (

BX
i

t dt +�1/2 dV
i

t

)]
,

with 1 ≤ i ≤ N + 1, N ≥ 1, and the rescaled particle variance

(7.4) P̂t := (
1 +N−1)

PηNt
with ηNt := (N + 1)−1

∑
1≤i≤N+1

δ
X

i
t

.

Let M̂t = ηNt (θ) be the particle estimate of the conditional mean Mt . From [24],
and via the representation theorem (Theorem 4.2 [48]; see also [25]), there exists
a filtered probability space enlargement under which we have

dP̂t = �(P̂t ) dt + σε(P̂t ) dWt ,
(7.5)

dM̂t = 1

2
∂�(P̂t )M̂t dt + P̂tB�−1 dYt + εσ1(P̂t ) dW ′

t ,

with the parameters

ε := ε√
ε2 + 4

and (U,V ) = (R,S).
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In the above display, (Wt ,W ′
t ) stands for a 2-dimensional Wiener process and

ε := 2√
N

=⇒ ε = 1√
N + 1

.

In the same vein, the EnKF associated with the second class (2) of nonlinear pro-
cess Xt discussed in (7.1) is given by the Mckean–Vlasov-type interacting diffu-
sion process

(7.6) dX
i

t = AX
i

t dt +R1/2 dW
i

t + P̂tB�−1[
dYt − 2−1B

(
X

i

t + ηNt (θ)
)
dt

]
,

with 1 ≤ i ≤ N + 1 and the rescaled particle variance

(7.7) P̂t := (
1 +N−1)

PηNt
with ηNt := (N + 1)−1

∑
1≤i≤N+1

δ
X

i
t

.

Let M̂t = ηNt (θ) be the particle estimate of the conditional mean mt . Arguing as
above, there exists a filtered probability space enlargement under which we find

dP̂t = �(P̂t ) dt + σε(P̂t ) dWt ,

dM̂t = 1

2
∂�(P̂t )M̂t dt + P̂tB�−1 dYt + σε(P̂t ) dW ′

t(7.8)

with (U,V ) = (R,0).

In the last case (3), the particle mean M̂t = ηNt (θ) and the particle variance P̂t

associated with the McKean interpretation (3) discussed in (7.1) satisfy exactly
the same equations as the Kalman–Bucy filter with the associated deterministic
Riccati equation [9]. The “randomness” only comes from the initial conditions.
Thus, the stability analysis of this last class of models (3) reduces to the one of
the Kalman–Bucy filter and the associated Riccati equation. This reduction is true
in any multidimensional filtering setting also. Several exponential estimates, in
any dimension, can be found in the article of [9, 10]; see also [22] for analysis
and applications of this approach in the nonlinear filtering setting. The fluctua-
tion analysis of this third class of EnKF model can also be developed easily by
combining the Lipschitz-type estimates w.r.t. the initial state presented in [9, 10],
with conventional sample mean error estimates based on independent copies of the
initial values; see, for instance, [13] for χ2-type estimates associated with sample
covariance estimates.

The invariant measure of P̂t in (7.4), (7.5) associated with the ‘vanilla’ EnKF
in case (1) is given by (5.3) with (U,V ) = (R,S). Similarly, the invariant measure
of P̂t in (7.7), (7.8) associated with the ‘deterministic’ EnKF in case (2) is given
by (5.5) with (U,V ) = (R,0). As an illustrative example, take A = 20 (i.e., the
underlying signal model is highly unstable), R = S = 1 and N = 6 ⇒ ε = 2/

√
6.

In Figure 1, we compare the invariant measure for the flow of the sample variance
in each case.
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FIG. 1. The invariant measure of the sample variance of the ‘vanilla’ EnKF in case (1), versus that
of the ‘deterministic’ EnKF in case (2).

Of course, we notice in Figure 1 the heavy tails of the invariant measure (5.3) for
the ‘vanilla’ EnKF sample variance, and conversely the Gaussian-type tails in the
case (5.5) of the ‘deterministic’ EnKF. Note also the positioning of the mode/mean
in each case. In case (1) of the ‘vanilla’ EnKF, nth order moments exist only when
(2n − 4)/N is strictly less than one (in this case for n < 5); while all moments
exist in case (2) for the ‘deterministic’ EnKF.

7.3. Fluctuation and stability properties. This section is dedicated to the
stochastic analysis of the diffusion processes discussed in (7.5) and (7.8). We set

Zt := Mt − Xt and Ẑt := M̂t − Xt .

By the representation theorem, the evolution equations associated with the three
different classes of McKean interpretation discussed in (7.1) are given by

dP̂t = �(P̂t ) dt + σε(P̂t ) dWt ,
(7.9)

dẐt = 1

2
∂�(P̂t )Ẑt dt + ς2

ε (P̂t ) dW ′
t ,

with the diffusion functions σε and ς2
ε defined in (1.2) and (1.5) and the respective

parameter in each case given by

(1) (U,V ) = (R,S),

(2) (U,V ) = (R,0) and

(3) (U,V ) = (0,0).

This shows that the bivariate process (P̂t , Ẑt ) is a two-dimensional diffusion
driven by independent Wiener processes with a first component that does not de-
pend on the second. These models are clearly encapsulated in the class of two-
dimensional stochastic processes (Xt ,Zt ) on (R+ × R) discussed in (1.1) and
(1.5). Also observe that

Ẑt − Zt = M̂t − Mt .
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This shows that the analysis of the EnKF performance reduces to the convergence
analysis of the processes Ẑt toward the process Zt as the parameter ε (and thus
ε) tends to 0. The stochastic analysis of the stochastic flows associated with the
pair of diffusion processes (P̂t , Ẑt ) is developed in Section 6. Last, but not least
observe that if ε = 0, the process Ẑt reduces to the re-centered Kalman–Bucy filter

Ẑ t = M̂ t − Xt .

In the above display, the Kalman–Bucy filters M̂ t are defined as Mt by replacing
the solution Pt of the Riccati equation by the stochastic approximation P̂t .

COROLLARY 7.1. Assume that M̂0 = M0 and P̂0 = P0. In this situation,
for any n ≥ 1 there exists some parameter εn ∈ R+ such that for any ε ∈ [0, εn],

|||M̂ − M |||n ≤ c1,n√
N

and |||M̂ − M |||n ≤ c2,n

N + 1
.

The above estimates are a direct consequence of Corollary 6.3 and Corol-
lary 6.2. From Theorem 4.2, we also have the uniform estimate,

√
N |||P̂ − P|||n ≤ c1,n.

Let (M̂t ,P̂t ), and (M̂ ′
t ,P̂

′
t ) denote the EnKF sample mean and sample vari-

ance starting from two possibly different initial conditions. In this situation, we
have

Ẑt = (M̂t − Xt )

Ẑ ′
t = (

M̂ ′
t − Xt

)}
=⇒ Ẑt − Ẑ ′

t = M̂t − M̂ ′
t .

In what follows, ε = 2/
√
N , and λ̂ε > 0 and λ̂ε,κ > 0 are the parameters defined

in (2.3).

COROLLARY 7.2. For any n ≥ 1, any time horizon t ≥ 0, we have

N/2 > ζ ∨ (
(ın−2 + 2)V

) =⇒ ∣∣∣∣∣∣P̂t − P̂ ′
t

∣∣∣∣∣∣
n ≤ cn exp (−λ̂εt).

The above Riccati semigroup contraction estimates are direct consequence of
Theorem 5.10. When (U,V ) = (R,0) we find the estimate (2.9).

The next corollary is a consequence of (6.3) and gives the estimate (2.8) when
(U,V ) = (R,0).

COROLLARY 7.3. For any n ≥ 1, there exists some finite constants cn such
that for any t ≥ 0 we have

N > 2ζ2n =⇒ ∣∣∣∣∣∣M̂t − M̂ ′
t

∣∣∣∣∣∣
n ≤ cn exp [−λ̂ε,2nt/2].
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FIG. 2. Flow of the deterministic Riccati equation, 100 sample paths of the ‘vanilla’ EnKF sample
variance of case (1), and 100 sample paths of the ‘deterministic’ EnKF sample variance of case (2).

