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FIRST-ORDER EULER SCHEME FOR SDES DRIVEN BY
FRACTIONAL BROWNIAN MOTIONS: THE ROUGH CASE

BY YANGHUI L1U AND SAMY TINDEL!
Purdue University

In this article, we consider the so-called modified Euler scheme for
stochastic differential equations (SDEs) driven by fractional Brownian mo-
tions (fBm) with Hurst parameter % < H < % This is a first-order time-
discrete numerical approximation scheme, and has been introduced in [Ann.
Appl. Probab. 26 (2016) 1147-1207] recently in order to generalize the clas-
sical Euler scheme for It6 SDEs to the case H > % The current contribu-
tion generalizes the modified Euler scheme to the rough case % <H< %

Namely, we show a convergence rate of order néfZH for the scheme, and
we argue that this rate is exact. We also derive a central limit theorem for the
renormalized error of the scheme, thanks to some new techniques for asymp-
totics of weighted random sums. Our main idea is based on the following ob-
servation: the triple of processes obtained by considering the fBm, the scheme
process and the normalized error process, can be lifted to a new rough path.
In addition, the Holder norm of this new rough path has an estimate which is
independent of the step-size of the scheme.
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1. Introduction. This note is concerned with the following differential equa-
tion driven by a m-dimensional fractional Brownian motion (fBm in the sequel) B
with Hurst parameter % <H< %:

dy; =b(y)dt + V(y;)dB;, tel0,T],

(1.1)
Yo=Yy € RY,

Assuming that the collection of vector fields b = ' )1<i<q belongs to the space
CZ(RY,RY) and V = (V;’)lgigd,lsjgm sits in C3 (RY, L(R™, RY)), the theory of
rough paths gives a framework allowing to get existence and uniqueness results
for equation (1.1). In addition, the unique solution y in the rough paths sense has
y-Holder continuity for all y < H. The reader is referred to [13, 14, 17] for further
details.

In this paper, we are interested in the numerical approximation of equation (1.1)
based on a discretization of the time parameter ¢. For simplicity, we are considering
a finite time interval [0, 7] and we take the uniform partition 7 : 0 =19 < t] <
-+~ <t, =T on [0, T]. Specifically, for k =0, ..., n we have #; = kh, where we
denote h = % Our generic approximation is called y", and it starts from the initial
condition y; = y. In order to introduce our numerical schemes, we shall also use
the following notation.

NOTATION 1.1. LetU = (U!,...,U% and V = (V!,..., V9) be two smooth
vector fields defined on R?. We denote by 9 the operator vector d = (dy,, ..., 0x,),
that is, for x € R¢ we have [U (x)]¥ = o, U k(x). With the same matrix conven-
tion, the vector field U V is defined as [dU V (x)]¥ = Zle Oy, Uk(x)Vix).

With those preliminaries in mind, the most classical numerical scheme for
stochastic equations is the so-called Euler scheme (or first-order Taylor scheme),
which is recursively defined as follows on the uniform partition:

Vi = Vi T o)+ V(31)8 By
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where §f;; is defined as f; — f; for a function f. However, it is easily seen (see,
e.g., [8] for details) that the Euler scheme is divergent when the Hurst parameter
H is less than % To obtain a convergent numerical approximation in this rough
situation, higher-order terms from the Taylor expansion need to be included in the
scheme. Having the rough paths construction in mind, the simplest method of this
kind is the Milstein scheme, or second-order Taylor scheme. It can be expressed
recursively as

(1.2) ytk+1 = yzk +b(sz)h + V(ytk)aBtklkH + Z Vi V( ylk)Bfkfk-H’
i,j=1

where we have used Notation 1.1 and where B designates the second-order iterated
integral of B (see Section 3.1 for a proper definition). This numerical approxima-
tion has ﬁrst been considered in [7], and has been shown to be convergent as long
as H > 3 , with an almost sure convergence rate n~GH-D+€ Here and in the fol-
lowing, ¥ > O represents an arbitrarily small constant. An extension of the result
to nth-order Taylor schemes and to an abstract rough path with arbitrary regularity
is contained in [14]; see also [19] for the optimized nth-order Taylor scheme when
H > %

The nth-order Taylor schemes of the form (1.2) are, however, not implementable
in general. This is due to the fact that when i # j the terms Bfklk , cannot be
simulated exactly and have to be approximated on their own. We now mention
some contributions giving implementable versions of (1.2) for stochastic differen-
tial equation (1.1). They all rely on some cancellation of the randomness in the
error process y — y” related to our standing equation.

(1) The first second-order implementable scheme for (1.1) has been introduced
n [8]. It can be expressed in the following form:

1 .
(1.3) yi =i +b(p)h+V(y)8Bys + 5 5 Z OViVi(y)8By ., 8Birsy,,-
i,j=1

. _(H-1
This scheme has been shown to have convergence rate of order n~#~3)%¢ and

the proof relies on the fact that (1.3) is the second-order Taylor scheme for the
Wong—Zakai approximation of equation (1.1). The approximation (1.3) has been
extended in [1, 11] to a third-order scheme defined as follows:

ytk+| = ytk +b(ytk)h + V(ytk)aBtktk+l +5 Z 8V V ytk)SBtlktk+]SBkatk+l

1
(1.4) i
1 A@V;VHV, SB' . §B/  sBt

Z ( )k(sz) Bl 1”7 Tt 1 7 D i1

i,j=1

O\

Thanks to a thorough analysis of differences of iterated integrals between two

QH-1)+«

Gaussian processes, a convergence rate n- has been achieved for the
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scheme (1.4). One should also notice that [11] handles in fact very general Gaus-
sian processes, as long as their covariance function is regular enough in the p-
variation sense.

(ii) A different direction has been considered in [18], where the following first-
order (meaning first-order with respect to the increments of B) scheme has been
introduced:

1 m
(15) oy = A0+ YV (7)8 By, + 5 30V V i)k
j=1

This approximation is called modified Euler scheme in [18]. As has been explained
in [18], the modified Euler scheme is a natural generalization of the classical Eu-
ler scheme of the Stratonovich SDE to the rough SDE (1.1). For this reason, we
will call (1.5) the Euler scheme from now on. As the reader might also see from
relation (1.5), one gets the Euler scheme from the second-order Taylor scheme

(1.2) by changing the terms IB%;i n4, 1nto their respective expected values. Note that
since the Euler scheme does not involve products of increments of the underlying
fBm, its computation cost is much lower than those of (1.3) and (1.4). In spite of
this cost reduction, an exact rate of convergence n~ ~2) has been achieved in
[18]. The asymptotic error distributions and the weak convergence of the scheme
have also been considered, and those results heavily hinge on Malliavin calculus
considerations. Notice however that the results in [18] are restricted to the case

1

Having recalled those previous results, the aim of the current paper is quite sim-
ple: we wish to extend the results concerning the Euler scheme (1.5) to a truly
rough situation. Namely, we will consider equation (1.1) driven by a fractional
Brownian motion B with % < H < % For this equation, we show that the Eu-
ler scheme maintains the rate of convergence n—CH _%), which is the same as the
third-order implementable scheme in (1.4). We also obtain some asymptotic results
for the error distribution of the numerical scheme (1.5), which generalize the cor-
responding results in [18, 22] to the case H < % More specifically, we will prove
the following results (see Theorems 8.7 and 9.4 for more precise statements).

THEOREM 1.2. Let y be the solution of equation (1.1), and consider the Euler
approximation scheme y" defined in (1.5). Then:

(i) For any arbitrarily small k > 0, the following almost sure convergence
holds true:

1
n?H=27% sup |y, —y'| >0  asn— oo.

te[0,T]
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(i1) The sequence of processes n*H = (y — ¥") converges weakly in D([0, T])
to a process U which solves the following equation:

m t ..
3 fo DViV; (yy) AW

t m t .
(1.6) U,:fo ab(ys)Usds—I—Z/O aV;(ys)Us dB! +
j=1 i,j=1

where W = (W) is a R™ ™ -valued Brownian motion with correlated compo-
nents, independent of B.

We wish to mention again that our scheme (1.5) is numerically more efficient
than the implementable schemes (1.3) and (1.4). Indeed:

(1) In (1.4), one has to consider third-order implementable schemes in order to

reach the rate of convergence n~?# ~2)_ This has to be compared to the modified
Euler scheme, which is only first-order. As far as (1.3) is concerned, it yields a
convergence rate which is slower than the one provided in the current contribution.

(ii) The implementable scheme (1.4) involves some products of increments
of B. Since these are approximated quantities, the computation of their product
yields an inconvenient propagation of numerical errors. This is in sharp contrast
with the modified Euler scheme, for which the quantity 4%/ in (1.5) has to be
evaluated only once.

(iii) The high order derivatives involved in (1.4) is another source of computa-
tional cost that we can avoid in (1.5).

(iv) The algorithm complexity in order to simulate a fBm increment vector of
the form (8 By, ..., 8By, ,1,) is of order nlogn (see, e.g., [10]). Therefore, all the
aforementioned schemes will also inherit a complexity of order n logn. However,
it should be clear from our previous discussion that the modified Euler scheme
leads to better constants.

Let us also highlight the fact that our approach does not rely on the special struc-
ture of the numerical scheme and does not require the analysis of the Wong—Zakai
approximation. In fact, it provides a general procedure for studying time-discrete
numerical approximations of RDEs, including the implementable schemes (1.3)
and (1.4) we just mentioned, the backward Euler scheme, the Crank—Nicolson
scheme and its modifications, Taylor schemes and their modifications introduced
in [19] and so on.

Since the proof of our main Theorem 1.2 relies on long computations, we will
explain briefly our strategy:

(1) Uniform bounds on the scheme process. Our first step in order to establish
our main results is to get uniform boundedness in n for the numerical scheme y”
and its related processes as rough paths. This is done by considering y" as the
solution of a rough differential equation driven by (B, g) where ¢ is the second
chaos process given by (5.4), instead of just B. Then the uniform estimates are
obtained thanks to some rough path techniques.
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(2) Linearization of the error process. The starting point of our proof of the
convergence for the scheme (1.5) is a linearization of the error process. Namely,
let @ be the Jacobian of equation (1.1), that is, the derivative of the solution with
respect to the initial condition y [see equation (7.1)], and let ¥ designates the in-
verse matrix of ®. Then we shall establish [see relation (8.10)] that the difference
y — y" can be expressed as

3 t
(1.7) Zd%/ W, dAS,
e=1 §

where the terms A€ are given as iterated integrals of the processes y”, y, B and 27 |
Notice that this step is called linearization of the equation because the dynamics
of @ and W are governed by a linear system.

(3) Determination of a main contribution. Next, we derive a decomposition of
& =W"(y — y") based on (1.7) [see relations (7.2) and (7.3)]:

m t . . th
(1.8)  8e=08+4088  withdey= Y > G/ [Bi{w - Tl(i:j)},
i,j=1t=s

where 4¢ is proved to be a remainder term and where G is a weight process which
is specified later on. It should be noticed at this point that our rate of convergence
n~CH=1/2) in Theorem 1.2 comes from the main term &. Namely, it is a well-
known fact (see [3]) that the unweighted sum

2H-1/2 i h*H
— 123
n Z[Bfklk+l_ D) ]
t=0

converges in distribution to a Brownian motion. We shall prove that the weighted
sum defining & obeys the same law, which is one of our main technical steps.

In order to prove that & in (1.8) is a remainder term, a thorough estimation of
the lift of (B, y", ¢) and some related linear equations is required. This effort will
be carried out in Section 7. Also observe that we implement a recursive procedure
which has an interest in its own right. More specifically, we start from the basic
estimate y — y" ~ n~% for some « > 0, and we can show that §& ~ n!3H—¢
thanks to some rough paths type expansions. Now combining the estimates for
8¢ and 8¢ we arrive at a new estimate for ¢, and thus y — y”, namely y — y" ~
n(1=3H=)A(1/2=2H) Tterating this argument, we are able to improve the estimate
of y — y" to the desired convergence rate of n'/2~2H Notice that the number of
iterations is determined by the value of H.

(4) Limit theorems. As mentioned above, the limit theorems for our scheme
are obtained by considering the asymptotic behavior of a rough linear equation
describing the evolution of the error y — y”, the center of which is a weighted-
variation term in the second chaos. In our point of view, this weighted sum is a
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“discrete” rough integral. Another substantial part of our efforts, summarized in
Section 9, consists in deriving a central limit theorem for this kind of quantity.

Among the ingredients we have alluded to above, the asymptotic behavior of
weighted variations has received a lot of attention in recent works; see, for exam-
ple, [23, 25-28, 30]. Our approach to this problem relies on a combination of rough
paths and Malliavin calculus tools, and might have an interest in its own right; see
Theorem 4.10 for the precise statement. Indeed, with respect to the aforemen-
tioned results, it seems that we can reach a more general class of weights. We are
also able to consider the variations for multidimensional fBms, thanks to a simple
approximation argument on the simplex.

Eventually, let us stress the fact that, though we have restricted our analysis to
equations driven by a fractional Brownian motion here for sake of simplicity, we
believe that our results can be extended to a general class of Gaussian processes
whose covariance function satisfies reasonable assumptions (such as the ones ex-
hibited in [4, 12]). In this case, if X denotes the centered Gaussian process at stake,
we expect the numerical scheme (1.5) to become

1 m
y;12<+| = ytrli + b(ytr/l()h + V(ytr/lc)(Skatk—H + ) Z 8V1Vj(ytr,l{)R(h)v
j=1

where R(h) is a deterministic constant defined by E(| X h|2) and where we have
assumed that X has stationary increments.

REMARK 1.3. In spite of the fact that our Theorem 1.2 exhibits a rate of
convergence n~@H=1/2) for the numerical scheme (1.5), it should be noticed that
in general the Euler scheme is divergent when one considers an equation driven
by a fractional Brownian motion with Hurst parameter % <H< % As an intuitive
illustration, consider (similar to what is done in [8]) the one-dimensional linear
equation:

(1.9) dy; = y;d B, yo=1.
In this simple situation, the exact solution to (1.9) is given by
(1.10) yi =exp(By), 1€[0,T].

We can now compare the exact expression (1.10) to the modified Euler approxi-
mation. Indeed, for t = T the modified Euler approximation can be written as

n—1

1
yr = H (1 + 8By, + _AZZH)'
k=0 2
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Hence for n € N sufficiently large, a simple Taylor expansion argument shows that

n—1
1
yr= exp(z IOg(l + 8By + EAZQH)>

(1.11) k=0

1 n—1
= exp (BT -5 Z(wﬁk,k+1 — APH 4 0(33,3”“1))).
k=0

For H > 1/3, the right-hand side of (1.11) is easily seen to be convergent. Namely,
in this case both terms ) "/ — O (8 Bt3ktk+1) and ZZ;(l) € B,zk far — Ar?H are converg-
ing to 0. This is in sharp contrast with the situation H < 1/3, for which it is well
known that >}~ [6 By, 13 2% 50 as n — oo, which implies that y7. is not uni-

formly bounded in n.

Here is how our paper is structured: In Section 2, we recall some results from
the theory of rough paths, and prove a discrete version of the sewing map lemma.
In Section 3, we consider the fractional Brownian motion as a rough path and
derive some elementary results. In Section 4, we first develop some useful upper-
bound estimates, and then we introduce a general limit theorem on the asymptotic
behavior of weighted random sums. In Section 5, we consider the couple (y", B)
as a rough path and show that it is uniformly bounded in 7. In Section 6, we show
that the Euler scheme y” is convergent, and we derive our first result on the rate
of strong convergence of y". We also derive some estimates on the error process
y — y¥". Section 7 is devoted to an elaboration of the estimates for the error process
under some new conditions. This leads, in Section 8, to consider the rate of strong
convergence of the Euler scheme again, improving the results obtained in Section 6
up to an optimal rate. In Section 9, we prove our main result on the asymptotic error
distribution of y”. In the Appendix, we prove some auxiliary results.

Notation. letm :0=1 <t <--- <t, =T be a partition on [0, T']. Take
s,t € [0, T]. We write [s, t] for the discrete interval that consists of s such that
tx € [s,t]. We denote by Si([s,t]) the simplex {(r1,...,1) € [s, 1156 <--- <
tr}. In contrast, whenever we deal with a discrete interval, we set Sx([s,t]) =
{(t1,....tx) €[5, 1]%: 11 <--- < ). For t =1, we denote t— :=t_1, t4 :=t 1 1.

