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APPROXIMATION OF STABLE LAW IN WASSERSTEIN-1
DISTANCE BY STEIN’S METHOD1

BY LIHU XU

University of Macau

Let n ∈ N, let ζn,1, . . . , ζn,n be a sequence of independent random
variables with Eζn,i = 0 and E|ζn,i | < ∞ for each i, and let μ be an α-
stable distribution having characteristic function e−|λ|α with α ∈ (1,2). De-
note Sn = ζn,1 + · · · + ζn,n and its distribution by L(Sn), we bound the
Wasserstein-1 distance of L(Sn) and μ essentially by an L1 discrepancy be-
tween two kernels. More precisely, we prove the following inequality:

dW

(
L(Sn),μ

) ≤ C

[
n∑

i=1

∫ N

−N

∣∣∣∣Kα(t,N)

n
− Ki(t,N)

α

∣∣∣∣ dt +RN,n

]
,

where dW is the Wasserstein-1 distance of probability measures, Kα(t,N) is
the kernel of a decomposition of the fractional Laplacian �

α
2 , Ki(t,N) is a

K function (Normal Approximation by Stein’s Method (2011) Springer) with
a truncation and RN,n is a small remainder. The integral term

n∑
i=1

∫ N

−N

∣∣∣∣Kα(t,N)

n
− Ki(t,N)

α

∣∣∣∣ dt

can be interpreted as an L1 discrepancy.
As an application, we prove a general theorem of stable law convergence

rate when ζn,i are i.i.d. and the distribution falls in the normal domain of at-
traction of μ. To test our results, we compare our convergence rates with those
known in the literature for four given examples, among which the distribution
in the fourth example is not in the normal domain of attraction of μ.

1. Introduction. Let n ∈ N and let ζn,1, . . . , ζn,n be a sequence of indepen-
dent random variables with Eζn,i = 0 for each i, denote

Sn = ζn,1 + · · · + ζn,n.

It is well known that Sn weakly converges to the standard normal distribution � if
this sequence satisfies the Lindeberg condition and ES2

n → 1. If we further assume
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that E|ζn,i |3 < ∞ for each i, then the Berry–Esseen theorem follows

sup
x∈R

∣∣P(Sn ≤ x) − �(x)
∣∣ ≤ C

n∑
i=1

E|ζn,i |3,

where C > 0 is some constant.
Stein’s method was put forward in the seminal work [45] to study normal ap-

proximations such as Berry–Esseen theorem, very soon thereafter Chen applied
this method to get the convergence rate of the Poisson approximation [14]. Nowa-
days, Stein’s method has been extended and refined by many authors and become
a very important tool for getting bounds of measure approximations; see [1, 5,
6, 9, 11–13, 21, 23–27, 31, 35, 37–41, 43, 44]. For more references, we refer
the reader to the webpages: https://sites.google.com/site/steinsmethod/home and
https://sites.google.com/site/malliavinstein/home.

The stable distribution is one of the most important distributions in probability
theory and has a lot of applications in economics, finance, physics and so on; see
the monographs [30, 47] and the references therein for details. If the above se-
quence {ζn,i}1≤i≤n are assumed to have a suitable heavy tail, Sn weakly converges
to a stable distribution [22], Theorem 3.7.2. However, it seems that there are not
many results about the rate of stable law convergence; see [7, 8, 10, 19, 20, 28, 34,
48]. Moreover, all these works are proved by the characteristics function method
in Kolmogorov distance.

The goal of this paper is to study the α-stable law approximation in Wassertein-
1 distance (it is often called W1 distance or L1 distance for simplicity) by Stein’s
method for α ∈ (1,2). We prove two general theorems, one is a framework which
gives a general bound for the W1 distance between Sn and μ, the other is an ap-
plication of the framework when {ζn,i}1≤i≤n are i.i.d. and their distribution falls
in the normal domain of attraction of μ. It should be stressed that some known
results can give the rate for α ∈ (0,1], while ours is only for α ∈ (1,2). The reason
is stable distributions do not have 1st moment for α ∈ (0,1], and the W1 distance
is consequently not well defined in general. Therefore, our assumption α ∈ (1,2)

is essential.
We apply the two theorems to four examples which have been studied by several

authors [18, 20, 28, 34, 48] in Kolmogorov distance, and compare our convergence
rates with theirs. A big advantage of our theorems is that one can obtain an explicit
bound of convergence rather than only giving the order of rates as in the known
literatures.

