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NORMAL APPROXIMATION FOR STABILIZING FUNCTIONALS1
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We establish presumably optimal rates of normal convergence with re-
spect to the Kolmogorov distance for a large class of geometric functionals
of marked Poisson and binomial point processes on general metric spaces.
The rates are valid whenever the geometric functional is expressible as a sum
of exponentially stabilizing score functions satisfying a moment condition.
By incorporating stabilization methods into the Malliavin–Stein theory, we
obtain rates of normal approximation for sums of stabilizing score functions
which either improve upon existing rates or are the first of their kind.

Our general rates hold for functionals of marked input on spaces more
general than full-dimensional subsets of Rd , including m-dimensional Rie-
mannian manifolds, m ≤ d. We use the general results to deduce improved
and new rates of normal convergence for several functionals in stochastic
geometry, including those whose variances re-scale as the volume or the sur-
face area of an underlying set. In particular, we improve upon rates of normal
convergence for the k-face and ith intrinsic volume functionals of the con-
vex hull of Poisson and binomial random samples in a smooth convex body
in dimension d ≥ 2. We also provide improved rates of normal convergence
for statistics of nearest neighbors graphs and high-dimensional data sets, the
number of maximal points in a random sample, estimators of surface area
and volume arising in set approximation via Voronoi tessellations, and clique
counts in generalized random geometric graphs.
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1. Introduction. Let (X,F) be a measurable space equipped with a σ -finite
measure Q and a measurable semi-metric d : X × X → [0,∞). For all s ≥ 1, let
Ps be a Poisson point process with intensity measure sQ. When Q is a probabil-
ity measure, we let Xn be a binomial point process of n points which are i.i.d.
according to Q. Consider the statistics

(1.1) Hs := hs(Ps) := ∑
x∈Ps

ξs(x,Ps), s ≥ 1,

and

(1.2) H ′
n := hn(Xn) := ∑

x∈Xn

ξn(x,Xn), n ∈N,

where, roughly speaking, the scores ξs(x,Ps) and ξn(x,Xn) represent the local
contributions to the global statistics Hs and H ′

n, respectively. Functionals such as
Hs and H ′

n, which are in some sense locally defined, are called stabilizing func-
tionals. The concept of stabilization and the systematic investigation of stabilizing
functionals go back to the papers [28, 29]. In the following, we are interested
in quantitative central limit theorems for stabilizing functionals, whereas laws of
large numbers are shown in [26, 29] and moderate deviations are considered in
[13]. For a survey on limit theorems in stochastic geometry with a particular focus
on stabilization, we refer to [40]. Statistics Hs and H ′

n typically describe a global
property of a random geometric structure on X in terms of local contributions
exhibiting spatial interaction and dependence. Functionals in stochastic geometry
which may be cast in the form of (1.1) and (1.2) include total edge length and
clique counts in random graphs, statistics of Voronoi set approximation, the k-face
and volume functional of convex hulls of random point samples, as well as statis-
tics of RSA packing models and spatial birth growth models.

In the following, we allow that the underlying point processes Ps and Xn are
marked, that is, that an i.i.d. random mark is attached to each of their points.

Throughout this paper, we denote by N a standard Gaussian random variable
and by

(1.3) dK(Y,Z) := sup
t∈R

∣∣P(Y ≤ t) − P(Z ≤ t)
∣∣
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the Kolmogorov distance of two random variables Y and Z. For a sum Sn =∑n
i=1 Yi of n i.i.d. random variables Y1, . . . , Yn such that E|Y1|3 < ∞, it is known

from the classical Berry–Esseen theorem that

(1.4) dK

(
Sn −ESn√

VarSn

,N

)
≤ CE|Y1 −EY1|3

VarY1

1√
VarSn

, n ∈ N,

with C ∈ (0,∞) a universal constant. By considering special choices for Y1, . . . ,

Yn, one can show that the rate 1/
√

VarSn in (1.4) is optimal. The main contribu-
tion of this paper is to show that exponentially stabilizing functionals Hs and H ′

n

satisfy bounds resembling those at (1.4), with rates 1/
√

VarHs and 1/
√

VarH ′
n, re-

spectively. Here, the scores (ξs)s≥1 and (ξn)n∈N have uniformly bounded (4+p)th
moments for some p > 0, similar to the assumption E|Y1|3 < ∞ at (1.4). In con-
trast to the summands of Sn, the summands of Hs and H ′

n are dependent in general,
but nevertheless by comparison with the classical Berry–Esseen theorem, one can
expect that the rates 1/

√
VarHs and 1/

√
VarH ′

n are optimal. Thus, whenever such
rates occur, we say in the sequel that they are presumably optimal. In order to show
that the rates are indeed optimal, one would need to derive lower bounds for the
Kolmogorov distance of the same order. This seems to be a completely different
problem, which, as far as we know, is open and presumably difficult, as the scores
comprising the sums Hs and H ′

n have a nontrivial dependence structure.
In stochastic geometry, it is frequently the case that (Hs −EHs)/

√
VarHs con-

verges to the standard normal, and likewise for (H ′
n − EH ′

n)/
√

VarH ′
n. However,

up to now there has been no systematic treatment which establishes presumably
optimal rates of convergence to the normal. For example, in [8] a central limit
theorem for functionals of nearest neighbor graphs is derived, but no rate of con-
vergence is given. Dependency graph methods are used in [1] to show asymptotic
normality of the total edge length of the nearest neighbor graph as well as of the
Voronoi and Delaunay tessellations, but they lead to suboptimal rates of conver-
gence. Anticipating stabilization methods, the authors of [19] proved asymptotic
normality for the total edge length of the Euclidean minimal spanning tree, though
they did not obtain a rate of convergence. In the papers [7, 25, 28], abstract cen-
tral limit theorems for stabilizing functionals are derived and applied to several
problems from stochastic geometry. Quantitative bounds for the normal approxi-
mation of stabilizing functionals of an underlying Poisson point process are given
in [5, 27, 30, 31, 48]. These results yield rates of convergence for the Kolmogorov
distance of the order 1/

√
VarHs times some extraneous logarithmic factors. For

stabilizing functionals of an underlying binomial point process, we are unaware of
analogous results. The paper [10] uses Stein’s method to provide rates of normal
convergence for functionals on binomial input satisfying a type of local depen-
dence, though these rates are in the Wasserstein distance.

Recent work [22] shows that the Malliavin calculus, combined with Stein’s
method of normal approximation, yields rates of normal approximation for general
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Poisson functionals. The rates are in the Kolmogorov distance, they are presum-
ably optimal, and the authors use their general results to deduce rates of normal
convergence (cf. Proposition 1.4 and Theorem 6.1 of [22]) for Poisson function-
als satisfying a type of stabilization. That paper states that “the new connection
between the Stein–Malliavin approach and the theory of stabilization has a great
potential for further generalisations and applications”, though it stops short of link-
ing these two fertile research areas.

The first main goal of this paper is to fully develop this connection, showing
that the theory of stabilization neatly dovetails with Malliavin–Stein methods, giv-
ing presumably optimal rates of normal convergence. Malliavin–Stein bounds for
normal approximation, expressed in terms of moments of first- and second-order
difference operators [22], seemingly consist of unwieldy terms. However, if ξs is
exponentially stabilizing and satisfies a moment condition, then our first main goal
is to show that the Malliavin–Stein bounds remarkably simplify, showing that

(1.5) dK

(
Hs −EHs√

VarHs

,N

)
≤ C̃√

VarHs

, s ≥ 1,

as explained in Corollary 2.2. These rates, presumed optimal, remove extraneous
logarithmic factors appearing in [5, 27, 30, 31, 48].

Our second main goal is to show that (1.5) holds when Hs is replaced by H ′
n,

thus giving analogous rates of normal convergence when Poisson input is replaced
by binomial input. Recall that the paper [20] (see Theorem 5.1 there) uses Stein’s
method and difference operators to establish rates of normal convergence in the
Kolmogorov distance for general functionals of binomial point processes. Though
[20] deduces rates of normal convergence for some statistics of binomial input in
geometric probability, it too stops short of systematically developing the connec-
tion between stabilization, Stein’s method and difference operators. Our second
goal is to explicitly and fully develop this connection. As a by-product, we show
that the ostensibly unmanageable bounds in the Kolmogorov distance may be re-
cast into bounds which collapse into a single term 1/

√
VarH ′

n. In other words,
when ξn has a a radius of stabilization (with respect to binomial input Xn) which
decays exponentially fast, then subject to a moment condition on ξn, Corollary 2.2
shows

(1.6) dK

(
H ′

n −EH ′
n√

VarH ′
n

,N

)
≤ C̃′√

VarH ′
n

, n ≥ 9.

The main finding of this paper, culminating much research related to stabilizing
score functionals and captured by the rate results (1.5) and (1.6), is this: Statis-
tics (1.1) and (1.2) enjoy presumably optimal rates of normal convergence once
the scores ξs and ξn satisfy exponential stabilization and a moment condition. In
problems of interest, the verification of these conditions is sometimes a straight-
forward exercise, as seen in Section 3, the applications section. On the other hand,
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for statistics involving convex hulls of random point samples in a smooth com-
pact convex set, the verification of these conditions involves a judicious choice of
the underlying metric space, one which allows us to express complicated spatial
dependencies in a relatively simple fashion. This is all illustrated in Section 3.4,
where it is shown for both the intrinsic volumes of the convex hull and for the
counts of its lower dimensional faces, that the convergence rates (1.5) and (1.6)
are either the first of their kind or that they improve upon existing rates of con-
vergence in the literature, for both Poisson and binomial input in all dimensions
d ≥ 2.

Our third and final goal is to broaden the scope of existing central limit theory
in such a way that:

(i) The presumably optimal rates (1.5) and (1.6) are applicable both in the con-
text of volume order and of surface area order scaling of the variance of the func-
tional. By this, we mean that the variance of Hs (resp., H ′

n) is of order s (resp., n)
or s1−1/d (resp., n1−1/d ), after renormalising so that the score of an arbitrary point
is of constant order. The notions volume order scaling and surface area order scal-
ing come from a different (but for many problems equivalent) formulation where
the intensity of the underlying point process is kept fixed and a set carrying the
input is dilated instead. In this set-up, the variance may be asymptotically propor-
tional to the volume or surface area of the carrying set. Surface order scaling of the
variance typically arises when the scores are nonvanishing only for points close to
a (d − 1)-dimensional subset of Rd . As shown in Theorems 3.3 and 3.4, this gen-
erality yields improved rates of normal convergence for the number of maximal
points in a random sample and for statistics arising in Voronoi set approximation,
respectively.

(ii) The methods are sufficiently general so that they bring within their purview
score functions of data on spaces (X,d), with d an arbitrary semi-metric. We illus-
trate the power of our general approach by establishing a self-contained, relatively
short proof of the asymptotic normality of statistics of convex hulls of random
point samples as discussed earlier in this Introduction. Our methods also deliver
rates of convergence for statistics of k-nearest neighbors graphs and clique counts
on both Poisson and binomial input on general metric spaces (X,d), as seen in
Theorems 3.1 and 3.15.

We anticipate that the generality of the methods here will lead to further nontriv-
ial applications in the central limit theory for functionals in stochastic geometry.

This paper is organized as follows. In Section 2, we give general bounds for
the normal approximation of stabilizing functionals of Poisson or binomial in-
put, which are our main theoretical findings. In Section 3, we demonstrate the
power of our general bounds by deducing rates of normal approximation for sev-
eral problems from stochastic geometry. We show in Section 4 that some existing
Malliavin–Stein bounds [20, 22] may be cast into similar forms facilitating normal
approximation of sums of stabilizing scores of Poisson and binomial input. Sec-
tion 5 combines these bounds with moment and probability bounds for first- and
second-order difference operators to prove our main theoretical results.
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2. Main results.

2.1. Notation and definitions. Before we present our main results in the next
subsection, we fix our framework by introducing some notation and definitions.
We spell out the assumptions on the underlying space, define marked Poisson
and binomial point processes, and introduce several crucial properties of the score
functions comprising Hs and H ′

n defined at (1.1) and (1.2).

Underlying space. Let (X,F) be a measurable space with a σ -finite measure
Q and a measurable semi-metric d : X × X → [0,∞), that is, in contrast to the
definition of a metric, one allows d(x, y) = 0 for distinct x, y ∈ X. By B(x, r) we
denote the ball of radius r ≥ 0 around x ∈ X, that is, B(x, r) := {y ∈ X : d(x, y) ≤
r}. Note that the measurability of d implies that all these balls belong to F . In
the standard set-up for stabilizing functionals, X is a subset of Rd and Q has a
bounded density with respect to the Lebesgue measure (see, e.g., [25, 30, 48]).
To handle more general X and Q, we replace this standard assumption by the
following growth condition on the Q-surface area of spheres: There are constants
γ, κ > 0 such that

(2.1) lim sup
ε→0

Q(B(x, r + ε)) −Q(B(x, r))

ε
≤ κγ rγ−1, r ≥ 0, x ∈ X.

This assumption implies that Q is diffuse, that is, Q({x}) = 0 for x ∈ X [see
Lemma 5.1(a)].

Two examples for measure spaces (X,F,Q) and semi-metrics d satisfying the
assumption (2.1) are the following:

• Example 1. Let X be a full-dimensional subset of Rd equipped with the in-
duced Borel-σ -field F and the usual Euclidean distance d, assume that Q is
a measure on X with a density g with respect to the Lebesgue measure, and
put γ := d . Then condition (2.1) reduces to the standard assumption that g

is bounded. Indeed, if ‖g‖∞ := supx∈X |g(x)| < ∞, then (2.1) is obviously
satisfied with κ := ‖g‖∞κd , where κd := πd/2/�(d/2 + 1) is the volume of
the d-dimensional unit ball in Rd . On the other hand, if (2.1) holds, then
Q(B(x, r)) ≤ κrd as seen by Lemma 5.1(a) below. This gives an upper bound
of κ/κd for g since, by Lebesgue’s differentiation theorem, Lebesgue almost all
points x in Rd are Lebesgue points, that is to say

g(x) = lim
r→0

(
κdrd)−1

∫
y∈B(x,r)

g(y)dy = lim
r→0

(
κdrd)−1

Q
(
B(x, r)

)≤ κ/κd.

• Example 2. Let X ⊆ Rd be a smooth m-dimensional subset of Rd , m ≤ d ,
equipped with a semi-metric d, and a measure Q on X with a bounded den-
sity g with respect to the uniform surface measure Volm on X. We assume that
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the Volm−1 measure of the sphere ∂(B(x, r)) is bounded by the surface area of
the Euclidean sphere Sm−1(0, r) of the same radius, that is to say

(2.2) Volm−1
(
∂B(x, r)

)≤ mκmrm−1, x ∈X, r > 0.

When X is an m-dimensional affine space and d is the usual Euclidean metric
on Rd , (2.2) holds with equality, naturally. However (2.2) holds in more general
situations. For example, by Bishop’s comparison theorem (Theorem 1.2 of [39],
along with (1.15) there), (2.2) holds for Riemannian manifolds X with nonneg-
ative Ricci curvature, with d the geodesic distance. Given the bound (2.2), one
obtains (2.1) with κ = ‖g‖∞κm and γ = m. This example includes the case
X= Sm, the unit sphere in Rm+1 equipped with the geodesic distance.

Marked Poisson and binomial point processes. To deal with marked point pro-
cesses, let (M,FM,QM) be a probability space. In the following, M shall be the
space of marks and QM the underlying probability measure of the marks. Let
X̂ := X × M, put F̂ to be the product σ -field of F and FM, and let Q̂ be the
product measure of Q and QM. When (M,FM,QM) is a singleton endowed with
a Dirac point mass, X̂ reduces to X and the “hat” superscript can be removed in all
occurrences.

Let N be the set of all counting measures ν on X̂ that are simple [i.e., ν({x̂}) ≤ 1
for all x̂ ∈ X̂] and locally finite [i.e., ν(B) < ∞ for all bounded B ∈ F̂ ]. These
counting measures can be interpreted as point configurations in X̂. Thus we treat
the elements from N as sets in our notation. The set N is equipped with the smallest
σ -field N such that the maps mA : N →N∪ {0,∞},M → M(A) are measurable
for all A ∈ F̂ . A point process is now a random element in N. In this paper, we
consider two different classes of point processes, namely Poisson and binomial
point processes. For s ≥ 1, update the notation Ps to represent a Poisson point
process with intensity measure sQ̂. This means that the numbers of points of Ps

in disjoint sets A1, . . . ,Am ∈ F̂ , m ∈ N, are independent and that the number of
points of Ps in a set A ∈ F̂ follows a Poisson distribution with mean sQ̂(A). For
a comprehensive treatment of Poisson point processes, we refer to the monograph
[23]. In case Q is a probability measure, we denote similarly by Xn a binomial
point process of n ∈ N points that are independently distributed according to Q̂.
Whenever we state a result involving the binomial point process Xn, we implicitly
assume that Q, and hence Q̂, are probability measures.

Score functions. Next, we consider the score functions (ξs)s≥1 that form the
statistics Hs and H ′

n defined at (1.1) and (1.2). We assume that the scores (ξs)s≥1
are measurable functions from X̂ × N to R. To formulate the assumptions of our
main results in the next subsection, we need to introduce several crucial concepts
for scores.
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DEFINITION (Radius of stabilization). For s ≥ 1 a measurable map Rs : X̂ ×
N →R is called a radius of stabilization for ξs if for all x̂ := (x,mx) ∈ X̂, M ∈ N
and finite Â⊂ X̂ with |Â| ≤ 7,

(2.3) ξs

(
x̂,

(
M∪ {x̂} ∪ Â

)∩ B̂
(
x,Rs

(
x̂,M∪ {x̂}))) = ξs

(
x̂,M∪ {x̂} ∪ Â

)
,

where B̂(y, r) := B(y, r) ×M for y ∈ X and r > 0.

Loosely speaking, the condition (2.3) says that the value of ξs at x̂ is wholly
determined by the points in M at distance at most Rs(x̂,M ∪ {x̂}) from x̂. We
illustrate this definition with an example for X = [0,1]d and Q the Lebesgue
measure restricted to [0,1]d and without marks. Let ξs , s ≥ 1, be given by
ξs(x,M) = s1/d min{d(x, y) : y ∈M\{x}} for x ∈ X and M ∈ N. This means that
ξs(x,M) is s1/d times the distance from x to its nearest neighbor and that the cor-
responding sum of scores is s1/d times the total edge length of the directed nearest
neighbor graph (see Section 3.1 for more details on the undirected k-nearest neigh-
bors graph, a similar and slightly more complicated model). Now Rs(x,M) :=
min{d(x, y) : y ∈ M \ {x}} is a radius of stabilization of ξs since the ball of this
radius around x contains at least one other point of M∪A, whence ξs(x,M∪A)

is completely determined by the points from (M∪A) ∩ B(0,R(x,M)).
Returning to the general set-up, given a point x ∈X we denote by Mx the corre-

sponding random mark, which is distributed according to QM and is independent
of everything else.

DEFINITION (Exponential stabilization). The scores (ξs)s≥1 [resp.,
(ξn)n∈N] are exponentially stabilizing if there are radii of stabilization (Rs)s≥1
[resp., (Rn)n∈N] and constants Cstab, cstab, αstab ∈ (0,∞) such that, for x ∈ X,
r ≥ 0 and s ≥ 1,

(2.4) P
(
Rs

(
(x,Mx),Ps ∪ {

(x,Mx)
}) ≥ r

) ≤ Cstab exp
(−cstab

(
s1/γ r

)αstab
)
,

respectively, for x ∈ X, r ≥ 0 and n ≥ 9,

(2.5) P
(
Rn

(
(x,Mx),Xn−8 ∪ {

(x,Mx)
}) ≥ r

) ≤ Cstab exp
(−cstab

(
n1/γ r

)αstab
)
,

where γ is the constant from (2.1).

For the radius of stabilization Rs given above for the scores related to the di-
rected nearest neighbor graph, the event Rs(x,M ∪ {x}) > r for some r > 0 is
equivalent to (M \ {x}) ∩ B(x, r) = ∅. For both Poisson and binomial input the
probability of this event decays exponentially in r so that the conditions (2.4) and
(2.5) are satisfied and the scores are exponentially stabilizing.

For a finite set A ⊂X, we denote by (A,MA) the random set obtained by equip-
ping each point of A with a random mark distributed according to QM and inde-
pendent of everything else.
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DEFINITION [Bounded (4 + p)th moment]. Let p ∈ [0,∞) be given. The
scores (ξs)s≥1 or (ξn)n∈N satisfy a (4 + p)th moment condition if there is a con-
stant Cp ∈ (0,∞) such that for all A ⊂ X with |A| ≤ 7,

(2.6) sup
s∈[1,∞)

sup
x∈X

E
∣∣ξs

(
(x,Mx),Ps ∪ {

(x,Mx)
}∪ (A,MA)

)∣∣4+p ≤ Cp

or

(2.7) sup
n∈N,n≥9

sup
x∈X

E
∣∣ξn

(
(x,Mx),Xn−8 ∪ {

(x,Mx)
}∪ (A,MA)

)∣∣4+p ≤ Cp.