We consider an illustration of the fluctuation and stability properties of the sam-
ple variance in the different EnKF variants. Consider again the model leading to
Figure 1, and let P̂0 = 0. The deterministic Riccati flow (ε = 0) with the chosen
model parameters is given in Figure 2, along with 100 sample paths of the sample
variances for both the ‘vanilla’ EnKF and the ‘deterministic’ EnKF.

Note in Figure 2 the drastically reduced fluctuations in ‘deterministic’ EnKF
sample variance sample paths. In Figure 3, we plot the flow of the first two central
moments and the 3rd through the 9th standardised central moments for both the
‘vanilla’ EnKF sample variance, and the ‘deterministic’ EnKF sample variance
distribution. Recall that N = 6 in this case and we expect moments of the ‘vanilla’
EnKF sample variance in case (1) to exist up to n = 4 with n = 5 the boundary
case; while all moments exist for the ‘deterministic’ EnKF of case (2).

We note in Figure 3 that the sample variance moments for the ‘vanilla’ EnKF in
case (1) begin to destabilize around the 5th/6th moments as expected. Importantly,

FIG. 3. Flow of the sample variance moments for the ‘vanilla’ EnKF and the ‘deterministic’ EnKF.
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the mean of the sample variance for the ‘vanilla’ EnKF is very negatively biased in
this case, while the mean of the ‘deterministic’ EnKF in case (2) is particularly ac-
curate. We note also the very large variance in the sample variance for the ‘vanilla’
EnKF.

Lastly, we note that P̂t in (7.4), (7.5) associated with the ‘vanilla’ EnKF of case
(1), has non-globally Lipschitz coefficients. In particular, the drift is quadratic,
while the diffusion has a polynomial growth of order 3/2. It follows by [41] that
a basic Euler time-discretization may blow up, irregardless of the boundedness
properties of the diffusion.

APPENDIX A: PROOF OF THE FLUCTUATION THEOREM

This section is concerned with the proof of the moment and fluctuation estimates
in Theorem 4.2.

A.1. Proof of the moments estimates (4.3).

LEMMA A.1. Assume that the flow t �→ ϕt(x) satisfies a Riccati-type inequal-
ity of the form

∂tϕt (x) ≤ 2Aϕt(x)+R − Sϕt (x)
2

for any t ≥ 0 and any x ∈ R+. In this situation, for any time horizon t ≥ 0 and
x, y ≥ 0 we have

(A.1) ϕt(x) ≤ φt(y)+ exp
(

2
∫ t

0

(
A− Sφs(y)

)
ds

)
(x − y),

where φt denotes the semigroup of the Riccati equation (1.3).

PROOF. We have

∂t
[
ϕt(x)− φt(y)

] ≤ 2A
[
ϕt(x)− φt(y)

] − S
[
ϕt(x)

2 − φt(y)
2]

= 2
(
A− Sφs(y)

)[
ϕt(x)− φt(y)

] − S
[
ϕt(x)− φt(y)

]2

≤ 2
(
A− Sφs(y)

)[
ϕt(x)− φt(y)

]
.

This implies that

∂t

[
exp

(
−2

∫ t

0

(
A− Sφs(y)

)
ds

)[
ϕt (x)− φt (y)

]] ≤ 0 =⇒ (A.1).

This completes the proof of the lemma. �

We are now in a position to prove the moments bias estimates stated in (4.3).
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PROOF OF (4.3). For any n ≥ 1, we have

d�ε
t (x)

n = n

[
�ε

t (x)
n−1(

2A�ε
t (x)+R − S�ε

t (x)
2)

+ n− 1

2
�ε

t (x)
n−2ε2�ε

t (x)
(
U + V�ε

t (x)
2)]

dt

+ εn�ε
t (x)

n−1
√
�ε

t (x)
(
U + V�ε

t (x)
2
)
dWt .

This yields

n−1∂tE
[
�ε

t (x)
n] = 2AE

[
�ε

t (x)
n] +

(
R + n− 1

2
ε2U

)
E

[
�ε

t (x)
n−1]

−
(
S − n− 1

2
ε2V

)
E

[
�ε

t (x)
n+1]

≤ 2AE
[
�ε

t (x)
n] +

(
R + n− 1

2
ε2U

)
E

[
�ε

t (x)
n]1−1/n

−
(
S − n− 1

2
ε2V

)
E

[
�ε

t (x)
n]1+1/n

.

Choosing ε small enough so that (n− 1)ε2 < 2S/V , we find that

∂tE
[
�ε

t (x)
n]1/n = n−1

E
[
�ε

t (x)
n]1/n−1

∂tE
[
�ε

t (x)
n]

≤ 2AE
[
�ε

t (x)
n]1/n +

(
R + n− 1

2
ε2U

)
−

(
S − n− 1

2
ε2V

)(
E

[
�ε

t (x)
n]1/n)2

.

The end of the proof of the upper bound in the l.h.s. estimate in (4.3) is now a
consequence of Lemma A.1. Now we come to the proof of the r.h.s. estimate in
(4.3). By Jensen’s inequality,

E
(
�−ε

t (x)n
)1/n ≥ E

(
�−ε

t (x)
) ≥ E

(
�ε

t (x)
)−1 ≥ φ−1

t (x).

Arguing as above and using Lemma 3.1, we can also check that E(�−ε
t (x)n)1/n ≤

1/φ(ε,−n)
t (x). This completes the proof of the r.h.s. estimate in (4.3). Finally, notice

that

1/φ(ε,−1)
t (x) ≥ E

(
�−ε

t (x)
) ≥ E

(
�ε

t (x)
)−1 =⇒

φ
(ε,−1)
t (x) ≤ E

(
�ε

t (x)
) ≤ E

(
�ε

t (x)
n)1/n

for any n ≥ 1. This completes the proof. �
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A.2. Proof of the fluctuation estimates (4.4). The proof of the uniform esti-
mates are based on the following perturbation lemma.

LEMMA A.2. For any time horizon t ≥ 0, any x ∈ R+ and ε ∈ R+ we have

ε−1[
�ε

t (x)− φt(x)
] =

∫ t

0
(∂φt−s)

(
�ε

s(x)
)[
�ε

s(x)
(
U + V�ε

s(x)
2)]1/2

dWs

+ ε

2

∫ t

0

(
∂2φt−s

)(
�ε

s(x)
)[
�ε

s(x)
(
U + V�ε

s(x)
2)]

ds.

PROOF. By [14], Proposition 2.2, we have

∂sφt−s(x) = −�
(
φt−s(x)

) = −∇φt−s(x)�(x).

We fix t and we use the interpolating path

s ∈ [0, t] �→ φt−s

(
�ε

s(x)
)

between �ε
t (Q) and φt(x).

Applying Itô’s formula on the interval [0, t], we find that

dφt−s

(
�ε

s(x)
) = −(∂φt−s)

(
�ε

s(x)
)
�

(
�ε

s(x)
)
ds + ∂φt−s

(
�ε

s(x)
)
d�ε

s (x)

+ ε2

2

(
∂2φt−s

)(
�ε

s(x)
)[
�ε

t−s(x)
(
U + V�ε

t−s(x)
2)]

ds

= ε2

2

(
∂2φt−s

)(
�ε

s(x)
)[
�ε

s(x)
(
U + V�ε

s(x)
2)]

ds

+ ε∂φt−s

(
�ε

s(x)
)[
�ε

s(Q)
(
U + V�ε

s(Q)2)]1/2
dWs.

This completes the proof of the lemma. �

We are now in a position to prove the uniform fluctuation estimates stated in
Theorem 4.2.