Throughout the paper, we work on a probability space (2,.%#, P). If X is a
random variable, we denote by || X||, the L ,-norm of X. The letter K stands for a
constant which can change from line to line, and |a] denotes the integer part of a.

2. Elements of rough paths theory. This section is devoted to introducing
the main rough paths notation which will be used in the sequel. We refer to [13,
14] for further details. We shall also state and prove a discrete sewing lemma which
is a simplified version of an analogous result contained in [9].
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2.1. Hélder continuous rough paths and rough differential equations. In this
subsection, we introduce some basic concepts of the rough paths theory. Let % <

y < l, and call 7 > 0 a fixed finite time horizon. The following notation will

prevail until the end of the paper: for a finite dimensional vector space V and two
functions f € C([0,T],V) and g € C(52([0, T]), V) we set

2.1 stt = ft - va and O8sut = 8st — &su — 8ut-

We start with the definition of some Holder seminorms: consider here two paths
x € C([0, T],R™) and X € C(S»([0, T]), (R™)®?). Then we denote

W, = sup ol
S,t]l,y -— s
! (u,v)eSH([s,t]) v —ul”

(2.2)
| X |
IX|l[s,r1,20 :=  sup

w)esS (5. [V —ul?’

where we stress the fact that the regularity of X is measured in terms of |t — s|.
When the seminorms in (2.2) are finite, we say that x and X are respectively
in C”([0, T],R™) and C% (S»([0,T]), (R™)®2). For convenience, we denote

lxlly := llxllfo, 71, and [X[l2, := [X[l[o, 77,2y -
With this preliminary notation in hand, we can now turn to the definition of
rough path.

DEFINITION 2.1. Let x € C([0,T],R™), X € C(S:([0, T)), (Rm)®2), and
% <y < % We call $>(x) := (x, X) a (second-order) y-rough path if [|x|, < oo
and ||X]|2,, < o0, and the following algebraic relation holds true:

OXsur = Xyp — Xy — Xur = Xgu @ Xuzs

where we have invoked (2.1) for the definition of §X. For a y-rough path S$>(x),
we define a y-Holder seminorm as follows:

1
(2.3) I1S20], = llxlly + 1X1l3, -

An important subclass of rough paths are the so-called geometric y-Holder rough
paths. A geometric y-Holder rough path is a rough path (x, X) such that there
exists a sequence of smooth R¢-valued paths (x”, X") verifying

2.4) e =x"], +[X=X"],, >0 asn—oc.

We will mainly consider geometric rough paths in the remainder of the article.

In relation to (2.4), notice that when x is a smooth R"-valued path, we can
choose

t u
(2.5 Xy = / / dx, @dx,.
N S
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It is then easily verified that S>(x) = (x, X), with X defined in (2.5), is a y -rough
path with ¥ = 1. In fact, this is also the unique way to lift a smooth path to a
y-rough path.

Recall now that we interpret equation (1.1) in the rough paths sense. That is, we
shall consider the following general rough differential equation (RDE):

dy; =b(yr)dt + V(yr)dx;,

Yo=Y,
where b and V are smooth enough coefficients and x is a rough path as given in

Definition 2.1. We shall interpret equation (2.6) in a way introduced by Davie in
[7], which is conveniently compatible with numerical approximations.

(2.6)

DEFINITION 2.2. We say that y is a solution of (2.6) on [0, T'] if yo = y and
there exists a constant K > 0 and p > 1 such that

t m ..
@) oy = [ b du = V(08— Y ViV XY < Kt s
§ ij=1

for all (s, 1) € $>([0, T]), where we recall that 8y is defined by (2.1).

Notice that if y solves (2.6) according to Definition 2.2, then it is also a con-
trolled process as defined in [13, 17]. Namely, if y satisfies relation (2.7), then we
also have

2.8) 8yse =V (y)8xgt + 13y,

where ¥ € C?(S,([0, T])). We can thus define iterated integrals of y with re-
spect to itself thanks to the sewing map; see Proposition 1 in [17]. This yields the
following decomposition:

t . m . .

‘ / Yedyl = yidyl — Y VIVIGOX | <K@ -9,
i, j’=1

for all (s,7) € $»([0,T]) and i, j = 1,...,d. In other words, the signature type

path S2(y) = (¥, Y) defines a rough path according to Definition 2.1, where Y

denotes the iterated integral of y.

We can now state an existence and uniqueness result for rough differential equa-
tions. The reader is referred to, for example, [14], Theorem 10.36 for further de-
tails.

THEOREM 2.3. Assume that V = (Vj)i<j<m is a collection of CIEI/VHI-
vector fields on R?. Then there exists a unique RDE solution to equation (2.6),
understood as in Definition 2.2. In addition, the unique solution y satisfies the
following estimate:

1$:005| < KOV [0 7 )@ =97
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Whenever V = (V;)1<j<m is a collection of linear vector fields, the existence and
uniqueness results still hold, and we have the estimate:

|52(y)st| <K ”SZ(X)H%[S,Z] eXP(KZHSz(X)”)l/V)(Z‘ —S)y.

2.2. A discrete-time sewing map lemma. In this subsection, we derive a dis-
crete version of the sewing map lemma which will play a prominent role in the
analysis of our numerical scheme. Let 7 : 0= <) <---<t,—1 <t, =T bea
generic partition of the interval [0, T] for n € N. For 0 <s <t < T, we denote by
[s,t] the discrete interval {fy : s < f; <1}. We also label the following definition
for further use.

DEFINITION 2.4. We denote by C,(r, X) the collection of functions R on
S>([0, T]) with values in a Banach space (X, | - |) such that R;;,., =0 for k =

0,1,...,n—1.Similar to the continuous case [relations (2.1) and (2.2)], we define
the operator § and some Holder seminorms on C;(ir, X') as follows:
| Ry
ORsur = Ryt — Ryy — Ry,  and ||R||u = sup

w,v)eS([0,7]) |t — vI*

For R € Co(;t, X') and u > 0, we also set

|6 Rsue|
2.9) IOR|, = sup o
saness o1 11— sl

The space of functions R € C>(rr, X') equipped with the seminorm || - || , is denoted
by C§ (, X).

We can now turn to our discrete version of the sewing map lemma. This result
is inspired by [9], but is included here since our situation is simpler and leads to a
straightforward proof.

LEMMA 2.5. For a Banach space X, an exponent |t > 1 and R € Cg(n, X)
as in Definition 2.4, the following relation holds true:

o0
IRl < KulSRll — where Ky =213 171,
=1

PROOF. Taket;,tj em.Letm,[=1,..., j—i be partitions on [0, 7] defined
recursively as follows: Set 7y = {t;,7;} and w;_; = [ti, t j]] N . Given a partition
m=1{t :té < .- <tll =tj}on [t;,tj], 1 =2,...,j — i, we can find t,il em\

{t;, 1} such that

2(tj —t)

(2.10) tho1 — th_y < -
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We denote by 7 the partition 77 \ {tk }.Forl=1,. — 1, we also set

R = Z R’/JHI

and we observe that R™ = Ry,;, and R"/— = Z R,,{tk+1 = 0, where the last
relation is due to the fact that R € C»(7r, X).
With those preliminaries in hand, we can decompose R;;;; as follows: we write

j i
(2.11) Rii; =Ry, — Z Ry = Y _(R™' — R™).
=2

Now, according to the definition of 7;, we have

T— T l 1 1%
[R™=1 — R™| = Ry i = SR (2,1 = 1y —1)

2H (l t: )M
< I8RIlx #,
(I —DH
where the first inequality follows from (2.9) and the second from (2.10). Applying
the above estimate of |[R™-! — R™| to (2.11), we obtain

j—i—1
1
|Rii;| <2%(tj — t)" 8RNy T Kyt —t)"I0R] .-
I1=1

Dividing both sides of the above inequality by (z; — ;)" and taking supremum
over (#;, ;) in S>([0, T]), we obtain the desired estimate. [

3. Elements of fractional Brownian motions. In this section, we briefly re-
call the construction of a rough path above our fBm B. The reader is referred to
[14] for further details. In the second part of the section, we turn to some estimates
for the Lévy area of B on a discrete grid, which are essential in the analysis of our
scheme.

3.1. Enhanced fractional Brownian motion. Let B = (Bl, ..., B™) be a stan-
dard m-dimensional fBm on [0, 7] with Hurst parameter H € (%, %). Recall that
the covariance function of each coordinate of B is defined on S>([0, T]) by

1
(3.1) R(s, 1) = 5[|s|2H + e — | — 527,

We start by reviewing some properties of the covariance function of B considered
as a function on (S»([0, T]))2. Namely, take u, v, s, t in [0, T'] and set

u v i j
(3.2) R(S t):IE[SBL{USBSJt].
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Then, whenever H > 1/4, it can be shown that the integral [ RdR is well de-
fined as a Young integral in the plane (see, e.g., [14], Section 6.4). Furthermore, if
intervals [u, v] and [s, ¢] are disjoint, we have

(3.3) R(l; 1;) :/uvfstu(dr’dr).

Here and in the following, we denote

2H-2

(3.4) w(dr'dr)y=—H( —2H)|r —r/| dr'dr.

Using the elementary properties above, it is shown in [14], Chapter 15 that for
any piecewise linear or mollifier approximation B" to B, the geometric rough path
S>(B™) converges in the y-Holder seminorm (2.3) to a y-geometric rough path
S>(B) := (B, B) (given as in Definition 2.1) for % <y < H. In addition, for i #
j the covariance of B/ can be expressed in terms of a two-dimensional Young
integral:

(3.5) E(Bi/ BY) / / ( :,) dR(r . r).

It is also established in [14], Chapter 15 that S>(B) enjoys the following integra-
bility property.

PROPOSITION 3.1. Let S>(B) := (B,B) be the rough path above B, and
y € (%, H). Then there exists a random variable Ly € (,> L?(2) such that
1S2(B)|ly < Ly, where || - ||, is defined by (2.3).

We now specialize (3.5) to a situation where (u, v) and (s, t) are disjoint inter-
vals such that u < v < s < ¢. In this case relation (3.3) enables us to write

(3.6) E(Bi/ BY) / / / / (dw' dw)u(dr' dr),

where p is the measure given by (3.4). Note that the left-hand side of (3.6) con-
verges to E(B,/;B}) as v — s. Therefore, the quadruple integral in (3.6) converges
as v — s. This implies that the quadruple integral exists and identity (3.6) still
holds when s = v.

Having relation (3.6) in mind, let us label the following definition for further
use.

DEFINITION 3.2. Denote by &, 5 the set of step functions on an interval
[a,b] C [0, T]. We call H4,p) the Hilbert space defined as the closure of &4 p)
with respect to the scalar product

u v
(1[u,v]’ 1[.?,[])9-[[“,17] =R <S t) .
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In order to alleviate notation, we will still write H = H[4, 5] when [a, b] = [0, T].
Notice that the mapping 1s;] — 6B, can be extended to an isometry between
Hia,p) and the Gaussian space associated with {B;,t € [a, b]}. We denote this
isometry by h — | : h$B. The random variable | ab hd B is called the (first-order)
Wiener integral and is also denoted by 11 (h).

Owing to the fact that H < 1/2 throughout this article, we have the following
identity:

1_ l_H 4_1
(3.7) ||h||H[a’b]:||stz H(D%_ ul 2h(u))(s)||Lz([a,b]),

1
where dg is a constant depending on H and D%fH is the right-sided fractional
differentiation operator; see (5.31) in [31]. With the help of (3.7), it is easy to
derive the following relation for 1 > « > 0 and y > % —H:

(38)  Kilhllpzcqapp < Wllzg s < Ko sup A+ Ihlcran)-
tela,b]

Indeed, the lower-bound inequality can be obtained by the Hardy—Littlewood in-
equality, while the upper-bound estimate follows from the definition of the frac-
tional derivative.

In order to generalize relations (3.3) to a more general situation, recall that for
h € Hia,p) we have h, € &4 p) such that h, — h in H[4 ). We denote by hj, the
extension of i1, on [0, T'] such that A, = h,, on [a, b] and h, =0 on [0, T]\ [a, b].
Then fOT hé¢dB = f[a’b] h,dB is a Cauchy sequence in L*(£2), and thus so is h¢
in H. We denote the limit of A{ by h°. It is easy to see that h¢ € H satisfies
he|[a,b] =h, he|[a,b]6 =0, and ”he”H = ”h”’H[a,b]-

LEMMA 3.3. Take f € Ha,p) and g € Hc,a), where [a, b] and [c, d] are dis-
joint subintervals of [0, T] such that a < b < ¢ < d. Then the following identity

holds true:
T T
E(f féB g83>:E</ fQSB/ geSB>
[a,b] [c,d] 0 0

- / frgsn(dsdr),
[a,b] J[c,d]

3.9

where | is the measure defined by (3.4).

PROOF. Take f, € 4,01 and g, € &j¢ 47 such that f, — f in Hp, p) and g, —
g in Hj¢,q47. Then we have

(3.10) (f 8nhy = (. 8%y asn — 0o.
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On the other hand, take ¢ — b > k > 0, then owing to (3.4) we have

—/ / fil - lgsle(ds di)
G.11) @01 Jic.a)

2H-2
< H(l—-2H)« ”fe”Ll([O,T])”ge”Ll([O,T])‘
In particular, the left-hand side of (3.11) is finite. Since
¢ g, = t s)u(ds dt),
o= [ [ BOs@ndsdn
we can write

(£6 &) — f[a’b] fw] F)g(s)(ds dr)
(3.12) — /m /[ U= DOz s dn)

+ f F(O) (g — g)()e(ds dp).
[a,b] J[c,d]

Applying (3.11) to the right-hand side of (3.12) and taking into account that || f;, —
Floiqary = 0 and llgn — gllL1(c.ap — O as n — oo, which follow from (3.8),
we obtain

(3.13) (fi8nly — / frgspu(ds dt) asn — 0o.
[a,b] J[c,d]

The identity (3.9) then follows from (3.10) and (3.13) and the uniqueness of the
limit of (f,y, go)n. O

3.2. Upper-bound estimates for a Lévy area type process. Let (B,B) be an
enhanced fractional Brownian motion as in the previous subsection. We now go
back to the discrete interval [0, 7] considered in Section 2.2. We denote by F,’
the process on [0, T']| such that

1—
Z Bii,tkﬂ’ i 75 j,
N P Bt
(3.14) Fy =0, FJ = %= |
ii 2H . .
Z()(B;;,Hl L S
tr=

fort >0, where t_ =1t; 1 if t =¢; and where we recall thath =1¢; —t; | = %

LEMMA 3.4. For F/ defined as in (3.14), we have the following estimate:
jj 1 1
(3.15) |8Fd], <Kpn2 Pt —5)2,  (s.1) € S([0, T]),

where K, is a constant depending on p, H and T, and || - ||, denotes the L ,(2)-
norm.



EULER SCHEME FOR FBM DRIVEN SDES 773

PROOF. We only consider the case i = j. The case i # j can be considered

similarly. Since 8§ F;; is a random variable in the second chaos of B, some hyper-
contractivity arguments (see, e.g., [31]) show that it suffices to consider the case

p =2 in (3.15). On the other hand, it is clear that IBB,ktk+1 %hZH is equal to

%hZH H(By k+1) in distribution, where Hp(x) = x2 — 1. So we are reduced to
estimate the following quantity:

t_
> Hy(Bijt1)

|
(3.16) |7, = 07"
=0

2

A direct computatlon of second moments shows that || sz o H2(Bi i+ 2 <

K(t —s)2 ﬁ see, for example, the proof of Theorem 7.4.1 in [29]. Applying
this relation to (3.16), we obtain the estimate (3.15). [

The following result provides a way to find a uniform almost sure upper-bound
estimate for a sequence of stochastic processes.

LEMMA 3.5. Let {X"; n € N} be a sequence of stochastic processes such that
(3.17) 18X7, 01, < Kpn=(t — )

forall p > 1, where K, is a constant depending on p. Then for 0 <y < B and
k > 0, we can find an integrable random variable G , independent of n such that

[X"[, < Gyun™.

PROOF. Take p > 1 such that 0 < y < 8 — 1/p. The Garsia—Rodemich—
Rumsey lemma (see [15]) implies that

XY <K TIXG - X”|Pd d
” ” /./ lu — v|>try wav.