Since the scores of the total edge length of the directed nearest neighbor graph
are bounded by s1/d times the radius of stabilization, which decays exponentially,
a straight forward computation reveals that they satisfy the (4 + p)th moment
condition for any p ∈ [0,∞).

We introduce a further notion relevant, for example, for functionals whose
variances exhibit surface area order scaling. Throughout we assume without fur-
ther mention that K is a measurable subset of X such that the map X � z →
d(z,K) := infy∈K d(z, y) is measurable. Here, d(z,K) is the distance between a
point z ∈ X and K . If there is a sequence in K that is dense with respect to d, the
measurability assumption is always satisfied. Moreover, we use the abbreviation
ds(·, ·) := s1/γ d(·, ·), s ≥ 1.

DEFINITION (Exponential decay with distance to K). The scores (ξs)s≥1, re-
spectively, (ξn)n∈N, decay exponentially fast with the distance to K if there are
constants CK, cK,αK ∈ (0,∞) such that for all A⊂ X with |A| ≤ 7,

(2.8)
P
(
ξs

(
(x,Mx),Ps ∪ {

(x,Mx)
}∪ (A,MA)

) �= 0
)

≤ CK exp
(−cK ds(x,K)αK

)
for x ∈ X and s ≥ 1 respectively,

(2.9)
P
(
ξn

(
(x,Mx),Xn−8 ∪ {

(x,Mx)
}∪ (A,MA)

) �= 0
)

≤ CK exp
(−cK dn(x,K)αK

)
for x ∈ X and n ≥ 9.

For the previously discussed scores of the total edge length of the directed near-
est neighbor graph, the conditions (2.8) and (2.9) are satisfied for the trivial choice
K = X, CK = 1 and arbitrary cK,αK ∈ (0,∞). As a nontrivial example, we con-
sider the points of the underlying point process of the directed nearest neighbor
graph that are closer to the boundary of X = [0,1]d than to their nearest neighbor.
For s ≥ 1, let ξs(x,M) be one if d(x, ∂([0,1]d)) < min{d(x, y) : y ∈ M \ {x}}
and, otherwise, zero so that the corresponding sums Hs and H ′

n are the total num-
bers of points closer to the boundary of X = [0,1]d than to their nearest neigh-
bor. Here, the exponential decay condition is satisfied with K = ∂([0,1]d). The
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idea is that if a point x ∈ X is far away from K , then with high probability
there is some other point of the point process in X that is closer than K . Indeed,
ξs(x,M ∪ {x}) = 1 is equivalent to (M \ {x}) ∩ B(x,d(x,K)) = ∅, an event
whose probability decays exponentially in d(x,K) for Poisson and binomial in-
put, whence (2.8) and (2.9) are satisfied. The choice of the set K will be crucial
for our main results and will be further discussed after Theorem 2.1.

2.2. Statements of the main results. In this subsection, we present our main
results, whose proofs are postponed to Section 5. The following general the-
orem provides rates of normal convergence for Hs and H ′

n in terms of the
Kolmogorov distance defined at (1.3). This theorem is a consequence of gen-
eral theorems from [22] and [20] giving Malliavin–Stein bounds for functionals
of Poisson and binomial point processes (see Theorems 4.1 and 4.2 below). We
define α := min{αstab, αK} and

(2.10) IK,s := s

∫
X

exp
(
−min{cstab, cK}p ds(x,K)α

36 · 4α+1

)
Q(dx), s ≥ 1,

where all the constants and K are as in Section 2.1. Throughout this paper, N

always denotes a standard Gaussian random variable.

THEOREM 2.1. (a) Assume that the score functions (ξs)s≥1 are exponentially
stabilizing (2.4), satisfy the moment condition (2.6) for some p ∈ (0,1], and decay
exponentially fast with the distance to a set K ⊆ X, as at (2.8). Then there is a
constant C̃ ∈ (0,∞) only depending on the constants in (2.1), (2.4), (2.6) and
(2.8) such that

(2.11)

dK

(
Hs −EHs√

VarHs

,N

)

≤ C̃

( √
IK,s

VarHs

+ IK,s

(VarHs)3/2 + I
5/4
K,s + I

3/2
K,s

(VarHs)2

)
, s ≥ 1.

(b) Assume that the score functions (ξn)n∈N are exponentially stabilizing (2.5),
satisfy the moment condition (2.7) for some p ∈ (0,1], and decay exponentially
fast with the distance to a set K ⊆ X, as at (2.9). Let (IK,n)n∈N be as in (2.10).
Then there is a constant C̃ ∈ (0,∞) only depending on the constants in (2.1), (2.5),
(2.7) and (2.9) such that

(2.12)

dK

(
H ′

n −EH ′
n√

VarH ′
n

,N

)

≤ C̃

( √
IK,n

VarH ′
n

+ IK,n

(VarH ′
n)

3/2 + IK,n + I
3/2
K,n

(VarH ′
n)

2

)
, n ≥ 9.
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To deduce central limit theorems from Theorem 2.1, we will have to show that√
IK,s/VarHs → 0 as s → ∞ and

√
IK,n/VarH ′

n → 0 as n → ∞, respectively,
which heavily depends on the choice of K . In the sequel we always assume that
IK,s is finite. This is only a restriction for the Poisson case, where Q(X) = ∞ is
allowed. Then IK,s < ∞ and (2.8) imply that the number of points of Ps with
nonvanishing scores is finite almost surely. Now let us discuss some prominent
choices for K . If there is a set A ∈ F such that Q(A) < ∞, X � z → d(z,A) is
measurable, and the scores of points outside of A vanish almost surely, we make
the choice K = A, for which (2.8) and (2.9) are obviously satisfied with CK = 1
and arbitrary cK,αK ∈ (0,∞). This approach, often with K = A = X so that

(2.13) IX,s = sQ(X), s ≥ 1, and IX,n = nQ(X), n ∈N,

works for many functionals whose variances have volume order, for example, the
total edge length of the directed nearest neighbor graph considered above. If X is
Rd or a compact convex subset of Rd such as the unit cube, one sometimes has to
choose K to be a (d − 1)-dimensional subset of Rd to ensure that

√
IK,s/VarHs

and
√

IK,n/VarH ′
n vanish. This situation arises, for example, when considering

statistics of convex hulls of random samples, Voronoi set approximation, and the
total number of maximal points. Problems with surface order scaling of the vari-
ance are typically of this form.

Assuming growth bounds on IK,s/VarHs and IK,n/VarH ′
n, the rates (2.11) and

(2.12) nicely simplify into presumably optimal rates (see Section 1 for a discussion
of optimality), ready for off-the-shelf use in applications.

COROLLARY 2.2. (a) Let the conditions of Theorem 2.1(a) prevail. Assume
further that there is a C ∈ (0,∞) such that sups≥1 IK,s/VarHs ≤ C. Then there

is a C̃′ ∈ (0,∞) only depending on C and the constants in (2.1), (2.4), (2.6) and
(2.8) such that

(2.14) dK

(
Hs −EHs√

VarHs

,N

)
≤ C̃′

√
VarHs

, s ≥ 1.

(b) Let the conditions of Theorem 2.1(b) prevail. If there is a C ∈ (0,∞) such
that supn≥1 IK,n/VarH ′

n ≤ C, then there is a C̃′ ∈ (0,∞) only depending on C

and the constants in (2.1), (2.5), (2.7) and (2.9) such that

(2.15) dK

(
H ′

n −EH ′
n√

VarH ′
n

,N

)
≤ C̃′√

VarH ′
n

, n ≥ 9.

This corollary is applied in the context of the convex hull of a random sam-
ple of points in a smooth convex set in Section 3.4. In this case, the variance

is of order s
d−1
d+1 (n

d−1
d+1 in the binomial setting), and we obtain rates of normal

convergence of order (VarHs)
−1/2 = �(s−(d−1)/(2(d+1))) [resp., (VarH ′

n)
−1/2 =

�(n−(d−1)/(2(d+1)))], which improves upon rates obtained via other methods.
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In the setting X ⊆ Rd , our results admit further simplification, which goes as
follows. For K ⊆ X ⊆ Rd and r ∈ (0,∞), let Kr := {y ∈ Rd : d(y,K) ≤ r} de-
note the r-parallel set of K . Recall that the (d − 1)-dimensional upper Minkowski
content of K is given by

(2.16) Md−1
(K) := lim sup

r→0

Vold(Kr)

2r
.

If K is a closed (d − 1)-rectifiable set in Rd (i.e., the Lipschitz image of a

bounded set in Rd−1), then Md−1
(K) exists and coincides with a scalar mul-

tiple of Hd−1(K), the (d − 1)-dimensional Hausdorff measure of K . Given an
unbounded set I ⊂ (0,∞) and two families of real numbers (ai)i∈I , (bi)i∈I , we
use the Landau notation ai = O(bi) to indicate that lim supi∈I,i→∞ |ai |/|bi | < ∞.
If bi = O(ai), we write ai = (bi), whereas if ai = O(bi) and bi = O(ai) we
write ai = �(bi).

THEOREM 2.3. Let X⊆ Rd be full-dimensional, let Q have a bounded density
with respect to Lebesgue measure and let the conditions of Theorem 2.1 prevail
with γ := d .

(a) Let K be a full-dimensional compact subset of X with Md−1
(∂K) < ∞. If

VarHs = (s), respectively, VarH ′
n = (n), then there is a constant c ∈ (0,∞)

such that

(2.17) dK

(
Hs −EHs√

VarHs

,N

)
≤ c√

s
, resp. dK

(
H ′

n −EH ′
n√

VarH ′
n

,N

)
≤ c√

n

for s ≥ 1, respectively, n ≥ 9.

(b) Let K be a (d − 1)-dimensional compact subset of X with Md−1
(K) <

∞. If VarHs = (s(d−1)/d), respectively, VarH ′
n = (n(d−1)/d), then there is a

constant c ∈ (0,∞) such that
(2.18)

dK

(
Hs −EHs√

VarHs

,N

)
≤ c

s
1
2 − 1

2d

, resp. dK

(
H ′

n −EH ′
n√

VarH ′
n

,N

)
≤ c

n
1
2 − 1

2d

for s ≥ 1, respectively, n ≥ 9.

The constants c ∈ (0,∞) in (a) and (b) depend on the constants in (2.1) and (2.4)–
(2.9), the set K and the behavior of the variances VarHs and VarH ′

n.

REMARKS. (i) Comparing (2.17) with existing results. The results at (2.17)
are applicable in the setting of volume order scaling of the variances, that is, when
the variances of Hs and H ′

n exhibit scaling proportional to s and n. The rate for
Poisson input in (2.17) improves upon the rates given by Theorem 2.1 of [30] (see
also Lemma 4.4 of [25]), Corollary 3.1 of [5] and Theorem 2.3 in [27], which
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all contain extraneous logarithmic factors and which rely on dependency graph
methods. The rate in (2.17) for binomial input is new, as up to now there are no
explicit general rates of normal convergence for sums of stabilizing score functions
ξn of binomial input.

(ii) Comparing (2.18) with existing results. The rates at (2.18) are relevant for
statistics with surface area rescaling of the variances, that is, when the variance of
Hs (resp., H ′

n) exhibits scaling proportional to s1−1/d (resp., n1−1/d ). These rates
both improve and extend upon the rates given in the main result (Theorem 1.3) in
[48]. First, in the case of Poisson input, the rates remove the logarithmic factors
present in Theorem 1.3 of [48]. Second, we obtain rates of normal convergence for
binomial input, whereas [48] does not treat this situation.

(iii) Unspecified constants. The bounds for normal approximation all involve
unspecified constants C̃, C̃ ′ and c. By following our proofs, one could explicitly
determine these constants in terms of the constants in (2.1), (2.4)–(2.9) (as well as
in terms of C in case of Corollary 2.2 and in terms of K and the behavior of VarHs

and VarH ′
n in case of Theorem 2.3). For the sake of readability, we have decided

not to take this approach.
(iv) Normal approximation via re-scaling. Let P be a homogenous Poisson

point process of intensity one on Rd . Applications often involve showing normal
approximation for

∑
x∈P∩Ws

ξ(x,P ∩ Ws), where ξ is a stabilizing score func-
tion and Ws := [−1

2s1/d, 1
2s1/d ]d . To see that our main results treat this situation,

it suffices to put X to be W1, Q Lebesgue measure on K := W1, Ps a Poisson
point process of intensity sQ, and ξs(x,M) := ξ(s1/dx, s1/dM). One may like-
wise deduce central limit theorems for

∑
x∈P∩Ws

ξ(x,P) by taking X to be Rd , Q
Lebesgue measure on Rd , Ps a Poisson point process of intensity sQ, K := W1
and ξs(x,M) := ξ(s1/dx, s1/dM) when x ∈ W1 and zero otherwise. In this situa-
tion, we have IK,x = �(s).

(v) Extensions to random measures. Up to a constant factor, the rates of normal
convergence in Theorem 2.1, Corollary 2.2 and Theorem 2.3 hold for the nonlinear
statistics Hs(f ) = ∑

x∈Ps
f (x)ξs(x,Ps) and H ′

n(f ) = ∑
x∈Xn

f (x)ξn(x,Xn), ob-
tained by integrating the random measures

∑
x∈Ps

ξs(x,Ps)δx and∑
x∈Xn

ξn(x,Xn)δx with a bounded measurable test function f on X. For exam-
ple, if the assumptions of Theorem 2.3(a) are satisfied with K = X, Var(Hs(f )) =
(s), and Var(H ′

n(f )) = (n), then there is a constant c ∈ (0,∞) such that

(2.19) dK

(
Hs(f ) −EHs(f )√

VarHs(f )
,N

)
≤ c√

s
, s ≥ 1,

and

(2.20) dK

(
H ′

n(f ) −EH ′
n(f )√

VarH ′
n(f )

,N

)
≤ c√

n
, n ≥ 9.

Here, the constant c ∈ (0,∞) depends on the constants in (2.1) and (2.4)–(2.7),
the set K and the behavior of the variances Var(Hs(f )) and Var(H ′

n(f )). The rate
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(2.19) improves upon the main result (Theorem 2.1) of [30] whereas the rate (2.20)
is new.

(vi) Extensions to the Wasserstein distance. All quantitative bounds presented
in this section also hold for the Wasserstein distance (see also the discussion at the
end of Section 4). The Wasserstein distance between random variables Y and Z

with E|Y |,E|Z| < ∞ is given by

(2.21) dW(Y,Z) := sup
h∈Lip(1)

∣∣Eh(Y ) −Eh(Z)
∣∣,

where Lip(1) stands for the set of all functions h : R → R whose Lipschitz con-
stant is at most one. Since we believe that the Kolmogorov distance dK is more
prominent than the Wasserstein distance, the applications in Section 3 are formu-
lated only for dK .

(vii) Subsets without influence. Assume that there is a measurable set X̃ ⊂ X

such that the scores satisfy

ξs(x,M) = 1{x∈X̃}ξs(x,M∩ X̃), M ∈ N, x ∈ M, s ≥ 1,

where M∩ X̃ stands for the restriction of the point configuration M to X̃. In other
words, the sum of scores

∑
x∈M ξs(x,M) only depends on the points of M which

belong to X̃. In this case, our previous results are still valid if the assumptions
(2.1)–(2.9) hold for all x ∈ X̃.

(viii) Null sets. In our assumptions (2.1)–(2.9) we require, for simplicity, that
some inequalities are satisfied for all x ∈X. In case that these only hold for Q-a.e.
x ∈ X, our results are still true. This also applies to comment (vii).

(ix) Extensions to polynomial stabilization. The situation where the radius of
stabilization decays polynomially instead of exponentially is known as polynomial
stabilization (see [25]). We expect that our results can be proved by following the
same route if the exponential terms in (2.4) and (2.8) [resp., (2.5) and (2.9)] are
replaced by(

s1/γ r
)−τstab and ds(x,K)−τK

(
resp.

(
n1/γ r

)−τstab and dn(x,K)−τK
)

with τstab, τK > 0 sufficiently large. We did not do so as it would have made our
proofs more technical and it seems that most examples of interest are exponentially
stabilizing.

3. Applications. By appropriately choosing the measure space (X,F,Q), the
scores (ξs)s≥1 and (ξn)n∈N, and the set K ⊂ X, we may use the general results
of Theorem 2.1, Corollary 2.2 and Theorem 2.3 to deduce presumably optimal
rates of normal convergence for statistics in geometric probability. For example,
in the setting X = Rd , we expect that all of the statistics Hs and H ′

n described
in [7, 25, 28–30] consist of sums of scores ξs and ξn satisfying the conditions
of Theorem 2.3, showing that the statistics in these papers enjoy rates of normal
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convergence (in the Kolmogorov distance) given by the reciprocal of the standard
deviation of Hs and H ′

n, respectively. Previously, the rates in these papers either
contained extraneous logarithmic factors, as in the case of Poisson input, or the
rates were sometimes nonexistent, as in the case of binomial input. In the follow-
ing, we do this in detail for some prominent statistics featuring in the stochastic
geometry literature, including the k-face and intrinsic volume functionals of con-
vex hulls of random samples. Our selection of statistics is illustrative rather than
exhaustive and is intended to demonstrate the wide applicability of Theorem 2.1
and the relative simplicity of Corollary 2.2 and Theorem 2.3. In some instances,
the rates of convergence are subject to variance lower bounds, a separate problem
not addressed here.

We believe that one could use our approach to also deduce presumably optimal
rates of normal convergence for statistics of random sequential packing problems
as in [41], set approximation via Delaunay triangulations as in [18], generalized
spacings as in [6] and general proximity graphs as in [15].

3.1. Nearest neighbors graphs and statistics of high-dimensional data sets.
(a) Total edge length of nearest neighbors graphs. Let (X,F,Q) be equipped

with a semi-metric d such that (2.1) is satisfied for some γ and κ . We equip X with
a fixed linear order, which is possible by the well-ordering principle. Given X ∈ N,
k ∈ N, and x ∈ X , let Vk(x,X ) be the set of k nearest neighbors of x, that is, the
k closest points of x in X \ {x}. In case that that these k points are not unique,
we break the tie via the fixed linear order on X. The (undirected) nearest neighbor
graph NG1(X ) is the graph with vertex set X obtained by including an edge {x, y}
if y ∈ V1(x,X ) and/or x ∈ V1(y,X ). More generally, the (undirected) k-nearest
neighbors graph NGk(X ) is the graph with vertex set X obtained by including an
edge {x, y} if y ∈ Vk(x,X ) and/or x ∈ Vk(y,X ). For all q ≥ 0, define

(3.1) ξ (q)(x,X ) := ∑
y∈Vk(x,X )

ρ(q)(x, y),

where ρ(q)(x, y) := d(x, y)q/2 if x and y are mutual k-nearest neighbors, that is,
x ∈ Vk(y,X ) and y ∈ Vk(x,X ), and otherwise ρ(q)(x, y) := d(x, y)q . The total
edge length of the undirected k-nearest neighbors graph on X with qth power
weighted edges is

L
(q)
NGk

(X ) = ∑
x∈X

ξ (q)(x,X ).

As usual Ps is a Poisson point process on X with intensity measure sQ and Xn is
a binomial point process of n points in X distributed according to Q. We assume
in the following that (X,F,Q) satisfies, beside (2.1),

(3.2) inf
x∈XQ

(
B(x, r)

)≥ crγ , r ∈ [
0,diam(X)

]
,

where γ is the constant from (2.1), diam(X) stands for the diameter of X and c > 0.
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THEOREM 3.1. If q ≥ 0 and Var(L(q)
NGk

(Ps)) = (s1−2q/γ ), then there is a

C̃ ∈ (0,∞) such that

(3.3) dK

(
L

(q)
NGk

(Ps) −EL
(q)
NGk

(Ps)√
VarL(q)

NGk
(Ps)

,N

)
≤ C̃√

s
, s ≥ 1,

whereas if Var(L(q)
NGk

(Xn)) = (n1−2q/γ ), then

(3.4) dK

(
L

(q)
NGk

(Xn) −EL
(q)
NGk

(Xn)√
VarL(q)

NGk
(Xn)

,N

)
≤ C̃√

n
, n ≥ 9.