Our first example is a sequence of i.i.d. random variables having a Pareto
distribution density p(x) = α

2|x|α+1 1{|x|>1}, whose sum scaled by n−1/α weakly

converges to a symmetric stable distribution. A convergence rate n− 2−α
α in Kol-

mogorov distance was obtained in [34], while [20] proved a rate n− 2−α
d+α for d di-

mensional stable law in total variation distance and conjectured that a better rate

https://sites.google.com/site/steinsmethod/home
https://sites.google.com/site/malliavinstein/home
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should be n− 2−α
α in the L1 or total variation distance. Our result gives a positive

answer to their conjecture for the L1 distance case when d = 1.
The second example is from [4, 34]. The distribution of i.i.d. random vari-

ables in [34] is a perturbed Pareto distribution with a density p(x) = ( A
|x|α+1 +

B
|x|β+1 )1{|x|>a} for some A > 0, B > 0, a > 0 and β > α. We consider a more
general distribution such that the distribution function F satisfies 1 − F(x) =
A

|x|α + B1(x)

|x|β ,F (−x) = A
|x|α + B2(x)

|x|β for large x > 0, where β > α, A > 0 and
B1(x),B2(x) are bounded continuous functions. It seems that the technique in
[34] is not able to handle this general distribution case. In this paper, we ob-

tain a convergence rate n− 2−α
α for β ∈ (2,∞), while [34] gives the same rate for

β ∈ (2α,∞). Note that the example in [4], Appendix B, is covered by this one by
taking β = α + 1.

The third example is a special case of [28] by Hall. When the limit distribution is

symmetric stable, we can get a rate n− 2−α
α in some situations, while Hall obtained

a rate n−β for some 0 < β < 2−α
α

.
The fourth example is from [48], the i.i.d. random variables therein have a den-

sity p(x) = C(log |x|)β
|x|α+1 1{|x|>c} with β ∈ R and c,C > 0, which is not in the normal

domain of attraction of a stable law. A convergence rate (logn)−1 in Kolmogorov
distance was proved by a very delicate analysis depending on the special form of

the distribution. Using our first general theorem, we can obtain a rate (logn)−1+ 1
α

in W1 distance, which is worse than (logn)−1. However, our theorem can be used
to study more examples which cannot be handled by the characteristics function
method in [48] directly. We defer to give the details of this example in the Ap-
pendix.

Let us now roughly explain the strategy of our method. In normal approxima-
tions, the K function approach [15] is to write

E
[
Snf (Sn)

] =
n∑

i=1

∫ ∞
−∞

E
[
Ki(t)f

′(Sn(i) + t
)]

dt,(1.1)

where Sn(i) = Sn − ζn,i and Ki(t) = E[ζn,i1{0≤t≤ζn,i} − ζn,i1{ζn,i≤t≤0}], and bound
its difference with E[f ′(Sn)].

To prove the convergence rate of stable law, we shall find a solution f of the
Stein equation, (4.9) below, and bound

E

[
�

α
2 f (Sn) − 1

α
Snf

′(Sn)

]
,

where �
α
2 is the fractional Laplacian defined by (4.2) below. Inspired by the above

observation of E[Snf (Sn)], we represent

E
[
Snf

′(Sn)
] =

n∑
i=1

∫ N

−N
E

[
Ki(t,N)f ′′(Sn(i) + t

)]
dt +R,(1.2)
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where N > 0 is an arbitrary number to be chosen later, R is a remainder and

(1.3) Ki(t,N) = E[ζn,i1{0≤t≤ζn,i≤N} − ζn,i1{−N≤ζn,i≤t≤0}].
Due to the heavy tail property of ζn,i , we need to truncate ζn,i and thus get a
remainder R. On the other hand, we decompose �

α
2 f into a linear combination of

f ′′ with a remainder R′ as the following:

(1.4) �
α
2 f (x) =

∫ N

−N
Kα(t,N)f ′′(x + t)dt +R′,

where

Kα(t,N) = dα

α(α − 1)

(|t |1−α − N1−α)
(1.5)

with dα =
(∫ ∞

−∞
1 − cosy

|y|1+α
dy

)−1
.