Taking expectation on both sides and taking into account the inequality (3.17), we
obtain

T'E[X? — X2|P

E[|X"]7] < K / / X = X1 4 g
lu —v|>tPY
S Kpn_pa7
and the last inequality can be recast as
E[[n* X" [7] < Kpn™"*.

We now choose p such that p > 1/k. Therefore, the above estimate implies that

E[sup|n* X" 7] < E[Z [ne* X" ||5] <K, Y n P <co.
neN neN

neN
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In particular, we obtain that sup,, . [[n** X" ||,’3 is an integrable random variable.
By taking G = sup,,cy [n* 7 X"||,,, we obtain the desired estimate for || X", .
O

REMARK 3.6. One can improve the regularity of F in the following way. Let
y be a parameter such that % <y < H. Starting from relation (3.15) and taking

into account the fact that |t —s| > % forall (s, ) € S>2([0, T]), it is readily checked
that the increment F introduced in Lemma 3.4 satisfies

(3.18) I18Fsillp < Kpnf 2 (0 — 5)?,

for all 2y < B < 2H and (s, ) € S2([0, T])). By considering the linear interpola-
tion of F on [0, T'], inequality (3.18) also holds for all (s, ) € S>([0, T']). Owing
to Lemma 3.5, we can thus find an integrable random variable G, such that for
anyy:%<y<Hwehave

(3.19) 8FJ| <G, (t—5)Y  as.

4. Weighted random sums via the rough path approach. In this section,
we derive some useful upper-bound estimates for weighted random sums related
to B. In the second part of the section, we prove a general limit theorem, which is
our main result of this section.

4.1. Upper-bound estimates for weighted random sums. We now derive some
estimates for weighted random sums. As has been mentioned in the Introduction,
these results only require the weight function to satisfy some proper regularity
conditions.

PROPOSITION 4.1. Let f and g be paths on [0, T] such that |§fs| < G(t —
$)¥ and |8gs| < G(t — $)B, where o + B > 1. We define an increment R on
S([0, T]) by

[_
Rst = Z 8fstk8gtktk+1 .
k=S
Then the following estimate holds true:
|Rs| < G*(t —)*P  forall (s, 1) € Sy([0, T]).
PROOF. It is clear that Ry, = 81,8814, = 0. In addition, the following
relation is readily checked, where we recall that § R is defined by (2.1):

SRyur = 8fsudgur for all (s, u, ) € S3([0, T]).
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Therefore, we have |8 Ry | < G|t — s|*T#. Since we have assumed o + 8 > 1, we
can invoke the discrete sewing map Lemma 2.5, which yields

IRlatp < KII6Rlatp < G*.

The proposition then follows immediately. [J

REMARK 4.2. The Riemann—Stieltjes sum Z;k_zs 8fst 681ty 10 Proposi-
tion 4.1 can be thought of as a R-valued “discrete” Young integral. One can
also consider L ,-valued “discrete” Young integrals in a similar way by viewing
f and g as functions with values in L. This will lead us to an L ,-estimate
of Zik_:s Ofsty 881y, - Precisely, suppose that f and g are processes such that

18fs:llp < K(t — )% and ||6gglp, < K(t — 5)P for all p > 1. Then we have

<K(t—s)*th.
)4

[7
Z 8 fste 08 tity

tk=s

In the sequel, we consider an application of Proposition 4.1 to third-order terms
in our Taylor expansion for equation (1.1). Toward this aim, we first need the
following estimate in L, (£2). They are somehow reminiscent of the estimates for
triple integrals in [11], though our main focus here is on cumulative sums of triple
integrals.

LEMMA 4.3. Let B be an R™-valued fractional Brownian motion with Hurst
parameter H > i. For a fixed set of coordinates i, j,1 € {1, ..., m}, we define two

increments ¢ = ¢ and 8g = 8g'7" on S»([0, T]) as follows:

il t u v X . t—
@.1) il _ / / / dBdBidB., and 6gu=Y Cun.,.
R S S

tk=s

Then the following estimate is valid for (s, t) € S>([0, T]):

(4.2) 16gstll, < Kn2 38 (1 — 5)2.

PROOF. Wheni = j=1I[, we have {; = %(83;})3 and (4.2) follows from the
classical moment estimates results contained in [3, 16]. In the following, we con-
sider the case when i, j, [ are not all equal.

Let us further reduce our problem. First, since the fBm has stationary increment
it suffices to prove the lemma for s = 0. Furthermore, by self-similarity of the fBm,
we have the following equation in distribution:

g

T
3H, —3H
5gor =T""n D Gkt
k=0



776 Y. LIU AND S. TINDEL

As a last preliminary step, note that ¢ takes values in the third chaos of B, on
which all L?-norms are equivalent. Hence, our claim (4.2) boils down to prove

nt
T—l

> Chkr
k=0

We now focus on this inequality.
We first consider the case when i, j and [ are different from each other. In order
to prove relation (4.3), write

2

< Knt.
2

4.3)

2

= > E@usrilew+D)+ Y. EQk+18ei+1)-
2 k—k|<1 k—k'|>1

nt
T—l

D Gkt
k=0

For the sum }_;_x/~ above, thanks to the independence of Bi, B/ and B!, one
can apply Lemma 3.3 twice in order to get

k+1 pk/+1 pu pu’ po pof , . ,
E(Ck’k+1Ck/’k/+1)=/,-< / /k// /]; f/ w(dr'dr)u(dv’' dv)u(du’ du).

/

(4.4)

In particular, since (3.4) reveals that u is a negative measure whenever H < 1/2,
we have

(4.5) > E@kar1iew+1) <0
lk—k'|>1
Moreover, since ||Sk k+1112 = [150,11l2 and E(Zk k+18k+1,k+2) = E(Zo,1¢1,2), the fol-
lowing bound is easily checked:
(4.6) Y |E@ris18e 41| < Knt.
lk—k'|<1

Applying (4.5) and (4.6) to the right-hand side of (4.4), we obtain (4.3).
Assume now that i = j 1. Then

Lokl oo b 2.1
Skk+1 = 5/]; (6By,) dB, = 5(§k:1€+1 + &k 1)s

where we have set
1,il k+l i \2 2HT 4l
Ckkr1 = A [(6By,)” — u—k)*"]dB,, and
“4.7) it
I
Gin=[ w—kdB|

We now treat the terms ¢ 1/ atnd ¢ %! similar to the case of different indices i, J, I.
Namely, we decompose || ZkT:Bl ;“,i ,ﬁ 11 ||% as in (4.4). Then in the same way as for
(4.5) and (4.6), we can show that

200 L2 20 L2
Yo EGanibows) <0, and Y E(iGows) < Knt.
k—k'|>1 k—k'|<1
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One can thus easily show that g“k k 41 satisfies the inequality (4.3). The same ar-
gument can be applied to ;k " +1, which yields (4.3) for the case i = j # . We let
the patient reader check that the same inequality holds true in the case i # j, i =1
and the case i # [ = j, resorting to the fact that the multiple integrals of /! are
exchangeable which follows from the way an enhanced fBm is constructed; see,
for example, [14], Theorem 15.42. This completes the proof. [

REMARK 4.4. The estimate of {,3 ,i 41 obtained in the proof of Lemma 4.3
implies that

< Kn%_3H(t — s)%.
p
This inequality will be used below in order to prove Lemma 4.6.

Tk+1
2:/ =12 aB,
173

tk=s

We can now deliver a path-wise bound on weighted sums of the process ¢.

LEMMA 4.5. Consider the increment ¢ defined by (4.1). Let f be a process
on [0, T] such that, for any y < H, there exists a random variable G such that
| flly < G. Then for any k > 0 we have the estimate

—

Z flkgtklkﬂ

k=S

(4.8) <Gn'™TH G Y forall (s,1) € S([0, T]),

where G is an integrable random variable independent of n.

PROOF. Consider (s, 1) € S2([0, T]), and observe that the following decom-
position holds true:

t—

Z ftk g-l‘](tk+1 =<

k=S

[_
> 8fsulunnr |+ 1fs - 1685t

k=S

4.9

where the increment of g has been defined by (4.1). In addition, thanks to
Lemma 4.3, we obtain

18gsllp < Kn2 ™38t —5)2 < Kn' ™9+ — )1 77,
where the last inequality is due to the fact that % <t—s.Here,y < H and k > 0.
Applying Lemma 3.5 to a proper interpolation of g, we thus get
(4.10) 188511 < Gin' (1 — )17,
where G is a random variable independent of n. Now observe that a direct ap-
plication of Proposition 4.1 (notice that g, = 8&s1.,, in the relation below)
enables us to write

< G2n1_4y+2K(l _ S),

tf
Z 5fslk Cratiq

tk=s

4.11)
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where G is another integrable random variable independent of n. Plugging (4.10)
and (4.11) into the right-hand side of (4.9), we obtain the desired estimate (4.8).
O

We now consider the case of a weighted sum involving a Wiener integral with
respect to B.

LEMMA 4.6. Let f be as in Lemma 4.5 and y < H. Then the following esti-
mate holds true:

I~ Tk+1
Yofu® [ w-nras,
173

t=s

<Kn'""Y "X —g),  (s,1) €S ([0, T]).
p

PROOF. The corollary is a direct application of Proposition 4.1 and is similar
to the proof of Lemma 4.5. The details are omitted. [

We turn to controls of weighted sums in cases involving rougher processes.
They provide our first instances where we apply rough path methods for weighted
sums, as announced in the Introduction. In the following, V and V'’ stands for some
finite dimensional vector spaces.

PROPOSITION 4.7. Let f, g be two processes defined on [0, T| with val-
ues in V and L(R™, V), respectively, and h be a two-parameter path defined on
S>([0, T) with values in V' such that hg; = hgy, + hy; for (s,u,t) € S3([0, T]).
Assume that there is a constant K and an exponent y > 0 such that the following

conditions are met for (s,t) € S>2([0, T)) and all p > 1:
@.12) I fellp + llgellp < K, 18fse — gs8Bsrllp < K (t — )%,
||8gst||p <K( - s).

We also suppose that h satisfies

t—

Z 5Bstk ® htktk+1

tr=s

4.13)  |lhslp <K@ —5)*, and <K@ —s)r*e,

p

for (s,1) € S2([0, T]) and any p > 1, where « is such that o + 2y > 1. Then we
have

[_
(4.14) Y 8fuy @ hygyy | <Kt —s5)rH
k=S p
and
t—  Ik—1
(4.15) S Y fu ®hury,, ®8Byy,, | <K@ -5t
ty=s+t=s

p
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which are valid for (s, t) € Sy([0, T]) and all p > 1. Furthermore, set

t_
(416) RSl‘ = Z(sttk - gSaBSIk) & hl‘kl‘k+17

k=S
then we have the estimate

(4.17) IRl p < K (t — )27+

PROOF. We start by proving inequality (4.14). To this aim, set Ay =
tres 05t ® hyyy for (s, 1) € S2([0, T]), and consider p > 1. We decompose
the increment A into A = M + R, where R is the increment defined in (4.16) and

M is defined by
z_

Mg, = g Z dBsy, ® hiyry -

k=S
Then it is immediate from (4.12) and (4.13) that
(4.18) Mgl < K (1 —s)Y .

In order to bound the increment R, we note that Ry, = 0. Let us now calculate
SR: for (s,u,t) € S3([0, T]), it is readily checked that

tf
ORsur = 8fsu @ hyy — (gsaBsu ® hur — 88su Z aButk ® htktk+1>

tk=u

t—

= (afsu - gsaBsu) ® hut + 88514 Z SButk ® htktk+1 .

tk=u
Therefore, invoking (4.12) and (4.13) again, we get
18 Ryurllp < K (0 — )2 (t =) + K (u — 5)Y (t —u)’ ™ < K(t —s),

where 1 = 2y + o, and where by assumption we have @ > 1. Hence, owing to the
discrete sewing Lemma 2.5 [applied to the Banach space X = L?(£2)] we have

(4.19) IRl p.n = KNSR p.u = K,

where || - || ;. designates the p-Holder norm for L7 (£2)-valued functions. Putting
together our estimates (4.18) and (4.19) on M and R, inequality (4.14) is proved.

In the following, we derive our second claim (4.15). The method is similar to
the proof of (4.14), so that it will only be sketched for sake of conciseness. We
resort to the following decomposition:

t—  lk—1

Ay = Z Z Joy ®hiyty ®3Byy,, = Iy + Ry,

ty=s+t=s
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where

t— k-1

Z Z fs® htk’tk’+1 ® 8By

tr=s+ tk/:S

t— k-1

and Ry = Z Z 8fsty @ huyiy, @ 8Byy,,-

ty=s+tr=s
In order to bound M;, we change the order of summation, which allows to exhibit

some terms of the form 8 By;, . Then we let the reader check that inequality (4.13)

can be applied directly. As far as R is concerned, notice again that Rtklk 4 =0.Itis
then readily seen, as in the previous step, that our estimate boils down to a bound
on 8 R. Furthermore, 8 R can be computed as follows:

1= Ikl
8 Ryus = (Z 8fsty @ hiny, +,) ®3Bur + 6fsu ® Z Z hiyt,, ® 8Byy -

tyr=s tyk=u+tyy=u
We can thus resort to (4.12), (4.14) and (4.13) in order to get
18 Rourllp < K (2 = )7 .
The proof is now complete as for relation (4.14). [J
REMARK 4.8. In Proposition 4.7, the weighted sum Zi;::s Ofsty ® hyyyy 18

viewed as a L -valued “discrete” rough integral. Similarly as in Remark 4.2, a
R-valued “discrete” rough path can also be considered.

Proposition 4.7 can be applied to the sum F of Lévy area increments of B. This
is the contents of the corollary below.

COROLLARY 4.9. Let % <y < H, f and g be as in Proposition 4.7. Let F

be the process defined by (3.14), considered as a path taking values in V' = R4*4,
Then the following estimates hold true for (s, t) € S2([0, T]):

1 1
< an_zH(t —5)2
)4

l‘_
Z flk ® 8Flklk+l

tk=s

and

t—  Ik—1

Z Z ftk/ ® 5Ftk/tk/+1 ® SBlktk+1

tk=s+ ty=s

1
<K7’l2 2H( —S)H+§.
p

Furthermore, set Ry; = Zﬁk_:s (Ofsty — &8 Bsy.) ® Fyqyyy» then we have

(4.20) IRyl < Kn2=2H(p — )23,



EULER SCHEME FOR FBM DRIVEN SDES 781

PROOF. Take = n?#=2F and a = % It follows from Lemma 3.4 and
Lemma A.5 that & satisfies the conditions in Proposition 4.7. In addition, if
y > %, the condition 2y + % > 1 is trivially satisfied. The corollary then fol-
lows immediately from Proposition 4.7 and taking into account the decomposition
fu. = fs + 8fss.. The estimate of Ry, follows directly from relation (4.17). [

4.2. Limiting theorem results via rough path approach. Take two uniform par-
titions on [0, T']: tk=%kandul= %l,n,veNfork:O,...,n and [/ =0,...,v.
Let k; be such that #, 11 > u; > t;,. In the following, we set for each ¢ € [0, T']:

Dy ={ty :uj41 >ty >u;, t >t} and
“4.21) N
Dy ={tx : tiy, >tk > tiy, t > 1}

Our main result in this section is a central limit theorem for sums weighted by a

controlled process f.

THEOREM 4.10. Let the assumptions in Proposition 4.7 prevail, and suppose
that

(4.22) (. B) S (w.B),  n— oo,
where “ fdd stands for convergence of finite dimensional distributions and W

is a Brownian motion independent of B. Set
(4.23) &' = 8By ® hyu
174 Eﬁ[

and suppose that

vl
T
(4.24) Z g < Kv(r' — r)oH_y_K
I=% 14
nt
forr,r" €{uy, ... uy} and for an arbitrary k > 0. Set O} = Z,Eié St ® hiyrsy

and ©; = fé fs @ dWs, where ©; should be understood as a Wiener integral con-
ditionally on the process f. Then the following relation holds true:

@, B) % ©.8) asn— oo

REMARK 4.11. There are several possible generalizations of the statement of
Theorem 4.10. If one has the convergence of (h, B) in L, instead of the weak
convergence (4.22), then by a similar proof one can show that ®" converges to ©
in L?. On the other hand, similar to what has been mentioned in Remark 4.8, if
conditions (4.12), (4.13) and (4.24) are replaced by the corresponding almost sure
upper-bound conditions, then one can show that Theorem 4.10 still holds true.
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REMARK 4.12. In the case y > 4 and « > 1, conditions (4.12), (4.13) and
(4.24) are reduced to ||§fy |l p < K (t —s)” and ||6hg ||, < K(t —s)%. Theorem 4.10
then recovers the central and noncentral limit theorem results in [6] and [19].