REMARKS. (i) Comparison with previous work. Research has focused on cen-
tral limit theorems for L

(q)
NGk

(Ps), s → ∞, and L
(q)
NGk

(Xn), n → ∞, when X is a

full-dimensional subset of Rd and where d is the usual Euclidean distance. This
includes the seminal work [8], the paper [1] and the more recent works [27, 28, 30].
When X is a submanifold of Rd equipped with the Euclidean metric on Rd , the pa-
per [31] develops the limit theory for L

(q)
NGk

(Ps), s → ∞, and L
(q)
NGk

(Xn), n → ∞.

When X is a compact convex subset of Rd , the paper [22] establishes the presum-
ably optimal O(s−1/2) rate of normal convergence for L

(q)
NGk

(Ps).
The rate for binomial input (3.4) improves upon the rate of convergence in the

Wasserstein distance dW given by

(3.5) dW

(
L

(q)
NGk

(Xn) −EL
(q)
NGk

(Xn)√
VarL(q)

NGk
(Xn)

,N

)
= O

(
k4γ̃

2/p
p

n(p−8)/2p
+ k3γ̃

3/p
p

n(p−6)/2p

)
,

as in Theorem 3.4 of [10] as well as the same rate in the Kolmogorov distance as
in Section 6.3 of [20]. Here, γ̃p := E|nq/γ ξ (q)(X1,Xn)|p and p > 8. For all ε > 0,

we have P(nq/γ ξ (q)(X1,Xn) > ε) = (1 − Cεγ /n)n and it follows that γ̃
1/p
p ↑ ∞

as p → ∞. Thus, by letting p → ∞, we do not recover the O(n−1/2) rate in (3.5),
but only achieve the rate O(n−1/2(logn)τ ) with some τ > 0.

However, the discussed papers neither provide the presumably optimal
O(n−1/2) rate of normal convergence for L

(q)
NGk

(Xn) in the dK distance, nor do
they consider input on arbitrary metric spaces. Theorem 3.1 rectifies this.

(ii) Variance bounds. When X is a full-dimensional compact convex sub-
set of Rd , then γ = d , Var(L(q)

NGk
(Ps)) = �(s1−2q/γ ), and Var(LNGk

(Xn)) =
�(n1−2q/γ ), which follows from Theorem 2.1 and Lemma 6.3 of [28] [these re-
sults treat the case q = 1 but the proofs easily extend to arbitrary q ∈ (0,∞)]. Thus
we obtain the required variance lower bounds of Theorem 3.1. If Var(L(q)

NGk
(Ps)) =

(s1−2q/γ ) does not hold, then the convergence rate in (3.3) is replaced by (2.11)
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with IK,s set to s, with a similar statement if Var(LNGk
(Xn)) = (n1−2q/γ ) does

not hold.
(iii) Extension of Theorem 3.1. The directed k-nearest neighbors graph, denoted

NG′
k(X ), is the directed graph with vertex set X obtained by including a directed

edge from each point to each of its k nearest neighbors. The total edge length of
the directed k-nearest neighbors graph on X with qth power-weighted edges is

L
(q)

NG′
k
(X ) = ∑

x∈X
ξ̃ (q)(x,X ),

where

ξ̃ (q)(x,X ) := ∑
y∈Vk(x,X )

d(x, y)q.

The proof of Theorem 3.1 given below shows that the analogs of (3.3) and (3.4)
hold for L

(q)

NG′
k
(Ps) and L

(q)

NG′
k
(Xn) as well. See also the running example in Sec-

tion 2.1 for the case q = k = 1.

PROOF OF THEOREM 3.1. In the following, we prove (3.3). We deduce this
from Corollary 2.2 with ξs(x,Ps) set to sq/γ ξ (q)(x,Ps), with ξ (q) as at (3.1)
and with K set to X. Recalling the terminology of Corollary 2.2, we have Hs :=
sq/γ L

(q)
NGk

(Ps) = ∑
x∈Ps

ξs(x,Ps), with VarHs = Var(sq/γ ∑
x∈Ps

ξ (q)(x,Ps)) =
(s), by assumption. Recall from (2.13) that IK,s = �(s). We claim that
Rs(x,X ∪ {x}) := 3 d(x, xkNN(x,X ∪ {x})) is a radius of stabilization for
ξs(x,X ∪ {x}), where xkNN(x,X ∪ {x}) is the point of Vk(x,X ∪ {x}) with the
maximal distance to x. Indeed, if a point y is a k-nearest neighbor of x, then all
of its k-nearest neighbors must belong to B(y,2 d(x, xkNN(x,X ∪ {x}))), since
this ball contains with x and its k − 1 nearest neighbors enough potential k-nearest
neighbors for y. Since Rs(x,X ∪ {x}) is decreasing in X , we do not need to add a
deterministic point set A.

We now show that Rs(x,Ps ∪ {x}) satisfies exponential stabilization (2.4). No-
tice that

P
(
Rs

(
x,Ps ∪ {x}) > r

) = P
(
Ps

(
B(x, r/3) < k

))
, r ≥ 0.

The number of points from Ps in B(x, r/3) follows a Poisson distribution with
parameter sQ(B(x, r/3)). By (3.2), this exceeds cs(r/3)γ if r ∈ [0,3 diam(X)].
By a Chernoff bound for the Poisson distribution (e.g., Lemma 1.2 of [24]), there
is another constant c̃ ∈ (0,∞) such that

P
(
Rs

(
x,Ps ∪ {x}) > r

) ≤ k exp
(−c̃srγ ), r ∈ [

0,3 diam(X)
]
.

This also holds for r > 3 diam(X), since P(Rs(x,Ps ∪ {x}) ≥ r) = 0 in this case.
This gives (2.4), with αstab = γ , cstab = c̃, and Cstab = k. We may modify this
argument to obtain exponential stabilization with respect to binomial input as at
(2.5).
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For all q ∈ [0,∞), the scores (ξs)s≥1 also satisfy the (4 + p)th moment condi-
tion (2.6) for all p ∈ [0,∞) since

ξs

(
x,Ps ∪ {x} ∪A

) ≤ ksq/γ d
(
x, xkNN

(
x,Ps ∪ {x}))q

for all A ⊂ X with |A| ≤ 7, and the above computation shows that sq/γ d(x,

xkNN(x,Ps ∪ {x}))q has an exponentially decaying tail. The bound (3.3) follows
by Corollary 2.2. The proof of (3.4) is similar. This completes the proof of Theo-
rem 3.1. �

(b) Statistics of high-dimensional data sets. In the case that X is an m-
dimensional C1-submanifold of Rd , with d the Euclidean distance in Rd , the di-
rected nearest neighbors graph version of Theorem 3.1 [cf. Remark (iii) above]
may be refined to give rates of normal convergence for statistics of high-
dimensional nonlinear data sets. This goes as follows. Recall that high-dimensional
nonlinear data sets are typically modeled as the realization of Xn := {X1, . . . ,Xn},
with Xi,1 ≤ i ≤ n, i.i.d. copies of a random variable X having support on an
unknown (nonlinear) manifold X embedded in Rd . Typically the coordinate rep-
resentation of Xi is unknown, but the interpoint distances are known. Given this
information, the goal is to establish estimators of global characteristics of X, in-
cluding intrinsic dimension, as well as global properties of the distribution of X,
such as Rényi entropy. Recall that if the distribution of the random variable X has
a Radon–Nikodym derivative fX with respect to the uniform measure on X, then
given ρ ∈ (0,∞), ρ �= 1, the Rényi ρ-entropy of X is

Hρ(fX) := (1 − ρ)−1 log
∫
X

fX(x)ρ dx.

Let X be an m-dimensional subset of Rd , m ≤ d , equipped with the Euclidean
metric d on Rd . Henceforth, assume X is an m-dimensional C1-submanifold-with-
boundary (see Section 2.1 of [31] for details and precise definitions). Let Q be a
measure on X with a bounded density fX with respect to the uniform surface mea-
sure on X such that condition (2.1) is satisfied with γ := m. Note that Example 2
(Section 2) provides conditions which guarantee that (2.1) holds. Assume fX is
bounded away from zero and infinity, and

inf
x
Q
(
B(x, r)

)≥ crm, r ∈ [
0,diam(X)

]
,

with some constant c ∈ (0,∞). The latter condition is called the “locally conic”
condition in [31] (cf. (2.3) in [31]).

Under the above conditions and given Poisson input Ps with intensity sfX , the
main results of [31] establish rates of normal convergence for estimators of intrin-
sic dimension, estimators of Rényi entropy, and for Vietoris–Rips clique counts
(see Section 2 of [31] for precise statements). However, these rates contain extra-
neous logarithmic factors and [31] also stops short of establishing rates of normal
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convergence when Poisson input is replaced by binomial input. In what follows,
we rectify this for estimators of Rényi entropy. The methods potentially apply to
yield rates of normal convergence for estimators of Shannon entropy and intrinsic
dimension, but this lies beyond the scope of this paper.

When fX satisfies the assumptions stated above and is also continuous on X,
then nq/m−1L

(q)

NG′
1
(Xn) is a consistent estimator of a multiple of

∫
X fX(x)1−q/m dx,

as shown in Theorem 2.2 of [31]. The following result establishes a rate of normal
convergence for L

(q)

NG′
k
(Xn) and, in particular, for the estimator nq/m−1L

(q)

NG′
1
(Xn).

THEOREM 3.2. If k ∈ N and q ∈ (0,∞), then there is a constant c ∈ (0,∞)

such that

(3.6) dK

(L
(q)

NG′
k
(Xn) −EL

(q)

NG′
k
(Xn)√

VarL(q)

NG′
k
(Xn)

,N

)
≤ c√

n
, n ≥ 9.

A similar result holds if the binomial input Xn is replaced by Poisson input.

REMARKS. (i) We have to exclude the case q = 0 since L
(0)

NG′
1
(Xn) = kn if

n > k. For the Poisson case a central limit theorem still holds, but becomes trivial
since we have L

(0)

NG′
1
(Ps) = k|Ps | if |Ps | ≥ k + 1.

(ii) In the same vein, as described in Remark (i) following Theorem 3.1, Theo-
rem 3.4 of [10] yields a rate of normal convergence for L

(q)

NG′
1
(Xn) in the Wasser-

stein distance dW given by the right-hand side of (3.5). However, the bound (3.6)
is superior and is moreover expressed in the Kolmogorov distance dK . When the
input Xn is replaced by Poisson input Ps , we obtain the rate of normal convergence
O(s−1/2), improving upon the rates of [30, 31].

PROOF OF THEOREM 3.2. Appealing to the method of proof in Theorem 2.3
of [31] and the variance lower bounds of Theorem 6.1 of [28], we see that
VarL(q)

NG′
k
(Xn) = �(n1−2q/m) and VarL(q)

NG′
k
(Ps) = �(s1−2q/m). The proof follows

now the proof of Theorem 3.1. �

3.2. Maximal points. Consider the cone Co = (R+)d with apex at the origin
of Rd , d ≥ 2. Given X ∈ N, x ∈ X is called maximal if (Co ⊕ x) ∩ X = {x}. In
other words, a point x = (x1, . . . , xd) ∈ X is maximal if there is no other point
(z1, . . . , zd) ∈ X with zi ≥ xi for all 1 ≤ i ≤ d . The maximal layer mCo(X ) is
the collection of maximal points in X . Let MCo(X ) := card(mCo(X )). Maximal
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points are of broad interest in computational geometry and economics; see [11, 32,
44].

Put

X := {
x ∈ [0,∞)d : F(x) ≤ 1

}
,

where F : [0,∞)d → R+ is a strictly increasing function of each coordinate vari-
able, satisfies F(0) < 1, is continuously differentiable, and has continuous partials
Fi , 1 ≤ i ≤ d , bounded away from zero and infinity. Let Q be a measure on X

with Radon–Nikodym derivative g with respect to Lebesgue measure on X, with
g bounded away from zero and infinity. As usual, Ps is the Poisson point process
with intensity sQ and Xn is a binomial point process of n i.i.d. points distributed
according to Q.

THEOREM 3.3. There is a constant c ∈ (0,∞) such that

(3.7) dK

(
MCo(Ps) −EMCo(Ps)√

VarMCo(Ps)
,N

)
≤ cs− 1

2 + 1
2d , s ≥ 1.

Assuming VarMCo(Xn) = (n(d−1)/d), the binomial counterpart to (3.7) holds,
with Ps replaced by Xn.

REMARKS. (i) Existing results. The rates of normal convergence given by
Theorem 3.3 improve upon those given in [4] for Poisson and binomial input for
the bounded Wasserstein distance and in [5] and [48] for Poisson input for the Kol-
mogorov distance. While these findings are also proved via the Stein method, the
local dependency methods employed there all incorporate extraneous logarithmic
factors. Likewise, when d = 2, the paper [2] provides rates of normal convergence
in the Kolmogorov distance for binomial input, but aside from the special case
that F is linear, the rates incorporate extraneous logarithmic factors. The precise
approximation bounds of Theorem 3.3 remove the logarithmic factors in [2, 4, 5,
48].

(ii) We have taken Co = (R+)d to simplify the presentation, but the results ex-
tend to general cones which are subsets of (R+)d and which have apex at the
origin.

PROOF OF THEOREM 3.3. We deduce this theorem from Theorem 2.3(b) and
consider score functions

ζ(x,X ) :=
{

1 if
(
(Co ⊕ x) ∩X

)∩X = {x},
0 otherwise.

Notice that MCo(X ) = ∑
x∈Ps

ζ(x,X ). Put K := {x ∈ [0,∞)d : F(x) = 1}. The

assumptions on F imply Md−1
(K) < ∞. In the following, we only prove (3.7)

for Poisson input, as the proof for binomial input is similar. Thus we only need
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to show that the scores ζs ≡ ζ satisfy the conditions of Theorem 2.3(b). First,
ζ is bounded and so satisfies the (4 + p)th moment condition (2.6) for all p ∈
[0,∞). As shown in [48] (see proof of Theorem 2.5 in Section 6), ζs also satisfy
exponential stabilization (2.4) with αstab = d with respect to Poisson input Ps .
Also, we assert that the scores decay exponentially fast with the distance to K

with αK = d . To see this, let r(x) := d(x,K) be the distance between x and K and
note that (Co ⊕ x) ∩X contains the set S(x) := B(x, r(x)) ∩ (Co ⊕ x). It follows
that

P
(
ζ
(
x,Ps ∪ {x}) �= 0

) = P
((

(Co ⊕ x) ∩X
)∩Ps = {x})

= exp
(
−s

∫
(Co⊕x)∩X

dQ
)

≤ exp
(−sQ

(
S(x)

))
≤ exp

(−c̄ ds(x,K)d
)

with some constant c̄ := c̄(Q) ∈ (0,∞), and thus (2.8) holds with αK = d .
We now show VarMCo(Ps) = �(s(d−1)/d). The hypotheses on F imply that

there are M = �(s(d−1)/d) disjoint sets Si := (Co ⊕ xi) ∩ X, i = 1, . . . ,M , with
xi ∈ X, such that Qi := [0, s−1/d ]d ⊕ xi ⊂ Si and xi + s−1/de ∈ K , where e =
(1, . . . ,1) ∈ Rd . Given xi , for 1 ≤ j ≤ d define d subcubes of Qi ,

Qij :=
(

2

3
s−1/d, s−1/d

]j−1
×
[
0,

1

3
s−1/d

)
×
(

2

3
s−1/d, s−1/d

]d−j

⊕ xi,

as well as the central cube Q̃i := ∏d
j=1[1

3s−1/d, 2
3s−1/d ] ⊕ xi . All cubes thus con-

structed are disjoint. Say that Si,1 ≤ i ≤ M , is admissible if there are points

pij ∈ Ps ∩ Qij , 1 ≤ j ≤ d,

which are maximal and Si \ Q̃i contains no other points in Ps . Given that Si is
admissible, we assert that the maximality status of points in Ps ∩ Q̃c

i is unaffected
by the (possibly empty) configuration of Ps inside Q̃i . Indeed, if x ∈ Ps ∩Q̃c

i ∩Qi ,
then x ∈ {pij }dj=1 and so (Co ⊕ x) ∩ Q̃i = ∅, showing the assertion in this case.

On the other hand, if x ∈ Ps ∩ Q̃c
i ∩ Qc

i and if (Co ⊕ x) ∩ Q̃i �= ∅, then Co ⊕ x

must contain at least one of the cubes Qij , thus Co ⊕ x contains at least one of the
points {pij }dj=1, and hence ζ(x,Ps) vanishes. Let I be the indices i ∈ {1, . . . ,M}
such that Si is admissible.

Let Fs be the sigma algebra generated by I and Ps ∩ (X \⋃i∈I Q̃i), including
the maximal points {{pij }dj=1}i∈I . Conditional on Fs , note that ζ(x,Ps) is deter-

ministic for x ∈ Ps ∩ (X \⋃i∈I Q̃i). The conditional variance formula gives

VarMCo(Ps) ≥ EVar
[ ∑
x∈Ps∩⋃i∈I Q̃i

ζ(x,Ps) + ∑
x∈Ps∩(X\⋃i∈I Q̃i )

ζ(x,Ps)
∣∣∣Fs

]
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= EVar
[∑

i∈I

∑
x∈Ps∩Q̃i

ζ(x,Ps)
∣∣∣Fs

]

= E
∑
i∈I

Var
[ ∑
x∈Ps∩Q̃i

ζ(x,Ps)
∣∣∣Fs

]
,

where the last equality follows by independence of
∑

x∈Ps∩Q̃i
ζ(x,Ps), i ∈ I . For

i ∈ I , the number of maximal points in Q̃i only depends on the restriction of
Ps to Q̃i , and thus exhibits nonzero variability. Together with the bounds on g,
we obtain that Var[∑

x∈Ps∩Q̃i
ζ(x,Ps) | Fs] ≥ c1 > 0 uniformly in i ∈ I . Since

E card(I ) ≥ c2s
(d−1)/d with c2 ∈ (0,∞), the asserted variance lower bound fol-

lows. Theorem 2.3(b) gives (3.7).
The proof method in [48] is for Poisson input Ps , but it may be easily extended

to show that (ζn)n∈N are exponentially stabilizing with respect to binomial input
and that (ζn)n∈N decay exponentially fast with the distance to K . Thus the condi-
tions of Theorem 2.3(b) are satisfied, and so (3.7) follows from (2.14), concluding
the proof of Theorem 3.3. �

3.3. Set approximation via Voronoi tessellations. Throughout this subsection,
let X := [−1/2,1/2]d, d ≥ 2, and let A ⊂ int(X) be a full-dimensional subset of
Rd . Let Q be the uniform measure on X. For X ∈ N and x ∈ X the Voronoi cell
C(x,X ) is the set of all z ∈ X such that the distance between z and x is at most
equal to the distance between z and any other point of X . The collection of all
C(x,X ) with x ∈ X is called the Voronoi tessellation of X. The Voronoi approx-
imation of A with respect to X is the union of all Voronoi cells C(x,X ), x ∈ X ,
with x ∈ A, that is,

A(X ) := ⋃
x∈X∩A

C(x,X ).

In the following, we let X be either a Poisson point process Ps , s ≥ 1, with in-
tensity measure sQ or a binomial point process Xn of n ∈ N points distributed
according to Q. We are now interested in the behavior of the random approxima-
tions

As := A(Ps), s ≥ 1, and A′
n := A(Xn), n ∈ N,

of A. Note that As is also called the Poisson–Voronoi approximation.
Typically, A is an unknown set having unknown geometric characteristics such

as volume and surface area. Notice that As and A′
n are random polyhedral approx-

imations of A, with volumes closely approximating that of A as s and n become
large. There is a large literature devoted to quantifying this approximation and we
refer to [20, 48] for further discussion and references. One might also expect that
Hd−1(∂As) closely approximates a scalar multiple of Hd−1(∂A), provided the lat-
ter quantity exists and is finite. This has been shown in [48]. Using Theorem 2.3(b),
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we deduce rates of normal convergence for the volume and surface area statistics
of As and A′

n as well as Vol(As�A) and Vol(A′
n�A). Here and elsewhere in this

section, we abbreviate Vold by Vol. The symmetric difference U�V of two sets
U , V ⊂ Rd is given by U�V := (U \ V ) ∪ (V \ U).

THEOREM 3.4. (a) Let A ⊂ (−1/2,1/2)d be closed and such that ∂A satisfies

Md−1
(∂A) < ∞ and contains a (d −1)-dimensional C2-submanifold and let F ∈

{Vol,Vol(·�A),Hd−1(∂·)}. Then there is a constant C̃ ∈ (0,∞) such that

(3.8) dK

(
F(As) −EF(As)√

VarF(As)
,N

)
≤ C̃s− (d−1)

2d , s ≥ 1,

and

(3.9) dK

(
F(A′

n) −EF(A′
n)√

VarF(A′
n)

,N

)
≤ C̃n− (d−1)

2d , n ≥ 9,

as well as

(3.10) dK

(
Vol(As) − Vol(A)√

Var Vol(As)
,N

)
≤ C̃s− (d−1)

2d , s ≥ 1,

and

(3.11) dK

(
Vol(A′

n) − Vol(A)√
Var Vol(A′

n)
,N

)
≤ C̃n− (d−1)

2d , n ≥ 9.