Using (1.4) and (1.2), we see

E

[
�

α
2 f (Sn) − 1

α
Snf

′(Sn)

]
(1.6)

=
n∑

i=1

∫ N

−N
E

[(Kα(t,N)

n
− Ki(t,N)

α

)
f ′′(Sn(i) + t

)]
dt +R′′,

where R′′ is another remainder. Hence,∣∣∣∣E
[
�

α
2 f (Sn)− 1

α
Snf

′(Sn)

]∣∣∣∣ ≤
(

n∑
i=1

∫ N

−N

∣∣∣∣Kα(t,N)

n
− Ki(t,N)

α

∣∣∣∣ dt

)∥∥f ′′∥∥+ ∣∣R′′∣∣,
where ‖f ′′‖ = supx∈R |f ′′(x)|. Therefore, in order to obtain the convergence rate,
it suffices to bound ‖f ′′‖ and the remainder R′′.

A recent result about stable convergence by Arras et al. [4], Appendix B, is as
the following: for α ∈ (1,2),

dKol
(
L(Sn),μ

) ≤ Cn− 1
2 (1− α

2 ),

sup
h∈H3

∣∣∣∣E[
h(Sn)

] −
∫
R

h(x)μ(dx)

∣∣∣∣ ≤ Cn
2α

2α+1 ( 1
2 − 1

α
),

where L(Sn) is the distribution of Sn, dKol denotes the Kolmogorov distance, μ

is a stable distribution with characteristic function e−|λ|α , and H3 is the set of
all bounded third-order differentiable functions h such that ‖h(k)‖ ≤ 1 for k =
0,1,2,3. Their approach is by Stein–Tikhomirov method. Note that [4], Appendix
B, is a special case of Example 2 below, in which we show by our general result

that a rate n− 2−α
α in W1 distance can be achieved. By a standard argument, this W1

rate implies a Kolmogorov rate n− 2−α
2α , which is better than n− 1

2 (1− α
2 ).
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More recently, Arras and Houdré found a nice characterization of infinitely di-
visible law with finite first moment [3], Theorem 3.1, and proved a general up-
per bound for dKol(μn,μ) by Fourier analysis as μn and μ are both infinitely
divisible. This result was applied to study several examples such as compound
Poisson random variables, Pareto type random variables sum and so on, in par-
ticular, if μn is the distribution of a sum of i.i.d. infinitely divisible Pareto-type

random variables, it converges to a stable distribution with a rate n− 2−α
α in Kol-

mogorov distance. They also derived a nice formulation of the related generators
for the self-decomposable distribution family [3], Proposition 5.1, which general-
ized the result in our Lemma 4.6 below. Furthermore, using a methodology very
similar to the one developed in our paper, the same authors proved a bound for
self-decomposable distribution approximation in a smooth Wasserstein distance
dW2 by Stein’s method; see [3], Section 6. Applying [3], Theorems 6.1, 6.2, to
stable approximations, from the discrepancy terms in the bounds therein, we can

immediately see that the convergence rate is at most n− 2−α
α in dW2 distance. Note

that dW2 is smaller than W1 distance [3], (4.3).
Johnson and Samworth [32] also give a convergence rate for stable approxi-

mations in the Mallows distance dr with some r > 0, note that dr is the classi-
cal Wasserstein-r distance when r ≥ 1. Let X1, . . . ,Xn be i.i.d. random variables
with mean 0 and a distribution function FX such that FX(x) = c1+bX(x)

|x|α for x < 0

and 1 − FX(x) = c2+bX(x)
|x|α for x > 0, where c1, c2 > 0 and bX(x) = O( 1

|x|γ ) with

γ > 0, [32], Theorem 1.2, claims that Sn = n− 1
α

∑n
i=1 Xi converges to a stable

distribution μ with a rate n
1
β
− 1

α in the distance dβ for some β ∈ (α,2]. When

α ∈ (1,2), this rate is worse than the rate n− 2
α
+1 in our paper, but dβ is larger than