REMARK 4.13. According to our proof of Theorem 4.10, in general the limit
of the “Riemann sum” ®”" is independent of the choices of the representative
points. In the situation of Remark 4.12, this fact can be proved directly from the
expression of ",

PROOF OF THEOREM 4.10. By definition of the f.d.d. convergence, it suffices
to show the following weak convergence for ry,...,r; € [0, T]:

@
(@' ,....0" B......By) ~>(®.....0,.B,.....B,), n—>oc.

ry’ ry?

Step 1: A coarse graining argument. Consider an extra parameter v << n and
take {ug, ..., u,} to be the uniform v-step partition of [0, T']. We make the follow-
ing decomposition:

0! =07 + 67},

where

v—1 v
(:)? = Z Z (Sfultk ® hfktk+l’ (:);l = Z Z fuz ® htkl‘k+1-

-1
=0t eDy =0 teDy

Let us first handle the convergence of on: by letting n — oo and taking into
account the convergence (4.22), and then letting v — 0o, we easily obtain the
weak convergence:

A - @
(@ ,...,0" B.,....By) ~—> (O,,....0,.By..... B).

ry’ ry’

Therefore, in order to prove our claim, we are reduced to show that for ¢ € [0, T']:
(4.25) lim limsupE(|®7[*) =0.
V=00 p—oo

Step 2: First-order approximation of f. Let k; be such that 7,11 > u; > t,. We
compare the two sets: D; defined by (4.21) and Dl ={tx 1 tiyy >tk >ty t > 1) It
is easy to see that DZADZ C {tx;» tr,,, }- It is also readily checked from conditions
(4.12) and (4.13) that || fy,5 I, < Kv™7 and ||Ayy,, ll, < Kn™%. A simple use
of the Cauchy—Schwarz inequality thus yields

(4.26) 18 fuit ® hygpy 2 < Kv™¥n™*,

forany k =0, 1,...,n — 1. In particular, (4.26) holds for #; € DZA[)I. Therefore,
in order to show (4.25), it is sufficient to show that

2

J-o

v—1
4.27) lim lim supE( ZX(:) R’kz g

V>0 5500
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where

RtkltkH] = Z 8fu1tk ®htktk+1~

tkef)l
Now in order to get relation (4.27), consider the following decomposition for R:

(4.28) R’kl Ty = R’kltk1+1 + Rtkl g4 + R’kltk1+1 + R’k1’k1+| ’

where the increments Rtk, o Rtk, sy R,kl sy and Rtk, ,, are defined by

Rl‘kltkH_l = E 8fultkl X htkl‘k+1 )

tkef)]
Rl‘kllkH_l = Z (Sftkltk - gl‘kl 2y (SBtkltk) 2y htkt]ﬁq
th[)]
and
Rign,, = 88uiny, ® Z 8Byt ® hiytyyy
lkebl
(4.29) .
Rtk,tk,+1 =8u ® Z 5Btk,tk ® Rty -
tkEDI

It follows from (4.17) that

(4.30) 1Ry, g, Nl < Kv =27 7%,

Ty 4

On the other hand, it follows from (4.12) and (4.13) that

(4.31) 1 Rugyt,, 12 = 18 Fug, ® hayy gy Nl < Kn 77w,

Uy 41

where recall that we denote 14 =t + % and g, At+ = min(f,, , t+). Similarly,
applying (4.12) and (4.13) we obtain

(4.32) 1Rz, N2 < Kn7v77 %,

Ty
It follows immediately from (4.30), (4.31) and (4.32) that

v—1

Z(Rtkl thy, T Ry, gy T R, Ty 1 )
=0

"

In view of (4.33) and taking into account the decomposition (4.28), in order to
show (4.27) it suffices to show that

2

) —o

(4.33) lim limsup E(
V=0 p—soo

(4.34) lim lim supE(

V>0 p 500

v—1
Z R’kl Ty
=0
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Step 3: Study of R. We will see that Z}’:_Ol Ié,kl e, Can be considered as a dis-
crete “Young” integral in L, in the sense of Remark 4.2 (see also Proposition 4.1),
which then leads to the convergence (4.34). Namely, starting from the expression
(4.29) of ﬁ, let us first consider the “weight-free” sum

vy

ono.__ §: n

é‘r - §17
=0

where r € {u1, ..., u,} and recall that ¢/ is defined in (4.23). Observe that (4.29)
can be recast as

(4.35) kfk[tkl+1 =8u ®' = gul(SElZuH—I’
forall/ =0,...,v— 1. According to (4.35), we have

v—1 v—1 v—1 v—1
Z le[tkl+1 = Z 8u ® 8§:1M1+1 = Z 3gou; ® 6§1:l[u[+l + Z 8 ® 8§L,}lul+l'
1=0 1=0 1=0 1=0

Then our assumption (4.24) and the bound (4.12) ensures that we are in a po-
sition to apply Proposition 4.1. This immediately yields our claim (4.34), which
concludes the proof. [J

5. Euler scheme process as a rough path. In this section, we consider a
continuous time interpolation of the Euler scheme y" given by (1.5). Namely, we
introduce a sequence of processes y" indexed by [0, T'] in the following way: for
t € [tk, tr+1), We set

1 m
G.1)  y'=yp +b(y;) — 1)+ V(y;)8Bys + 3 Y vV — 1),
j=1

where we recall that w : 0 =1y <] < --- <t, = T designates the uniform parti-
tion of the interval [0, T']. The remainder of the section is devoted to getting some
uniform bounds on y”, and then to prove that the couple (y”, B) can be lifted as a
rough path. Throughout the section, we assume that b € Cg and V € Cg.

5.1. Holder-type bounds for the Euler scheme. Our main results on the Holder
regularity of the sequence y” is summarized in the following proposition.

PROPOSITION 5.1. Let y" be the process defined by Euler scheme (5.1). Take
% <y < H.Thenforall (s, 1) € S$3([0, T]), the following relations are satisfied:

(5.2) S5l <Gl —sl”, |8y = V(3)8Byu| <Gt — )7,

where G stands for an integrable random variable which is independent of the
parameter n.
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PROOF. We divide this proof into several steps. For the sake of conciseness,
we omit the drift b in the proof, so that we analyze a scheme defined successively
by

1 m
(5.3) ytr/lcﬂ = yti + V(ytrllc)(SBl‘ktk+l + B Z aVjV; (ytrzlc)th-
=1

Step 1: Definition of the remainder. We first define some increments of inter-
est for the analysis of the scheme given by (5.1). Let us start with a 2nd-order
increment g defined by

(5.4) gi= Y @ViVHOMSE].,  S([0.T]).
i,j=1

where recall that F/ is defined in (3.14). Next, our remainder term for (5.1) is
given by

m
(5.5 R =0y5 —V(y{)8Bs — 3 OViV)()Bst + 45, S2([0. T1).
ij=1
Since R is expected to be regular in [ — s| and Ry, = 0 by the very definition of

y", we will analyze R through an application of the discrete sewing Lemma 2.5.
To this aim, we calculate § R, which is easily decomposed as follows:

(5.6) SReur = A1+ Ax + Az + Ay,
where for (s, u, t) € S3([0, T]), the quantities A;, A are given by

m .
A1 =8V (y"),,8Bur, Ay= > 8QViV)(Y")uBii.
i,j=1
and where A3z, A4 are defined by
Az=— 3 @ViV)(Y)8B),8B,,. and As=— 3 8@ViV)(y"),,bFu-
i,j=1 i,j=1

Observe that in order to compute A., e = 1,2,3,4 we have used the fact that
86B =0,66F =0,and §B = § B®§ B. Moreover, note that owing to an elementary
Taylor-type expansion we have

m

8V (5")5u0Bur = Y _[0Vi(v")],, V18 Bl
i=1

where we denote [0 V; (V") ], = fol Vi (yy +Adyg,) dA. So invoking relation (5.5),
we can further decompose A as follows:

A =8V (y"),,0Bu=Aui+ A+ A+ A,
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where A1y and A, are defined by

m

An = Z[SV,-(y")]suV(yf)SBsuéBf”,
i=1
m m

Ap = Z[a‘/i(yn)]su Z (BW/Vj/)(y;Z)Bé;j/(SB;t,
i:1 i/,j/zl

and where

m

m
Az ==Y [0Vi(y")],,4sudB};, and A=) [8V;(y")],, Rsud B,
i=1

i=I

We will bound those terms separately.
Step 2: Upper-bound for y and R on small intervals. Consider the following
deterministic constant:

Kv =004Vl +13Vlloo + 9*V], + K3y)*,

where K3, is the constant appearing in Lemma 2.5, and || V|| for a vector-valued
field V denotes the supnorm of the function |V|. We also introduce the following
random variable:

(5.7) G=Gy,+L,+1,

where G, is defined in (3.19) and L, is introduced in Proposition 3.1. Assume
that n is large enough so that

(5.8) Gn™7 < (8k2) .
In this step, we show by induction that for (s, ) € S>([[0, T]) such that
(5.9) G(t—s) < (8KZ) ™",
we have
(5.10) 15" r1.yn <2KvG, IRllis.0370 < 8K G,
Notice that here and in the following, we adopt the notation
I lan=  swp Al Ry =y el

w.)eSy([s.]) [V — Ul wv)es ([s.a]) [V — ul®

for o > 0. The relations (5.10) will be achieved by bounding successively the terms
in (5.6).

Specifically, we assume that relation (5.10) holds true when (s, u, 1) € S3([0,
(N — 1)h]) and verify (5.9). Our aim is to extend this inequality to S3([0, NA]).
We thus start from our induction assumption, and we consider (s, u, t) € S3([0,
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Nh]) such that (5.9) is satisfied and # = Nh. Then we start by bounding the terms
A11 and A3 as follows:

m
[8Vi(v")]5 V (05)8Bsud By, — > (3ViVi)(yy) B, 8By,
1 i,j=1

s

A+ Az =

1

([8Vi ()]s = Vi (Y)) V5 (3¢')8 B8 By
1

Il
.M§

i,j
By the induction assumption (5.10) on [|y"|(s,s],y,» and the definition (5.7) of our
random variable G, we thus have

||A11 + A3||[s,t],3y,n =< 2K\2/G3‘

Along the same lines, since ||B||,, < G and invoking the induction assumption
again we obtain

1A20is.0137.0 <2K3G° and [ Ai2lljs.13y.0 < Kv G,
Similarly, the estimate (3.19) and the induction assumption implies that

1 Aallis. 130 <2K3G? and  |A13lls.0.3p.0 < KvG>.
Finally, by the induction assumption (5.10) on R we obtain
lA14ll(5,01,3y.n < 8Ky GHt —s) <K$G3,

where we have used the assumption (5.9) for the second inequality. Applying the
above estimates on A1y, ..., A4 to (5.6), we have thus obtained

||5R ||[s,t],3y,n = SK‘Z/G3‘

Since Ry, = 0and 3y > 1, we are now in a position to apply the discrete sewing
Lemma 2.5. This yields

(5.11) IRIfs,1,3y.0 < 8K G>.

Otherwise stated, our induction assumption (5.10) is propagated for the term R.

Let us turn to the propagation of the induction assumption (5.10) for the norm
of y. Plugging the bound (5.11) into relation (5.5), taking onto account the defi-
nition of the random variable G and recalling relation (5.9), it is readily checked
that

1835, = V (35)8 B
(5.12) < KyG*(t — ) + KyG*(t — ) +8K3 G (t — 5)
<3KyG*(t — ).
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Therefore, since we have || B||,, < G, we obtain
18| < KvG(t —5)” +2KyG?(t —5)*" + 8K G (1 — 5)%
<2KyG(t —s),

where we have invoked our hypothesis (5.9) again. This achieves the propagation
of the induction (5.10) for the term [|y"]|,,.

Step 3: Upper bound estimates on [0, T]. Recall that we have proved relation
(5.10) on small intervals [s, 7] satisfying (5.9). In order to extend this result to the
whole interval [0, T'], we use a partition of the form [kTp, (k + 1)Tp]]. Namely,
consider Ty € [0, 7] such that

(5.13)

(5.14) (278K%)~' <GT) < (8k%)™".

Also consider s,t € [0, T] such that t — s > Tj, and denote k = LtT;OsJ and s; =
s+iTy,i =0,...,k. Then we obviously have

|6y;lt| S |8y;l()s1 | + |8y5r‘llsz| +o |8y;lkt|
Furthermore, on each subinterval [s;, s11] one can apply (5.10) in order to get
|8y%| < 2Ky GkT) +2KyG(t —s — kTp)” .

Now resort to the fact that k < ’T;O‘ and inequality (5.14). This yields, for an-
other K,
r— 1
2 <KGY(i—s).
T, ”

(5.15) |6y | <4Ky G

Hence, gathering our estimates (5.13) and (5.15), we end up with

1
(5.16) 8y | < KG7 (1 —5)",

for (s, 1) € S2([0, T]). That is, we have extended the first part of (5.10) to the
whole interval [0, 7], and thus we have proved the first relation in (5.2) when n
satisfies (5.8).

We now prove the second-order estimate in (5.2) when #n satisfies (5.8). We start
by a new decomposition of the form

(5.17) |85, — V(y$)8Bgi| < Ir1|+ Iral,
where
k k
ri=38yg — Z V(y;li)(SBSiqt/\SiJrl’ r= Z V(yﬁ)SBs,«,ms,-H - V(y;l)aBSl'
i=0 i=0

Now the term r| can be bounded as follows:

k
lril < Z‘Syg,fASi+l - V(y;li)gBSi,t/\~Yi+1 B
i=0
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Therefore, by (5.12) we obtain
Ir1| <3k + 1)Ky G>T,” .

1 .
Moreover, since k < IT;OS and TLO < (2¥8K %,G) v owing to (5.14), we can recast the
previous equation as

1 1
(5.18) Ir1| < 4Ky (2'8K2)7 2GY (1 — ).

In order to bound r,, observe that we have

k
|ra| < Z|V(y;ll) - V(y?)| : |SBs,~,t/\s,-+1 .
i=0
Thanks to (5.16), we thus have
1
Ir2| <2kKv(KG7 (t —5)Y)GTy .
1
Invoking again the inequalities k£ < tT;Os and Tio < (2Y8K ‘Z,G)?, we thus get
2\3—1(s 1+
(5.19) 2| <2KyK((2V8Ky)r (G7)(t—s) 7.
Applying (5.18) and (5.19) to relation (5.17), this yields

2
(5.20) 8y", — V(y")8By | < KG7 (1t —5)*.
We have now proved (5.2) under the assumption (5.8).
Step 4: Upper-bound estimate for small n. We are now reduced to prove in-
equalities (5.2) when (5.8) is not satisfied. Namely, we assume in this step that
1
(5.21) Gn7 > (8K2)', thatis, n< (8KLG)¥.

For (s, 1) € $»([0, T]), we will also resort to the same partition 7, ..., fx4+] as in
the previous step. In this case, due to the very definition (5.1) of y", it is readily
checked that

T H T 2H
(5.22) |3ylrllctk+1|§KVG(;) +KV(;) .

Therefore, summing (5.22) between s and ¢ for (s, ) € S2([0, T']) we get

t— T H T 2H
Yooyl | =nt—9T'KvG(=) +Kv(=) |
el | — n n

k=S
Taking into account the estimate of n in (5.21), this yields

\5Y§’z| =

1
(5.23) 8y | < KG7 |t —s],
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for (s, 1) € S2(J0, T]). We have thus proved the first relation in (5.2) when (5.8) is
not met.

In order to handle the second relation in (5.2) for n small, just decompose the
increment at stake along our partition g, ..., fx4+1:

t_
1
[V (y")8Bse| < |V (31| Y 18Bysy| < KGn'™7(t —5) < KG7 (t —s).

k=S

Taking into account inequality (5.23), we thus easily get

(5.24) |8y, — V(y§)8Bst| < KG%(I — ),

which achieves the second relation in (5.2) for small 7.