(b) If F = Vol and A ⊂ (−1/2,1/2)d is compact and convex, then all of the
above inequalities are in force.

REMARKS. (i) The bound (3.8) provides a rate of convergence for the main
result of [42] (see Theorem 1.1 there), which establishes asymptotic normality for
Vol(As), A convex. The bound (3.8) also improves upon Corollary 2.1 of [48]
which shows

dK

(
Vol(As) −EVol(As)√

Var Vol(As)
,N

)
= O

(
(log s)3d+1s− (d−1)

2d
)
.

Recall that the normal convergence of Hd−1(∂As) is given in Remark (i) after
Theorem 2.4 of [48] and the bound (3.8) for F = Hd−1(∂·) provides a rate for this
normal convergence.

(ii) The bound (3.11) improves upon the bound of Theorem 6.1 of [20], which
contains extra logarithmic factors, and thus addresses an open problem raised in
Remark 6.9 of [20].

(iii) We may likewise deduce identical rates of normal convergence for other
geometric statistics of As , including the total number of k-dimensional faces of As ,
k ∈ {0,1, . . . , d − 1}, as well as the k-dimensional Hausdorff measure of the union
of the k-dimensional faces of As [thus when k = d − 1, this gives Hd−1(∂As)].
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Second-order asymptotics, including the requisite variance lower bounds for these
statistics, are established in [46]. In the case of geometric statistics of A′

n, we
expect similar variance lower bounds and central limit theorems.

(iv) Lower bounds for VarF(As) and VarF(A′
n) are essential to showing (3.8)–

(3.11). We expect the order of these bounds to be unchanged if Q has a density
bounded away from zero and infinity. We thus expect Theorem 3.5 to remain valid
in this context because all other arguments in our proof hold for such Q.

PROOF OF THEOREM 3.4. We first prove (3.8) for F = Vol and F =
Vol(·�A). The proof method extends easily to the case when Poisson input is
replaced by binomial input and we sketch the details as needed. To deduce (3.8)
from Theorem 2.3(b), we need to (i) express sF (As) as a sum of stabilizing score
functions and (ii) define K ⊂ X and show that the scores decay exponentially fast
with respect to K .

(i) Definition of scores. As in [48], for X ∈ N, x ∈ X , and a fixed subset A of
X, define the scores

(3.12) ν±(x,X ) :=
{

Vol
(
C(x,X ) ∩ Ac) if x ∈ A,

±Vol
(
C(x,X ) ∩ A

)
if x ∈ Ac.

Define ν±
s (x,X ) := sν±(x,X ). By the definition of ν± at (3.12), we have

s Vol(As) = ∑
x∈Ps

ν−
s (x,Ps) + s Vol(A)

and

s Vol(A�As) = ∑
x∈Ps

ν+
s (x,Ps).

The arguments of Section 5.1 of [26] show that the scores ν±
s have a radius of

stabilization Rs(x,Ps ∪ {x}) with respect to Ps which satisfies (2.4) with γ = d

and αstab = d . The scores ν±
s also satisfy the (4 +p)th moment condition (2.7) for

all p ∈ [0,∞).
As remarked in [48] and as shown in Lemma 5.1 of [26], the scores ν±

n have a
radius of stabilization Rn(x,Xn−8 ∪ {x}) with respect to binomial input Xn which
satisfies (2.5) with γ = d and αstab = d .

(ii) Definition of K . We set K to be ∂A. As noted in the proof of Theorem 2.1
of [48], we assert that the scores ν±

s decay exponentially fast with their distance to
∂A, that is, they satisfy (2.8) and (2.9) when K is set to ∂A and with αK = d . To
see this for Poisson input, note that

P
(
ν±
s

(
x,Ps ∪ {x}) �= 0

) ≤ P
(
diam

(
C
(
x,Ps ∪ {x})) ≥ d(x,K)

)
for x ∈ [−1/2,1/2]d . Since diam(C(x,Ps ∪ {x})) ≤ 2Rs(x,Ps ∪ {x}) and since
Rs(x,Ps ∪ {x}) has exponentially decaying tails, the assertion follows.
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We deduce (3.8) from the bound (2.18) of Theorem 2.3(b) as follows. If either
∂A contains a (d − 1)-dimensional C2-submanifold or A is compact and con-
vex, then s2 Var Vol(As) = (s(d−1)/d); see Theorem 1.2 of [42], Theorem 1.1
of [46] and Theorem 2.2 of [48]. All conditions of Theorem 2.3 are satisfied and
so (3.8) follows for F = Vol. Replacing Vol(As) with Vol(A�As), (3.8) holds if
∂A contains a (d − 1)-dimensional C2-submanifold. This assertion follows since
the stated conditions imply s2 Var Vol(A�As) = (s(d−1)/d), as shown in Theo-
rem 2.2 of [48]. We may similarly deduce (3.9) from the bound (2.18) of Theo-
rem 2.3(b). If either ∂A contains a (d − 1)-dimensional C2-submanifold or A is
compact and convex, then n2 Var Vol(A′

n) = (n(d−1)/d) as shown in Theorem 2.3
of [48]. Thus (3.9) follows for F = Vol. Considering now F = Vol(·�A), and ap-
pealing to the variance lower bounds of Theorem 2.3 of [48], we see that when ∂A

contains a (d − 1)-dimensional C2-submanifold, all conditions of Theorem 2.3(b)
are satisfied in the context of binomial input, and so the bound (3.9) follows for
F = Vol(·�A).

To deduce (3.10) from (3.8), we need to replace EVol(As) with Vol(A). As
shown in [21], Theorem 2, if the random input consists of n i.i.d. uniformly dis-
tributed random variables then |EVol(A′

n) − Vol(A)| ≤ cn for some c ∈ (0,1).
A similar statement holds for Poisson input Ps : If |Ps | is the cardinality of Ps ,
then ∣∣EVol(As) − Vol(A)

∣∣ = ∑
n∈N

P
(|Ps | = n

)∣∣EVol
(
A′

n

)− Vol(A)
∣∣

≤ exp
(
s(c − 1)

)
.

This exponential bias allows one to replace EVol(As) by Vol(A) in (3.8) and sim-
ilarly for EVol(A′

n). This gives (3.10) and (3.11).
We now show (3.8) for F = Hd−1(∂·) and that it also holds when Poisson in-

put is replaced by binomial input. Given X ∈ N, define for x ∈ X ∩ A the score
α(x,X ) to be the Hd−1 measure of the (d − 1)-dimensional faces of C(x,X )

belonging to the boundary of
⋃

w∈X∩A C(w,X ); if there are no such faces or if
x /∈ X ∩ A, then set α(x,X ) to be zero.

Put αs(x,X ) := s(d−1)/dα(x,X ). Recalling the notation in (1.1) and (1.2), the
surface area of As and A′

n is then given by

s(d−1)/dHd−1(∂As) = hs(Ps) = ∑
x∈Ps

αs(x,Ps)

and

n(d−1)/dHd−1(∂A′
n

) = hn(Xn) = ∑
x∈Xn

αn(x,Xn),

respectively. We want to deduce (3.8) and (3.9) for F = Hd−1(∂·) from Theo-
rem 2.3(b) with K set to ∂A. As shown in the proof of Theorem 2.5 of [48], the
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scores αs are exponentially stabilizing with respect to Poisson and binomial in-
put. In other words, they satisfy (2.4) and (2.5) with γ = d and αstab = d . They
also satisfy the (4 + p)th moment conditions (2.6) and (2.7) for all p ∈ [0,∞). As
noted in the proof of Theorem 2.5 of [48], the scores αs decay exponentially fast
with their distance to ∂A, that is, they satisfy (2.8) and (2.9) when K is set to ∂A.
We note that

(3.13) VarHd−1(∂As) = �
(
s−(d−1)/d),

as shown in Theorem 1.1 of [46]. We assert that

VarHd−1(∂A′
n

) = �
(
n−(d−1)/d).

This may be proved by mimicking the methods to prove (3.13) or, alternatively,
with Z(n) denoting an independent Poisson random variable with mean n, we
could use Lemma 6.1 of [48] to show |Varhn(XZ(n))−Varhn(Xn)| = o(n(d−1)/d).
Hence, all conditions of Theorem 2.3(b) are satisfied for Poisson and for binomial
input. This gives (3.8) and (3.9) for F = Hd−1(∂·), as desired. �

3.4. Statistics of convex hulls of random point samples. In the following, let
A be a compact convex subset of Rd with nonempty interior, C2-boundary and
positive Gaussian curvature. By Q, we denote the uniform measure on A. Let Ps ,
s ≥ 1, be a Poisson point process with intensity measure sQ and let Xn, n ∈ N, be
a binomial point process of n independent points distributed according to Q. From
now on, Conv(X ) stands for the convex hull of a set X ⊂ Rd . The aim of this
subsection is to establish rates of normal convergence for statistics of the random
polytopes Conv(Ps) and Conv(Xn). We denote the number of k-faces of a polytope
P by fk(P ), k ∈ {0, . . . , d − 1}, and its intrinsic volumes by Vi(P ), i ∈ {1, . . . , d}.

THEOREM 3.5. For any h ∈ {f0, . . . , fd−1,V1, . . . , Vd}, there is a constant
Ch ∈ (0,∞) also depending on A such that

(3.14) dK

(
h(Conv(Ps)) −Eh(Conv(Ps))√

Varh(Conv(Ps))
,N

)
≤ Chs

− d−1
2(d+1) , s ≥ 1,

and

(3.15)
dK

(
h(Conv(Xn)) −Eh(Conv(Xn))√

Varh(Conv(Xn))
,N

)
≤ Chn

− d−1
2(d+1) , n ≥ max{9, d + 2}.

REMARKS. (i) Previous work. The asymptotic study of the statistics
h(Conv(Ps)) and h(Conv(Xn)), h ∈ {f0, . . . , fd−1,V1, . . . , Vd}, has a long and
rich history, starting with the seminal works [36, 37]. The breakthrough paper
[34], which relies on dependency graph methods and Voronoi cells, establishes
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rates of normal convergence for Poisson input and h ∈ {f0, . . . , fd−1,Vd} of the

order s
− d−1

2(d+1) times some power of log s (see Theorems 1 and 2). Still in the setting
h ∈ {f0, . . . , fd−1,Vd}, but with binomial input Theorem 1.2 and Theorem 1.3 of
[47] provide the rates of convergence n−1/(d+1)+o(1) for d ≥ 3 and n−1/6+o(1) for
d = 2, which improved previous bounds in [34] for the binomial case, but is still
weaker than (3.15). When h ∈ {f0, . . . , fd−1,V1, . . . , Vd} and A is the unit ball,
Theorem 7.1 of [9] gives a central limit theorem for h(Conv(Ps)), with conver-
gence rates involving extra logarithmic factors. Central limit theorems for intrinsic
volume functionals over binomial input were derived recently (in parallel and inde-
pendently of us) in [45]. There, the rate of convergence is only for the Wasserstein
distance and contains the additional factor (logn)3+2/(d+1) compared to (3.15).

(ii) Extensions. Lower bounds for Varh(Conv(Ps)) and Varh(Conv(Xn)) are
essential to showing (3.14) and (3.15). We expect the order of these bounds to be
unchanged if Q has a density bounded away from zero and infinity. Consequently,
we anticipate that Theorem 3.5 remains valid in this context because all other
arguments in our proof below also work for such a density.

In the following, we may assume without loss of generality that 0 is in the
interior of A. The proof of Theorem 3.5 is divided into several lemmas and we
prepare it by recalling some geometric facts and introducing some notation.

For a boundary point z ∈ ∂A, we denote by Tz the tangent space parametrized
by Rd−1 in such a way that z is the origin. The boundary of A in a neighborhood
of z may be identified with the graph of a function fz : Tz →R. It may be deduced
from [34], Section 5, that there are constants c ∈ (0,1), c ∈ (1,∞) and r0 ∈ (0,∞)

such that uniformly for all z ∈ ∂A,

(3.16) c2‖v‖2 ≤ fz(v) ≤ c2‖v‖2, v ∈ Tz ∩ Bd−1(0, r0),

where we denote by Bm(x, r) the closed ball with center x ∈Rm and radius r > 0
in Rm, m ∈ N.

For u > 0, we define

A−u := {
y ∈ A : d

(
y,Ac) ≤ u

}
,

where Ac := Rd \A. It follows from (3.16) that there is a � > 0 such that all points
x ∈ A−3� have a unique projection

∏
∂A(x) to ∂A. For 3� ≥ r ≥ r ≥ r ≥ 0, it also

holds that

(3.17)
∂A−r ⊂ (

∂A−r ⊕ (r − r)Bd(0,1)
)

and

∂A−r ⊂ (
∂A−r ⊕ (r − r)Bd(0,1)

)
.

We denote by dmax the metric

dmax(x, y) := max
{‖x − y‖,

√∣∣d(x,Ac
)− d

(
y,Ac

)∣∣}, x, y ∈ A,
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and define for x ∈ A and r > 0,

Bdmax(x, r) := {
y ∈ A : dmax(x, y) ≤ r

}
.

The following lemma ensures that the space (A,B(A),Q) and the metric dmax
satisfy condition (2.1) for x ∈ A−�, with γ = d + 1.

LEMMA 3.6. There is a constant κ > 0 such that for all x ∈ A−� and r > 0

(3.18) lim sup
ε→0

Q(Bdmax(x, r + ε)) −Q(Bdmax(x, r))

ε
≤ κ(d + 1)rd .

PROOF. Recall that, for w > 0 and D ⊂ Rd , the outer w-parallel set of D is
{x ∈ Dc : d(x,D) ≤ w}. For u, v ≥ 0, A−(u+v) \ A−u = (A \ A−u)−v and A \ A−u

is convex. Consequently, Q((A \ A−u)−v) can be bounded by the volume of the
outer v-parallel set of A \ A−u, which can be bounded by the volume of the outer
v-parallel set of A so that

Q(A−(u+v) \ A−u) ≤ CAv

with some universal constant CA only depending on A. Since a similar inequality
holds for Q(Bd(x,u+ v) \Bd(x,u)), we see that the lim sup in (3.18) is bounded.
For this reason, it is sufficient to establish (3.18) for small r .

We define for x ∈ A−� and r ∈ (0, �),

Ux,r := Bdmax(x, r) ∩ {
y ∈ A : ‖x − y‖ = r

}
and

Vx,r := Bdmax(x, r) ∩ {
y ∈ A : ∣∣d(x,Ac)− d

(
y,Ac)∣∣ = r2}.

It follows from (3.17) that

lim sup
ε→0

Q(Bdmax(x, r + ε)) −Q(Bdmax(x, r))

ε

≤ lim sup
ε→0

Q(Ux,r ⊕ |ε|Bd(0,1)) +Q(Vx,r ⊕ (2r|ε| + ε2)Bd(0,1))

|ε|
≤ 2Hd−1(Ux,r ) + 4rHd−1(Vx,r ).

For r sufficiently small, we obtain sub- and supersets for A−(d(x,Ac)−r2) ∩Bd(x, r)

and A−(d(x,Ac)+r2) ∩ Bd(x, r) by taking the inner parallel sets with respect to the
paraboloids given in (3.16). Consequently, Ux,r is contained in a strip whose Eu-
clidean thickness is of the order r2. This implies that Hd−1(Ux,r ) ≤ cArd for all
r > 0 with some constant cA ∈ (0,∞) only depending on A. Since Vx,r is the
union of the intersection of the boundaries of the convex sets A−(d(x,Ac)+r2) and
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A−(d(x,Ac)−r2) with Bd(x, r), we have that Hd−1(Vx,r ) ≤ 2dκdrd−1, which com-
pletes the proof. �

We let ux := (
∏

∂A(x) − x)/‖∏∂A(x) − x‖ for x ∈ int(A), whereas for x ∈
∂A we let ux be the outer unit normal at x. For x ∈ A and r > 0, we define the
hyperplanes

Hx := {
y ∈Rd : 〈ux, y〉 = 〈ux, x〉}

and the parametrized family of sets

Ax,r :=
⎧⎨⎩Conv

((
Hx ∩ Bd(x, r/c)

)∪ {
x + r2ux

})
if r ≤

√
d
(
x,Ac

)
,

A \ Conv
((

A \ Bd(x, r/c)
)∪ {x}) if r >

√
d
(
x,Ac

)
.

When x ∈ A−� and r >
√

d(x,Ac) is sufficiently small, we note that x is an ex-
treme point of A \ Ax,r . The sets Ax,r have the following important properties.

LEMMA 3.7. (a) There are constants CQ, cQ ∈ (0,∞) such that

CQrd+1 ≥ Q(Ax,r ) ≥ cQrd+1, x ∈ A−�, r ∈ [0,1].
(b) There is a constant cmax ∈ (0,∞) such that Ax,r ⊂ Bdmax(x, cmaxr) for any

r > 0 and x ∈ A−�̃ with �̃ := min{1/(4c2), �}.
PROOF. We denote the epigraphs of v → c2‖v‖2 and v → c2‖v‖2 by P z and

P z. For r ≤ √
d(x,Ac) we have Q(Ax,r ) = κd−1r

d+1/(dcd−1). For x ∈ A and
r >

√
d(x,Ac) let z := ∏

∂A(x). Since

Conv
((

A \ Bd(x, r/c)
)∪ {x}) ⊂ Conv

((
A \ Bd(z, r/c)

)∪ {z}),
it follows that Ax,r ⊃ Az,r . Additionally,

Az,r ⊃ P z \ Conv
({z} ∪ (

P z \ Bd(z, r/c)
))

.

A longer computation shows that the volume of the set on the right-hand side can
be bounded below by a nonnegative scalar multiple of rd+1. The upper bound in
part (a) can be proven similarly.

To prove part (b), it suffices to consider only the situation r ∈ [0,1]. It follows
immediately from the definition of Ax,r that Ax,r ⊂ Bd(x, r/c) for r ∈ [0,1]. For
x ∈ A−� with d(x,Ac) ≤ 1/(4c2), r ≤ √

d(x,Ac) and y ∈ Ax,r , we obtain by a
direct but longer computation that

d
(
x,Ac) ≥ d

(
y,Ac) ≥ d

(
x,Ac)− 4c2r2.

On the other hand, for r >
√

d(x,Ac) and y ∈ Ax,r , we have with z = ∏
∂A(x) that

d
(
y,Ac) ≤ sup

v∈∂A∩Bd(x,r/c)

d(v,Hz) ≤ sup
v∈P z∩Bd(z,r/c+d(x,Ac))

d(v,Hz)

≤ sup
v∈P z∩Bd(z,(1/c+1)r)

d(v,Hz) ≤ c2(1/c + 1)2r2.
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This implies that Ax,r ⊂ {y ∈ Bd(0,1) : √|d(x,Ac) − d(y,Ac)| ≤ c(1/c + 2)r},
which completes the proof of part (b). �

For k ∈ {0, . . . , d −1} and X ∈ N, let Fk(Conv(X )) be the set of k-dimensional
faces of Conv(X ). To cast fk(Conv(X )) in the form of (1.1) and (1.2), we define

ξk(x,X ) := 1

k + 1

∑
F∈Fk(Conv(X ))

1{x∈F }, x ∈X .

Note that fk(Conv(X )) = ∑
x∈X ξk(x,X ).

To cast the intrinsic volumes Vj (Conv(X )), j ∈ {1, . . . , d − 1}, in the form
of (1.1) and (1.2), we need some more notation. Given the convex set A and a
linear subspace E, denote by A | E the orthogonal projection of A onto E. For
x ∈ Rd \ {0}, let L(x) the line spanned by x. Given a line N ⊂ Rd through the
origin, and for 1 ≤ j ≤ d , let G(N, j) be the set of j -dimensional linear subspaces
of Rd containing N . Let then νN

j (·) be the Haar probability measure on G(N, j).

Let M ⊂ A be convex. For j ∈ {0, . . . , d − 1}, x ∈ Rd \ {0}, and L ∈ G(L(x), j)

define

f L(x) := 1{x∈(A|L)\(M|L)}

and, as in [9], define the projection avoidance function θ
A,M
j : Rd \ {0} → [0,1]

by

θ
A,M
j (x) :=

∫
G(L(x),j)

f L(x)ν
L(x)
j (dL).

The following result generalizes [9], (2.7), to nonspherical compact sets, with ar-
guments similar to Lemma A1 from [16]. The proof is in the Appendix.