W1 distance. Moreover, when α ≥ 1 and γ ≥ 1, one can take β = 2 and thus gets

a convergence rate n
1
2 − 1

α in the Wasserstein-2 distance, which is not accessible by
our Stein’s method. The theorem was proved by an idea from Lindeberg method
and a coupling. More precisely, take a sequence of i.i.d. μ-distributed random vari-
ables Y1, . . . , Yn, since n−1/α(Y1 + · · · + Yn) has the distribution μ, it is easy to
see that

d
β
β

(
L(Sn),μ

) = n− β
α d

β
β

(
n∑

i=1

Xi,

n∑
i=1

Yi

)
= n− β

α d
β
β

(
n∑

i=1

X∗
i ,

n∑
i=1

Y ∗
i

)

≤ n− β
α E

∣∣∣∣∣
n∑

i=1

(
X∗

i − Y ∗
i

)∣∣∣∣∣
β

,

where (X∗
i , Y

∗
i ) is a coupling of the distributions of Xi and Yi [32], (3), which

enjoys the property E|X∗
i − Y ∗

i |β = d
β
β (Xi, Yi) for each i, and {(X∗

i , Y
∗
i )}1≤i≤n

are independent. The previous relation, together with an inequality by von Bahr
and Esseen [32], (11), (12), implies that d

β
β (L(Sn),μ) ≤ 2n−β/α ∑n

i=1 d
β
β (Xi, Yi).
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Since dβ(Xi, Yi) < ∞ for some β > α [32], Lemma 5.1, one immediately gets

dβ(L(Sn),μ) = O(n
1
β
− 1

α ).
The organization of the paper is as follows. Section 2 introduces notation and

gives the two main theorems, while Section 3 applies them to study three examples.
The proofs of the two main theorems are given in Sections 4 and 5, respectively,
and the regularities of Stein’s equation are proved in Section 6. The last section is
an Appendix about the fourth example and some details of heat kernel estimates.

2. Main results. Recall that W1 distance between two probability measures
μ1 and μ2 is defined by

(2.1) dW(μ1,μ2) = inf
(X,Y )∈C(μ1,μ2)

E|X − Y |,
where C(μ1,μ2) is the set of all the coupling realizations of μ1,μ2. By a duality,

dW(μ1,μ2) = sup
h∈Lip(1)

∣∣μ1(h) − μ2(h)
∣∣,

where Lip(1) = {h :R →R; |h(y) − h(x)| ≤ |y − x|} and

μi(h) =
∫
R

h(x)μi(dx), i = 1,2.

Note that dW is also called L1 distance. The Kolmogorov distance of μ1 and μ2 is
defined by

dKol(μ1,μ2) := sup
x∈R

∣∣μ1
(
(−∞, x]) − μ2

(
(−∞, x])∣∣.

For a sequence of measures {νn}n, we say they weakly converge to a measure
ν, denoted by νn ⇒ ν, if

lim
n→∞νn(f ) = ν(f )

for f ∈ Cb(R), all bounded continuous functions f :R→R. We use Cp to denote
some number which depends on parameter p, the exact value of Cp may vary from
line to line. We denote L(X) the distribution of a given random variable X.

Recall (1.3) and (1.5) in the Introduction:

Kα(t,N) = dα

α(α − 1)

(|t |1−α − N1−α)
,(2.2)

Ki(t,N) = E[ζn,i1{0≤t≤ζn,i≤N} − ζn,i1{−N≤ζn,i≤t≤0}],(2.3)

where dα = (
∫ ∞
−∞

1−cosy

|y|1+α dy)−1 and 1 ≤ i ≤ n. Note dα = α2α−1
( 1+α
2 )√

π
(1− α
2 )

and

limα↑2
dα

2−α
= 1, see [17], p. 2800. Recall the Gamma and Beta functions are re-

spectively defined by


(x) =
∫ ∞

0
tx−1e−t dt, x > 0;

B(x, y) =
∫ 1

0
tx−1(1 − t)y−1 dt, x > 0, y > 0.
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Let us now state our first main result, which is a general theorem giving a rate
of stable law convergence in W1 distance.