Step 5: Conclusion. Gathering the estimates (5.16), (5.23), we have obtained the
desired estimate for ||y"|,, on [0, T'], for all n. In the same way, putting (5.20) and
(5.24) together implies the second estimate in (5.2) on [0, 7] and for any n. The
proof is complete. [J

5.2. The couple (y", B) as a rough path. Our next aim is to prove that (y", B)
can be lifted as a rough path, which amounts to a proper definition of the signature
S>(y", B) as given in Definition 2.1. The result below, providing an estimate of the
integral | f 8y, ®dB,, can be seen as an important step in this direction. Note that
on each interval [#, tx+1], the process y” is a controlled process with respect to B,
as alluded to in (2.8). For each n, the integral /! §y", ® d B, is thus defined as

t I1—
(5.25) / 8yp, ®dB, =Y _
N

tk=s

Te+1 "
/ Sysu ® dBu ’
Tk
thanks to classical rough paths considerations.

LEMMA 5.2. Let y" be the process defined by the Euler scheme (5.1), and
consider % <y < H. Then we can find a random variable G € (1,1 LP() in-

dependent of n, such that for the integral |, Sz 8yg, ® dBy in the sense of (5.25), we
have the estimate

(5.26) /r 5" @dBu| <Gt —)¥  for (s, 1) € S([0, T]).

PROOF. Similar to what we did for Proposition 5.1, we will assume that b = 0
for this proof, and analyze the scheme given by (5.3). Next, in order to bound the
integral [ 8y, ® d By, let us define two increments: first, just as in the definition
4.7), we set

t
2 :/ (u—s)*"dB,.
N
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Then we define a remainder type increment R on 82([[0, T]) by

(5.27) s,_/ 8y", @dBy, — V (y" By, — Zavv O 2.
] 1

According to the definition (5.1) of our scheme, it is clear that Rtkfk 1 =0, for all

k=0,1,...,n— 1. Moreover, applying § to R and recalling the elementary rule
3(/dy ® dB) =38y ® 8§ B, we obtain

SR = (855, = V(3{)8 Bsr) ® 8 Brt + 8V ('), Byt
1 & 2
__Zavj yY ®8§W‘l EZ 8VV sr®§r[’

where we remark that 8§m = fr [(u —$)*H — (u—r)*"1dB,. Starting from the
above expression, one can thus apply Proposition 3.1 and Proposition 5.1 in order
to get

I8RIl3, < G.

Note that for the Young integral 822 we used the following estimate, valid for
(s,r, 1) € 83([0, T,

t t
/ (u— s)ZHdBu‘ + / u—rfa.,
r r

Therefore, since ||§ R 3, <G, it follows from the sewing Lemma 2.5 that

8¢c2, < < |IBll, (t — )17,

|Rs| < G(t — ).

Our claim (5.26) is now easily deduced from the above estimate of R and expres-
sion (5.27). O

Now we provide some estimates for the iterated integral [’ §y", ® dy", which
is also part of the rough path above (y", B). Note that ; '8y, @ dy" is defined as

Tk+1
f Sye, ®dyy = Z / 8yey © dyy,
k=S

in the same way as for the integral [’ s Oyl ®dB,.

LEMMA 5.3. Let the assumptions be as in Lemma 5.2. Then the following
estimate holds true:

<Gt -5  for(s,1) € S([0,T]).

e ®dyy

where G is a random variable in (> L? (S2), independent of n.
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PROOF. We proceed similarly as in the proof of Lemma 5.2. Namely, we
still assume b = O for the sake of conciseness, and the existence of the integral
[18yn, ®dy" is justified as for (5.25). Next, we define a remainder type increment
R on S,([0, TT) by

— t t
Ry =/ Sye, ®dy, — V(y;’)/ 8Bsu ® dy,
s N
(5.28) | ,
_523m9w09®ﬁ(u—nwdﬁ'
j=1 ‘

As previously, it is clear that Rfk[k +1 = 0. In the same way as in Lemma 5.2, we
can also show that [[§R||3, < G, so by Lemma 2.5 we obtain
|Ryt| < G(t — ).

Applying this estimate to (5.28), we obtain the desired estimate for ]st Sy, @dyy.
O

We can now conclude and get a uniform bound on (y", B) as a rough path.

PROPOSITION 5.4. Let y be the solution of equation (1.1) and y" be the so-
lution of the Euler scheme (5.1). Consider % <y <Hc< %, and set

t
SZ(Bs yn)st = ((SB”, ‘Sy;lt)v / (aBsuv 8)’;114) ®d(83uv 5)’3))-
N

Then S>(B, y") can be considered as a y-rough path according to Definition 2.1.
In addition, there exists a random variable G € (,~| L”(2) independent of n
such that

|S2(8,y")l, <G,

where || - ||, is defined by (2.3).

PROOF. Putting together the results of Proposition 5.1, Lemma 5.2 and
Lemma 5.3, we easily get the definition of S>(B, y"), together with the bound:

|S2(B, y"),,| < G(t — ) for (s, 1) € S2([0, T']).

On the other hand, by the definition of y" it is clear the same estimate holds
for s,t € [t, tk+1], k=0, ...,n — 1. The proposition then follows by applying
Lemma A.1to S>(B, y"). O
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6. Almost sure convergence of the Euler scheme. We now take advantage
of the information gathered up to now, and show the almost sure convergence of
the Euler scheme (5.1). Notice however that the convergence rate obtained in this
section is not optimal, and has to be seen as a preliminary step; see Section 8.2 for
a more accurate result.

REMARK 6.1. The approximation process y” is discrete by nature, and the
reader might wonder why we have spent some effort trying to show that (y", B)
is a rough path. The answer will be clearer within the landmark of the current
section. Indeed, our analysis of the numerical scheme mainly hinges on the fact
that the renormalized error satisfies a linear equation driven by both y” and B. The
best way we have found to properly define this equation is by showing that (y", B)
can be seen as a rough path. Let us mention however two alternative ways to get
the same kind of result:

(i) We could have relied on the fact that y” is a controlled process with respect
to B; see (2.8) and [13, 17] for the notion of controlled process. However, due
to the fact that y” is defined on a discrete grid, we have not been able to find a
satisfactory way to see y" as a continuous time controlled process.

(i) We could also have dealt with a discrete version of the linear equation,
which governs the error process on our discrete grid. Nevertheless, we believe that
the continuous time version exhibited below is more elegant, and this is why we
have stuck to the continuous time strategy.

With Remark 6.1 in mind, we will now introduce the linear equation which
will govern the error process, and then analyze the Euler scheme. Throughout the
section, we assume that b € Cl% and V € Cg.

6.1. A linear rough differential equation. Recall that we are dealing with the
unique solution y to the following equation:

(6.1) dy; =b(y;)dt + V(y;)dB;, tel0,T].

Its numerical approximation y” is given by the Euler scheme (5.1). As we shall
see later in the paper, the error process is governed by a kind of discrete equivalent
of the Jacobian for equation (6.1). Specifically, we consider the following linear
equation:

t m t )
62) o' —Id+ /0 (3b(y")}. " ds + Zfo (3V;(y")}.®" d B,
j=1
where 1d is the d x d identity matrix, and where we have set

(V0" = [ aVi08 +A00 — )

1
(06(:7)], = [ 0007 +3( = 31) d.
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In this subsection, we derive an upper-bound estimate of ®" and its inverse W"
based on Proposition 5.4.

PROPOSITION 6.2. The linear equation (6.2) has a unique solution ®", and
there exists an integrable random variable G such that the following estimate holds
true:

6.3) [2(@", 2" | =€t —5)7,

where we recall that 7" = (y", B) and the signature S, is introduced in Defini-
tion 2.1. Furthermore, ®" admits an inverse process W" = (")~ where (CIDZ’)_1
stands for the inverse matrix of @, and estimate (6.3) also holds for ¥".

PROOF. Define two R?*?-valued processes 6 and &, respectively, by
il _ N~ [yl ' il _ [T a i
6, =Z/0 {9:;Vi(y")},dB] and §& =/0{8l-b (™)}, ds.
Jj=1

Then we can easily recast equation (6.2) as
d et o drt o
(6.4) o =8 + Z/ o dgl + Zf @' do).
. 0 : 0
i=1 i=1

Here, §; is a vector in R¢ with the /th entry equal to 1 and the other entries equal
to 0. In particular, ®” satisfies a linear equation driven by ¢ = {0", &/;i | =
1,...,d}. By the estimate of ||S>(z")||,, contained in Proposition 5.4, we can show
that for $»(¢, z"*) we have ||52(¢, z")]l, < G, where G is an integrable random
variable independent of n. So applying Theorem 2.3 to equation (6.4), we obtain

182(@", "), | < Ki]S2(¢. )|, ¢t — )7 exp(Ka|| Sa(c. 2") | 7).

and the estimate (6.3) then follows. Note that by Lemma A.6 the inverse W" of
®" satisfies a linear equation similar to (6.4), and the estimate of the W" can be
obtained in the same way. [

REMARK 6.3. Note that from the proof of Proposition 6.2, it is not clear that
the random variable ¢© in (6.3) is integrable. However, the almost sure bound (6.3)
will be enough for our use in deriving the almost sure convergence rate of the Euler
scheme (5.1). Let us mention that the methodology adopted in [5] in order to get
the integrability of the Jacobian of a RDE driven by Gaussian processes does not
apply to equation (6.2). This is due to the fact that (6.2) involves the process y”,
which is the solution of a “discrete” RDE driven by both B and F [recall that
F is defined in (3.14)]. We believe that a discrete strategy in order to bound ®”
would lead to the integrability of |S,(®"),,|, but we have not delved deeper into
this direction for sake of conciseness.
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6.2. Error process as a rough path. In this subsection, we derive some esti-
mates on the error process of the Euler scheme. To this aim, we will first write the
process y" as the solution of a differential equation in continuous time. Namely, it
is readily checked that one can recast equation (5.1) as follows:

t t
where we have set
1 %] m
(6.6) n(s)=1m), and Al = -3 YN TAVVI(E) (A tigr — 1)
k=0 j=1

Note that the dependence of A! on n is omitted for simplicity. With this simple
algebraic decomposition in hand, we can state the following bound on the error
process.

LEMMA 6.4. Let y, y" and ®" be the solution of equations (6.1), (5.1) and

(6.2), respectively, and V" be the inverse process of ®". Consider the path & de-
fined by

6.7) er =W/ (v — 7).

Then for all % <y <H< %, we can find an almost surely finite random variable
G independent of n such that

(6.8) 8est] <Gt — )= (5,1) € Sy([0, TT).
PROOF. Putting together equations (6.1) and (6.5), it is easily seen that

t t
i —yf =/0 (b(ys) = b(yys))) ds +/0 (V(ys) = V(¥is)) dBs + A

In addition, the chain rule for rough integrals enables us to write
S
o() ol = [ aoli)ari,
n(s

for any ¢ € C'/7 (R?; R?) and s € [0, T, and where d¢ designates the gradient
of ¢. Owing to this relation, applied successively to b and V, we get

t ' 3
ye—yf =f0 (b(ys) = b(yy))ds +f0 (V) = V(37))dBs + ) _ A7,
e=1
where we recall that A' is defined by (6.6), and where we have set

t ps m t ps .
6.9) AZ= / / ab(yl)dyds, and A} =) f / V;(y")dy!dBj.
0 Jn(s) =170 Jn@)
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Notice that A> and A} above can be considered as a rough integral, thanks to
Proposition 5.4. Taking into account the identity

b(ys) = b(yg) = {8b(Y")}5 (s = ¥7),

(6.10)
Vi) = Vi(ys) = {aV;(0")} (s — v5),
we have
t
=3 = [ 160", (s =37 ds
6.11)

! 3
+/0 (V")) (s — ¥§)dBs + ) AS.

e=1

Now starting from expression (6.11) and applying the variation of parameter
method to the equation (6.2) governing ®”, it is easy to verify that

3 t
(6.12) yi—y=Y cb?/ W dAC.
e=1 0
Therefore, we can also write
3 4t
(6.13) g ="y —y') = Z/ WrdA¢,  tel0,T]
0
e=1

Our claim (6.8) thus follows from Proposition 6.2, together with Lemma 6.5 below.
O

LEMMA 6.5. Let A®, e =1,2,3, be as in (6.6) and (6.9). Let f be a con-
tinuous function with values in a finite dimensional vector space V such that the
path

t
Sy(f. B) = ((ﬁ, By, fo (fs, By) ®d(f;, Bs))

is well defined and assume that fo = 0. We also assume that there exists an a.s
finite random variable G satisfying the upper bound ||S>(f, B)|l, < G for any
% <y <H< % Then for all (s, t) € S2([0, T]) we have

<Gt —s)"rn'7,

3t
Yol fu®dA;

e=1"%

PROOF. We divide this proof in several steps.
Step 1: Decomposition of A¢. Applying the chain rule to A3, we obtain

A =AY 4R
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where the paths A31 and R2 are respectively defined by

AN = Z// aV;(yh) dyi dBj.

// / 3;0V;(yy dyvjdyudB/.
n(s) Jn(s)

Moreover, recalling the equation (6.5) governing y", we obtain

AP = A0 R R

Jii'=1

where we have set

A0 = Z// V(¥ (ym))dB dB/,

i,j=1

R} = Z// 0V (350 () du d B,

and where
4 1 m t prs , . - ;
Rt = 5 Z o) 8Vj (yn(s))BVj/ Vj/ (yn(s)) d(u _ n(s)) st ]

Summarizing our decomposition up to now, we have found that A3 A3 104 R2 +
R3 + R4 Denoting R5 A310 +A! and R1 A2 We can now express our dr1V1ng

process 23:1 A€ as a sum of remainder type terms:

3 5
(6.14) D Af=>"R;.
e=1 e=1

Step 2: Estimation procedure. We will now upper bound the terms R¢ given in
our decomposition (6.14). For the term R2, observe that (due to Proposition 5.4)
the couple (B, y") can be seen as a y-Holder rough path. Taking into account
all the time increments defining R?, we obtain |8 R? < Gn™¥ for all #; =
s, ..., t—. Therefore,

Tkli+1 |

t_
6.15) 8RS < Y I8R;, ., |G —s)n'7, (5.1 € S([0. T]).

k=S
In the same way we can show that estimate (6.15) holds for R*. In order to bound
R3, note that for ¢ € [0, T] we have

n_y

RIS = Z Z @V;Vi) yl‘k)éFflk]tk+1

i,j=1 k=0
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Furthermore, by the two inequalities of Proposition 5.1 one can show that the pro-
cess f=[dV;Vi](y") and g =9(dV;V;)V(y") satisfies the conditions of Propo-
sition 4.7. Hence, combining Corollary 4.9 and Lemma 3.5, we end up with the
following inequality for « > O arbitrarily:

(6.16) 8RS < Gt — 5)2 < p2—2H
| <G —s)' 7! (s,1) € S([0, T]),

where we have used the fact that r — s > % for the last step. The terms R! and R3
are bounded along the same lines, in a slightly easier way due to the presence of
Lebesgue type integrals. We get

(6.17) |6RS,| < G(t —s)n”7, (s,1) € S([0, T])

for e = 1, 3. In summary of the estimates (6.15), (6.16) and (6.17), we have ob-
tained

5
(6.18) Y I8RG| < Gt —s)! 7Yl (s,1) € S([0, T]).

e=1
Step 3: Conclusion. Thanks to our decomposition (6.14), we can write
3y 3y 5 .
Y| fu®dA;= Z/ 8fnty.u @ dA; + Zf fow ®dR,
(619) e=1"% e=1"% e=1""%
— pl 2
= B, + B;;.
Let us start by bounding the term B2. Similar to relation (4.9), we can decompose
B? as
5 t— 5 t—
2
Bou=2_ ) [ ®8Riy ) ) 0fu ®SRy,, .
e=11tr=s e=11tr=s

Then recall the assumption f € C v for any % <y’ < H. By choosing ¥’ and «
such that " + 1 — y — 2k > 1, we can apply Proposition 4.1. Taking into account
(6.18) this yields

(6.20) B2 <Gt —s)!77n!7%,
for (s,1) € S>([0, T]). As far as the term B! above is concerned, we get

3 Tie+1 B
> / 8fru @ dAC
1

e=1""%

-
(6:21) Bil<

tk=s

oreover, note tha i is a third-order integral of the process
M te that [, 8f,. ® dAS third-order integral of the p

(f, B) on the interval [fg, tx+1], for all k. Therefore, since we have assumed
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I1S2(f, B)ll, < G, we easily obtain the estimate | f,i"“ 8fuu ®dAS| < Gn=3 . Ap-
plying this inequality to (6.21) yields

(6.22) Bl <G —s)n'™37,
The lemma follows by applying (6.20) and (6.22) to (6.19).