LEMMA 3.8. Let M ⊂ A be a convex subset of Rd . For all j ∈ {0, . . . , d − 1}
there is a constant κd,j depending on d , j such that

Vj (A) − Vj (M) = κd,j

∫
A\M

θ
A,M
j (x)‖x‖−(d−j) dx.(3.19)

For X ∈ N and F ∈Fd−1(Conv(X )) put cone(F ) := {ry : y ∈ F, r > 0}. Define
for j ∈ {1, . . . , d − 1}
ξj,s(x,X )

= sκd,j

d

× ∑
F∈Fd−1(Conv(X ))

1{x∈F }
∫

Cone(F )∩(A\Conv(X ))
‖x‖−(d−j)θ

A,Conv(X )
j (x)dx
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for x ∈ X , s ≥ 1. Lemma 3.8 yields

(3.20) s
(
Vj (A) − Vj

(
Conv(X )

)) = ∑
x∈X

ξj,s(x,X )

if 0 is in the interior of Conv(X ) and if all points of X are in general position. For
x ∈ X and s ≥ 1, define

ξd,s(x,X ) := s

d

∑
F∈Fd−1(Conv(X ))

1{x∈F }
∫

Cone(F )∩(A\Conv(X ))
dx.

If 0 is in the interior of Conv(X ) and all points of X are in general position, we
have as well

sVd

(
A \ Conv(X )

) = ∑
x∈X

ξd,s(x,X ).

The definitions of the scores and ‖θA,Conv(X )
j ‖∞ ≤ 1 show that for X ∈ N, x ∈ X ,

s ≥ 1 and j ∈ {0, . . . , d − 1}
ξj,s(x,X ) ≤ κd,j r

(
Conv(X )

)−(d−j)
ξd,s(x,X ),(3.21)

where r(Conv(X )) is the radius of the largest ball centered at 0 and contained in
Conv(X ).

Since 0 ∈ int(A), we can choose ρ0 ∈ (0, �̃) such that B(0,2ρ0) ⊂ A. For a
score ξ , we denote by ξ̃ the modified score

ξ̃ (x,X ) := 1{x∈A−ρ0 }ξ
(
x, (X ∩ A−ρ0) ∪ {0})

for X ∈ N and x ∈ X . Our strategy of proof for Theorem 3.5 is to apply in a
first step Corollary 2.2 in connection with Remark (vii) after Theorem 2.3 to these
modified scores, putting X := A and X̃ := A−ρ0 and K set to ∂A. Thereafter, we
show that the result remains true without truncating and without adding the origin
as an additional point.

For a score ξ and X ∈ N, we define

Sξ (X ) := ∑
x∈X

ξ(x,X ).

LEMMA 3.9. For any ξs ∈ {ξ0, . . . , ξd−1, ξ1,s , . . . , ξd,s}, there are constants
C0, c0 ∈ (0,∞) such that

max
{
P
(
Sξs (Ps) �= Sξ̃s

(Ps)
)
,P

(
Bd(0, ρ0) �⊂ Conv(Ps)

)
,
∣∣ESξs (Ps) −ESξ̃s

(Ps)
∣∣,∣∣VarSξs (Ps) − VarSξ̃s

(Ps)
∣∣}

≤ C0 exp(−c0s)
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for s ≥ 1 and

max
{
P
(
Sξn(Xn) �= Sξ̃n

(Xn)
)
,P

(
Bd(0, ρ0) �⊂ Conv(Xn)

)
,∣∣ESξn(Xn) −ESξ̃n

(Xn)
∣∣, ∣∣VarSξn(Xn) − VarSξ̃n

(Xn)
∣∣}

≤ C0 exp(−c0n)

for n ≥ 1.

PROOF. One can choose sets A1, . . . ,Am ⊂ {x ∈ A : d(x,Ac) ≤ ρ0} with
nonempty interior such that, for any X ∈ N with Ai ∩X �= ∅, i ∈ {1, . . . ,m},

conv(X ) ⊃ {
x ∈ A : d

(
x,Ac) > ρ0

}
.

Using B(0,2ρ0) ⊂ A, this inclusion yields B(0, ρ0) ⊂ Conv(X ). The event
Sξ̃s

(X ) �= Sξs (X ) is also a subset of the event Ai ∩X = ∅ for some i ∈ {1, . . . ,m}.
These observations prove the probability bounds.

The generous upper bounds

max
k∈{0,...,d−1}fk

(
conv(X )

) ≤ |X |d−1 and max
i∈{1,...,d}Vi

(
conv(X )

) ≤ max
i∈{1,...,d}Vi(A)

lead to |Sξ̃s
(X ) − Sξs (X )| ≤ Cds|X |d for some universal constant Cd ∈ (0,∞).

Together with Hölder’s inequality and the above probability bounds, this yields
the asserted expectation and variance bounds. �

The results of [34] show that for ξs ∈ {ξ0, . . . , ξd−1, ξd,s} one has

(3.22) VarSξs (Ps) = �
(
s

d−1
d+1

)
and VarSξn(Xn) = �

(
n

d−1
d+1

)
.

For ξs ∈ {ξ1,s , . . . , ξd−1,s} and taking into account scaling (3.20), we know from
Corollary 7.1 of [9] and from Theorem 2 of [3] that

(3.23) VarSξs (Ps) = �
(
s

d−1
d+1

)
and VarSξn(Xn) = �

(
n

d−1
d+1

)
.

Hence, Lemma 3.9 implies that for ξs ∈ {ξ0, . . . , ξd−1, ξ1,s , . . . , ξd,s}
(3.24) VarSξ̃s

(Ps) = �
(
s

d−1
d+1

)
and VarSξ̃n

(Xn) = �
(
n

d−1
d+1

)
.

For a point x ∈ A, let H̃x,1, . . . , H̃x,2d−1 be a decomposition of Hx into solid
orthants having x in common and let Hx,i := H̃x,i +Span(x) for i ∈ {1, . . . ,2d−1}.

LEMMA 3.10. Let ξ̃s ∈ {ξ̃0, . . . , ξ̃d−1, ξ̃1,s, . . . , ξ̃d,s} and let x ∈ A, r > 0 and
X ∈ N be such that x ∈X and X ∩ A−ρ0 ∩ Ax,r ∩ Hx,i �= ∅ for i ∈ {1, . . . ,2d−1}.
Then, ξ̃s(x,X ) is completely determined by X ∩ A−ρ0 ∩ Ax,r , that is to say by
X ∩ A−ρ0 ∩ Bdmax(x, cmaxr) with cmax as in Lemma 3.7.
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PROOF. Let d(x,Ac) ≤ ρ0 ≤ 1/(8c2) since, otherwise, the assertion is trivial.
By assumption, there are y1, . . . , y2d−1 such that yi ∈ X ∩ A−ρ0 ∩ Ax,r ∩ Hx,i for
i ∈ {1, . . . ,2d−1}. Let Cx,y1,...,y2d−1 be the cone with apex x generated by the points

0, y1, . . . , y2d−1 . If Cx,y1,...,y2d−1 = Rd , we have x ∈ Conv({0, y1, . . . , y2d−1}),
whence ξ̃s(x,X ) = 0. If Cx,y1,...,y2d−1 �= Rd [this implies that r >

√
d(x,Ac)], no

point in the interior of Cx,y1,...,y2d−1 can be connected with x by an edge. Since

Conv((A \ Bd(x, r/c)) ∪ {x}) ⊂ Cx,y1,...,y2d−1 , all points in A \ Ax,r are irrelevant

for the facial structure at x. Consequently, the scores ξ̃s are completely determined
by X ∩A−ρ0 ∩Ax,r . In view of Lemma 3.7(b), we have Ax,r ⊂ Bdmax(x, cmaxr) so
the same is true for X ∩ A−ρ0 ∩ Bdmax(x, cmaxr). �

We define the map R : A × N →R which sends (x,X ) to

R
(
x,X ∪ {x})

:=

⎧⎪⎪⎨⎪⎪⎩
cmax inf

{
r ≥ 0 : X ∩ A−ρ0 ∩ Ax,r ∩ Hx,i �=∅ for i ∈ {

1, . . . ,2d−1}},
x ∈ A−ρ0,

0, x /∈ A−ρ0 .

The next lemma shows that all ξ̃s ∈ {ξ̃0, . . . , ξ̃d−1, ξ̃1,s , . . . , ξ̃d,s} satisfy (2.4) and
(2.5) with αstab = d + 1.

LEMMA 3.11. R is a radius of stabilization for any ξ̃s ∈ {ξ̃0, . . . , ξ̃d−1, ξ̃1,s ,

. . . , ξ̃d,s} and there are constants C,c ∈ (0,∞) such that for r ≥ 0, x ∈ A

P
(
R
(
x,Ps ∪ {x}) ≥ r

) ≤ C exp
(−csrd+1), s ≥ 1,

whereas

P
(
R
(
x,Xn−8 ∪ {x}) ≥ r

) ≤ C exp
(−cnrd+1), n ≥ 9.

PROOF. It follows from Lemma 3.10 that R is a radius of stabilization. It is
sufficient to establish the desired inequalities for x ∈ A−ρ0 and r ∈ [0, r0] for some
r0 > 0. We see that

P
(
R
(
x,Ps ∪{x}) ≥ r

) ≤ P
(∃i ∈ {

1, . . . ,2d−1} : Ps ∩A−ρ0 ∩Ax,r/cmax ∩Hx,i =∅
)
.

Choosing r0 small enough so that Ax,r/cmax ∩ A−ρ0 = Ax,r/cmax and noting that
by the same arguments as in the proof of Lemma 3.7(a) Q(Ax,r/cmax ∩ Hi) ≥
cQrd+1/(2d−1cd+1

max ), we obtain that

P
(
R
(
x,Ps ∪ {x}) ≥ r

) ≤ 2d−1 exp
(−scQrd+1/

(
2d−1cd+1

max
))

.

The proof for the binomial case goes similarly. �

The next lemma shows that all ξ̃s ∈ {ξ̃0, . . . , ξ̃d−1, ξ̃1,s, . . . , ξ̃d,s} satisfy (2.8)
and (2.9) with α∂A = d + 1.
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LEMMA 3.12. For any ξ̃s ∈ {ξ̃0, . . . , ξ̃d−1, ξ̃1,s , . . . , ξ̃d,s}, there are constants
Cb, cb ∈ (0,∞) such that for x ∈ A, A ⊂ A with |A| ≤ 7,

P
(
ξ̃s

(
x,Ps ∪ {x} ∪A

) �= 0
) ≤ Cb exp

(−cbs dmax
(
x,Ac)d+1)

, s ≥ 1,

whereas

P
(
ξ̃n

(
x,Xn−8 ∪ {x} ∪ A

) �= 0
) ≤ Cb exp

(−cbndmax
(
x,Ac)d+1)

, n ≥ 9.

PROOF. For x ∈ A−ρ0 , X ∈ N and A ⊂ A with |A| ≤ 7, we have that
ξ̃s(x,X ∪ {x} ∪ A) = 0 if R(x,X ∪ {x}) ≤ √

d(x,Ac) = dmax(x,Ac). Thus the
assertions follow from Lemma 3.11. �

LEMMA 3.13. For any q ≥ 1 and ξ̃s ∈ {ξ̃0, . . . , ξ̃d−1, ξ̃1,s , . . . , ξ̃d,s}, there is a
constant Cq ∈ (0,∞) such that for all A ⊂ A with |A| ≤ 7,

sup
s≥1

sup
x∈A

E
∣∣ξ̃s

(
x,Ps ∪ {x} ∪A

)∣∣q ≤ Cq

and

sup
n∈N,n≥9

sup
x∈A

E
∣∣ξ̃n

(
x,Xn−8 ∪ {x} ∪A

)∣∣q ≤ Cq.

PROOF. The assertion for ξ̃0, . . . , ξ̃d−1 can be shown similarly as in Lemma 7.1
of [9]. Similar considerations as in the proof of Lemma 3.10 show that

ξ̃d,s

(
x,Ps ∪ {x} ∪A

) ≤ sQ(Ax,R(x,Ps∪{x})).

Combining this with Lemma 3.7 and Lemma 3.11 leads to the inequality for ξ̃d,s

in the Poisson case, which can be proven similarly in the binomial case. For the
intrinsic volumes ξ̃j,s , j ∈ {0, . . . , d − 1}, the bound (3.21) shows that the qth mo-
ment of ξ̃j,s is bounded by a constant multiple of the qth moment of ξ̃d,s plus
sqP(B(0, ρ0) �⊂ Conv(Xs)), which by Lemma 3.9 is bounded by sqC0 exp(−c0s).
This completes the proof. �

LEMMA 3.14. For any ξ̃s ∈ {ξ̃0, . . . , ξ̃d−1, ξ̃1,s , . . . , ξ̃d,s} there is a constant
C̃ ∈ (0,∞) such that

dK

(Sξ̃s
(Ps) −ESξ̃s

(Ps)√
VarSξ̃s

(Ps)
,N

)
≤ C̃s

− d−1
2(d+1) , s ≥ 1,

and

dK

(Sξ̃n
(Xn) −ESξ̃n

(Xn)√
VarSξ̃n

(Xn)
,N

)
≤ C̃n

− d−1
2(d+1) , n ≥ 9.
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PROOF. By Lemmas 3.6, 3.11, 3.12 and 3.13 all conditions of Corollary 2.2
in connection with Remark (vii) after Theorem 2.3 are satisfied with X := A, X̃ :=
A−ρ0 and K := ∂A. Note that I∂A,s = O(s(d−1)/(d+1)), which completes the proof.

�

PROOF OF THEOREM 3.5. For any pair (X, X̃) of square integrable random
variables satisfying VarX,Var X̃ > 0, a straightforward computation shows that

dK

(
X −EX√

VarX
,N

)

≤ dK

(
X̃ −EX√

VarX
,N

)
+ P(X �= X̃)

= dK

(
X̃ −EX̃√

Var X̃
,N

(
EX −EX̃√

Var X̃
,

VarX

Var X̃

))
+ P(X �= X̃)

≤ dK

(
X̃ −EX̃√

Var X̃
,N

)
+ dK

(
N,N

(
EX −EX̃√

Var X̃
,

VarX

Var X̃

))
+ P(X �= X̃)

≤ dK

(
X̃ −EX̃√

Var X̃
,N

)
+ |EX −EX̃|√

Var X̃
+ C

∣∣∣∣VarX

Var X̃
− 1

∣∣∣∣+ P(X �= X̃),

where N(μ,σ 2) stands for a Gaussian random variable with mean μ and variance
σ 2 and C ∈ (0,∞) is some universal constant. Applying this to the pairs (X, X̃) :=
(Sξs (Ps), Sξ̃s

(Ps)) and (X, X̃) := (Sξn(Xn), Sξ̃n
(Xn)), respectively, together with

Lemma 3.9, Lemma 3.14, (3.22), (3.23) and (3.24) completes the proof. �

3.5. Clique counts in generalized random geometric graphs. Let (X,F,Q) be
equipped with a semi-metric d such that (2.1) is satisfied for some γ and κ . More-
over, let M = [0,∞) be equipped with the Borel sigma algebra FM := B([0,∞))

and a probability measure QM on ([0,∞),B([0,∞))). By Q̂, we denote the the
product measure of Q and QM. In the following, let Ps be a marked Poisson point
process with intensity measure sQ̂, s ≥ 1, and let Xn be a marked binomial point
process of n ∈N points distributed according to Q̂.

Given X ∈ N, recall that N is the set of point configurations in X̂, and a scale
parameter β ∈ (0,∞), consider the graph G(X , β) on X with (x1,mx1) ∈ X and
(x2,mx2) ∈ X joined with an edge iff d(x1, x2) ≤ β min(mx1,mx2). When mx = 1
for all x ∈ X , we obtain the familiar geometric graph with parameter β . Alter-
natively, we could use the connection rule that (x1,mx1) and (x2,mx2) are joined
with an edge iff d(x1, x2) ≤ β max(mx1,mx2). A scale-free random graph based on
this connection rule with an underlying marked Poisson point process is studied in
[17]. The number of cliques of order k + 1 in G(X , β), here denoted Ck(X , β), is
a well-studied statistic in random geometric graphs. Recall that k + 1 vertices of a
graph form a clique of order k + 1 if each pair of them is connected by an edge.
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The clique count Ck(X , β) is also a central statistic in topological data anal-
ysis. Consider the simplicial complex Rβ(X ) whose k-simplices correspond to
unordered (k + 1)-tuples of points of X such that any constituent pair of points
(x1,mx1) and (x2,mx2) satisfies d(x1, x2) ≤ β min(mx1,mx2). When mx = 1 for
all x ∈ X , then Rβ(X ) coincides with the Vietoris–Rips complex with scale pa-
rameter β and Ck(X , β) counts the number of k-simplices in Rβ(X ).

When Q is the uniform measure on a compact set X ⊂ Rd with Vol(X) > 0
and γ = d , the ungainly quantity Ck(Ps, βs−1/γ ) studied below is equivalent to
the more natural clique count Ck(P̃1 ∩ s1/dX, β), where P̃1 is a rate one stationary
Poisson point process in Rd and P̃1 ∩ s1/dX is its restriction to s1/dX.

THEOREM 3.15. Let k ∈ N and β ∈ (0,∞) and assume there are constants
c1 ∈ (0,∞) and c2 ∈ (0,∞) such that

(3.25) P(Mx ≥ r) ≤ c1 exp
(
−rc2

c1

)
, x ∈ X, r ∈ (0,∞).

If infs≥1 VarCk(Ps, βs−1/γ )/s > 0, then there is a constant C̃ ∈ (0,∞) such that

(3.26) dK

(Ck(Ps, βs−1/γ ) −ECk(Ps, βs−1/γ )√
VarCk(Ps, βs−1/γ )

,N

)
≤ C̃√

s
, s ≥ 1.

Likewise if infn≥9 VarCk(Xn,βn−1/γ )/n > 0, then there is a constant C̃ ∈ (0,∞)

such that

(3.27) dK

(Ck(Xn,βn−1/γ ) −ECk(Xn,βn−1/γ )√
VarCk(Xn,βn−1/γ )

,N

)
≤ C̃√

n
, n ≥ 9.

REMARKS. (i) When X is a full-dimensional subset of Rd and when Mx ≡ 1
for all x ∈ X, that is, QM is the Dirac measure concentrated at one, a central limit
theorem for the Poisson case is shown in [24], Theorem 3.10. Although the result
in [24] is nonquantitative, the method of proof should yield a rate of convergence
for the Kolmogorov distance. Rates of normal convergence with respect to the
Wasserstein distance dW are given in [12].

(ii) The contributions of this theorem are three-fold. First, X may be an arbitrary
metric space, not necessarily a subset of Rd . Second, the graphs G(Ps, βs−1/γ )

and G(Xn,βn−1/γ ) are more general than the standard random geometric graph,
as they consist of edges having arbitrary (exponentially decaying) lengths. Third,
by applying our general findings we obtain presumably optimal rates of conver-
gence for the Poisson and the binomial case at the same time.

(iii) The random variable Ck(Ps, βs−1/γ ) is a so-called Poisson U-statistic.
Bounds for the normal approximation of such random variables were deduced,
for example, in [35] and [20] for the Wasserstein distance and in [43] and [14] for



NORMAL APPROXIMATION FOR STABILIZING FUNCTIONALS 967

the Kolmogorov distance. These results should also yield bounds similar to those
in (3.26).

(iv) The assumption infs≥1 VarCk(Ps, βs−1/γ )/s > 0 is satisfied if X ⊂ Rd is a
full d-dimensional set and g is a bounded probability density, as noted in the proof
of Theorem 2.5 in Section 6 of [31]. If this assumption is not satisfied, then we
would have instead

dK

(Ck(Ps, βs−1/γ ) −ECk(Ps, βs−1/γ )√
VarCk(Ps, βs−1/γ )

,N

)

≤ C̃

( √
s

VarCk(Ps, βs−1/γ )

+ s

(VarCk(Ps, βs−1/γ ))3/2 + s3/2

(VarCk(Ps, βs−1/γ ))2

)
for s ≥ 1. A similar comment applies for an underlying binomial point process in
the situation where infn≥9 VarCk(Xn,βn−1/γ )/n > 0 does not hold.

PROOF OF THEOREM 3.15. To deduce Theorem 3.15 from Corollary 2.2, we
express Ck(X , βs−1/γ ) as a sum of stabilizing score functions, which goes as fol-
lows. Fix γ, s, β ∈ (0,∞). For X ∈ N and x ∈ X , let φ

(β)
k,s (x,X ) be the number of

(k + 1)-cliques containing x in G(X , βs−1/γ ) and such that x is the point with the
largest mark. This gives the desired identification

Ck

(
X , βs−1/γ ) = ∑

x∈X
φ

(β)
k,s (x,X ).