PROOF OF (4.4). For any n ≥ 2, combining (3.8) with Burkholder–Davis–
Gundy and the generalized Minkowski inequalities, we have

E

[∣∣∣∣∫ t

0
(∂φt−s)

(
�ε

s(x)
)[
�ε

s(x)
(
U + V�ε

s(x)
2)]1/2

dWs

∣∣∣∣n]

≤ nnE

[∣∣∣∣∫ t

0
(∂φt−s)

(
�ε

s(x)
)2[

�ε
s(x)

(
U + V�ε

s(x)
2)]

ds

∣∣∣∣n/2]
≤ nn� 2n

[∫ t

0
e−2λ(t−s)[UE

(
�ε

s(x)
n/2)2/n

+ VE
(
�ε

s(x)
3n/2)2/n]

ds

]n/2
.
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Using the moment estimates (4.3), we find that

E

[∣∣∣∣∫ t

0
(∂φt−s)

(
�ε

s(x)
)[
�ε

s(x)
(
U + V�ε

s (x)
2)]1/2

dWs

∣∣∣∣n]1/n

≤ n√
2λ

� 2[
Uφ

(ε, n2 )
� (x)+ V φ

(ε, 3n
2 )

� (x)3]1/2 ≤ n√
2λ

� 2σ1
(
φ
(ε, 3n

2 )
� (x)

)
.

In the same vein, using (3.6) we have

E

[∣∣∣∣∫ t

0

(
∂2φt−s

)(
�ε

s(x)
)[
�ε

s(x)
(
U + V�ε

s(x)
2)]

ds

∣∣∣∣n]1/n

≤ � 2

|�−|
2

λ

[
Uφ(ε,n)

� (x)+ V φ(ε,3n)
� (x)3] ≤ � 2

|�−|
2

λ
σ 2

1
(
φ(ε,3n)
� (x)

)
,

from which we conclude that

E
(∣∣Vε

t (x)
∣∣n)1/n ≤ � 2

√
2λ

[
nσ1

(
φ
(ε, 3n

2 )
� (x)

) + 1

|�−|ε
√

2

λ
σ 2

1
(
φ(ε,3n)
� (x)

)]
.

This completes the proof of the l.h.s. estimate in (4.4). Now we come to the proof
of the second estimate in (4.4). Observe that

∂σ1(x) = 3

2
√
x

U/3 + V x2
√
U + V x2

≤ 3

2
√
x

√
U + V x2 ≤ 3

2
[√U/x + √

V x].

We consider the functions

0 ≤ �[x, y] :=
∫ 1

0
(∂σ1)

(
ux + (1 − u)y

)
du ≤ 3

2

[
2

√
U

x ∨ y
+

√
V (x ∨ y)

]

=⇒ �[x, y]2 ≤
(

3

2

)2[
4

U

x ∨ y
+ V (x ∨ y)+ 4

√
UV

]
and

2

�−
� 2e−λt ≤ �t [x, y] :=

∫ 1

0

(
∂2φt

)(
ux + (1 − u)y

)
du ≤ 0.

With this notation, we have

σ1
[
�ε

s(x)
] = σ1

[
φs(x)

] + [
�ε

s(x)− φs(x)
]
�

[
�ε

s(x),φs(x)
]
,

(∂φt−s)
(
�ε

s(x)
) = (∂φt−s)

(
φs(x)

) + [
�ε

s(x)− φs(x)
]
�t−s

[
�ε

s(x),φs(x)
]
.

By Lemma A.2, we have ε−1[Vε
t (x) − Vt (x)] = B

ε
t (x) + C

ε
t (x), with the bias

term

B
ε
t (x) := 1

2

∫ t

0

(
∂2φt−s

)(
�ε

s(x)
)[
�ε

s(x)
(
U + V�ε

s(x)
2)]

ds.
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The centered remainder term C
ε
t (x) is given by

C
ε
t (x) = εC

1,ε
t (x)+C

2,ε
t (x)+C

3,ε
t (x),

with

C
1,ε
t (x) :=

∫ t

0
V

ε
s (x)

2�
[
�ε

s(x),φs(x)
]
�t−s

[
�ε

s(x),φs(x)
]
dWs,

C
2,ε
t (x) :=

∫ t

0
(∂φt−s)

(
φs(x)

)
V

ε
s (x)�

[
�ε

s(x),φs(x)
]
dWs,

C
3,ε
t (x) :=

∫ t

0
σ1

[
φs(x)

]
V

ε
s (x)�t−s

[
�ε

s(x),φs(x)
]
dWs.

Arguing as above, we have

E
(∣∣C3,ε

t (x)
∣∣n)1/n ≤

√
2

λ
nvε,n(x)

� 2

|�−|σ1
(
φ�(x)

)
.

Combining the Cauchy–Schwarz inequality with the moment estimates (4.3) and
(3.8), we also check that

E
(∣∣C2,ε

t (x)
∣∣n)2/n

≤
(

3n

2

)2
� 4

E

(∣∣∣∣∫ t

0
e−2λ(t−s)

V
ε
s (x)

2[(
4Uφ−

� (x)+ V φ�(x)+ 4
√
UV

)
+ V�ε

s(x)
]
ds

∣∣∣∣n/2)2/n

≤
(

3n

2

)2 2

λ
� 4vε,2n(x)

2[
Uφ−

� (x)+ √
UV + V

(
φ(ε,n)
� (x)+ φ�(x)

)
/4

]
.

The monotone properties (4.5) yield

E
(∣∣C2,ε

t (x)
∣∣n)1/n

≤
(

3

2

)√
2

λ
n� 2vε,2n(x)

[
Uφ−

� (x)+ √
UV + V φ(ε,n)

� (x)/2
]1/2

.

In the same vein, we check that

E
(∣∣C1,ε

t (x)
∣∣n)2/n

≤ (3n)2

� 2−
� 4

E

(∣∣∣∣∫ t

0
e−2λ(t−s)

V
ε
s (x)

4[(
4Uφ−

� (x)+ V φ�(x)+ 4
√
UV

)
+ V�ε

s(x)
]
ds

∣∣∣∣n/2)2/n

≤ (3n)2

� 2−
� 4 2

λ
v4
ε,4n

[(
Uφ−

� (x)+ √
UV

) + V φ(ε,n)
� (x)/2

]
.
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This yields the estimate

E
(∣∣C1,ε

t (x)
∣∣n)1/n ≤ 3n

|�−|�
2

√
2

λ
v2
ε,4n

[
Uφ−

� (x)+ √
UV + V φ(ε,n)

� (x)/2
]1/2

.

We conclude that

E
(∣∣Wε

t (x)
∣∣n)1/n ≤ � 2

|�−|

√
2

λ

[
1√
2λ

σ 2
1
(
φ(ε,3n)
� (x)

) + nvε,n(x)σ1
(
φ�(x)

)]

+ 3n

2

� 2

|�−|

√
2

λ

[
Uφ−

� (x)+ √
UV + V φ(ε,n)

� (x)/2
]1/2

× [
2εv2

ε,4n + vε,2n(x)|�−|].
This completes the proof of the second estimate in (4.4). Now we come to the
proof of the uniform bias estimate stated in the r.h.s. of (4.4). Using (3.6), we have

0 ≤ �t [x, y] :=
∫ 1

0
∂
(
σ 2

1
)
(x)

(
ux + (1 − u)y

)
du ≤ U + 3V (x + y)2,

0 ≤ �t [x, y] :=
∫ 1

0

(
∂2φt

)(
ux + (1 − u)y

)
du ≤ 6� 2|�−|−2e−λt .

On the other hand, we have

σ 2
1
[
�ε

s(x)
] = σ 2

1
[
φs(x)

] + [
�ε

s(x)− φs(x)
]
�

[
�ε

s(x),φs(x)
]
,(

∂2φt−s

)(
�ε

s(x)
) = (

∂2φt−s

)(
φs(x)

) + [
�ε

s(x)− φs(x)
]
�t−s

[
�ε

s(x),φs(x)
]
.