We now wish, as in the case of y”, to consider the error process ¢ as a rough
path. As a first step, let us label the following regularity assumption for further use.

HYPOTHESIS 6.6. Let ¢ be the process defined by (6.7). We suppose that
there exists an exponent o < 2H — % and an almost surely finite random variable
G such that the error process ¢ satisfies

(6.23) 85| < n%(z —92, (5.0 €S ([0, T]).

REMARK 6.7. It follows from Lemma 6.4 that Hypothesis 6.6 holds true for
o =3y — 1. We will see later on how to improve it to larger values of «.

We are now ready to define and estimate the double iterated integrals of ¢, which
are a fundamental part of the rough path above ¢.

LEMMA 6.8. Let ¢ be the process defined by (6.7) and assume that Hypothe-
sis 6.6 is satisfied for some ¢ <2H — % Then for any k > 0 we have

(6.24) <Gn 2% —5),  (s,1) €S ([0, T]),

t
/ Segy Rdey,
)

where G is a random variable such that G € () ,> L7 (£2).

PROOF. Observe that the double integral /;t &gy ® dey, is well defined, since
(v, y", B) admits a rough path lift. Next, take (s, 7) € S>([0, T]). We can write

t t t
(6.25) / Segy ® de, = / 8&sn(u) ® dey + / 8&nuyu ® dey = D), + D2,
S S )

where recall that 7 (u) is defined in (6.6). Let us bound those two terms separately.
The term D' above can be expressed in a more elementary way as D! =

;k_=5 des, ® deyyy,,- Moreover, thanks to (6.23) we have for any ¥ < a and

(s, 1) € S2([0, T]):
[Byi] < Gn™ < (1 — )17,
Taking this estimate into account and applying Proposition 4.1, we get

(6.26) |Dg1t| < G2n72(1+21( (t _ S)1+2K‘
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On the other hand, owing to identity (6.13) for ¢, we have
t ru ,
(6.27) D= / W'dAC @ WdAS.
s Jnu)

Take y such that <2y —1/2 <2H — 1/2. By the definition of A,,e=1,2,3in
(6.6) and (6.9), it is easy to see that each of the nine terms on the right-hand side is
bounded by Gn'~*" (¢ — s). Indeed, for the term corresponding to e = ¢’ = 3, we
use (6.9) to write

m
3 3 33,jj’
[[ wanowan= 3 > aki
(u) ]]_1 tk=s

where
A [ [ [ avomyaviasi @ w9V () dyt dBi
Tktk+1 — . p v . J(yr) Yr U® u : ]/(yr/) Yy u
k k k k

It follows from Proposition 6.2 and the Lyon’s lift map theorem (see, e.g., [14])
that

T\Y
[S4(B.y" "), | < G(;) ,

so for all j, j/ <m and (s, 1) € S2([0, T']) we have

4y
33,jj' T
’Afktk+l | =G ; .

Therefore, summing this bound over j, j' and #; we end up with

4y—1
Z Z|A?k3;kj—ll ( ) (t—s).

jJ/ 1 tk=s

1 u
(6.28) f WAAS @WIdAY| <

n(u)

The other terms of the form |’ Sy Ve dAy @ Wi d A¢ on the right-hand side
of (6.27) can be estimated in the same way. Therefore, we obtain the estimate
(6.29) |D2| < Gn'™* (t — ).

In conclusion, plugging (6.26) and (6.29) into (6.25), we obtain the desired esti-
mate (6.24). 0O

Recall that we wish to construct a rough path above (¢, B, y"). In the previous
lemma, we have analyzed the double integral |, ; Sesu ® 8g,. We now consider the
integral f: Sesu @d(By, yiy).

LEMMA 6.9. Denote 7" = (B, y"), and let the assumptions of Lemma 6.4
prevail. The following estimate holds true:

t
/ 8eu @A <Gt —s)n' ™, (s,1) € Sy([0, T]).
s
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PROOF. We use the same kind of decomposition as in Lemma 6.8:

! t ! . .
(6.30) / S ® d2! = / Sy ® d2 + / Seyuu ®dZ = D! 4 D2,
S S )

For the first term on the right-hand side of (6.30), we have the following expres-
sion:

t_
D= 8es, @520, - (s,1) € SH([0, T]).

Ik=s

Moreover, it follows from Lemma 6.4 and Proposition 5.4 that for all (s,?) €
S2([0, T]) the following bounds holds true:

[estl <Gt =)' 770! and |8za] < Gt — )7,
where k < H — y, so by Proposition 4.1 we have
IDL| <G —sn'=3.

On the other hand, in the same way as the estimate of D?, in (6.29), we can show
that

|D2| <Gt —s)n' =3,

The lemma follows from applying the above two inequalities for lA)Ylt and lA)gt to
(6.30). O

The next result provides further estimates of the rough path above the path
(¢, B, y") for (s, 1) € Sa([tk, ti+1]).

LEMMA 6.10. Let € be the process defined by (6.7) and recall that we have
set 7" = (B,y"). Take y < H, (s,t) € So([tx, tx+1]) and k=0,1,...,n— 1. Then
the following estimate for the first-order increments of € holds true:

6.31) 1865 | < G(t —s5)'n7.

In addition, the second-order iterated integrals of ¢ and 7" satisfy

<G(t— s)zyn_y,

t
‘/S (SZ?M ®dey
(6.32)

<Gt —s5)>n"?.

t
/ Segy R dey
S

PROOF. The estimate (6.31) follows by showing that the three terms on the
right-hand side of (6.13) are all bounded by G (¢t — s)Yn~7. As before, we will
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focus on a bound for the increment [ W" dA3. In fact, owing to (6.9) it is easily
seen that [ W" d A3 can be decomposed as a sum of double iterated integrals:

t m t u .
[wrani=y ["wi [ ov,0t)ayi B
Ky 1_1 s k

m t u . m s t )
=y [ [Covionayiasl+ Y [avioid: [ widB].
j=17% s j=1"% s

One can easily bound the two terms above, thanks to the fact that (y”, B) is a rough
path. We obtain

t
/ WdAS <Gt —s5)'n77.
N

In the same way, we can show that the same estimate holds for the term
§=1 f; W d A¢ on the right-hand side of (6.13). This proves our claim (6.31).
In order to prove (6.32), let us invoke (6.13) again, which yields

t 3t
f 8z, ®de, = Zf 8z, @ WIdASL.
N e=1 N

The estimate (6.32) then follows from a similar argument as for the estimate of
(6.31). The estimate of integral fst &su ® dey, can be shown in a similar way. This
completes the proof. [J

The following is the main result of this section. Recall that & = W' (y; — y;')
is defined in (6.13) and z" = (y", B), and S>(n>” !¢, z") denotes the lift of the
process (n3Y g, z7), that is,

t
S22, = (078,028, [ 07 b 02) @ (17 e ) ).
S

PROPOSITION 6.11. Let y be the solution of equation (1.1) and y" be the so-
lution of the Euler scheme (5.1). Take % <y <H«< % Then we have the estimate

5207 "e.3", B, < G,

where G is a random variable independent of n.

PROOF. In summary of Lemmas 6.4, 6.8, 6.9 and Proposition 5.4, we have
(6.33) |S2(n? e, y", B),| < Gt — 5)Y

for (s,1) € S2([0, T]). On the other hand, Lemma 6.10 implies that relation
(6.33) still holds true for s, € [#, tx+1]. The lemma then follows by applying
Lemma A.1 to S»(n*’ ~le, y*, B). O
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7. The error process as a rough path under new conditions. In this sec-
tion, we derive an improved upper-bound estimate of the error process under new
conditions. Our considerations relies on the following process, solution of a linear
RDE:

t m t .
(7.1 @, =Id+/0 Ab(ys) Dy ds + Z/O AV (ys)PsdBy.
Jj=1

Throughout the section, we assume that b € Ci and V € Cg. The reader might
have noticed that @ is simply the Jacobian related to equation (1.1). The process
® is also the limit of the process ®" defined in (6.2), in a sense which will be
made clear in the next section. We denote by W, the inverse matrix of &;. Let us
introduce the following process on S»([[0, T']):

(7.2) 8851 = 8egr — 88yt
where ¢ is defined by (6.7) and
m t— .
(7.3) 88 =Y Y W dViVi(y)8Fy, -
JiJ'=1t=s

We shall now assume some a priori bounds on &, similar to what we did in Hy-
pothesis 6.6.

HYPOTHESIS 7.1. The process & defined in (7.2) satisfies the following rela-
tion for some o > O:

8841 <Gn “(t —)'7",  (s,1) € S([0, T]).
Our aim is to get a new bound on the rough path above (e, z"*) under Hypothe-

sis 7.1, similar to what has been obtained in Proposition 6.11. Let us first consider
[18esu ® dBy.

LEMMA 7.2. Suppose that Hypothesis 1.1 is met for some o : 0 <o <2H —
%. Then the following estimate holds true for all (s, 1) € S>([0, T]):

(7.4) <G +n2W) (1 —5)*.

t
/ S65u ® d By
)

PROOF. Asin Lemma 6.9, we first write

t t t - N
(7.5) f Sesu @ dBy, = / 8&snuy ® dBy, + / 8&nwu ® dBy := D}, + D2,
s N N

Furthermore, invoking decomposition (6.13) we have

3.t
(7.6) D? =
=]

3
u
VIdAS®dB, =) IS,
n(u) e=1
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Note that, recalling expression (6.9) for A%, I? can be seen as a triple iterated
integral which is interpreted in the Young sense. Then similar to (6.28) it is easy
to show that

(7.7) 12| < Gn™ (1 — ).
As far as I is concerned, some elementary computations reveal that for (s, ¢) €
S ([0, T]):

1 m t—

. Ikl U .
n=-3 S avivon) [ [ wide -0 @ as..
179 173

j:l tk=s
Then it follows from (A.2) in Lemma A.2 that
(7.8) 1L <Gn'= @ — )17V <Gn7V (1 — )7,
where we use the fact that t — s > % for the second inequality. For I3, we start
from relation (6.9). Then due to the expression (5.1) for y”, we have

L=t +1?4+13

st

where
3 [ e [ ,
Bl= [ [ ey [ovionvon)as asl as,
fr=s vk Ik j=1""%
32 - T u n = v n 1 & n
I = Z/ / vy V()5 > aViVi(n)
tk=s Ik Tk j:l 73 ]/:1

d(r —u)*" dB] ® dB,

33 _ — et n < Ua (vIB(V Y dr d J d
Ist - Z : : lIJU Z p V](yr) (ylk) r Bv ® BM'
3 k j=1 k

ty=s Y

As for 12, it is easy to show that |Is3t2| and |Is3,3| are bounded by Gn=2(t — )
and Gn'=% (1t — s), respectively. On the other hand, it follows from (A.8) in
Lemma A.2 that for any « > 0 we can find a random variable G such that |I}!|
is less than Gn!=%+2¢(t — s)1=¥_ We now choose x > 0 small enough such that
1 — 4y + 2k < —y. Then summarizing our estimates of /3!, 132 and 733, we have

(7.9) 113 <Gn! ™ 2% ¢ — )17 <Gn77 (1 —5)*.
Applying (7.7), (7.8) and (7.9) to (7.6), we have thus obtained
(7.10) |D%| < Gn77 (1 — ).

We now turn to the term D, on the right-hand side of (7.5). Write

Ds]t :/ (8&sn(u) — 6&snu)) @ d By +/ 8&sn(u) @ dBy == Ds]z1 + D;tz’
S S
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where we recall that € is defined in (7.2). Applying Proposition 4.1 and taking into
account Hypothesis 7.1 and the fact that H > y, we obtain

(7.11) D[ <Gn™*(t —s).
On the other hand, by (7.2) and (7.3) we have
Dy = / Z [ W)V Vi (yw) dF;, n(v)v ®dB,
J,j'=1

t—  Ik—1

Z Z Z v, aV;Vj (yl‘k/)Ftk/tk/H ® 8By
jj'=1tk=s+1t=s
So applying Corollary 4.9 to l~)sltl we obtain
IDY], < Kn2=2H (@ —)*2 forall p= 1.
Taking into account Lemma 3.5, we thus get
(7.12) DL < Gn2™2 (1 — )2
In summary of (7.10), (7.11) and (7.12), we end up with

<Gn V(-5 +Gn (1 —s)+ Gn2" (1 — 5)?,

t
/ degy ®dBy,
S

from which our claim (7.4) is easily deduced. [J

In order to complete the study of the rough path above (g, y", B), let us turn to
the integral [! 8y, ® dey.

LEMMA 7.3. Suppose that Hypotheses 6.6 and 7.1 are met for some o €
(0,2H — %). Take y < H. Then the integral fst dy?, ® de, satisfies the following
relation for all (s, t) € S>([0, T]):

(7.13) <Gn %t —s)%.

t
/ 8yg, ®dey
N

PROOF. We consider a remainder term R defined for (s, ) € S2([0, T]) by

t t
(7.14) Ro= [ ot ®de,— V(L) [ 8Bu@de,
N N

According to the basic rules of action of § on products of increments, we have

(7.15) SRy = (8", — V(3")8By) ® 84 + 8V (v / 8By ® de,,
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for all (s, u,1) € S3([0, T]). Applying the second inequality of (5.2) and Hypoth-
esis 6.6 to the first term on the right-hand side of (7.15) and invoking Lemma 7.2
for the the second term, we obtain

18R] < Gn=(u — )2 (t — u)? + Gn~(u — 5) (t — )2’ < Gn=2(t — 5)*.

Since 3y > 1, we are in a position to apply the discrete sewing Lemma 2.5, which
yields

(7.16) [IRll3y < KII8RIl3, < Gn™*.

We now recast (7.14) as follows:

t t
(7.17) / Syl ®@dey, = V(yf)/ 8By ® de, + Ry;.
R S

Then resorting to (7.16) and Lemma 7.2 for (7.17), our claim (7.13) easily follows.
O

We can now state the main result of this section, giving a full estimate of the
rough path above (7", n“ *¢). Recall that 7" designates the couple (B, y").

PROPOSITION 7.4. Let € be defined in (7.2) and suppose that Hypothesis 7.1
holds true for some 0 <o <2H — % Take y < H. Then for any k € (0, a) and
(s, 1) € S2([0, T]) we have

(7.18) |S2(z", n% " e),,| <G —9).
PROOF. We start by analyzing the first-order increments of Sy(z",n% " ¢).

First, notice that §z" is controlled by Proposition 5.4. Furthermore, according to
relation (7.2), we have

(7.19) 8& = 88 + 8%.

As in the proof of Lemma 7.2, equation (7.3) also asserts that Corollary 4.9 can be
applied to 8¢, yielding an inequality of the form

(7.20) 1825ell, < Kn2 72 (1 — 5)2

for (s, 1) € S2([0, T]). Applying Lemma 3.5 to relation (7.20), plugging this in-
formation into (7.19) and invoking Hypothesis 7.1, we obtain

(7.21) 18e5i] < Gn=(t — $)2 < Gn~H(r — 5) 2K,

for all (s, t) € S2([0, T]). This is compatible with our claim (7.18).
Let us now handle the second-order increments of S>(z", n*¢). According to
Lemma 6.8,

(7.22) <Gn VX —5),  (s,1) € SH([0, T]).

t
/ &gy Rdey,
S
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In the same way, gathering Lemma 7.2, Lemma 7.3 together with (7.21), we get
that

(7.23) <Gn @t -9,  (s,1) € S([0,T]).

t
/ de5u ® dZZ
N
Hence, putting together inequalities (7.22) and (7.23) and adding the estimate of
S2(z") in Proposition 5.4, we obtain that on the grid Sy ([0, T']):
(7.24) 1S2(2", n"""e)st| <G(t—ys)

On the other hand, Lemma 6.10 implies that (7.24) also holds true for s,t €
[*k, tx+1]. Therefore, applying Lemma A.1 to S>(z", n* “¢) we obtain the desired
estimate (7.18). [

8. Rate of convergence for the Euler scheme. In this section, we take an-
other look at the strong convergence of the Euler scheme. Thanks to the infor-
mation we have gathered on the error process, we shall reach optimality for the
convergence rate of the scheme. However, before we can state this optimal result,
let us give some preliminaries about the Jacobian ® of equation (1.1).