Now we are ready to deduce (3.26) and (3.27) from Corollary 2.2 with the scores
ξs and ξn set to φ

(β)
k,s and φ

(β)
k,n , respectively, and with K set to X. Notice that

IK,s = �(s), as noted in (2.13). It is enough to show that φ
(β)
k,s and φ

(β)
k,n satisfy all

conditions of Corollary 2.2. Stabilization (2.4) is satisfied with αstab = a, with the
radius of stabilization

Rs

(
(x,Mx),Ps ∪ {

(x,Mx)
}) = βs−1/γ Mx,

because Mx has exponentially decaying tails as in (3.25). For any p > 0, we have

E
∣∣φ(β)

k,s

(
(x,Mx),Ps ∪ {

(x,Mx) ∪ (A,MA)
})∣∣4+p

≤ E
∣∣card

{
Ps ∩ B

(
x,βs−1/γ Mx

)}+ 7
∣∣(4+p)k ≤ C(β,p, γ ) < ∞

for all x ∈ X, s ≥ 1 and A⊂ X with |A| ≤ 7 and so the (4+p)th moment condition
(2.6) holds for p ∈ (0,∞). The conclusion (3.26) follows from (2.14). The proof
of (3.27) is similar. �
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4. Malliavin–Stein bounds. For any measurable f : N → R, M ∈ N and
x̂, x̂1, x̂2 ∈ X̂, we define

Dx̂f (M) := f
(
M∪ {x̂})− f (M),

D2
x̂1,x̂2

f (M) := f
(
M∪ {x̂1, x̂2})− f

(
M∪ {x̂1})− f

(
M∪ {x̂2})+ f (M).

Our key tool for the proof of the bound (2.11) is the following marked version of a
result from [22] (see Proposition 1.4 and Theorem 6.1 in [22]) for square integrable
Poisson functionals.

THEOREM 4.1. Let s > 0 and let f : N → R be measurable with Ef (Ps)
2 <

∞. Assume there are constants c,p ∈ (0,∞) such that
(4.1)

E
∣∣D(x,Mx)f

(
Ps ∪ {

(A,MA)
})∣∣4+p ≤ c, Q-a.e. x ∈ X,A⊂ X, |A| ≤ 1.

Let F := f (Ps). Then there is a constant C := C(c,p) ∈ (0,∞) such that

dK

(
F −EF√

VarF
,N

)
≤ C(S1 + S2 + S3),(4.2)

with

�s := s

∫
X
P
(
D(x,Mx)f (Ps) �= 0

) p
8+2pQ(dx),

ψs(x1, x2) := P
(
D2

(x1,Mx1 ),(x2,Mx2 )f (Ps) �= 0
) p

16+4p ,

S1 := s

VarF

√∫
X2

ψs(x1, x2)2Q2
(
d(x1, x2)

)
,

S2 := s3/2

VarF

√∫
X

(∫
X

ψs(x1, x2)Q(dx2)

)2
Q(dx1),

S3 :=
√

�s

VarF
+ 2�s

(VarF)3/2 + �
5/4
s + 2�

3/2
s

(VarF)2 .

PROOF. In case that there are no marks, this is Theorem 6.1 in [22]. The
marked version can be obtained in the following way: In Theorem 1.2 in [22],
one can use the product form of Q̂ and Hölder’s inequality to bring the marks
under the expectations. Evaluating this new bound along the lines of the proof of
Theorem 6.1 in [22] yields (4.2). �

For the case of binomial input, we do not have the same ready-made bounds at
our disposal. We fill this lacuna with the following analogous bound, bringing the
results from [20] and [22] into a satisfying alignment.
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THEOREM 4.2. Let n ≥ 3 and let f : N →R be measurable with Ef (Xn)
2 <

∞. Assume that there are constants c,p ∈ (0,∞) such that
(4.3)
E
∣∣D(x,Mx)f

(
Xn−1−|A| ∪ {

(A,MA)
})∣∣4+p ≤ c, Q-a.e. x ∈X,A⊂ X, |A| ≤ 2.

Let F := f (Xn). Then there is a constant C := C(c,p) ∈ (0,∞) such that

dK

(
F −EF√

VarF
,N

)
≤ C

(
S′

1 + S′
2 + S′

3
)
,(4.4)

with

�′
n := n

∫
X
P
(
D(x,Mx)f (Xn−1) �= 0

) p
8+2pQ(dx),

ψ ′
n

(
x, x′) := sup

A⊂X:|A|≤1
P
(
D2

(x,Mx),(x′,Mx′ )f
(
Xn−2−|A| ∪ (A,MA)

) �= 0
) p

8+2p ,

S′
1 := n

VarF

√∫
X2

ψ ′
n

(
x, x′)Q2

(
d
(
x, x′)),

S′
2 := n3/2

VarF

√∫
X

(∫
X

ψ ′
n

(
x, x′)Q(

dx′))2
Q(dx),

S′
3 :=

√
�′

n

VarF
+ �′

n

(VarF)3/2 +
√

�′
n

3 + �′
n

(VarF)2 .

Before proving Theorem 4.2, we require two auxiliary results, the first of which
involves some additional notation. For a measurable f : N → R extend the nota-
tion f (x1, . . . , xq) := f ({x1, . . . , xq}) for x1, . . . , xq ∈ X.

For a fixed n ≥ 1, let X := (X1, . . . ,Xn), where X1, . . . ,Xn are independent
random elements in X̂ distributed according to Q̂. Let X′, X̃ be independent copies
of X. We write U

a.s.= V if two variables U and V satisfy P(U = V ) = 1. In
the vocabulary of [20], a random vector Y := (Y1, . . . , Yn) is a recombination of
{X,X′, X̃} if for each 1 ≤ i ≤ n, either Yi

a.s.= Xi , Yi
a.s.= X′

i or Yi
a.s.= X̃i . For a

vector x = (x1, . . . , xp) ∈ X̂p , and indices I := {i1, . . . , iq} ⊂ [p] := {1,2, . . . , p},
define xi1,...,iq := (xj , j /∈ I ), the vector x with the components indexed by I re-
moved. For i, j ∈ [n], introduce the index derivatives

Dif (X) := f (X) − f
(
Xi),

D2
i,j f (X) := f (X) − f

(
Xi)− f

(
Xj )+ f

(
Xi,j ) = D2

j,if (X).

We note that the derivatives D and D obey the relation Dif (X) = DXi
f (X i

n).
We introduce, for n-dimensional random vectors Y , Y ′ and Z,

γY,Z(f ) := E
[
1{D2

1,2f (Y ) �=0}
(
D2f (Z)

)4]
,
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γ ′
Y,Y ′,Z(f ) := E

[
1{D2

1,2f (Y ) �=0,D2
1,3f (Y ′) �=0}

(
D2f (Z)

)4]
,

Bn(f ) := sup
{
γY,Z(f );Y,Z recombinations of

{
X,X′, X̃

}}
,

B ′
n(f ) := sup

{
γ ′
Y,Y ′,Z(f );Y,Y ′,Z recombinations of

{
X,X′, X̃

}}
.

Theorem 5.1 of [20], simplified by [20], Remark 5.2, and [20], Proposition 5.3,
gives the following.

THEOREM 4.3. Let n ≥ 2, f : N → R measurable with Ef (Xn)
2 < ∞, and

F := f (Xn). Then there is a constant c0 ∈ (0,∞), depending neither on n nor f ,
such that

dK

(
F −EF√

VarF
,N

)

≤ c0

[ √
n

VarF

(√
nBn(f ) +

√
n2B ′

n(f ) +
√
ED1f (X)4

)
+ sup

Y

n

(VarF)2E
∣∣(f (X) −EF

)(
D1f (Y )

)3∣∣
+ n

(VarF)3/2E
∣∣D1f (X)

∣∣3],

(4.5)

where the supY runs over recombinations Y of {X,X′, X̃}.

To control the fourth centered moment of F := f (Xn), we use the following
bound. For a similar bound for Poisson functionals, we refer to [22], Lemma 4.2.

LEMMA 4.4. For a measurable f : N → R, n ∈ N and F := f (Xn) assume
that VarF = 1. Then

E(F −EF)4 ≤ 9 max
{(

32n

∫
X

√
E
(
D(x,Mx)f (Xn−1)

)4
Q(dx)

)2
,

4nE
(
D1f (Xn)

)4 + 1
}
.

PROOF. The Efron–Stein inequality implies that for measurable g : N → R

and n ∈ N such that E|g(Xn)| < ∞,

Eg(Xn)
2 ≤ 2nE

(
D1g(Xn)

)2 + (
Eg(Xn)

)2
.

Using the Efron–Stein bound and VarF = 1 gives

E(F −EF)4 ≤ 2nE
(
D1

((
f (Xn) −EF

)2))2 + 1.
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Combining the identity

D1
(
g(Xn)

2) = g(Xn)
2 − g

(
X 1

n

)2 = (
g
(
X 1

n

)+ D1g(Xn)
)2 − g

(
X 1

n

)2

= 2g
(
X 1

n

)
D1g(Xn) + (

D1g(Xn)
)2

with Jensen’s inequality, we obtain

E(F −EF)4 ≤ 2nE
[(

2D1f (Xn)
(
f
(
X 1

n

)−EF
)+ (

D1f (Xn)
)2)2]+ 1

≤ 4nE
[
4
(
D1f (Xn)

)2(
f
(
X 1

n

)−EF
)2 + (

D1f (Xn)
)4]+ 1.

Hölder’s inequality and a combination of the triangle inequality and Jensen’s in-
equality imply that

E
(
D1f (Xn)

)2(
f
(
X 1

n

)−EF
)2

≤
∫
X̂

√
E
(
f
(
X 1

n ∪ {y})− f
(
X 1

n

))4
Q̂(dy)

√
E
(
f
(
X 1

n

)−EF
)4

≤
∫
X

√
E
(
D(x,Mx)f (Xn−1)

)4
Q(dx)2

(√
E
(
f (Xn) −EF

)4

+
√
E
(
D1f (Xn)

)4)
.

Combining the above estimates, we arrive at

E(F −EF)4

≤ 32n

∫
X

√
E
(
D(x,Mx)f (Xn−1)

)4
Q(dx)

(√
E(F −EF)4 +

√
E
(
D1f (Xn)

)4)
+ 4nE

(
D1f (Xn)

)4 + 1,

which implies the asserted inequality. �

Given Lemma 4.4, we deduce Theorem 4.2 from Theorem 4.3 as follows.

PROOF OF THEOREM 4.2. It suffices to show that each of the five terms in
(4.5) is bounded by a scalar multiple of S′

1, S′
2 or S′

3. We first show that the terms
in (4.5) involving Bn(f ) and B ′

n(f ) are bounded, respectively, by scalar multiples
of S′

1 and S′
2. Let us estimate first Bn(f ). By Q̂Y1,Y2,Z1,Z2 we denote the joint prob-

ability measure of Y1, Y2, Z1, Z2 and by QY1,Y2,Z1,Z2 the joint probability measure
of Y1, Y2, Z1, Z2 without marks. By Hölder’s inequality, the fact that Q̂Y1,Y2,Z1,Z2

factorizes into QY1,Y2,Z1,Z2 and a part controlling the marks, the independence of
Y1, Y2 and (4.3), we obtain that

γY,Z(f )

= E
[
1{D2

1,2f (Y ) �=0}
(
D2f (Z)

)4]
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=
∫
X̂4

E
[
1{D2

ŷ1,ŷ2
f (Y 1,2) �=0}

(
Dẑ2f

(
Z1,2 ∪ {ẑ1}))4]

× Q̂Y1,Y2,Z1,Z2
(
d(ŷ1, ŷ2, ẑ1, ẑ2)

)
≤
∫
X̂4

P
(
D2

ŷ1,ŷ2
f
(
Y 1,2) �= 0

) p
4+pE

[∣∣Dẑ2f
(
Z1,2 ∪ {ẑ1})∣∣4+p] 4

4+p

× Q̂Y1,Y2,Z1,Z2
(
d(ŷ1, ŷ2, ẑ1, ẑ2)

)
≤
∫
X4

P
(
D2

(y1,My1 ),(y2,My2 )f
(
Y 1,2) �= 0

) p
4+p

×E
[∣∣D(z2,Mz2 )f

(
Z1,2 ∪ {

(z1,Mz1)
})∣∣4+p] 4

4+p

×QY1,Y2,Z1,Z2
(
d(y1, y2, z1, z2)

)
≤ c

4
4+p

∫
X2

P
(
D2

(y1,My1 ),(y2,My2 )f (Xn−2) �= 0
) p

4+pQ2(d(y1, y2)
)
.

This implies that

γY,Z(f ) ≤ c
4

4+p

∫
X2

ψ ′
n(y1, y2)Q

2(d(y1, y2)
)
,

which gives the desired bound
√

n

VarF

√
nBn(f ) ≤ c

2
4+p

n

VarF

√∫
X2

ψ ′
n

(
x, x′)Q2

(
d
(
x, x′)) ≤ C(c,p)S′

1.

To estimate B ′
n(f ), let Q̂(Y1,...,Z3) be the joint probability measure of(

Y1, . . . , Y3, Y
′
1, . . . , Y

′
3,Z1, . . . ,Z3

)
and let Q(Y1,...,Z3) be the corresponding probability measure without marks. By
similar arguments as above, we obtain that

γ ′
Y,Y ′,Z(f )

= E
[
1{D2

1,2f (Y ) �=0,D2
1,3f (Y ′) �=0}

(
D2f (Z)

)4]
=

∫
X̂9

E
[
1{D2

ŷ1,ŷ2
f (Y 1,2,3∪{ŷ3}) �=0}1{D2

ŷ′
1,ŷ′

3
f (Y ′1,2,3∪{ŷ′

2}) �=0}

× (
Dẑ2f

(
Z1,2,3 ∪ {ẑ1, ẑ3}))4]

Q̂Y1,...,Z3
(
d(ŷ1, . . . , ẑ3)

)
≤
∫
X̂9

P
(
D2

ŷ1,ŷ2
f
(
Y 1,2,3 ∪ {ŷ3}) �= 0

) p
8+2pP

(
D2

ŷ′
1,ŷ

′
3
f
(
Y ′1,2,3 ∪ {

ŷ′
2
}) �= 0

) p
8+2p

×E
[∣∣Dẑ2f

(
Z1,2,3 ∪ {ẑ1, ẑ3})∣∣4+p] 4

4+p Q̂Y1,...,Z3
(
d(ŷ1, . . . , ẑ3)

)
≤
∫
X9

P
(
D2

(y1,My1 ),(y2,My2 )f
(
Xn−3 ∪ {

(y3,My3)
}) �= 0

) p
8+2p
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× P
(
D2

(y′
1,My′

1
),(y′

3,My′
3
)
f
(
Xn−3 ∪ {(

y′
2,My′

2

)}) �= 0
) p

8+2p

×E
[∣∣D(z2,Mz2 )f

(
Xn−3 ∪ {

(z1,Mz1), (z3,Mz3)
})∣∣4+p] 4

4+p

×QY1,...,Z3
(
d(y1, . . . , z3)

)
≤ c

4
4+p

∫
X9

ψ ′
n(y1, y2)ψ

′
n

(
y′

1, y
′
3
)
QY1,...,Z3

(
d(y1, . . . , z3)

)
.

If Y1
a.s.= Y ′

1, this simplifies to

γ ′
Y,Y ′,Z(f ) ≤ c

4
4+p

∫
X

(∫
X

ψ ′
n

(
x, x′)Q(

dx′))2
Q(dx).

If Y1 and Y ′
1 are independent, the Cauchy–Schwarz inequality leads to

γ ′
Y,Y ′,Z(f ) ≤ c

4
4+p

(∫
X2

ψ ′
n

(
x, x′)Q2(d(x, x′)))2

≤ c
4

4+p

∫
X

(∫
X

ψ ′
n

(
x, x′)Q(

dx′))2
Q(dx).

Thus we obtain the desired bound
√

n

VarF

√
n2γ ′

Y,Y ′,Z(f ) ≤ c
2

4+p
n

3
2

VarF

√∫
X

(∫
X

ψ ′
n

(
x, x′)Q(

dx′))2
Q(dx)

≤ C(c,p)S′
2.

We now show that the remaining terms in (4.5) are bounded by a scalar multiple
of S′

3. For 1 ≤ m ≤ 4 and Q-a.e. x ∈ X, Hölder’s inequality and (4.3) lead to

(4.6)

E
∣∣D(x,Mx)f (Xn−1)

∣∣m
≤ E

[∣∣D(x,Mx)f (Xn−1)
∣∣4+p] m

4+pP
(
D(x,Mx)f (Xn−1) �= 0

) 4+p−m
4+p

≤ c
m

4+pP
(
D(x,Mx)f (Xn−1) �= 0

) p
4+p ,

where we have also used that 4+p−m
4+p

≥ p
4+p

. For 1 ≤ m ≤ 4 and u ∈ [1/2,1], we
derive from (4.6) that

(4.7)

∫
X
E
[∣∣D(x,Mx)f (Xn−1)

∣∣m]uQ(dx)

≤ c
mu

4+p

∫
X
P
(
D(x,Mx)f (Xn−1) �= 0

) up
4+pQ(dx)

≤ c
mu

4+p
�′

n

n
.
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This implies immediately that, for 1 ≤ m ≤ 4,

E
∣∣D1f (X)

∣∣m ≤ c
m

4+p

∫
X
P
(
D(x,Mx)f (Xn−1) �= 0

) p
4+pQ(dx) ≤ c

m
4+p

�′
n

n
.

This gives for m = 4 and m = 3 that the third and fifth terms in (4.5) are bounded
by

√
n
√
ED1f (X)4

VarF
+ nE|D1f (X)|3

(VarF)
3
2

≤ c
2

4+p
√

�′
n

VarF
+ c

3
4+p �′

n

(VarF)
3
2

≤ C(c,p)S′
3.

Lastly, we bound the fourth term in (4.5) by a scalar multiple of S′
3. Let Y be a

recombination of {X,X′, X̃}. Noting that Y
(d)= X, let us estimate

E
∣∣(f (X) −EF

)(
D1f (Y )

)3∣∣
= E

∣∣(f (
X1)−EF + D1f (X)

)(
D1f (Y )

)3∣∣
≤
∫
X
E
[∣∣f (

X1)−EF
∣∣∣∣D(y1,My1 )f

(
Y 1)∣∣3]Q(dy1)

+E
[∣∣D1f (X)

∣∣∣∣D1f (Y )
∣∣3]

≤ E
[(

f
(
X 1

n

)−EF
)4] 1

4

∫
X
E
[(

D(x,Mx)f (Xn−1)
)4] 3

4Q(dx)

+E
(
D1f (X)

)4

≤ (
E
[(

f (Xn) −EF
)4] 1

4

+E
[(

D1f (X)
)4] 1

4
) ∫

X
E
[(

D(x,Mx)f (Xn−1)
)4] 3

4Q(dx) + c
4

4+p
�′

n

n
.

By (4.7), we have∫
X
E
[(

D(x,Mx)f (Xn−1)
)4] 3

4Q(dx) ≤ c
3

4+p
�′

n

n
.

From Lemma 4.4 and (4.7), it follows that

E(F −EF)4

(VarF)2 ≤ 9 max
{(

32n

VarF

∫
X

√
E
(
D(y,My)f (Xn−1)

)4
Q(dy)

)2
,

4n
E(D1f (Xn))

4

(VarF)2 + 1
}

≤ 9 max
{

1024c
4

4+p (�′
n)

2

(VarF)2 ,
4c

4
4+p �′

n

(VarF)2 + 1
}
.
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Altogether, the fourth term in (4.5) satisfies the bound

nE|(f (X) −EF)(D1f (Y ))3|
(VarF)2

≤
(√

3 max
{

4 · √2c
1

4+p
√

�′
n√

VarF
,

√
2c

1
4+p �

′ 1
4

n√
VarF

+ 1
}

+ c
1

4+p �
′ 1

4
n

n
1
4
√

VarF

)
c

3
4+p �′

n

(VarF)
3
2

+ c
4

4+p �′
n

(VarF)2

≤ C(c,p)S′
3,

which completes the proof. �

REMARK. The bounds in Theorem 4.1 and Theorem 4.2 are still valid for the
Wasserstein distance given in (2.21). This follows from the fact that the underlying
bounds in Theorem 6.1 in [22] and Theorem 4.3 (see also Remark 4.3 in [20]) are
true for the Wasserstein distance as well.

5. Proofs of Theorem 2.1 and Theorem 2.3. The bounds in Theorems 4.1
and 4.2 are admittedly unwieldy. However, when F is a sum of stabilizing score
functions, as in (1.1) and (1.2), then the terms on the right-hand side of (4.2) and
(4.4) conveniently collapse into the more manageable bounds (2.11) and (2.12),
respectively.