THEOREM 2.1. Let n ∈ N and let ζn,1, . . . , ζn,n be a sequence of independent
random variables with Eζn,i = 0 and E|ζn,i | < ∞ for 1 ≤ i ≤ n.2 Let μ be an
α-stable distribution with characteristic function e−|λ|α for α ∈ (1,2). Then we
have

dW

(
L(Sn),μ

) ≤ Dα

n∑
i=1

∫ N

−N

∣∣∣∣Kα(t,N)

n
− Ki(t,N)

α

∣∣∣∣ dt +RN,n ∀N > 0,

where Kα(t,N) and Ki(t,N) are defined as above, Dα = 4
π

√
2α+1

α
B(α−1

α
, 2

α
),

RN,n = 2
n∑

i=1

E
(|ζn,i |1{|ζn,i |>N}

) + 4dα

α − 1

1

Nα−1

+ Dα,γ

n

n∑
i=1

E|ζn,i |γ ∀γ ∈ (0,1),

with Dα,γ = dα

α
[ 16
π(2−α)

√
α+3
α

+ 16
π(α−1)

√
2α+1

α
]B(

1−γ
α

,
γ+α

α
).

REMARK 2.2. When α ≤ 1, the stable distribution does not have its 1st mo-
ment, thus the corresponding W1 is not well defined; see (2.1). It is expected that
dW(Sn,μ) → ∞ as α ↓ 1, this can be seen from

lim
α↓1

Dα = ∞, lim
α↓1

Dα,γ = ∞.

Moreover, limα↑2 Dα,γ = 2
√

5
π

B(
1−γ

2 ,
γ+2

2 ) though there is a term 1
2−α

in Dα,γ .
Tables 1 and 2 give the values of Dα and Dα,γ , respectively. Although Dα,γ is

large, the term Dα,γ

n

∑n
i=1 E|ζn,i |γ can be negligible in applications by taking γ >

2 − α and large n.

REMARK 2.3. Due to the lack of concentration phenomena of heavy tailed
random variables sum, we can only observe the convergence after sampling a large
number of random variables; see [34], Section 5, and Example 1 below. In appli-
cations, we take γ = 0.9 so that the term Dα,γ

n

∑n
i=1 E|ζn,i |γ will be small enough

to be negligible as n > 106.

2Elton Hsu pointed out to the author that the condition “Sn ⇒ μ” in Theorem 2.1 of the first draft
can be removed.
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TABLE 1
The values of Dα

α 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

Dα 22.14 11.45 8.04 6.42 5.51 4.94 4.57 4.32 4.15

REMARK 2.4. If X has a stable distribution μ with characteristic func-
tion e−|λ|α , then σ 1/αX has a distribution ν with characteristic function e−σ |λ|α .
By (2.1),

(2.4) dW

(
L

(
σ 1/αSn

)
, ν

) = σ 1/αdW

(
L(Sn),μ

)
.

On the other hand, it is easy to see from the definition of Kolmogorov distance that

dKol
(
L

(
σ 1/αSn

)
, ν

) = dKol
(
L(Sn),μ

)
.

Theorem 2.1 is a general theorem which bounds the W1 distance of L(Sn) and
μ by a discrepancy and a small remainder. An application of this theorem is to
study the convergence rate of stable law. To this end, we first recall the classical
stable law convergence theorem.

THEOREM 2.5 (Theorem 3.7.2 of [22]). Let ξ1, . . . , ξn, . . . be i.i.d. with a dis-
tribution that satisfies

(i) lim
x→∞

P(ξ1 > x)

P(|ξ1| > x)
= 1

2
, (ii) P

(|ξ1| > x
) = x−αL(x),

where α ∈ (0,2) and L : [0,∞) → [0,∞) is a slowly varying function, that is,
limx→∞ L(tx)

L(x)
= 1 for all t > 0. Let Tn = ξ1 + · · · + ξn, An = inf{x : P(|ξ1| > x) ≤

TABLE 2
The values of Dα,γ

α = 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

γ = 0.1 33.13 19.01 14.40 12.17 10.89 10.09 9.55 9.18 8.91
0.2 35.17 20.33 15.50 13.17 11.83 11.00 10.45 10.06 9.79
0.3 38.59 22.43 17.17 14.64 13.20 12.30 11.70 11.30 11.01
0.4 43.94 25.62 19.66 16.80 15.17 14.16 13.49 13.04 12.71
0.5 52.30 30.53 23.45 20.05 18.12 16.92 16.13 15.59 15.21
0.6 65.91 38.43 29.49 25.20 22.76 21.24 20.24 19.55 19.07
0.7 90.04 52.33 40.06 34.16 30.79 28.69 27.31 26.36 25.68
0.8 140.69 81.33 62.00 52.67 47.34 44.00 41.78 40.25 39.16
0.9 298.18 171.06 129.58 109.52 98.02 90.78 85.95 82.58 80.16
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n−1},Bn = nE[ξ11(|ξ1|≤An)]. As n → ∞, (Tn − Bn)/An ⇒ ν, where ν is a sym-