8.1. Rate of convergence for the Jacobian. As mentioned in Section 7, the
Jacobian @ of equation (1.1) should be seen as the limit of the process ®". In
the current section we shall quantify this convergence. We start by an algebraic
identity which is stated as a lemma.

LEMMA 8.1. Let ® and ®" be the solutions of equations (7.1) and (6.2),
respectively. Set

(8.1) &=V, (® — @)
fort € [0, T). Then & satisfies the following equation on [0, T1:

t d )
g = /0 W, S (0,063 (®ley) D7 ds
i=1
(8.2) _ J | |
£ [ w00V, (7)), (@2e) 01 dB],
j=1 i=1
where the processes {0;0b(y")}s and {9;0V;(y")}; are defined by

1 1
(00 = [ [ di0b (s + (1 =0 =07 = )

(8.3)
x(1—=Adudx,
1 1
@V, = [ [ a0Vt (1 =0 =008 - w)
(8.4) 00
X (1=Xdudh.

If we define 5} = Q,(¥; — V"), then a similar expression can be derived for (‘,:;.
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PROOF. Subtracting (6.2) from (7.1), it is easily seen that
t m t )
o, — P} :/0 ab(ys)(Ps — DY) ds + Z/o AVi(ys)(®s — ®F)dB! + Lt1 + Ltz,

where

t
Li= [ 000 = (06"}, ) ds.
m t )
= ¥ [[0V;00 - 8V,0") )@ aB!.
j=1

Let now W = ®~! be the inverse of ®. By means of the variation of the constant
method, one can verify that

—Pdr= > f WedLS.
e=1,2
Hence, for £ defined by (8.1), we have
(8.5) &=73 / W, dLE.
e=1,2

In addition, observe that with (8.3) and (8.4) in mind, the following identities hold
true:

d d
db(ys) — {0b(y Z {9;0b(y Z {9;0b(y")}; (Wrey),
and

d
IV;(ys) — {aV;( Z {30V (")}, (Wley)'.

Plugging these relations into definitions of L' and L?, our claim (8.2) easily stems
from relation (8.5).

Note that according to Lemma A.6, (W, ¥") and (&, ®") satisfies similar linear
equations, and a similar expression can thus be derived for Et (Y, -, O

We shall now assume some a priori bounds on the lift of (7", n%¢).

HYPOTHESIS 8.2. The processes 7" = (y", B) and ¢ defined in (6.7) satisfy
the following inequality for some o >0 and y < H:

1S2(" n%),,| < Gt — )7, (s,1) € S2([0, T1).
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Notice that Hypothesis 8.2 is a version of Hypothesis 6.6 for the lift of (z", n%¢).
Thanks to the previous lemma, we can now consider (y", B, n%, n*E,n%&) as
a single rough path. This is achieved in the following lemma.

LEMMA 8.3. Suppose that b € Ci, Ve Cf;, and Hypothesis 8.2 is met for
y > % and o« <2H — % We also consider the processes £ and £ as defined

in Lemma 8.1. Then the vector (7", n%, n®E, n*&) satisfies the following upper
bound:

(8.6) |S2(2" n%e, n*E, n*E)|, < G.

PROOF. Note that &, W, ®", " are solutions of equations driven by z". Fur-
thermore, owing to relation (8.2), it is easily seen that n*& and n*€ as rough paths
are solutions of equations driven by (2", n%¢). Thus (8.6) is a direct consequence
of Theorem 2.3 (linear part) and of Hypothesis 8.2. [

REMARK 8.4. Roughly speaking, Lemma 8.3 shows that if the convergence
rate of the numerical scheme y” to y is n~%, then so is that of (®", V") to (&, V)
asn — 0o.

8.2. Optimal rate of convergence. Recall that ¢ is defined by (6.7) and §&5; =
8eg; — 88y, is defined in (7.2). With the preliminary results obtained in Section 8.1,
we can now go further in our analysis of the error process ¢.

PROPOSITION 8.5. Consider the process 7" = (¥", B) and the error process
¢ defined in (6.7). Assume that b € Cg, Ve Cg. As in Lemma 8.3, suppose that

Hypothesis 8.2 is met for some exponents o, y such that % <y < Hand a <

2H — % Take « > 0 arbitrarily small. Then the following estimate holds true for
(s,1) € S2([0, T]):

(8.7) 1885| < G(n! V=22 L)t — )77
In addition, for all (s, t) € S2([0, T]) we also have

&8 eyl = Gl =72 4 d =27 —yhov,

REMARK 8.6. In Proposition 8.5, we prove that Hypothesis 7.1 is satisfied for
&, with « replaced by (3y — 1 +a) A . We also prove that Hypothesis 6.6 for ¢ is
fulfilled with an improved exponent o) = (o + 3y — 1) A2y — % which satisfies
a) > A.

PROOF OF PROPOSITION 8.5. This proof is divided into several steps.
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Step 1: Decomposition of Se. Starting from the decomposition (6.13) of ¢, one
can write

(8.9) ey =UL + U2

st
with
3 4t
U= [ W.dA

e=1"%

Z/ ‘-I-’n - \IJ dAe = Z t\pugu dAZ,

e=1°%

(8.10)

where we recall that € has been introduced in Lemma 8.1. Moreover, the term U2
above is easily bounded. Indeed, applying Lemma 6.5 and taking into account the
estimate in Lemma 8.3 we obtain for all (s, ) € S»([0, T]) the estimate:

(8.11) U2| <Gt —s)'77n!7r—2,

Step 2: Decomposition of U'. We turn to the quantity U S't given by (8.10). First,
from the expression of A2 in (6.9) and a discrete-time decomposition similar to the
estimate of (6.19) it is clear that

t
/ W, dA?
S

In the case e = 1, recall expression (6.6) for A'. Then one can decompose
[Iw, dAl into

(8.12) <Gn7V(t—ys).

st

t
(8.13) /\pudA‘ M)+ M2
S

where M and M? are defined by

! n 2H
Z ) Wyw)dV;Vi(ynuwy) d — nw))
1
(8.14) ?i=

1 t
2 2H
M= 3 [ 5V (0 e~ )

j=1
We defer the evaluation for M to the end of the proof, but M? is easily controlled.
Indeed, by (A.1) in Lemma A.2 applied to f =9dV;V;(y") and g = ¥, we have
(8.15) M2 < Gn'"=¥ (1t —5)77.

Note that according to Lemma A.6 W admits the decomposition: §W, = — |, S’ v, x
0b(yu) du — Y1y [{ Wud V() dBi.
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We now decompose the term fst v, a’Ag in (8.10): it is readily checked that
owing to (6.9), one can write

t m t
/ xpudAizzf / (") dy" d B
s =178 n(u)

Hence, plugging the equation (5.1) followed by y” into this relation we can write
t
(8.16) / W, dAS =1} + 12+ 13,
N

where I, I?, I’ are given by

@17 I = Z[‘p“fn

Z f /n<u> 00V Vi (Vi) A — n@)*" dB].

Step 3: Estimate of 1, I?, I3. We will now evaluate 1!, I, I3 separately. First,
invoking a discrete-time decomposition as in (6.19) again, we get

(8.18) 1L <G@—sn7.
On the other hand, applying (A.2) in Lemma A.2 to / ft we obtain
(8.19) 13| <Gn'= @ —s5)!7.

Let us now consider the term 72 defined by (8.17). To this aim, set

(8.20) Z / 1w / i (9w)V (V) dBud By

By (A.3) in Lemma A.2, the patient reader can check that for any ¥ > 0 we have
(8.21) |12 — 72| < Gn'" =2 @ —)77 (5,1) € S2([0, ).

In addition, we may consider k¥ > 0 such that 1 — 4y + 2k < —y. In this case, the
previous bound becomes

(8.22) 12— J2|<Gn7V(t—s5)77.

Step 4: Conclusion. So far we have made a sequence of decompositions for & in
(8.9), (8.10), (8.13), (8.16). Taking into account the estimates (8.11), (8.12), (8.15),
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(8.18), (8.19), (8.22), it is clear that to prove the estimate (8.7) for £ it suffices to
show that

(8.23) 1885, < Gn! 37 —at2( — gy1=v
for any « > 0, where the increment d¢ is defined by
88y = J2 + M), — 88,

with J2 given by (8.20) and M' given by (8.14). We also recall that & has been
introduced in (7.3) and is given by the following expression:

mo -
(8.24) 885 = Z Z vy dV; Vj/(yfk)(SFti{kﬂ‘
jo=1h=s

In order to prove (8.23), let us now observe that

m t— -
(8.25) 8= Y Y W, (dV;Vy(yp) —oV;Vi(y))SFilt,.,-
Joj'=1t=s

Further, we note that similarly to (6.10), the following identity holds true:

AV Vir(yy) —aV;Vy ()
d 1 .
= Zfo @0V Vi) (hyp + (1= Dy ) dA - (@] eq,)".
t

According to Hypothesis 8.2, y", W and n%¢ are y-Holder continuous functions.
Hence,

(8.26) n®|w(@V;Vy(y")—avV; Vj/(y))||y <G.

In order to bound the right-hand side of (8.25), let us apply a bound on weighted
sums of the process F' as in relation (6.16). Taking into account (8.26), this yields

|8<§s1‘| S Gnl—3y—a(t _ s)]—)/—ZK E Gn1—3)/—(1+2K(t _ s)]—)/

for an arbitrary k > 0, which is our claim (8.23). The proof of (8.7) is now com-
plete.

In order to get (8.8) from (8.7), we recall once again relation (7.19) and we just
analyze the term 8. This can be done in a similar way as in (7.20) and (7.21). Our
proof is complete. [l

THEOREM 8.7. Let € be given by (6.7) and € be defined in (7.2). Suppose that
be Cg, Ve Cz'. Then the following statements hold true:
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(i) There exists a constant kg > 0 depending on H such that
(8.27) n?H=3|55,| < Gn=H |t — 5|7

for (s,t) € S([0, T]). In particular, we have the following almost sure conver-
gence:

. I
lim n?" 285, =0.
n— oo

(i1) Take a constant k > 0. The error process y — y" satisfies
4 y—y

1
(8.28) n? =37 sup |y, —y'| >0  asn— oo,
1€[0,T]

1
meaning that the Euler scheme has a rate of convergence n2 ~ "4 for an arbitrary
k > 0.

PROOF. Item (i): Take % < y < H. According to Proposition 6.11 for

S>(n3r~1e, ), Hypothesis 8.2 holds with « = 3y — 1. Hence, one can apply
Proposition 8.5 in order to get

(8.29) 1885/] < G(n* 132 L=Vt — )77,

In the case % <H< %, itis easy tosee that 3H — 1 <2H — % and 2(3H — 1) >
2H—%.Take%<y < H such that 23y — 1) — 2« >2H—%andy >2H—%.
Then (8.29) implies that for % <H< % we have n2H~3 1885/| < Gn™*H |t — |1V
forkg = ((6y —2—2k) Ay)— (2H — %). This proves our claim (8.27) for % <
H < %

Let us now handle the case % <H< %. To this aim, set H; = é,’j—:}l, k>2.We

choose k > 2 such that Hy+1 < H < Hj holds. Itis easy to verify that k(3H — 1) <
2H — % and (k+1)3H — 1) >2H — % We can thus choose Hy4+1 <y < H and

k > 0 suchthat (k+1)(3y —1) — 3k« >2H — % andy >2H — % It follows from
inequality (8.29) that

|88y, < Gn2(1=37) T2 _gy1=r,

We can now iterate this bound in the following way: apply Proposition 7.4 which
gives

(8.30) |Sa(2", n2Y=D73) | <Gt —s)”.

Then invoke Proposition 8.5 again. Taking into account the estimate (8.30), we
obtain

1685:] < G(n* T L7y —5)! 77
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We can now repeat the application of Proposition 7.4 and 8.5 in order to get

|8§st| < G(n(k+1)(l—3y)+3k/c +n—y)(t . S)l_y.

.. . [ G - —
This implies that n>7=2|88,| < Gn="H |t — 5|'~7 for

1
kg =(k+ 1)@y —1)—=3kk) Ay — (2H — 5)
Item (ii): Recall 8& = 8¢ + 8¢ given by relation (7.2). With item (i) in hand and
the fact that ®" is uniformly bounded thanks to Proposition 6.2, our claim (8.28)
is reduced to prove that

(8.31) Tim M3 sup  [SEg| =0,
(s,0)eS([0,T])

In order to prove (8.31), recall the expression (8.24) for §&;; as a weighted sum of
the increment § F'. We can thus apply Corollary 4.9 with f equal to WaV;V;/(y).
Indeed, one can easily see that f satisfies the assumptions of Proposition 4.7: both
W and 0V;V;/(y) are controlled processes admitting moments of any order (see
[5] for the integrability of W). Applying Corollary 4.9 we thus get

N 1_ 1
1881l p < Kn2 72 (¢ —5)2.

Then, invoking Lemma 3.5, we end up with
~ 1_ K
|88/] < Gn272HH3,

which completes the proof. [J

9. Asymptotic error distributions. In this section, we first review a central
limit theorem from [24] (see also [19]), then in the second part, we prove the
asymptotic error distribution of the Euler scheme.

9.1. A central limit theorem for the Lévy area process. In this subsection, we
recall a central limit theorem for the process F. Let us first define some parameters
that will appear in the limit distribution of F'. Namely, for k € Z, we set

0 s’ ,
O k) = /[O’HZR(k k+s> dR(s,s"),

0 s’ ,
Pk) = /[0,1]2R(k+s k—i—l) dR(s,s’),

where we recall that R is the covariance function defined by (3.1), whose rectan-
gular increments are given by formula (3.2). We now state a slight elaboration of
[24], Theorem 3 and [19], Proposition 5.1.

9.1)
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15

o
3
T

o
\
\

Value of Q and P
\

_1 1 1 1 1 1 1 1 1 1 1
0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75
Value of H

Fi1G. 1. Q and R.

PROPOSITION 9.1. Let B= (B!, ..., B™) be a m-dimensional standard fBm
with Hurst parameter }1 < H < % Let F, = Fy@) for t € [0, T1, where we recall
that the process F is defined by (3.14) and n is given by (6.6). Then the finite
dimensional distributions of {n*" 3 F , B} converge weakly to those of (W, B),
where W = (WJ) is an m x m-dimensional Brownian motion, independent of B,
such that
9.2) E[W,/ Wil = T*H=1(08;18 i1 + P8;j18jin) (1 A's).

s

In formula (9.2), we have set 8;; =1 if i = j and &;; =0 if i # j, and Q =
Swez Qk), P =Y ez P (k).

REMARK 9.2. Proposition 9.1 shows that the process n> “3F converges sta-
bly to W when 411 < H < % We refer the reader to Chapter 8 in [21] for the defini-
tion of stable convergence and its equivalent conditions.

REMARK 9.3. The following plot of constants Q and P shows that Q is
strictly larger than P for H € (zlt’ %). In particular, this implies that the m x m
random matrix W defined in Proposition 9.1 is not symmetric. Let us also mention
that as has been observed in [20], the fact that Q > P results in different features
of the Crank—Nicolson scheme and the numerical schemes (1.3) and (1.4) between
the scalar case and the multidimensional cases.



816 Y. LIU AND S. TINDEL

9.2. Asymptotic error distributions. We can now prove the convergence of a
renormalized version of the error process y — y” related to the Euler-type scheme
y". Namely, we prove the following central limit theorem.

THEOREM 9.4. Let y" be the Euler scheme defined in (1.5). Suppose b €

Cl% and 'V € Cg. Then the sequence of processes (> -3 (y — "), B) converges
weakly in D([0, T']) to the couple (U, B) as n — oo, where U is the solution of
the linear SDE

t m t . m t ..
9.3) U; 2/0 ab(ys)Us ds + Z/(; aV;(ys)UsdB] + Z /0 AViVi(ys)dW/,
j=1 i, j=1
and where W is the Wiener process obtained in Proposition 9.1.

PROOF. Recall that y — y" = ®"¢, we consider the following decomposition:

0 i =¥ = PyEne + (Phe) — Pa)En + Pyréne
+ Ot = Yy = O0F = Yy)s

where recall that ¢ is defined by (6.7), and &, ¢ are respectively introduced in (7.2)
and (7.3).