We first provide several lemmas giving moment and probability bounds for the
first- and second-order difference operators. Throughout we assume that the hy-
potheses of Theorem 2.1 are in force. We can assume without loss of generality
that Cstab = CK =: C, cstab = cK =: c and αstab = αK =: α.

LEMMA 5.1. (a) For any x ∈X and r ≥ 0,

(5.1) Q
(
B(x, r)

)≤ κrγ .

(b) For any ν > 0, there is a constant Cν ∈ (0,∞) such that

(5.2)
∫
X\B(x,r)

exp
(−(

β1/γ d(x, y)
)ν)

Q(dy) ≤ Cν

β
exp

(−(
β1/γ r

)ν
/2
)

for all β ≥ 1, x ∈ X and r ≥ 0.

PROOF. We prove only (b) since (a) can be shown similarly. We first derive
the inequality

(5.3) Q
(
B(x, v)

)−Q
(
B(x,u)

)≤ κγ max
{
uγ−1, vγ−1}(v − u)
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for 0 < u < v < ∞. Let g(t) := Q(B(x, t)), t > 0, and assume that there is a
c ∈ (0,∞) such that g(v) − g(u) ≥ c(v − u). Then one can construct sequences
(un)n∈N and (vn)n∈N such that u1 = u, v1 = v, un ≤ un+1 < vn+1 ≤ vn, n ∈ N,
limn→∞ un = limn→∞ vn =: w, and g(vn) − g(un) ≥ c(vn − un), n ∈ N. Conse-
quently,

c ≤ vn − w

vn − un

g(vn) − g(w)

vn − w
+ w − un

vn − un

g(w) − g(un)

w − un

≤ max
{
g(vn) − g(w)

vn − w
,
g(w) − g(un)

w − un

}
and n → ∞ and (2.1) lead to c ≤ κγwγ−1 ≤ κγ max{uγ−1, vγ−1}.

It is sufficient to show (5.2) for r > 0 since the case r = 0 then follows from
r → 0. For any monotone sequence (rn)n∈N with r1 > r =: r0 and limn→∞ rn =
∞, we have

Jr :=
∫
X\B(x,r)

exp
(−(

β1/γ d(x, y)
)ν)

Q(dy)

≤
∞∑

n=1

exp
(−(

β1/γ rn−1
)ν)

Q
(
B(x, rn) \ B(x, rn−1)

)
.

For supn∈N |rn − rn−1| → 0, the inequality (5.3) and the properties of the Riemann
integral imply that

Jr ≤
∫ ∞
r

exp
(−(

β1/γ u
)ν)

κγ uγ−1 du = 1

β

∫ ∞
β1/γ r

exp
(−wν)κγwγ−1 dw.

Now a straightforward computation completes the proof of (b). �

Throughout our proofs, we only make use of (5.1) and (5.2) and not of (2.1) so
that one could replace the assumption (2.1) by (5.1) and (5.2).

LEMMA 5.2. Let M ∈ N and ŷ, ŷ1, ŷ2 ∈ X̂. Then, for s ≥ 1,

Dŷhs(M) = ξs

(
ŷ,M∪ {ŷ})+ ∑

x∈M
Dŷξs(x,M),

D2
ŷ1,ŷ2

hs(M) = Dŷ1ξs

(
ŷ2,M∪ {ŷ2})+ Dŷ2ξs

(
ŷ1,M∪ {ŷ1})

+ ∑
x∈M

D2
ŷ1,ŷ2

ξs(x,M).

PROOF. In the following, let h := hs and ξ := ξs . By the definition of the
difference operator, we have that

Dŷh(M) = ∑
x∈M∪{ŷ}

ξ
(
x,M∪ {ŷ})− ∑

x∈M
ξ(x,M)
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= ξ
(
ŷ,M∪ {ŷ})+ ∑

x∈M

(
ξ
(
x,M∪ {ŷ})− ξ(x,M)

)
= ξ

(
ŷ,M∪ {ŷ})+ ∑

x∈M
Dŷξ(x,M).

For the second-order difference operator, this implies that

D2
ŷ1,ŷ2

h(M)

= ξ
(
ŷ2,M∪ {ŷ1, ŷ2})+ ∑

x∈M∪{ŷ1}
Dŷ2ξ

(
x,M∪ {ŷ1})

− ξ
(
ŷ2,M∪ {ŷ2})− ∑

x∈M
Dŷ2ξ(x,M)

= Dŷ1ξ
(
ŷ2,M∪ {ŷ2})+ Dŷ2ξ

(
ŷ1,M∪ {ŷ1})

+ ∑
x∈M

(
Dŷ2ξ

(
x,M∪ {ŷ1})− Dŷ2ξ(x,M)

)
= Dŷ1ξ

(
ŷ2,M∪ {ŷ2})+ Dŷ2ξ

(
ŷ1,M∪ {ŷ1})+ ∑

x∈M
D2

ŷ1,ŷ2
ξ(x,M),

which completes the proof. �

If a point ŷ ∈ X̂ is inserted into M ∈ N at a distance exceeding the stabilization
radius at x̂ ∈ M, then the difference operator Dŷ of the score at x̂ vanishes, as
seen by the next lemma.

LEMMA 5.3. Let M ∈ N, (x,mx) ∈ M, Â ⊂ X̂ with |Â| ≤ 6, y, y1, y2 ∈ X

and my,my1,my2 ∈ M. Then, for s ≥ 1,

D(y,my)ξs

(
(x,mx),M∪ Â

) = 0

if Rs((x,mx),M) < d(x, y) and

D2
(y1,my1 ),(y2,my2 )ξs

(
(x,mx),M

) = 0

if Rs((x,mx),M) < max{d(x, y1),d(x, y2)}.
PROOF. Note that R := Rs and ξ := ξs . Moreover, we use the abbrevia-

tions x̂ := (x,mx), ŷ := (y,my), ŷ1 := (y1,my1) and ŷ2 := (y2,my2). Recall that
B̂(z, r) stands for the cylinder B(z, r) × M for z ∈ X and r > 0. It follows from
the definitions of the difference operator and of the radius of stabilization that

Dŷξ(x̂,M∪ Â) = ξ
(
x̂,M∪ Â∪ {ŷ})− ξ(x̂,M∪ Â)

= ξ
(
x̂,

(
M∪ Â∪ {ŷ})∩ B̂

(
x,R(x̂,M)

))
− ξ

(
x̂, (M∪ Â) ∩ B̂

(
x,R(x̂,M)

))
.

(5.4)
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If R(x̂,M) < d(x, y), we have(
M∪ Â∪ {ŷ})∩ B̂

(
x,R(x̂,M)

) = (M∪ Â) ∩ B̂
(
x,R(x̂,M)

)
so that the terms on the right-hand side of (5.4) cancel out. For the second-order
difference operator, we obtain that

D2
ŷ1,ŷ2

ξ(x̂,M)

= ξ
(
x̂,

(
M∪ {ŷ1, ŷ2})∩ B̂

(
x,R(−ξ

(
x̂,

(
M∪ {ŷ1})∩ B̂

(
x,R(x̂,M)

))
− ξ

(
x̂,

(
M∪ {ŷ2})∩ B̂

(
x,R(x̂,M)

))+ ξ
(
x̂,M∩ B̂

(
x,R(x̂,M)

))
.

(5.5)

Without loss of generality, we can assume that d(x, y1) ≥ d(x, y2). If R(x̂,M) <

max{d(x, y1),d(x, y2)} = d(x, y1), we see that(
M∪ {y1, y2})∩ B̂

(
x,R(x̂,M)

) = (
M∪ {y2})∩ B̂

(
x,R(x̂,M)

)
and (

M∪ {ŷ1})∩ B̂
(
x,R(x̂,M)

) =M∩ B̂
(
x,R(x̂,M)

)
,

whence the terms on the right-hand side of (5.5) cancel out. �

We recall that Mx , x ∈ X, always stands for a random mark distributed accord-
ing to QM and associated with the point x. Moreover, we tacitly assume that Mx is
independent from everything else. For a finite set A ⊂ X, (A,MA) is the shorthand
notation for {(x,Mx) : x ∈ A}. The next lemma shows that moments of difference
operators of the scores are uniformly bounded. In the following, p ∈ (0,1] and
Cp > 0 come from the moment assumptions (2.6) and (2.7), respectively.

LEMMA 5.4. (a) For any ε ∈ (0,p] and for all s ≥ 1, x, y ∈ X and A ⊂ X

with |A| ≤ 6,

E
∣∣D(y,My)ξs

(
(x,Mx),Ps ∪ {

(x,Mx)
}∪ (A,MA)

)∣∣4+ε ≤ 24+εC
4+ε
4+p
p .

(b) For any ε ∈ (0,p] and for all n ≥ 9, x, y ∈ X and A ⊂X with |A| ≤ 6,

E
∣∣D(y,My)ξn

(
(x,Mx),Xn−8 ∪ {

(x,Mx)
}∪ (A,MA)

)∣∣4+ε ≤ 24+εC
4+ε
4+p
p .

PROOF. It follows from Jensen’s inequality, Hölder’s inequality and (2.6) that

E
∣∣D(y,My)ξs

(
(x,Mx),Ps ∪ (A,MA) ∪ {

(x,Mx)
})∣∣4+ε

≤ 23+εE
(∣∣ξs

(
(x,Mx),Ps ∪ (A,MA) ∪ {

(y,My)
}∪ {

(x,Mx)
})∣∣4+ε

+ ∣∣ξs

(
(x,Mx),Ps ∪ (A,MA) ∪ {

(x,Mx)
})∣∣4+ε

)

≤ 24+εC
4+ε
4+p
p ,

which proves (a). Part (b) follows in the same way from (2.7). �
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LEMMA 5.5. For any ε ∈ (0,p), there is a constant Cε ∈ (0,∞) only depend-
ing on the constants in (2.1), (2.4) and (2.6) such that

E
∣∣D(y,My)hs

(
Ps ∪ (A,MA)

)∣∣4+ε ≤ Cε

for y ∈ X, A ⊂X with |A| ≤ 1 and s ≥ 1.

PROOF. Fix y ∈X. We start with the case A = ∅. It follows from Lemma 5.2
and Jensen’s inequality that

E
∣∣D(y,My)hs(Ps)

∣∣4+ε

= E

∣∣∣∣ξs

(
(y,My),Ps ∪ {

(y,My)
})+ ∑

x∈Ps

D(y,My)ξs(x,Ps)

∣∣∣∣4+ε

≤ 23+εE

∣∣∣∣ξs

(
(y,My),Ps ∪ {

(y,My)
})∣∣4+ε

+ 23+εE
∣∣ ∑
x∈Ps

D(y,My)ξs(x,Ps)

∣∣∣∣4+ε

.

Here, the first summand is bounded by 23+ε(Cp + 1) by assumption (2.6). The
second summand is a sum of Z := ∑

x∈Ps
1{D(y,My)ξs(x,Ps ) �=0} terms distinct from

zero. A further application of Jensen’s inequality to the function x → x4+ε leads
to ∣∣∣∣ ∑

x∈Ps

D(y,My)ξs(x,Ps)

∣∣∣∣4+ε

≤ Z4+ε

∣∣∣∣ ∑
x∈Ps

Z−1D(y,My)ξs(x,Ps)

∣∣∣∣4+ε

≤ Z4+ε
∑
x∈Ps

Z−1∣∣D(y,My)ξs(x,Ps)
∣∣4+ε

≤ Z4
∑
x∈Ps

∣∣D(y,My)ξs(x,Ps)
∣∣4+ε

.

By deciding whether points in different sums are identical or distinct, we obtain
that

EZ4
∑
x∈Ps

∣∣D(y,My)ξs(x,Ps)
∣∣4+ε = I1 + 15I2 + 25I3 + 10I4 + I5,

where, for i ∈ {1, . . . ,5},
Ii = E

∑
(x1,...,xi )∈P i

s,�=

1{D(y,My)ξs(xj ,Ps ) �=0,j=1,...,i}
∣∣D(y,My)ξs(x1,Ps)

∣∣4+ε
.
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Here, we denote by P i
s,�= the set of i-tuples of distinct points of Ps . It follows from

the multivariate Mecke formula and Hölder’s inequality that

Ii = si
∫
X̂i
E
[
1{D(y,My)ξs(xj ,Ps∪{x1,...,xi})�=0,j=1,...,i}

× ∣∣D(y,My)ξs

(
x1,Ps ∪ {x1, . . . , xi})∣∣4+ε]

Q̂i(d(x1, . . . , xi)
)

≤ si
∫
Xi

i∏
j=1

P
(
D(y,My)ξs

(
xj ,Ps ∪ {

(x1,Mx1), . . . , (xi,Mxi
)
}) �= 0

) p−ε
4i+pi

× (
E
∣∣D(y,My)ξs

(
x1,Ps ∪ {

(x1,Mx1), . . . , (xi,Mxi
)
})∣∣4+p) 4+ε

4+p

×Qi(d(x1, . . . , xi)
)
.

Combining this with Lemma 5.3, (2.4) and Lemma 5.4(a) leads to

Ii ≤ 24+εC
4+ε
4+p
p si

∫
Xi

C
p−ε
4+p

i∏
j=1

exp
(
−c(p − ε)

4i + pi
ds(xj , y)α

)
Qi(d(x1, . . . , xi)

)

= 24+εC
4+ε
4+p
p

(
sC

p−ε
4i+pi

∫
X

exp
(
−c(p − ε)

4i + pi
ds(x, y)α

)
Q(dx)

)i

.

Now (5.2) with r = 0 yields that the integrals on the right-hand side are uniformly
bounded, and thus the first asserted moment bound holds.

Next, we assume that A = {z} with z ∈ X. Lemma 5.2 and a further application
of Jensen’s inequality show that

E
∣∣D(y,My)hs

(
Ps ∪ {

(z,Mz)
})∣∣4+ε

= E

∣∣∣∣ξs

(
(y,My),Ps ∪ {

(y,My), (z,Mz)
})

+ D(y,My)ξs

(
(z,Mz),Ps ∪ {

(z,Mz)
})

+ ∑
x∈Ps

D(y,My)ξs

(
x,Ps ∪ {

(z,Mz)
})∣∣∣∣4+ε

≤ 33+εE
∣∣ξs

(
(y,My),Ps ∪ {

(y,My), (z,Mz)
})∣∣4+ε

+ 33+εE
∣∣D(y,My)ξs

(
(z,Mz),Ps ∪ {

(z,Mz)
})∣∣4+ε

+ 33+εE

∣∣∣∣ ∑
x∈Ps

D(y,My)ξs

(
x,Ps ∪ {

(z,Mz)
})∣∣∣∣4+ε

.

The last term on the right-hand side can be now bounded by exactly the same
arguments as above since these still hold true if one adds an additional point. As
the other terms are bounded by (2.6) and Lemma 5.4(a), this completes the proof.

�
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LEMMA 5.6. For any ε ∈ (0,p), there is a constant Cε ∈ (0,∞) only depend-
ing on the constants in (2.1), (2.5) and (2.7) such that

E
∣∣D(y,My)hn

(
Xn−1−|A| ∪ (A,MA)

)∣∣4+ε ≤ Cε

for y ∈ X, A ⊂X with |A| ≤ 2 and n ≥ 9.

PROOF. Let Xn,A := Xn−1−|A| ∪ (A,MA). It follows from Lemma 5.2 and
Jensen’s inequality that

E
∣∣D(y,My)hn(Xn,A)

∣∣4+ε

= E

∣∣∣∣ξn

(
(y,My),Xn,A ∪ {

(y,My)
})

+ ∑
x∈Xn−1−|A|∪(A,MA)

D(y,My)ξn(x,Xn,A)

∣∣∣∣4+ε

≤ 43+εE
∣∣ξn

(
(y,My),Xn,A ∪ {

(y,My)
})∣∣4+ε

+ 43+ε
∑
x∈A

E
∣∣D(y,My)ξn

(
(x,Mx),Xn,A

)∣∣4+ε

+ 43+εE

∣∣∣∣ ∑
x∈Xn−1−|A|

D(y,My)ξn(x,Xn,A)

∣∣∣∣4+ε

.

On the right-hand side, the first summand is bounded by 43+ε(Cp + 1) by assump-
tion (2.7) (after conditioning on the points of Xn−1−|A| \ Xn−8) and the second

summand is bounded by 43+ε · 2 · 24+εC
4+ε
4+p
p by Lemma 5.4(b). A further applica-

tion of Jensen’s inequality with Z := ∑
x∈Xn−1−|A| 1{D(y,My)ξn(x,Xn,A) �=0} leads to∣∣∣∣ ∑

x∈Xn−1−|A|
D(y,My)ξn(x,Xn,A)

∣∣∣∣4+ε

≤ Z3+ε
∑

x∈Xn−1−|A|

∣∣D(y,My)ξn(x,Xn,A)
∣∣4+ε

≤ Z4
∑

x∈Xn−1−|A|

∣∣D(y,My)ξn(x,Xn,A)
∣∣4+ε

.

By deciding whether points in different sums are identical or distinct, we obtain
that

EZ4
∑

x∈Xn−1−|A|

∣∣D(y,My)ξn(x,Xn,A)
∣∣4+ε = I1 + 15I2 + 25I3 + 10I4 + I5,

where, for i ∈ {1, . . . ,5},
Ii = E

∑
(x1,...,xi )∈X i

n−1−|A|,�=

1{D(y,My)ξn(xj ,Xn,A) �=0,j=1,...,i}
∣∣D(y,My)ξn(x1,Xn,A)

∣∣4+ε
.
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It follows from Hölder’s inequality that Ii equals

(n − 1 − |A|)!
(n − 1 − |A| − i)!

×
∫
X̂i
E1{D(y,My)ξn(xj ,Xn−i,A∪{x1,...,xi})�=0,j=1,...,i}

× ∣∣D(y,My)ξn

(
x1,Xn−i,A ∪ {x1, . . . , xi})∣∣4+ε

Q̂i(d(x1, . . . , xi)
)

≤ ni
∫
Xi

i∏
j=1

P
(
D(y,My)ξn

(
(xj ,Mxj

),Xn−i,A ∪ {
(x1,Mx1), . . . , (xi,Mxi

)
}) �= 0

) p−ε
4i+pi

× (
E
∣∣D(y,My)ξn

(
(x1,Mx1),Xn−i,A ∪ {

(x1,Mx1), . . . , (xi,Mxi
)
})∣∣4+p) 4+ε

4+p

×Qi(d(x1, . . . , xi)
)
.

Combining this with Lemma 5.3, (2.5) and Lemma 5.4(b) leads to

Ii ≤ 24+εC
4+ε
4+p
p ni

∫
Xi

C
p−ε
4+p

i∏
j=1

exp
(
−c(p − ε)

4i + pi
dn(xj , y)α

)
Qi(d(x1, . . . , xi)

)

= 24+εC
4+ε
4+p
p

(
nC

p−ε
4i+pi

∫
X

exp
(
−c(p − ε)

4i + pi
dn(x, y)α

)
Q(dx)

)i

.

Now (5.2) yields that the integrals on the right-hand side are uniformly bounded.
�

LEMMA 5.7. (a) For x, z ∈ X and s ≥ 1,

P
(
D(x,Mx)ξs

(
(z,Mz),Ps ∪ {

(z,Mz)
}) �= 0

)
≤ 2C exp

(−c max
{
ds(x, z),ds(z,K)

}α)
.

(b) For x1, x2, z ∈ X and s ≥ 1,

P
(
D2

(x1,Mx1 ),(x2,Mx2 )ξs

(
(z,Mz),Ps ∪ {

(z,Mz)
}) �= 0

)
≤ 4C exp

(−c max
{
ds(x1, z),ds(x2, z),ds(z,K)

}α)
.

PROOF. We prove part (b). By Lemma 5.3, the event

D2
(x1,Mx1 ),(x2,Mx2 )ξs

(
(z,Mz),Ps ∪ {

(z,Mz)
}) �= 0

is a subset of the event that the points x1, x2 belong to the ball centered at z

with radius Rs((z,Mz),Ps ∪ {(z,Mz)}), that is, Rs((z,Mz),Ps ∪ {(z,Mz)}) ≥
max{d(x1, z),d(x2, z)}. By (2.4), this gives

P
(
D2

(x1,Mx1 ),(x2,Mx2 )ξs

(
(z,Mz),Ps ∪ {

(z,Mz)
}) �= 0

)
≤ C exp

(−c max
{
ds(x1, z),ds(x2, z)

}α)
.
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By (2.8), we also have

P
(
D2

(x1,Mx1 ),(x2,Mx2 )ξs

(
(z,Mz),Ps ∪ {

(z,Mz)
}) �= 0

) ≤ 4C exp
(−c ds(z,K)α

)
.