metric stable distribution with characteristic function exp(−α|λ|α
2dα

). In particular,
it follows from the property of stable distribution (see Remark 2.4) that as n → ∞,

(2.5)
(

α

2dα

)− 1
α Tn − Bn

An

⇒ μ,

where μ is a symmetric stable distribution with characteristic function e−|λ|α .

In [22], Theorem 3.7.2, the limit of (i) is a general c ∈ (0,1) rather than 1
2 .

When c �= 1
2 , the limiting stable distribution ν is not symmetric. From the remark

in [22], p. 138, we know that the conditions (i) and (ii) are also necessary for the
above weak convergence to stable law. Similar as studying a Berry–Esseen bound
for a central limit theorem, we need to strengthen (i) and (ii) to get a rate for the
convergence (2.5).

We assume that there exist some A > 0 and two continuous functions M1 :
R+ → R and M2 : R+ → R, with limx→∞ M1(x) = 0 and limx→∞ M2(x) = 0,
such that for all x > A,

(i′) P(ξ1 > x)

P(|ξ1| > x)
= 1 + M1(x)

2
, (ii′) P(|ξ1| > x)

θx−α
= 1 + M2(x),

where θ > 0 is a constant. We note that (i′) and (ii′) are equivalent to the condition
that ξ1 lies in the normal domain of attraction of μ, which is generally stated as
for all x > A,

(2.6) P(ξ1 > x) = c1x
−α(

1 + δ1(x)
)
, P(ξ1 < −x) = c2x

−α(
1 + δ2(x)

)
,

where c1, c2 ≥ 0 with c1 + c2 > 0 and limx→∞ δ1(x) = 0 and limx→∞ δ2(x) = 0;
see [29], p. 350, or [32], Definition 5.1. If δ1 and δ2 both polynomially decay
to 0, then we call ξ1 in the strong normal domain of attraction of μ; see [32],
Definition 5.2. In our case, c1 = c2 = θ

2 .

Denote �n = αθ
2dα

n and bt = �
1
α
n t +Eξ1 for t > 0 and

Rt = 1

2
b−α
t

(
1 + M1(bt )

)(
1 + M2(bt )

)
Eξ1,(2.7)

rt = 1

2
b1−α
t [M1 + M2 + M1M2](bt )

(2.8)

+ 1

2

∫ ∞
bt

s−α[M1 + M2 + M1M2](s)ds.

Our second main theorem, which is essentially an application of Theorem 2.1, is
the following.
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THEOREM 2.6. Let α ∈ (1,2), and let ξ1, . . . , ξn, . . . be i.i.d. with a distri-

bution satisfying the conditions (i′) and (ii′). Write ζn,i = �
− 1

α
n (ξi − Eξi) and

Sn = ζn,1 + · · · + ζn,n, then L(Sn) ⇒ μ with characteristic function e−|λ|α . More-
over, we have

dW

(
L(Sn),μ

) ≤ Dα

α

∫ N

−N

∣∣αKα(t,N) − nK1(t,N)
∣∣ dt +RN,n ∀N > 0,

where

RN,n = Dα,γ �
− γ

α
n E|ξ1 −Eξ1|γ

+ 4dα

δα−1
n

(
1 + δα−1

n

α − 1
+ 1

δn

+ M2(�
1
α
n Nδn)

δn

+
∫ ∞
δn

M2(r�
1
α
n N)

rαδ1−α
n

dr

)
N1−α

∀γ ∈ (0,1),

with δn = 1 − �
− 1

α
n N−1|Eξ1|. In particular, if Eξ1 = 0, we have

RN,n = Dα,γE|ξ1|γ �
− γ

α
n

+ 4dα

(
α + 1

α − 1
+ M2

(
�

1
α
n N

) +
∫ ∞

1

M2(�
1
α
n Nr)

rα
dr

)
N1−α.