Note that, thanks to Theorem 8.7, Lemma 8.3 and Corollary 4.9 and taking into
account the relation ®; — ®} = ®,&;, we have almost surely

. _1 ~ A
9.5) lim sup n*72 (02 &y + (D) — Pyi)Enny) =0

= c0,T]

On the other hand, thanks to Theorem 2.3 and equation (5.1), governing y” it is
clear that

9.6) e = Yool + [y = Y| < Gn ™7 < Gna=2H+

for G =K + ||B||)1,/y) and for any y < H, where we use the fact that H >
2H — % for the last inequality and we take k =y —2H + % > 0. Therefore, going
back to (9.4) the convergence of the finite dimensional distributions of (n2H -3 (y—
y"), B) can be reduced to the convergence of (nZH_%CD,,(,)é,,(t), B;,t €10, T).
Furthermore, Proposition 9.5 delivers a central limit theorem for general weighted
sums of the process F. Taking into account the expression (7.3) for £, it can be
applied in order to get the convergence of the finite dimensional distributions of

(=2 ®,(12,). B) to (U, B), where

m t .

9.7) U; = E CIJt/ W, 0V Vi(y,)dW, te0,T]

“ 0
Ji'=1
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as n — oo. Similar to (6.12), an easy variation of parameter argument shows
that U defined by (9.7) solves the linear SDE (9.3). Summarizing our consider-
ations so far, we have obtained the finite dimensional distribution convergence of
(=3 (y = y"), B) to (U, B).

It remains to show the tightness of the error n* -3 (y = y™). To this end, we
apply Lemma 3.31 in Chapter 6 [21] to our decomposition (9.4). It then suffices to
show the tightness of n> -3 ®,)()€y(.y, and that the supremum of the other terms of
(9.4) in [0, 7] converges in probability to zero. The convergence of the first two and
the last two terms on the right-hand side of (9.4) follows from relations (9.5) and
(9.6), respectively. The tightness of n> -3 ®,(.)€y( follows from Corollary 4.9,
the fact that & admits moments of all orders thanks to the integrability results in
[5], and a tightness criterion in (13.14) of [2]. The proof is now complete. [

We now state the limit theorem on which Theorem 9.4 relies.

PROPOSITION 9.5. Let f, g be processes defined as in Proposition 4.7 and
W be the Brownian motion defined in Proposition 9.1. Set

L] [
1
@?:nZH_j Zﬁk®8Ftk[k+l and @[:/0 fS ®dW5
k=0
Then the following relation holds true as n — oo:

(@",B)%(@,B) asn — oo.

PROOF. The proposition is an application of Theorem 4.10. As in Corol-
lary 4.9, we take y > %, h=n?H"3F and & = % It suffices to verify the con-
ditions (4.13), (4.22) and (4.24). According to Corollary 4.9 and Proposition 9.1,
conditions (4.13) and (4.22) hold true for our /4. Applying Lemma A.4 and taking
K: % 4+ H — k + y > 1 we obtain the relation (4.24), which concludes our proof.

O

APPENDIX

A.1. Estimates for the Holder seminorm of a rough path. The following
lemma is convenient while deriving upper bound estimates for the Holder semi-
norm of a rough path.

LEMMA A.1. Let X and Y be functions on [0, T] and Z be a two param-
eter path on S>([0, T')) such that 67, = § X, ® 6Y,;. We recall the notation
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(to, t1, - - -, ty) for a partition of [0, T] and s, t] for discrete intervals given in the
Introduction. Suppose that

Klt—sl?,  (s,1) e S ([0, T]),

1
8Xsi| + 18Ysr| + | Zst |2 <
19K st +10¥ou| + 121 _[K|t—s|’3, s,t €t tip1l, k=0,1,...,n—1

for some B >0 and K > 0. Then the following relations hold for all (s,t) €
S2([0, TD:
|8 Xst| +18Ysel < Kt = )P |Zyul <Kt =)
PROOF. We firstconsider 6 X and §Y. Take ty_1 <s <ty <tp <t <tp41. We

have
16 Xse] <16 Xe,e| + [0 X gt | + 16 X s |
<K((t — )P + (t — )P + (1 — 5)P)
<K@ —s)P.

The same estimate holds for Y. We now turn to the estimate for Z,;. We consider
th—1 <85 <t <t <t <tp41 again, and we have

|Zst| = |Zsty + Lty + Lyt + 6 X131, ® 8300 + 8 X1, @ 84|
<K(t =9+t — 1) + (e — 1))
+ K (e — )P (t = 11)P + (i — )P (1 — 10)P)
<K(t—s)%.
The proof is complete. [J

A.2. Estimates for some iterated integrals. This section summarizes some
estimates for weighted sums involving double or triple iterated integrals.

LEMMA A.2. Let B be our m-dimensional fBm with Hurst parameter H > %
Let f be a real-valued path on [0, T | such that || f||,, < Kfor% <y < H.Suppose

that g is another real-valued path and § = (§', g%, 8%) is a continuous path in
LR™, R) x R x R, such that S>(g, g, B) is well defined as a y-rough path, and
that §g can be decomposed as

B - t, t A oH
8gst= | 8udBu+ | gndu-+ | g, d(u—nw))

for all (s, t) € S2([0, T]). Consider an arbitrarily small parameter k > 0. Then

the following inequalities hold true for (s, t) € S2([0, T]):

Ikt 1

ti
+
> fu [ Sgnud— "

tk=s Tk

(A1) < Gn' =@ — 5177,
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= Tyl U
(A2) Z}m/ y/&@@—@%ﬂmusG#4ﬁﬂa—w“ﬂ
tk=s Tk Ik
I— ti+1 u
a3 |35 ft S8 /l B, ®dB,| < Gn'~ 7+ (1 _ )17
te=s k k

PROOF. For the sake of clarity, we will only prove our claims for g whose
increments can be written as §gg; = f: gs d By, where S>(g, g, B) defines a rough
path. We also focus on the inequality (A.1). For convenience, we denote by D the
following increment:

Tk+1
8guu d(u — t1)*H

-

k=S Tk

defined on S>([[0, T']). Since we have assumed that §g,; = |, ; gdB, we can write

Dy = tz_ ftk/

tk=s I Tk

Tr+1 u

gvdBydu —1)*.

We now consider the following decomposition of Dg;:

t

(A.4) Dy =Y (D} + D),

tr=s
where D,l and D,% are given by

u
D! = f,. / dByd(u — 1),

17 173

5 Tr+1 u v B 2H
Dk:ftk/ </ dgrdBv)d(u—tk) .
173 173 173

Both D,l and D,% are easily bounded. Indeed, one can note that D,% is a Young
integral, and since (g, B) admits a lift as a y-rough path it is easy to show that

(A.5) |D?| < Gn™21727,

Tk+1

Therefore, summing up both sides of (A.5) from s to ¢ we obtain

t—

2. D

k=S

(A.6) <Gn'™ (1 —5).

In order to bound D,}, we apply a change of variable formula for Young integrals,
which yields
173

. - +1
Di = £ 808 Bya., (ti1 — 1) — f,kgtk/ w —1n)*" dB, = D}' + D}>.

Ik
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Then Z; D,ll is bounded by elementary considerations. The terms Dk are
handled by decomposing f;, &, as 6(f&)s;, + fs8s and by a direct application
of Lemma 4.6. It is thus readily seen that

l‘_
> Dy
Ik=s
The estimate (A.1) follows by applying (A.6) and (A.7) to (A.4).

Inequalities (A.2) and (A.3) can be shown in a similar way by invoking
Lemma 4.6 and Lemma 4.3, respectively. The proof is omitted. [

(A7) <Gn'TWFx G gl

The following lemma considers almost sure bounds of a triple integral. It can
be shown along the same lines as for Lemma A.2. The proof, which hinges on
Lemma 4.3, is omitted for sake of conciseness.

LEMMA A.3. Let f, k be as in Lemma A.2. Let h = (hl,hZ, h3) and h =
(ﬁ 1 fzz, h3 ) be continuous paths such that h® takes values in R and he takes values
in LIR™ R). We also assume that S»(h, fz, B) is a y-rough path for H > y > %,
and that §h§, = f; h¢dB for (s,t) € $2([0, T)) and e = 1, 2, 3. Then we have the
following estimate for all (s, t) € S>([0, T]):

Ik+1 U v 1 ) 3
Z ,k/ / hldB, @ h>dB, ® h) dB,
tr Jitg

tk=s

S Gn1—4}/+2K(t _ s)l—)/‘

(A.8)

The following results provide some upper-bound estimates for the L ,-norm of
a “discrete” rough double integral. Recall that 0=ty < --- <, =T and 0 = ug <
-+ <u, =T are two uniform partitions on [0, T].

LEMMA A.4.  Let F be defined in (3.14) and H > 7. We set

vr 1
Z fl with f n Al 72 Z SBtk 73 Ft{c{k+l’
lkGD[
where r € {uy, ..., u,}. Then the following estimate holds true for all p > 1:
A 1 1
(A.9) ||5§r'fr/”pva_an_ZH(r’—r)2, r,r efug, ... uy).

PROOF. Let us treat the special case i = j # j'. Then we can expand the
variance of ¢;" as

v v

) L1 Z Y JkK 1),

1LI'=0 tkEDl lk/EDl/

(A.10) <
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where for all k, k', u and v we have set

(A.11) J(k Ky, v) = B(8Byy 8 Fyt, 1 6Buy SFigy, )

In order to evaluate (A.11), we first condition the expected value on BJ'. We are
thus left with the expected value of a product of four centered Gaussian random
variables, for which we can use the Gaussian identity, and the isometry property
stated in Definition 3.2. We use the same isometry again in order to integrate with
respect to B/ ", which yields

3
(A.12) J(k,k’,u,v):ZJe(k,k/,u,v),
e=1
where we have
(A.13) Ji(k, k' u,v) = Mgy Lo, ) 7B B ) ez,
(A14) JZ(k, k/7 u, U) = (<l[u,tk]7 ﬂk}%s <1[v,l‘k/]s ﬂk’)%)%s
(A.15) J3(k, k' u, v) = ((Ao,e000 B Musds Br) )y

and where the function B is defined by B (u, v) = 15 <y<v<s ;-
Next, observe that we have (B, Bi)ye2 > 0 for all kK and k’. Indeed, when k =

k', this stems from the fact that (B, Br')ye2 can be identified with E[|8Ft{;{; " 121,
while for k # k' the expression for (B, Bi') o2 1s given by (3.6), and the product
of the measures w therein gives a positive contribution. So the Cauchy—Schwarz
inequality implies that

(A.16) [1(k K u,v)] < Ko —ul™ i — vl (B, Br)ygen.

and we easily get the following bound:

v 121

T
3TN Nk Kty 1) < Kv2H (Be, B )y

LI=0 ey ey k k=0

—

L7 1-

e 2H il il
=Kv E[8F,, 8Fh, ]
k,k'=0

—2H ij 2
It then follows from Lemma 3.4 that

vy

T
Z Z Z Jl(k,k/,l‘kl,tk],)

1,I'=0 tkelal zk/ef)l/

(A.17)

< KU_an1_4H77(I’) < Kv_ZHnl_4Hr.
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Let us now handle the terms J> and J3 in (A.12). First, by self-similarity of B
we obtain

Jo(k, k', u, v)
n O T (U (@), i (b, @)y, (Tpm 1 (€), P (B, )y )y

where we have denoted ¢y (1, v) = 1x <, <y<ik+1, and the letters a, b, ¢ designate
the pairing for our inner product in H. In order to estimate the quantity (A.18), we
assume first that k, k' satisfies |k — k’| > 2. In this case, we can approximate the
functions 1y, <y<k+1 in the definition of ¢ by sums of indicators of rectangles.
Namely, for k < L”T’J we set

(A.18)

-1

b4
(A.19) HIEDY Lyt izt (0 X Ly i gy (),
i=0

then the convergence limy_,  ||px — ¢£ ll3y22 = 0 holds true whenever H > Ap—

plying the convergence of ¢,€ to (A.18) and taking into account expression (A.19),
we obtain

Jz(k, kK, u, v)
=n =T Jim (L g (@), 65 (b, @)y (s 110, G (b, )y
£—1

_6HT6H lim Z d,jd,j,

(Z—)oo ij=l
where we denote
dij = Mg i ey ity Loy oy iy

dij = e ey o gdnilige e, l[k/+jei,k/+1]>7'[

It is easy to see that, for all 7, j < ¢ — 1, we have \d; il < K. Therefore, taking into
account the fact that d;; < 0 for k, k' : |k — k’| > 2, we obtain

K —1
Jo(k, k' u, v)<ﬁhm Z|d,,|_ hm Zd,,
(A.20) i,j=1

= GH Mk k11 I w410 < Kn

The estimate (A.20) also holds true for J3, and the proof is similar. In addition, for
|k — k’| <2 the relation (A.18) shows that

(A21) | Jo(k, k' u,v)| < Kn=%H
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We now invoke relations (A.20) and (A.21), together with the fact that the summa-
tion Y 4. |k|> =2 is finite and

) nr
#l | Di|=#k:ne<tandt <r}<—,
=0 T

which yields for e =2, 3:

v

Z Z Z Je kk lkl,tk],)

LI'=0 tkEDz tk/EDZ/

Gathering our bounds (A.17) and (A.22) for Ji, J» and J3, it is readily checked
from our decompositions (A.10) and (A.12) that for i = j # j’ we have
Y1

Z Cl > _ZHI’ll_4H7‘.

Furthermore, using the stationarity of the increments of F' and B, plus the equiv-
alence of L -norms in finite chaos, we obtain from (A.23) the desired estimate
(A.9). Moreover, the estimate (A.23) holds true for other i, j, j'. The proof is
similar and is omitted. [J

(A.22) <Kn'"%H;

(A.23) (

LEMMA A.5. Let F be defined in (3.14). Then the following estimate holds
true for H > 411:

Z 8BStk ® Flkfk+1

ti=s

2
) <Kn'""H @ T (5,1) e Sy([0, T]).

PROOF. Since B has stationary increment, it suffices to prove the lemma for
s = 0. As in the proof of Proposition 4.10, we consider the sum

l/] Z Bl F]]

Telie4-1°
=0

for i = j # j’. The other cases can be considered similarly. Let J,, e = 1,2, 3 be
the quantities defined in (A.13), (A.14), (A.15). By (A.11), we have

- 2 - 3
ZBZI{FTﬁkH ): Z Zje(kl,kz,(),()).

=0 Tky  tky =0 e=1

(A.24) E(

Applying (A.16) and taking into account Lemma 3.4 yields

[_
(A.25) > Jiki k2, 0,0) <n'THH A

Tky sty =0
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On the other hand, it follows from (A.20) and (A.21) that for e =2, 3 we have

[_
(A.26) > Je(ki ko, 0,0) < n'T0Hp < A I2H

Tky s tky =0

The lemma then follows by applying (A.25) and (A.26) to (A.24). O

A.3. Inverse of a linear equation. Let us consider two linear rough differen-
tial equations:

m t
(A.27) P=1d+)_ / M!P;dB.,
0
=1
m t
(A.28) 0,=1d— Zf o;M!dB!,
0
=1

where for [ = 1,...,m, Id is the identity matrix, and M! = (Ml(i, Jij=1,...d
is a R9*4_yalued process on [0, T']. Note that the solutions P = (P (i, j)) and
0 = (Q(, j)) are also R9*%4_yalued. The following lemma shows that for fixed
t € [0, T'] the matrices P; and Q; are inverse of each other.

LEMMA A.6. Suppose that P and Q are respectively the unique solutions of
(A.27) and (A.28). Then PQ = QP =1.

PROOF. Denote §;; =0 for i # j and §;; = 1 for i = j. Rewrite (A.27) and
(A.28) as

m d t
P ) =6+ Z/O M (r, v) Py(v, j)dB!,

I=1v=1

m d ¢
0i(ivr) =81y — ZZ/O 0, )M (v, 1) dB!.

[=1v=1

By the Itd6—Stratonovich formula for rough paths integrals, we obtain

t t
Qz(i,r)Pz(r,j)=5ir5rj+/0 Qs(i,r)dPs(r,j)-i-/O Ps(r, j)d Qs (i, r)

m d
(A.29) = 8irdrj + /0 0,6 > > MG, v)Ps(v, j)dB!

I=1v=1

m d
_ fot P, DY 0, )M (v, r)dB..

I=1v=1
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Now summing up the two sides of (A.29) in r we obtain

d d
Y0l r)Pi(r, )= 8irrj = 8ij.

r=1 r=1

This completes the proof. [J

Acknowledgments. We wish to thank the referee for many useful comments
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