This yields the decomposition

2ε−1[
B
ε
t (x)−Wt (x)

] =
∫ t

0
σ 2

1
[
φs(x)

]
V

ε
s (x)�t−s

[
�ε

s(x),φs(x)
]
ds

+
∫ t

0

(
∂2φt−s

)(
φs(x)

)
V

ε
s (x)�

[
�ε

s(x),φs(x)
]
ds

+ ε

∫ t

0
�

[
�ε

s(x),φs(x)
]
V

ε
s (x)

2�t−s

[
�ε

s(x),φs(x)
]
ds.

Taking the expectations on both sides yield

ε−1∣∣E(
B
ε
t (x)

) −Wt (x)
∣∣

≤ 3

λ
� 2|�−|−2σ 2

1
[
φ�(x)

]
v1,ε(x)

+ 1

|�−|�
2vε,2(x)

∫ t

0
e−λ(t−s)

E
(
�

[
�ε

s(x),φs(x)
]2)1/2

ds

+ ε3� 2|�−|−2vε,4(x)
2
∫ t

0
E

(
�

[
�ε

s(x),φs(x)
]2)1/2

e−λ(t−s) ds.
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On the other hand, we have

sup
t≥0

E
(
�

[
�ε

t (x),φt (x)
]2)1/2 ≤ U + 3V

(
φ�(x)+ φ(ε,4)

� (x)
)2
.

This yields the estimate

ε−1∣∣E(
B
ε
t (x)

) −Wt (x)
∣∣

≤ 3

λ

(
�/|�−|)2

×
(
σ 2

1
[
φ�(x)

]
v1,ε(x)+ [

U + 3V
(
φ�(x)+ φ(ε,4)

� (x)
)2]

×
[ |�−|

3
vε,2(x)+ εvε,4(x)

2
])

. �

APPENDIX B: PROOFS OF RICCATI STABILITY THEOREMS

This section is mainly concerned with the proof of the transition semigroup
estimate stated in Theorem 5.8 and the two contraction theorems, Theorem 5.4 and
Theorem 5.6. The proof of the Lipschitz-type stability estimate in Theorem 5.10
is also given. We start with a brief review on exponential changes of probability
measures.

B.1. Some changes of measure.

DEFINITION B.1. Let Lb be the generator of a diffusion process X b
t on some

interval I ⊂ R with a drift function b and diffusion function σ ; that is,

(B.1) Lb = b∂ + σ 2

2
∂2.

For any bounded measurable function F on C([0, t], I ) and time horizon t ∈
R+, and any smooth nonnegative function h on I , we have

E

(
F

(
X b[0,t]

)h(X b
t )

h(X b
0 )

exp
[
−

∫ t

0

(
h−1Lb(h)

)(
X b
s

)
ds

])
= E

[
F

(
X bh[0,t]

)]
,

where X bh

t is a diffusion with generator

Lbh(f ) = Lb(f )+ h−1�Lb (h, f ) = bh∂f + σ 2

2
∂2f

with bh := b + σ 2∂(logh).
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Inversely, we have

E
(
F

(
X a[0,t]

)) = E

[
F

(
X b[0,t]

)h(X b
t )

h(X b
0 )

× exp
(
−

∫ t

0

[
h−1La(h)− [

σ∂(logh)
]2](

X b
s

)
ds

)]
,

(B.2)

with the drift function

b = a − σ 2∂(logh)

=⇒ h−1Lb(h) = h−1La(h)− [
σ∂(logh)

]2

= σ 2
[

1

2

∂2h

h
−

[
∂h

h

]2]
+ a

∂h

h
.

We summarize the above discussing with the following lemma.

LEMMA B.2. For any bounded measurable function F on C([0, t], I ) and
time horizon t ∈ R+, any regular potential function V , and any smooth nonnegative
function h on I , we have

E

(
F

(
X a[0,t]

)
exp

[
−

∫ t

0
V

(
X a
s

)
ds

])

= E

[
F

(
X b[0,t]

)h(X b
t )

h(X b
0 )

exp
(
−

∫ t

0
H

(
X b
s

)
ds

)]
,

(B.3)

with the potential function H on I defined by

(B.4) H = h−1Lb(h)+ V and the drift functions b = a − σ 2 ∂h

h
.

The Feynman–Kac formula (B.3) is valid for any pair of functions (h,V) for
which the expectation make sense. For instance, let us assume that the pair of
functions (h,V) is chosen so that

(B.5) H� := inf
x≥0

H(x) > 0 =⇒ Lb(h)+ Vh ≥ H�h.

In this situation, the Feynman–Kac equation (B.3) is well defined as soon as
E[h(X b

t )/h(X b
0 )] < ∞. In addition, we have the estimates

exp
[
−

∫ t

0
E

[
V

(
X a
s

)]
ds

]
≤ E

(
exp

[
−

∫ t

0
V

(
X a
s

)
ds

])
≤ E

[
h
(
X b
t

)
/h

(
X b

0
)]

exp [−H�t].
We further assume that I = R+ and the functions (a, σ ) in (B.3) are chosen such
that

sup
x≥0

∂2a(x) := ∂2a� < 0 and σ ≤ σε for some ε ∈ R+.
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Also assume that the potential function V is chosen so that

(B.6) ∂a + δ−1V + [
βθ + γ θ−1] ≥ α,

for some δ > 0 and some parameters (α,β, γ ) ∈ R
3 such that

a(0) ≥
(
γ + ε2

2
(1 + δ)U

)
+

and
|∂2a�|

2
≥ β + ε2

2
(1 + δ)V .

LEMMA B.3. Under the assumption (B.6) the Feynman–Kac formula (B.3) is
satisfied with the potential function H defined by

H = h−1Lb(h)+ V

with h(x) = xδ and the drift function b = a − σ 2∂ logh.
(B.7)

In addition, the minorisation property (B.5) is satisfied with

(B.8) H� ≥ δα + 2δ

√[
a(0)− γ − ε2

2
(1 + δ)U

][ |∂2a�|
2

− β − ε2

2
(1 + δ)V

]
,

as soon as ε is chosen sufficiently small so that the process X b is well defined
on R+.

PROOF. When h = θδ for some δ ≥ 0, we find that

b = a − σ 2h−1∂h =⇒ h−1Lb(h) = δθ−1a − 1

2
δ(δ + 1)

(
θ−1σ

)2
.

For instance, when the functions (a, σ ) = (�,σε) are given by (1.1), we find that

H = δ∂�+ V + δθ−1
(
R − ε2

2
(δ + 1)U

)
+ δθ

(
S − ε2

2
(δ + 1)V

)
.

Observe that a(x) = ∂a(x)x + a(0)− x2 ∫ 1
0 ∂2a(ux)udu, and further assume that

τ 2(x) := a(0)− x2
∫ 1

0
∂2a(ux)udu > 0.

The above condition is clearly met for concave drift functions with a(0) > 0. In
this case,

H = τ 2 ∂h

h
+ ∂a

θ∂h

h
+ V − σ 2 ∂h

h

[
∂h

h
− 1

2

∂2h

∂h

]
.

Choosing the function h = θδ , we have the estimate

H ≥ δ
τ 2

θ
+ δ∂a + V − ε2

2

σ 2
1

θ2 δ(1 + δ).
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Next, observe that

∂2a� < 0 =⇒ τ 2

θ
≥ a(0)

θ
+ |∂2a�|

2
θ and

σ 2
1

θ2 = U

θ
+ V θ.

This yields the estimate

H ≥ δ

(
a(0)

θ
+ |∂2a�|

2
θ

)
+ δ∂a + V − ε2

2
δ(1 + δ)

(
U

θ
+ V θ

)
.

Rewriting the last inequality in a slightly different form, we get

H/δ ≥
[
a(0)− ε2

2
(1 + δ)U

]
1

θ
+

[ |∂2a�|
2

− ε2

2
(1 + δ)V

]
θ + ∂a + 1

δ
V.

Using (B.6), one can check that

H/δ ≥ α +
[
a(0)− γ − ε2

2
(1 + δ)U

]
θ−1 +

[ |∂2a�|
2

− β − ε2

2
(1 + δ)V

]
θ.