(2.9)

It is worthy of stating the following corollary of Theorem 2.6, from which we
can fast determine the order of convergence rates.

COROLLARY 2.7. Assume that the same conditions as in Theorem 2.6 hold.
We have

dW

(
L(Sn),μ

) ≤ Cα

(
n− 2−α

α + N1−α + n1− 1
α N |rN |

+ n1− 1
α

∫
4(A+|Eξ1|)�− 1

α
n ≤|t |≤N

|rt |dt

)
.

We end this section with the following lemma, which will be used from time to
time later.

LEMMA 2.8. Let X be a random variable, for any t > 0 we have

(2.10) E[X1{X>t}] = tP(X > t) +
∫ ∞
t

P(X > r)dr.
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PROOF. Observe by Fubini’s theorem that

E[X1{X>t}] =
∫ ∞

0
E[1{0≤r<X}1{X>t}]dr

=
∫ t

0
E[1{X>t}]dr +

∫ ∞
t

E[1{X>r}]dr,

(2.11)

from which we immediately obtain the inequality in the lemma, as desired. �

3. Three examples. In this section, we shall use our results to study three
examples which have been considered [4, 20, 28, 34], the known literatures only
gave the order of convergence rates in Kolmogorov distance. In contrast, using our
Theorems 2.1 and 2.6, we can obtain explicit bounds for these examples in W1
distance, and fast determine the order of the convergence rates by Corollary 2.7. In
the regime α ∈ (1,2), most of our results are as good as or better than the known
ones.

In the Appendix, we further consider the fourth example which is out of the
scope of normal domain of attraction of stable law. A related example was stud-
ied in [48] and the convergence rate in Kolmogorov distance is (logn)−1. By our

results, we obtain a rate (logn)−1+ 1
α . Because the calculation is very complicated

and long, we will not give an explicit bound but only figure out its leading order in
the Appendix.

EXAMPLE 1 (Pareto distribution case [20, 34]). Assume that ξ1, . . . , ξn, . . . be
i.i.d. with a Pareto distribution with α ∈ (1,2), that is,

P(ξ1 ≥ x) = 1

2|x|α , x ≥ 1, P(ξ1 ≤ x) = 1

2|x|α , x ≤ −1,

that is, ξ1 has a density function p(x):

p(x) = 0, |x| ≤ 1; p(x) = α

2|x|α+1 , |x| > 1.

By Theorem 2.5, we have Bn = 0 and An = n1/α . Denote �n = α
2dα

n and

ζn,i = �
− 1

α
n ξi, i = 1, . . . , n,

Sn weakly converges to a stable distribution μ with characteristic function e−|λ|α .

We can directly apply Theorem 2.6 to get a convergence rate n− 2−α
α , but it is very

instructive to prove this rate by applying Theorem 2.1 directly.
It is straightforward to check that the terms in RN,n are

2
n∑

i=1

E
(|ζn,i |1{|ζn,i |>N}

) = 4dα

α − 1
N1−α,

Dα,γ

n

n∑
i=1

E|ζn,i |γ = αDα,γ

α − γ

(
2dα

α

) γ
α

n− γ
α ,
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thus

RN,n = 8dα

α − 1
N1−α + αDα,γ

α − γ

(
2dα

α

) γ
α

n− γ
α .

It remains to compute the integral term in the bound of Theorem 2.1. Recall (2.3),
when t ≥ 0,

K1(t,N) = E[ζn,11{0≤t≤ζn,1≤N}]

= �
− 1

α
n

∫ �
1/α
n N

�
1/α
n t

xp(x)dx

= α

2�n(α − 1)

[(
t ∨ 1

�
1/α
n

)−α+1
− 1

Nα−1

]
.