This gives the proof of part (b). Part (a) is proven in a similar way. �

LEMMA 5.8. (a) For x, z ∈ X and n ≥ 9,

sup
A⊂X,|A|≤1

P
(
D(x,Mx)ξn

(
(z,Mz),Xn−2−|A| ∪ {

(z,Mz)
}∪ (A,MA)

) �= 0
)

≤ 2C exp
(−c max

{
dn(x, z),dn(z,K)

}α)
.

(b) For x1, x2, z ∈ X and n ≥ 9,

sup
A⊂X,|A|≤1

P
(
D2

(x1,Mx1 ),(x2,Mx2 )ξn

(
(z,Mz),Xn−3−|A| ∪ {

(z,Mz)
}∪ (A,MA)

) �= 0
)

≤ 4C exp
(−c max

{
dn(x1, z),dn(x2, z),dn(z,K)

}α)
.

PROOF. By Lemma 5.3 and (2.5) together with similar arguments as in the
proof of Lemma 5.7, we obtain

P
(
D2

(x1,Mx1 ),(x2,Mx2 )ξn

(
(z,Mz),Xn−3−|A| ∪ {

(z,Mz)
}∪ (A,MA)

) �= 0
)

≤ P
(
Rn

(
(z,Mz),Xn−8 ∪ {

(z,Mz)
}) ≥ max

{
ds(x1, z),ds(x2, z)

})
≤ C exp

(−c max
{
ds(x1, z),ds(x2, z)

}α)
.

It follows from (2.9) that

P
(
D2

(x1,Mx1 ),(x2,Mx2 )ξn

(
(z,Mz),Xn−3−|A| ∪ {

(z,Mz)
}∪ (A,MA)

) �= 0
)

≤ 4C exp
(−c ds(z,K)α

)
,

which completes the proof of part (b). Part (a) is proven similarly. �

LEMMA 5.9. (a) Let β ∈ (0,∞) be fixed. Then there is a constant Cβ ∈ (0,∞)

such that

s

∫
X
P
(
D2

(x1,Mx1 ),(x2,Mx2 )hs(Ps) �= 0
)β
Q(dx2) ≤ Cβ exp

(−cβ ds(x1,K)/4α+1)
for all x1 ∈X and s ∈ [1,∞).

(b) Let β ∈ (0,∞) be fixed. Then there is a constant Cβ ∈ (0,∞) such that

n

∫
X

sup
A⊂X,|A|≤1

P
(
D2

(x1,Mx1 ),(x2,Mx2 )hn

(
Xn−2−|A| ∪ (A,MA)

) �= 0
)β
Q(dx2)

≤ Cβ exp
(−cβ ds(x1,K)/4α+1)

for all x1 ∈X and n ≥ 9.
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PROOF. By Lemma 5.2, we have

D2
(x1,Mx1 ),(x2,Mx2 )hs(Ps) = D(x1,Mx1 )ξs

(
(x2,Mx2),Ps ∪ {

(x2,Mx2)
})

+ D(x2,Mx2 )ξs

(
(x1,Mx1),Ps ∪ {

(x1,Mx1)
})

+ ∑
z∈Ps

D2
(x1,Mx1 ),(x2,Mx2 )ξs(z,Ps)

so that the Slivnyak–Mecke formula leads to

P
(
D2

(x1,Mx1 ),(x2,Mx2 )hs(Ps) �= 0
)

≤ P
(
D(x1,Mx1 )ξs

(
(x2,Mx2),Ps ∪ {

(x2,Mx2)
}) �= 0

)
+ P

(
D(x2,Mx2 )ξs

(
(x1,Mx1),Ps ∪ {

(x1,Mx1)
}) �= 0

)
+ s

∫
X
P
(
D2

(x1,Mx1 ),(x2,Mx2 )ξs

(
(z,Mz),Ps ∪ {

(z,Mz)
}) �= 0

)
Q(dz)︸ ︷︷ ︸

=:Tx1,x2,s

.

Here, we use part (a) of Lemma 5.7 to bound each of the first two terms on the
right-hand side. We may bound the first term by

P
(
D(x1,Mx1 )ξs

(
(x2,Mx2),Ps ∪ {

(x2,Mx2)
}) �= 0

)
≤ 2C exp

(−c max
{
ds(x1, x2),ds(x2,K)

}α)
.

Observing that ds(x1,K) ≤ 2 max{ds(x2,K),ds(x1, x2)}, we obtain

P
(
D(x1,Mx1 )ξs

(
(x2,Mx2),Ps ∪ {

(x2,Mx2)
}) �= 0

)
≤ 2C exp

(−c max
{
ds(x1, x2),ds(x1,K),ds(x2,K)

}α
/2α).

We bound P(D(x2,Mx2 )ξs((x1,Mx1),Ps ∪ {(x1,Mx1)}) �= 0) in the same way. It
follows from part (b) of Lemma 5.7 that

Tx1,x2,s ≤ 4Cs

∫
X

exp
(−c max

{
ds(x1, z),ds(x2, z),ds(z,K)

}α)
Q(dz).

Assume that ds(x1,K) ≥ ds(x2,K) [the reasoning is similar if ds(x2,K) ≥
ds(x1,K)] and let r = max{d(x1,K),d(x1, x2)}/2. For any z ∈ B(x1, r), the tri-
angle inequality leads to max{d(z, x2),d(z,K)} ≥ r . This implies that

Tx1,x2,s ≤ 4Cs

∫
B(x1,r)

exp
(−c max

{
ds(z, x2),ds(z,K)

}α︸ ︷︷ ︸
≥(s1/γ r)α

)
Q(dz)

+ 4Cs

∫
X\B(x1,r)

exp
(−c ds(x1, z)

α)Q(dz).
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Recalling from (5.1) that Q(B(x1, r)) ≤ κrγ , we have

4Cs

∫
B(x1,r)

exp
(−c

(
s1/γ r

)α)
Q(dz) ≤ 4Csκrγ exp

(−c
(
s1/γ r

)α)
≤ C1 exp

(−c
(
s1/γ r

)α
/2
)

with a constant C1 ∈ (0,∞) only depending on C, c, γ and α. On the other hand,
(5.2) yields

4Cs

∫
X\B(x1,r)

exp
(−c ds(x1, z)

α)Q(dz) ≤ C2 exp
(−c

(
s1/γ r

)α
/2
)

with a constant C2 ∈ (0,∞) only depending on C, c, γ and α. Hence, we obtain

Tx1,x2,s ≤ (C1 + C2) exp
(−c max

{
ds(x1,K),ds(x2,K),ds(x1, x2)

}α
/2α+1)

and

P
(
D2

(x1,Mx1 ),(x2,Mx2 )hs(Ps) �= 0
)

≤ C3 exp
(−c max

{
ds(x1,K),ds(x2,K),ds(x1, x2)

}α
/2α+1)

with C3 := C1 + C2 + 4C. Consequently, we have

s

∫
X
P
(
D2

(x1,Mx1 ),(x2,Mx2 )hs(Ps) �= 0
)β
Q(dx2)

≤ C
β
3 s

∫
B(x1,d(x1,K)/2)

exp
(−cβ ds(x2,K)α/2α+1)Q(dx2)

+ C
β
3 s

∫
X\B(x1,d(x1,K)/2)

exp
(−cβ ds(x2, x1)

α/2α+1)Q(dx2).

Using the same arguments as above, the right-hand side can be bounded by

Cβ exp
(−cβ ds(K,x1)

α/4α+1)
with a constant Cβ ∈ (0,∞) only depending on β , C3, c, γ and α. This completes
the proof of (a).

Similar arguments show for the binomial case that

sup
A⊂X,|A|≤1

P
(
D2

(x1,Mx1 ),(x2,Mx2 )hn

(
Xn−2−|A| ∪ (A,MA)

) �= 0
)

≤ sup
A⊂X,|A|≤1

P
(
D(x1,Mx1 )ξn

(
(x2,Mx2),Xn−2−|A| ∪ {

(x2,Mx2)
}∪ (A,MA)

) �= 0
)

+ sup
A⊂X,|A|≤1

P
(
D(x2,Mx2 )ξn

(
(x1,Mx1),Xn−2−|A| ∪ {

(x1,Mx1)
}∪ (A,MA)

) �= 0
)

+ n

∫
X

sup
A⊂X,|A|≤1

P
(
D2

(x1,Mx1 ),(x2,Mx2 )ξn

(
(z,Mz),Xn−3−|A|

∪ {
(z,Mz)

}∪ (A,MA)
) �= 0

)
Q(dz)

+ sup
z∈X

P
(
D2

(x1,Mx1 ),(x2,Mx2 )ξn

(
(z,Mz),Xn−3 ∪ {

(z,Mz)
}) �= 0

)
.
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Now similar computations as for the Poisson case conclude the proof of part (b).
�

For α, τ ≥ 0, put

IK,s(α, τ ) := s

∫
X

exp
(−τ ds(x,K)α

)
Q(dx), s ≥ 1.

LEMMA 5.10. Let β ∈ (0,∞) be fixed. There is a constant C̃β ∈ (0,∞) such
that for all s ≥ 1 we have

s

∫
X

(
s

∫
X
P
(
D2

(x1,Mx1 ),(x2,Mx2 )hs(Ps) �= 0
)β
Q(dx2)

)2
Q(dx1)

(5.6)
≤ C̃βIK,s

(
α, cβ/22α+1),

s2
∫
X2

P
(
D2

(x1,Mx1 ),(x2,Mx2 )hs(Ps) �= 0
)β
Q2(d(x1, x2)

)
(5.7)

≤ C̃βIK,s

(
α, cβ/4α+1)

and

(5.8) s

∫
X
P
(
D(x,Mx)hs(Ps) �= 0

)β
Q(dx) ≤ C̃βIK,s

(
α, cβ/2α+1).

PROOF. By Lemma 5.9(a), the integrals in (5.6) and (5.7) are bounded by

C2
βs

∫
X

exp
(−cβ ds(x1,K)α/22α+1)Q(dx1) = C2

βIk,s

(
α, cβ/22α+1)

and

Cβs

∫
X

exp
(−cβ ds(x1,K)α/4α+1)Q(dx1) = CβIk,s

(
α, cβ/4α+1),

respectively. In order to derive the bound in (5.8), we compute P(D(x,Mx)hs(Ps) �=
0) as follows. By Lemma 5.2 and the Slivnyack–Mecke formula, we obtain that

P
(
D(x,Mx)hs(Ps) �= 0

)
≤ P

(
ξs

(
(x,Mx),Ps ∪ {

(x,Mx)
}) �= 0

)+E
∑
z∈Ps

1{D(x,Mx)ξs(z,Ps ) �=0}

= P
(
ξs

(
(x,Mx),Ps ∪ {

(x,Mx)
}) �= 0

)
+ s

∫
X
P
(
D(x,Mx)ξs

(
(z,Mz),Ps ∪ {

(z,Mz)
}) �= 0

)
Q(dz).

By (2.8) and Lemma 5.7(a), we obtain that for all x ∈ X and s ≥ 1,

P
(
D(x,Mx)hs(Ps) �= 0

) ≤ C exp
(−c ds(x,K)α

)
+ 2Cs

∫
X

exp
(−c max

{
ds(x, z),ds(z,K)

}α)
Q(dz).
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Letting r := d(x,K)/2, partitioning X into the union of X \ B(x, r) and B(x, r),
and following the discussion in the proof of Lemma 5.9, we obtain

2Cs

∫
X

exp
(−c max

{
ds(x, z),ds(z,K)

}α)
Q(dz) ≤ C1 exp

(−c ds(x,K)α/2α+1)
with a constant C1 ∈ (0,∞). Consequently, for all x ∈ X and s ≥ 1 we have

P
(
D(x,Mx)hs(Ps) �= 0

) ≤ (C + C1) exp
(−c ds(x,K)α/2α+1)

and

s

∫
X
P
(
D(x,Mx)hs(Ps) �= 0

)β
Q(dx) ≤ (C + C1)IK,s

(
α, cβ/2α+1),

which was to be shown. �

LEMMA 5.11. Let β ∈ (0,∞) be fixed. There is a constant C̃β ∈ (0,∞) such
that for all n ≥ 9 we have
(5.9)

n

∫
X

(
n

∫
X

sup
A⊂X,|A|≤1

P
(
D2

(x1,Mx1 ),(x2,Mx2 )hn

(
Xn−2−|A| ∪ (A,MA)

) �= 0
)β
Q(dx2)

)2

×Q(dx1)

≤ C̃βIK,n

(
α, cβ/22α+1),

n2
∫
X2

sup
A⊂X,|A|≤1

P
(
D2

(x1,Mx1 ),(x2,Mx2 )hn

(
Xn−2−|A| ∪ (A,MA)

) �= 0
)β
Q2(d

(
x1, x2)

)
≤ C̃βIK,n

(
α, cβ/4α+1)

and

(5.10) n

∫
X
P
(
D(x,Mx)hn(Xn−1) �= 0

)β
Q(dx) ≤ C̃βIK,n

(
α, cβ/2α+1).

PROOF. The bounds in (5.9) and (5.11) follow immediately from
Lemma 5.9(b) and the definition of IK,n(α, τ ). By Lemma 5.2, we obtain that,
for x ∈ X,

P
(
D(x,Mx)hn(Xn−1) �= 0

)
≤ P

(
ξn

(
(x,Mx),Xn−1 ∪ {

(x,Mx)
}) �= 0

)
+E

∑
z∈Xn−1

1{D(x,Mx)ξn(z,Xn−1∪{z})�=0}

≤ P
(
ξn

(
(x,Mx),Xn−1 ∪ {

(x,Mx)
}) �= 0

)
+ n

∫
X
P
(
D(x,Mx)ξn

(
(z,Mz),Xn−2 ∪ {

(z,Mz)
}) �= 0

)
Q(dz).
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Combining the bound from Lemma 5.8(a) with the computations from the proof
of Lemma 5.10 and (2.9), we see that there is a constant C1 ∈ (0,∞) such that for
all x ∈ X and s ≥ 1 we have

P
(
D(x,Mx)hn(Xn−1) �= 0

) ≤ C1 exp
(−c ds(x,K)α/2α+1).

Now (5.10) follows from the definition of IK,n(α, τ ). �

PROOF OF THEOREM 2.1. We start with the proof of the Poisson case (2.11).
It follows from Lemma 5.5 that the condition (4.1) with the exponent 4 + p/2 in
Theorem 4.1 is satisfied for all s ≥ 1 with the constant Cp/2. In the following, we
use the abbreviation

IK,s = IK,s

(
α, cp/

(
36 · 4α+1)).

Together with Lemma 5.10 (with β = p/36), it follows from Theorem 4.1 that
there is a constant C̃ ∈ (0,∞) depending on C̃p/36,Cp/2 and p such that

dK

(
Hs −EHs√

VarHs

,N

)
≤ C̃

( √
IK,s

VarHs

+ IK,s

(VarHs)3/2 + I
5/4
K,s + I

3/2
K,s

(VarHs)2

)
,

which completes the proof of the Poisson case.
For the binomial case (2.12), it follows from Lemma 5.6 that the condition (4.3)

in Theorem 4.2 is satisfied with the exponent 4 + p/2 for all n ≥ 9 with the same
constant Cp/2 ≥ 1. Using the abbreviation

IK,n = IK,n

(
α, cp/

(
18 · 4α+1)),

we obtain from Lemma 5.11 (with β = p/18) and Theorem 4.2 that there is a
constant C̃ ∈ (0,∞) depending on C̃p/18, Cp/2 and p such that

dK

(
H ′

n −EH ′
n√

VarH ′
n

,N

)
≤ C̃

( √
IK,n

VarH ′
n

+ IK,n

(VarH ′
n)

3/2 + IK,n + (IK,n)
3/2

(VarH ′
n)

2

)
,

which completes the proof. �

Before giving the proof of Theorem 2.3, we require a lemma. We thank Steffen
Winter for discussions concerning the proof. For K ⊂ Rd , recall that Kr := {y ∈
Rd : d(y,K) ≤ r} and that Md−1

(K) is defined at (2.16).

LEMMA 5.12. If K is either a full-dimensional compact subset of Rd

with Md−1
(∂K) < ∞ or a (d − 1)-dimensional compact subset of Rd with

Md−1
(K) < ∞, then there exists a constant C such that

(5.11) Hd−1(∂Kr) ≤ C
(
1 + rd−1), r > 0.
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PROOF. By Corollary 3.6 in [33], the hypotheses yield r0,C1 ∈ (0,∞) such
that

Hd−1(∂Kr) ≤ C1, r ∈ (0, r0).

Combining Lemma 4.1 of [33] along with Corollaries 2.4 and 2.5 and equation
(2.1) of [33], we conclude for almost all r̃ > 0 that

Hd−1(∂Kr) ≤ (r/r̃)d−1Hd−1(∂Kr̃)

for all r > r̃ . Choosing such a r̃ > 0 from (0, r0) we see that

Hd−1(∂Kr) ≤ C1(1/r̃)d−1rd−1, r ∈ [r0,∞),

which completes the proof. �

PROOF OF THEOREM 2.3. Note that we have the same situation as described
in Example 1 in Section 2. In the following, we evaluate IK,s , which allows us to
apply Corollary 2.2. It suffices to show that if K is a full d-dimensional subset of
X, then IK,s = O(s), while IK,s = O(s1−1/d) for lower dimensional K . Indeed,
put c := min{cstab, cK}p/(36 · 4α+1), so that

IK,s = s

∫
X

exp
(−c ds(x,K)α

)
g(x)dx

≤ ‖g‖∞s

∫
K

exp
(−csα/d d(x,K)α

)
dx

+ ‖g‖∞s

∫
X\K

exp
(−csα/d d(x,K)α

)
dx

= ‖g‖∞ Vold(K)s + ‖g‖∞s

∫ ∞
0

∫
∂Kr

exp
(−csα/drα)Hd−1(dy)dr

≤ ‖g‖∞ Vold(K)s

+ C‖g‖∞s

∫ ∞
0

exp
(−csα/drα)(1 + rd−1)dr

≤ ‖g‖∞ Vold(K)s

+ C‖g‖∞s(d−1)/d
∫ ∞

0
exp

(−cuα)(1 + s−(d−1)/dud−1)du,

where the second equality follows by the co-area formula and where the second in-
equality follows by Lemma 5.12. If K is a full d-dimensional subset of X, then the
first integral dominates and is O(s). Otherwise, Vold(K) vanishes and the second
integral is O(s(d−1)/d). �
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APPENDIX

Here, we provide the proof of Lemma 3.8.

PROOF OF LEMMA 3.8. We need some additional notation. Throughout the
proof, κ is a constant depending on d , j , whose value may change from line to line.
For L some linear space, let �L the Lebesgue measure on L, G(L,q), q < dim(L)

its space of q-dimensional subspaces, and νL
q the Haar probability measure on

G(L,q). Note G(Rd, j) = G(d, j) and νj = νR
d

j . Theorem 6.2.2 from [38] yields

Vj (A) − Vj (M) = κ

∫
G(d,j)

(
Vj

(
A|L)− Vj

(
M|L))νj (dL)

= κ

∫
G(d,j)

∫
L

f L(x)�L(dx)νj (dL).

The Blaschke–Petkantschin formula (Theorem 7.2.1 in [38]) over the �L integral
shows that the right-hand side equals

κ

∫
G(d,j)

∫
G(L,1)

∫
N

f L(x)‖x‖j−1�N(dx)νL
1 (dN)νj (dL).

Fubini’s theorem and Theorem 7.1.1 in [38] yield that the last expression is

κ

∫
G(d,1)

∫
G(N,j)

∫
N

f L(x)‖x‖j−1�N(dx)νN
j (dL)ν1(dN)

= κ

∫
G(d,1)

∫
N

∫
G(N,j)

f L(x)‖x‖j−1νN
j (dL)�N(dx)ν1(dN)

= κ

∫
G(d,1)

∫
N

‖x‖j−1
∫
G(L(x),j)

f L(x)ν
L(x)
j (dL)�N(dx)ν1(dN)

= κ

∫
G(d,1)

∫
N

f (x)�N(dx)ν1(dN)

(A.1)

with f (x) = ‖x‖j−1 ∫
G(L(x),j) f

L(x)ν
L(x)
j (dL) because N = L(x) in the sec-

ond line. An independent application of the Blaschke–Petkantschin formula with
g(x) = f (x)‖x‖−(d−1) for each L yields∫

Rd
g(x)�d(dx) =

∫
G(d,1)

∫
N

g(x)‖x‖d−1�N(dx)ν1(dN)

=
∫
G(d,1)

∫
N

f (x)�N(dx)ν1(dN)

whence (A.1) is equal to
∫
Rd

∫
G(L(x),j) f

L(x)‖x‖(j−1)−(d−1)ν
L(x)
j (dL)�d(dx),

which completes the proof. �
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