This completes the proof. �

We are now in a position to state and prove the main theorem of this section.

THEOREM B.4. For any κ ≥ 0, we choose ε ∈R+ such that

ε2(1 ∨ ıκ)U < 1 and ε2(1 + jκ)V < 2.

Then the Feynman–Kac formula (B.3) is met with the functions h = θ ıκ and

b = 2Aθ +R
(
1 − ε2ıκU

) − S
(
1 + ε2ıκV

)
θ2V = −2κ(A− Sθ),

H/κ = 2ıA+R(1 + ı)

(
1 − ε2

2
(ıκ + 1)U

)
θ−1

+ S(1 − ı)

(
1 − ε2

2
(1 + jκ)V

)
θ.

In addition, we have the minorisation property

H� ≥ 2κ
A2 +RS ε,κ√

A2 +RS
≥ κλ̂ε,κ

with the collection of nonnegative parameters  ε,κ defined by

 2
ε,κ :=

[
1 − ε2

2
(1 + ıκ)U

][
1 − ε2

2
(1 + jκ)V

]
.

PROOF. Applying the above lemma to

a(x) = 2Ax +R − Sx2 = 2(A− Sx)x +R + Sx2

=⇒ a(0) = R∂a(x) = 2(A− Sx) and ∂2a = −2S,
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and V(x) = −2κ(A− Sx), we find that

∂a(x)+ 1

δ
V(x) = 2(A− Sx)− 2κ

δ
(A− Sx) = 2A

[
1 − κ

δ

]
− 2S

[
1 − κ

δ

]
x.

This shows that condition (B.6) is met with

(α,β, γ ) =
(

2A
[
1 − κ

δ

]
,2S

[
1 − κ

δ

]
,0

)
, a(0) = R > 0 and

|∂2a�|
2

− β = S

(
2κ

δ
− 1

)
> 0,

for any 0 ≤ δ < 2κ . We set

ı = δ/κ − 1 ∈ [−1,1] ⇐⇒
δ = ıκ := κ(ı + 1) and (1 + jκ) := 1 + ı

1 − ı
(1 + ıκ).

By (B.8), we conclude that

H� ≥ δ2A
[
1 − κ

δ

]

+ 2δ

√
RS

[
1 − ε2

2
(1 + δ)U

][(
2κ

δ
− 1

)
− ε2

2
(1 + δ)V

]
(B.9)

= 2κ
{
Aı +

√
1 − ı2

√
RS

[
1 − ε2

2
(1 + ıκ)U

][
1 − ε2

2
(1 + jκ)V

]}
.

On the other hand, for any given α ∈ R and β ≥ 0, the maximal value f �
α,β :=

fα,β(ıα,β) of the function

ı :∈ [−1,1] �→ fα,β(ı) := αı +
√(

1 − ı2
)
β

is attained at

(B.10) ıα,β = α√
α2 + β2

=⇒ f �
α,β =

√
α2 + β2.

Choosing ı := A√
A2+RS

in (B.9), we find that

(2κ)−1H�

≥ A2 +RS(1 − [1 −  ε,κ ])√
A2 +RS

≥
√
A2 +RS

(
1 − RS

A2 +RS

(
1 −

√
1 − ε2

2

[
(1 + ıκ)U + (1 + jκ)V

]))
.
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We conclude that

H� ≥ 2κ
√
A2 +RS

(
1 − ε2

2

RS

A2 +RS

(1 + ıκ)U + (1 + jκ)V

1 +
√

1 − ε2

2 [(1 + ıκ)U + (1 + jκ)V ]

)

≥ 2κ
√
A2 +RS

(
1 − ε2

2
ζκ

)
,

with the parameter

(1 + jκ) := 1 + ı

1 − ı
(1 + ıκ) = ı2

1

1 − ı2 (1 + ıκ) = ı2
1(1 + ıκ)

(
1 + j2)

=⇒ (1 + ıκ)SU + (1 + jκ)RV

A2 +RS
= (1 + ıκ)

[
1

1 + j2U + ı2
1V

]
.

Finally, to complete the proof, observe that

b(x) = a(x)− ε2ıκ
(
U + V x2) = 2Ax + (

R − ε2ıκU
) − (

S + ε2ıκV
)
x2. �

B.2. Proof of Theorem 5.4. Combining (5.9) with (5.11), we have

(B.11) σ1(x)
∣∣∂P ε

t (f )(x)
∣∣ ≤ exp (−λεt)E

[
σ1

(
�ε

t (x)
)∣∣∂f (

�ε
t (x)

)∣∣].
On the other hand, using (B.11) for any x, y ∈ R+ and any f ∈ Lipσ1

(R+), we
have

P ε
t (f )(x)− P ε

t (f )(y) = (x − y)

∫ 1

0
∂P ε

t (f )
(
ux + (1 − u)y

)
du.

This implies that∣∣P ε
t (f )(x)− P ε

t (f )(y)
∣∣

≤ exp (−λεt)

∣∣∣∣(x − y)

∫ 1

0

P ε
t (σ1|∂f |)(ux + (1 − u)y)

σ1(ux + (1 − u)y)
du

∣∣∣∣
≤ exp (−λεt)

∣∣∣∣(x − y)

∫ 1

0

1

σ1(ux + (1 − u)y)
du

∣∣∣∣ = exp (−λεt)dσ1(x, y).

The last assertion comes from the fact that ‖σ1∂f ‖ ≤ 1 and for any x ≥ y

(x − y)

∫ 1

0

1

σ1(ux + (1 − u)y)
du =

∫ 1

0
∂u

[∫ ux+(1−u)y

0

1

σ1(z)
dz

]
du

= dσ1(x, y).

We may then conclude that

Dσ1

(
δxP

ε
t , δyP

ε
t

) ≤ exp (−λεt)dσ1(x, y) =⇒ (2.5).
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In terms of the “carré du champ” operator, we have

(B.11) =⇒ �L

(
P ε
t (f ),P ε

t (f )
) ≤ exp (−2λεt)P

ε
t

(√
�L(f,f )

)2

≤ exp (−2λεt)P
ε
t

(
�L(f,f )

)
.

Next, consider the interpolating path

∀s ∈ [0, t] pt(s) := P ε
s

(
P ε
t−s(f )2)

between P ε
t (f )2 and P ε

t

(
f 2)

.

It can be readily checked that

∂spt (s) = (
∂sP

ε
s

)(
P ε
t−s(f )2) − P ε

s

(
∂s

[
P ε
t−s(f )2])

= P ε
s

(
L

[
P ε
t−s(f )2]) − 2P ε

s

(
P ε
t−s(f )L

[
P ε
t−s(f )

])
= P ε

s

(
�L

(
P ε
t−s(f ),P ε

t−s(f )
)) ≤ exp

(−2λε(t − s)
)
P ε
t

(
�L(f,f )

)
.

This implies that

2λε
[
P ε
t

(
f 2) − P ε

t (f )2] ≤ P ε
t

(
�L(f,f )

)
.

Integrating with πε and letting t → ∞, we find the Poincaré inequality

Varπε(f ) = πε

(
f 2) − πε(f )2 t→∞←−

πε

(
f 2) − πε

(
P ε
t (f )2) ≤ 1

2λε
πε

(
�L(f,f )

)
.

Recalling that πL = 0, we have that

∂t Varπε

(
P ε
t (f )

) = 2πε

[
P ε
t (f )∂P ε

t (f )(x)
]

= −πε

(
�L

(
P ε
t (f ),P ε

t (f )
)) ≤ −2λε Varπε

(
P ε
t (f )

)
.

This completes the proof of Theorem 5.4. �

B.3. Proof of Theorem 5.6. We apply Lemma B.3 to the drift function a and
to the potential function V(x) = −2(A− Sx). To this end, observe that

a(0) = R + ε2

2
U > 0 and ∂2a� = −2

(
S − 3ε2

2
V

)
< 0.

In addition, we have

∂a(x)+ 1

δ
V(x) = 2A

(
1 − 1

δ

)
− 2

(
S

(
1 − 1

δ

)
− 3ε2

2
V

)
x.

This shows that (B.6) is met with

(α,β, γ ) =
(

2A
[
1 − 1

δ

]
,2

[
S

(
1 − 1

δ

)
− 3ε2

2
V

]
,0

)

=⇒ |∂2a�|
2

− β = S

(
2

δ
− 1

)
+ 3ε2

2
V > 0 for any δ ∈ [0,2[.
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We conclude that the minorisation property (B.8) is satisfied with

H�/2 ≥ A[δ − 1] + √
δ(2 − δ)

√[
R − ε2

2
δU

]
S.

Rewriting the last inequality in a slightly different way with ı := δ − 1 ∈ [−1,1],
we have

H�/2 ≥ Aı +
√

1 − ı2

√
RS

[
1 − ε2

2
(1 + ı)U

]
.

Arguing as in (B.10), we choose

ı = A√
A2 +RS

and 2R > ε2Uı1,

we find that

H� ≥ 2
√
A2 +RS

(
1 − ε2

2
ζ

)
with ζ = ı1

SU

A2 +RS
.

On the other hand, the drift function (B.7) is given by

b(x) = a(x)− ε2ı1
(
U + V x2)

= 2Ax +
(
R + ε2

(
1

2
− ı1

)
U

)
−

(
S + ε2

[
ı1 − 3

2

]
V

)
x2

= 2Ax + R̂ε − Ŝεx
2.

The potential function in (B.7) is given by

H(x) = 2ıA+ 1 + ı

x

[
R − ε2

2
(1 + ı)U

]
+ (1 − ı)x

[
S + ε2

2
(1 + ı)V

]
= Ĥε(x).

This complete the proof of the theorem. �

B.4. Proof of Theorem 5.8. Combining (5.8) with Jensen’s inequality, for
any κ > 0 we have

E
(
Et (x)2κ)1/κ ≥ τt (x) ≥ �(x)2e−λt .

This proves the l.h.s. estimate in (5.19). Next, set

nκ := mκ − (ıκ − 1)+ = ıκ − (ıκ − 1)− ≤ mκ := 2ıκ − 1.

We assume that ε is chosen so that

R(ε,−nκ) ∧ S(ε,−nκ) ∧R(ε,−mκ) ∧ S(ε,−mκ) > 0,
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so that the Riccati semigroups φ
(ε,−nκ)
t (x) and φ

(ε,−mκ)
t (x) are well defined. We

also let �(ε,−mκ)
t (x) be the stochastic Riccati flow associated with the parameters

(R(ε,−mκ), S(ε,−mκ)). By the exponential change of probability measure discussed
in Theorem B.4, we find that

E
(
Eε
t (x)

2κ) ≤ E
[(
�

(ε,−mκ)
t (x)/x

)ıκ ] exp [−κλ̂ε,κ t].
When ıκ ∈ [0,1] ∩ [0,2κ], applying Jensen’s inequality we check that

E
[(
�

(ε,−mκ)
t (x)/x

)ıκ ] ≤ E
[(
�

(ε,−mκ)
t (x)/x

)]ıκ ≤ [
φ(ε,−nκ)
� (x)/x

]ıκ .
On the other hand when ıκ ∈ [1,∞] ∩ [0,2κ], using (4.3) we check that

(
R(ε,−mκ), S(ε,−mκ)

) + ε2

2
(ıκ − 1)(U,−V ) = (

R(ε,−ıκ ), S(ε,−ıκ )
)

=⇒ E
[(
�

(ε,−mκ)
t (x)/x

)ıκ ] ≤ [
φ(ε,−nκ)
� (x)/x

]ıκ .
This implies that

E
(
Eε
t (x)

2κ) ≤
[
�

(ε,−nκ)+
x

∨ 1
]ıκ

exp [−κλ̂ε,κ t] ≤
[
�+
x

∨ 1
]ıκ

exp [−κλ̂ε,κ t].
For small values of t , we also have

(B.12) E
(
Eε
t (x)

2κ)1/κ ≤ exp (2At).

More generally, for any 0 ≤ s ≤ t we have

E
(
Eε
s,t (x)

2κ) ≤ exp
[−κλ̂ε,κ(t − s)

]
E

[(
φ
(ε,−nκ)
t−s

(
�ε

s(x)
)
/�ε

s (x)
)ıκ ].

When ıκ ∈ [0,1] ∩ [0,2κ], we check that

E
[(
φ
(ε,−nκ)
t−s

(
�ε

s(x)
)
/�ε

s (x)
)ıκ ] ≤ (

E
[
φ(ε,−nκ)
�

(
�ε

s(x)
)
/�ε

s (x)
])ıκ .

On the other hand, using the uniform estimate (3.3) we have

φ
(ε,−nκ)
� (�ε

s (x))

�ε
s (x)

≤ 1 + �
(ε,−nκ)+
�ε

s(x)
≤ 1 + �+

�ε
s(x)

.

Combining the above estimate with (4.3), we conclude that

E
[(
φ
(ε,−nκ)
t−s

(
�ε

s(x)
)
/�ε

s (x)
)ıκ ] ≤ [

1 +�+/φ(ε,−1)
s (0)

]ıκ .
Arguing as above, when ıκ ∈ [1,∞] ∩ [0,2κ] we check that

E
[(
φ
(ε,−nκ)
t−s

(
�ε

s(x)
)
/�ε

s (x)
)ıκ ] ≤ [

1 +�+/φ(ε,−ıκ )
s (0)

]ıκ .
This implies that

(B.13) sup
x≥0

E
(
Eε
s,t (x)

2κ)1/κ ≤ ρε,κ,s exp
[−λ̂ε,κ (t − s)

]
,
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with the constant

ρε,κ,s := [
1 +�+/φ(ε,−(ıκ∨1))

s (0)
]ı1 .

Combining Hölder inequality with (B.12) and (B.13), we have

E
(
Eε
t (x)

2κ) ≤ E
(
Eε
υ(x)

2κ(1+1/u))u/(1+u) ×E
(
Eε
υ,t (x)

2κ(1+u))1/(1+u)

≤ e2κAυ[
1 +�+/φ

(ε,−(ıκ(1+u)∨1))
υ (0)

]κ(1+ı)

× exp
[−κλ̂ε,κ(1+u)(t − υ)

]
,

for any u > 0. When 0 ≤ t ≤ υ , we also have

E
(
Eε
t (x)

2κ)1/κ ≤ eυ[A+λ̂ε,κ(1+u)] exp [−λ̂ε,κ(1+u)t].
We complete the proof of (5.19) by letting u → 0 and choosing υ = 1. The proof
of the theorem is now completed. �

B.5. Proof of Theorem 5.10. Combining the Feynman–Kac formula (5.16)
with the estimate (5.15) for any n ≥ 1 and taking any x1 > x2, we have the Taylor
integral formula

�ε
t (x1)−�ε

t (x2) = (x1 − x2)

∫ 1

0
T ε
t

(
ux1 + (1 − u)x2

)
du,

as well as the estimates∣∣∣∣∣∣�ε
t (x1)−�ε

t (x2)
∣∣∣∣∣∣
n

≤ exp [−λ̂εt]
∫ 1

0

(x1 − x2)

σ̂ (ux1 + (1 − u)x2)

∣∣∣∣∣∣�̂ε
t

(
ux1 + (1 − u)x2

)∣∣∣∣∣∣ı1
ın
du.

On the other hand, we have∣∣∣∣∣∣�̂ε
t

(
ux1 + (1 − u)x2

)∣∣∣∣∣∣
ın

≤ φ̂
(ε,ın)
t

(
ux1 + (1 − u)x2

) ≤ φ̂
(ε,ın)
t (x1).

Using (3.2) for any time t ≥ υ > 0, we check that∣∣∣∣∣∣�̂ε
t

(
ux1 + (1 − u)x2

)∣∣∣∣∣∣
ın

≤ c1,υ
(
2�̂ (ε,ın)+ − �̂

(ε,ın)−
) =⇒∣∣∣∣∣∣�ε

t (x1)−�ε
t (x2)

∣∣∣∣∣∣
n ≤ c2,υ

[
2�̂ (ε,ın)+ − �̂

(ε,ın)−
]ı1dσ̂ (x1, x2) exp [−λ̂εt].

More generally, we have∣∣∣∣∣∣�ε
t (x1)−�ε

t (x2)
∣∣∣∣∣∣
n ≤ dσ̂ (x1, x2)

(
x1 ∨ x2 ∨ �̂

(ε,ın)+
)ı1 exp [−λ̂εt].

This completes the proof of the theorem. �
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APPENDIX C: OTHER PROOFS

In this Appendix we give the proof of Proposition 5.2, the proof of Lemma 5.3,
the proof of Theorem 6.1 and the proof of Corollary 6.3 in order.

C.1. Proof of Proposition 5.2. We have

E
[
f

(
�ε

t (x)
)
T ε
t (x)

] = E

[
f

(
�ε

t (x)
)

exp
[∫ t

0
∂�

(
�ε

s(x)
)
ds

]
Mε

t (x)

]
,

with the exponential martingale Mε
t (x) defined by

σε(x)M
ε
t (x) := σε

(
�ε

t (x)
)

exp
[
−

∫ t

0

(
σ−1
ε Lσε

)(
�ε

s(x)
)
ds

]
.

This implies that

E
[
f

(
�ε

t (x)
)
T ε
t (x)

] = E

[
f

(
�

ε
t (x)

)
exp

[∫ t

0
∂�

(
�

ε
s(x)

)
ds

]]
,

where �
ε
t (x) stands for the stochastic flow associated with a diffusion with gener-

ator

L(f ) = L(f )+ σ−1
ε �L(σε, f ) = L(f )+ σε∂σε∂f.

In other words, �
ε
t (x) is the stochastic Riccati flow associated with the diffusion

function σε and the drift function a given by

σε(x)∂σε(x) = ε2

2

(
U + 3V x2)

=⇒ a(x) = 2Ax +
(
R + ε2

2
U

)
−

(
S − 3ε2

2
V

)
x2.

This completes the proof of the proposition.

C.2. Proof of Lemma 5.3. For any x > 0, we have

∂σε(x) = ε

2

U + 3V x2√
x(U + V x2)

=⇒ ∂σε(x)

σε(x)
= 1

2

U + 3V x2

x(U + V x2)
.

In addition, we have

∂2σε(x) = ε

2

1√
x(U + V x2)

[
6V x − (U + 3V x2)2

2x(U + V x2)

]

=⇒ ∂2σε(x)σε(x) = ε2

2

[
6V x − (U + 3V x2)2

2x(U + V x2)

]
.
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This implies that

Hε(x) = U + 3V x2

U + V x2

(
A+ 1

2

R

x
− S

2
x

)
− 2(A− Sx)

+ ε2

4

[
6V x − 1

x

(U + 3V x2)2

U + V x2

]
.

For instance when V = 0, we have

Hε(x) = −A+ 1

2

[(
R − ε2

2
U

)
1

x
+ 3Sx

]

≥ λε := −A+
√

3
(
R − ε2

2
U

)
S,

as soon as 2R ≥ ε2U . When U = 0, we have

Hε(x) = A+ 3R

2

1

x
+ x

1

2

(
S − 3ε2

2
V

)
≥ λε = A+

√
3R

(
S − 3ε2

2
V

)
,

as soon as 2S ≥ 3ε2V . We further assume that V ∧U > 0. In this case, we have

Hε(x) =
[
U + 3V x2

U + V x2 − 2
]
A

+ 1

x

U + 3V x2

U + V x2

[
R

2
− ε2

4
U − 3ε2

4
V x2

]

+ Sx

(
2 − 1

2

U + 3V x2

U + V x2 + 3

2
ε2V

)
.

This yields the decomposition

Hε(x) = [
ι(x)− 2

]
A+ 1

x
ι(x)

[
R

2
− ε2

4
U

]
+ x

[
S

(
2 − 1

2
ι(x)

)
+ 3

2
ε2V

(
S − 1

2
ι(x)

)]
,

with the increasing function

x ∈ [0,1] �→ ι(x) = U + 3V x2

U + V x2 = 1 + 2V x2

U + V x2 ∈ [1,3]

=⇒ ι(x)− 2 = V x2 −U

U + V x2 ∈ [−1,1].
Observe that

Hε(x) ≥ (x
√
V/U)2 − 1

1 + (x
√
V/U)2

A+ 1

x
√
V/U

rε + sε(
√
V/Ux) := Hε−(x

√
V/U),
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with

rε := 1

2

√
V/U

[
R − ε2

2
U

]
≥ 0 and

sε := 1

2
√
V/U

[
S + 3ε2V

(
S − 3

2

)]
≥ 0.

When A = 0, for any x ∈R+ we have

Hε−(x) = 1

x
rε + sεx ≥ 2

√
rεsε

=⇒ λε ≥
√[

R − ε2

2
U

][
S + 3ε2V

(
S − 3

2

)]
,

as soon as 2R ≥ ε2U and S ≥ 9
2

ε2

1+3ε2V
V . We further assume that A �= 0. Observe

that

Hε−(1/x) = x2 − 1

1 + x2 (−A)+ 1

x
sε + rεx.

This shows that there is no loss of generality in assuming that A> 0, up to chang-
ing (rε, sε) by (sε, rε). We further assume that A> 0. In this case, we have

Hε

−(x) := Hε−(x)/A

= x2 − 1

1 + x2 + 1

x
rε + sεx ≥ x2 − 1

1 + x2 +
(

1

x
+ x

)
(rε ∧ sε)

with (rε, sε) = (rε, sε)/A.

This yields the estimate

Hε

−(x) = −1 + 2x2

1 + x2 + 1

x
rε + sεx ≥ −1 + 2

√
rεsε

=⇒ λε ≥ −A+
√[

R − ε2

2
U

][
S + 3ε2V

(
S − 3

2

)]
.

This completes the proof of the lemma.

C.3. Proof of Theorem 6.1. The first estimate is a direct consequence of the
Ornstein–Uhlenbeck formula (6.1) combined with the exponential semigroup es-
timates stated in Theorem 5.8. It is also readily checked that

sup
ε∈[0,1]

∣∣∣∣∣∣�(ε,ε)
t (x, z1)−�

(ε,ε)
t (x, z2)

∣∣∣∣∣∣
n ≤ c1,n exp [−λ̂ε,n/2t/2]|z1 − z2|.
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We fix the parameters (z, ε, ε) and we set

"
ψ
t (x1, x2) := �

(ε,ε)
t (x1, z)−�

(ε,ε)
t (x2, z)"

φ
t (x1, x2) := �ε

t (x1)−�ε
t (x2),

"t(x1, x2) := S
[
�ε

t (x1)+�ε
t (x2)

]
+ ε2[

U + V
(
�ε

t (x1)
2 +�ε

t (x1)�
ε
t (x2)+�ε

t (x2)
2)]

/
(
ςε

(
�ε

t (x1)
) + ςε

(
�ε

t (x2)
))

≤ R−1/2

2

[
S
[
�ε

t (x1)+�ε
t (x2)

] + ε2[
U + V

[
�ε

t (x1)+�ε
t (x2)

]2]]
.

Using the norm estimates (4.3), we check that

∣∣∣∣∣∣"(x1, x2)
∣∣∣∣∣∣
n ≤ R−1/2

2

[
S
[
φ(ε,n)
� (x1)+ φ(ε,n)

� (x2)
]

+ ε2[
U + V

[
φ(ε,2n)
� (x1)+ φ(ε,2n)

� (x2)
]2]]

≤ c2,n(1 + x1 + x2)
2.

On the other hand, combining the Laplace estimates (5.19) with the decomposition
(6.1) and Burkholder–Davis–Gundy inequality, we check that∣∣∣∣∣∣�(ε,ε)

t (x, z)
∣∣∣∣∣∣
n ≤ c3,n exp [−2̂λε,n/2t]|z|

+ nE

[∣∣∣∣∫ t

0
Eε
s,t (x)

2ς2
ε

(
�ε

s(x)
)
ds

∣∣∣∣n/2]1/n
.

Using the generalized Minkowski inequality, this implies that∣∣∣∣∣∣�(ε,ε)
t (x, z)

∣∣∣∣∣∣
n

≤ c3,n exp [−2̂λε,n/2t]|z|

+ n

[∫ t

0
E

[
Eε
s,t (x)

2n]1/n
E

[
ς2n
ε

(
�ε

s(x)
)]1/n

ds

]1/2

≤ c3,n exp [−2̂λε,n/2t]|z|

+ c4,n

(∫ t

0
exp

[−λ̂ε,n(t − s)
]
E

[
ς2n
ε

(
�ε

s(x)
)]1/n

ds

)1/2
.

Next, observe that

E
[
ς2n
ε

(
�ε

s(x)
)]1/n ≤ (

R + Sφ(ε,2n)
� (x)2) + ε2

E
[(
�ε

s(x)
(
U + V�ε

s(x)
2))n]1/n

≤ (
R + Sφ(ε,2n)

� (x)2) + ε2(
Uφ(ε,n)

� (x)+ V φ(ε,3n)
� (x)3)

.

We may then conclude that∣∣∣∣∣∣�(ε,ε)
t (x, z)

∣∣∣∣∣∣
n ≤ c5,n exp [−2̂λε,n/2t]|z|
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+ c6,n
((
R + Sφ(ε,2n)

� (x)2)
+ ε2(

Uφ(ε,n)
� (x)+ V φ(ε,3n)

� (x)3))1/2
.

This completes the proof of (6.2). The proof of the second estimate in (6.3) is
based on the formula

d"
ψ
t (x1, x2)

= 1

2
∂�

(
�ε

t (x1)
)
"

ψ
t (x1, x2) dt − S"

φ
t (x1, x2)�

(ε,ε)
t (x2, z) dt

+"
φ
t (x1, x2)"t(x1, x2) dW ′

t .

This implies that

"
ψ
t (x1, x2)

= −S

∫ t

0
Es,t (x1)"

φ
s (x1, x2)�

(ε,ε)
s (x2, z) ds

+
∫ t

0
Es,t (x1)"

φ
s (x1, x2)"s(x1, x2) dW ′

s,

from which we check that∣∣∣∣∣∣"ψ
t (x1, x2)

∣∣∣∣∣∣
n

≤ c1,n
(
1 + |z| + x

3/2
2

) ∫ t

0
E

(
Es,t (x1)

3n)1/(3n)
E

(
"φ

s (x1, x2)
3n)1/(3n)

ds

+ c2,n(1 + x1 + x2)
2

×
[∫ t

0
E

[
Es,t (x1)

3n]2/(3n)
E

[
"φ

s (x1, x2)
3n]2/(3n)

ds

]1/2
.

Using (5.19) and (5.23), we obtain that∣∣∣∣∣∣"ψ
t (x1, x2)

∣∣∣∣∣∣
n

≤ c1,n
(
1 + |z| + x

3/2
2

)1 + x1 + x2

x1 ∧ x2
|x1 − x2|

×
∫ t

0
exp (−λ̂εs) exp

[−λ̂ε,3n/2(t − s)/2
]
ds

+ c2,n
(1 + x1 + x2)

3

x1 ∧ x2
|x1 − x2|

×
[∫ t

0
exp (−2̂λεs) exp

[−λ̂ε,3n/2(t − s)
]
ds

]1/2
.
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As a result, we conclude that

∣∣∣∣∣∣"ψ
t (x1, x2)

∣∣∣∣∣∣
n ≤ c3,n

(
1 + |z|)(1 + x1 + x2)

3

x1 ∧ x2
|x1 − x2|t exp [−λ̂ε,3n/2t/2],

completing the proof of the theorem.

C.4. Proof of Corollary 6.3. The proof is based on the decomposition

�
(ε,0)
t (x, z)−�

(0,0)
t (x, z)

= [
Eε
t (x)− Et (x)

]
z +

∫ t

0

(
Eε
s,t (x)− Es,t (x)

)
ς

(
�ε

s(x)
)
dW ′

s

+ εS

∫ t

0
Eε
s,t (x)V

ε
s (x)

�ε
s (x)+ φs(x)

ς(�ε
s (x))+ ς(φs(x))

dW ′
s .

On the other hand, we have

∣∣Eε
s,t (x)− Es,t (x)

∣∣ ≤ εS
[
Eε
s,t (x)+ Es,t (x)

][∫ t

s

∣∣Vε
u(x)

∣∣du]
.

Arguing as above and using the uniform fluctuation estimates (4.4), we get that

E
[∣∣Eε

s,t (x)− E0
s,t (x)

∣∣n]1/n

≤ εSvε2n(x)(t − s)
(
E

(
Eε
s,t (x)

2n)1/(2n) + E0
s,t (x)

)
≤ c1,nεv

ε
2n(x)(t − s)

(
exp

[−λ̂ε,n(t − s)/2
] + exp

[−λ(t − s)/2
])
.

The last assertion is a direct consequence of (5.8) and the uniform Laplace esti-
mate (5.19). Combining Burkholder–Davis–Gundy inequality and the generalized
Minkowski inequality, we have

E

[∣∣∣∣∫ t

0

(
Eε
s,t (x)− E0

s,t (x)
)
ς

(
�ε

s(x)
)
dW ′

s

∣∣∣∣n]2/n

≤ n2
∫ t

0
E

((
Eε
s,t (x)− E0

s,t (x)
)2n)1/n[

R + SE
(
�ε

s(x)
2n)1/n]

ds.

Using the uniform moment estimates (4.3), we find that

E

[∣∣∣∣∫ t

0

(
Eε
s,t (x)− E0

s,t (x)
)
ς

(
�ε

s(x)
)
dW ′

s

∣∣∣∣n]2/n

≤ c2,nε
2vε4n(x)

2[
1 + φ(ε,2n)

� (x)2] ∫ t

0
s2(

exp [−λ̂ε,2ns] + exp [−λs])ds
≤ c3,nε

2vε4n(x)
2[

1 + φ(ε,2n)
� (x)2]

.
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In much the same way, one can check that

E

[∣∣∣∣∫ t

0
Eε
s,t (x)V

ε
s (x)

�ε
s (x)+ φs(x)

ς(�ε
s (x))+ ς(φs(x))

dW ′
s

∣∣∣∣n]2/n

≤ c4,n

∫ t

0
E

[
Eε
s,t (x)

n
V

ε
s (x)

n[�ε
s(x)

2 + φs(x)
2]n/2]2/n

ds

≤ c5,nv
ε
3n(x)

2[
φ�(x)

2 + φ(ε,3n)
� (x)2] ∫ t

0
s2(

exp [−λ̂ε,3ns] + exp [−λs])ds.
This implies that

E

[∣∣∣∣∫ t

0
Eε
s,t (x)V

ε
s (x)

�ε
s (x)+ φs(x)

ς(�ε
s (x))+ ς(φs(x))

dW ′
s

∣∣∣∣n]2/n

≤ c6,nv
ε
3n(x)

2[
φ�(x)

2 + φ(ε,3n)
� (x)2]

.

Recalling that supx≥0 (xe
−αx) = 1/(αe) for any α, we find the uniform estimate

ε−1∣∣∣∣∣∣�(ε,0)(x, z)−�(0,0)(x, z)
∣∣∣∣∣∣
n ≤ c6,nv

ε
4n(x)(z ∨ 1)

[
1 ∨ φ(ε,3n)

� (x)
]
.

This completes the proof of the corollary. �
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