(3.1)

By the symmetry property of p(x), we have

K1(t,N) = α

2�n(α − 1)

[(
|t | ∨ 1

�
1/α
n

)−α+1
− 1

Nα−1

]
, t ≤ 0.(3.2)

Hence,
n∑

i=1

∫ N

−N

∣∣∣∣Kα(t,N)

n
− Ki(t,N)

α

∣∣∣∣ dt

=
∫ N

−N

∣∣∣∣ dα

α(α − 1)

(
1

|t |α−1 − 1

Nα−1

)
− nK1(t,N)

α

∣∣∣∣ dt

= dα

α(α − 1)

∫ N

−N

∣∣∣∣ 1

|t |α−1 −
(
|t | ∨ 1

�
1/α
n

)−α+1∣∣∣∣ dt

= 1

2 − α

(
2dα

α

) 2
α

n− 2−α
α .

(3.3)

So, we have

dW

(
L(Sn),μ

) ≤ 8dα

α − 1
N1−α + Dα

2 − α

(
2dα

α

) 2
α

n− 2−α
α

(3.4)

+ αDα,γ

α − γ

(
2dα

α

) γ
α

n− γ
α .

Since N is arbitrary, let N → ∞, we get

dW

(
L(Sn),μ

) ≤ Dα

2 − α

(
2dα

α

) 2
α

n− 2−α
α

(3.5)

+ αDα,γ

α − γ

(
2dα

α

) γ
α

n− γ
α ∀γ ∈ (0,1).
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TABLE 3
Exact bounds of dW (L(Sn),μ) with n = 106

α = 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

γ = 0.1 9.906 6.245 5.121 4.636 4.424 4.399 4.588 5.114 6.174
0.2 3.176 2.213 1.975 1.925 1.970 2.112 2.418 3.030 4.154
0.3 1.066 0.818 0.792 0.833 0.921 1.087 1.407 2.032 3.177
0.4 0.377 0.317 0.333 0.380 0.462 0.617 0.926 1.544 2.694
0.5 0.142 0.131 0.149 0.186 0.255 0.396 0.692 1.300 2.451
0.6 0.059 0.058 0.073 0.101 0.160 0.289 0.576 1.177 2.327
0.7 0.027 0.029 0.040 0.063 0.115 0.238 0.518 1.114 2.263
0.8 0.016 0.018 0.026 0.046 0.095 0.214 0.490 1.084 2.232
0.9 0.014 0.015 0.023 0.042 0.091 0.210 0.487 1.081 2.230

Let us compare our result with the known results in literatures. The reference
[34] gave a convergence rate:

dKol
(
L(Sn),μ

) ≤ Cα

{
n− 2−α

α , α ∈ (1,2),

n−1, α ∈ (0,1],
where an exact value of Cα was not given.

When α ∈ (1,2), the authors of [20] obtained a rate n− 2−α
d+α for d dimensional

stable law in total variation distance and conjectured that the rate can be improved

to n− 2−α
α in L1 or total variation distance. Our result gives a positive answer to

their conjecture for the L1 distance case when d = 1.
Table 3 gives exact bounds of dW(L(Sn),μ) as n = 106 according to (3.5),

which vary according to α and γ . Due to the lack of concentration phenomena in
heavy detailed random variables sum, in simulations one has to take large samples
(often more than 106) to observe the convergence. [34], Section 5, only simulated
the limiting behavior of E|Sn| for α = 1.5, the convergence can be well observed
only after the sample size reaches 106.

EXAMPLE 2 (Convergence rate of Pareto densities with modified tails [34], Sec-
tion 3, [4], Appendix B). In [34], Section 3, a sequence of i.i.d. random variables
(ξn)n≥1 with the following density were considered:

(3.6) p(x) = A

|x|1+α
+ B

|x|1+β
for |x| > a, p(x) = 0 for |x| ≤ a,

where 0 < α < 2, α < β , A > 0 and B > 0. When β > 2α, it was proved that
n−1/α ∑n

i=1 ξi converges to a stable distribution ν in Kolmogorov distance with a

rate n− 2−α
α for α ∈ (1,2) and a rate n−1 for α ∈ (0,1]. When β ∈ (α,2α), the rate

is n−min(
β
α
−1, 2−α

α
) for β �= 2 and n− 2−α

α logn for β = 2; see [34], (3.6), Table 1.
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We now determine an explicit bound for dW(L(Sn),μ) by Theorem 2.6. With-
out loss of generality, we assume a = 1 (otherwise take ξ̃i = a−1ξi ), and thus have

(3.7) p(x) = A

2|x|1+α
+ B

2|x|1+β
for |x| > 1, p(x) = 0 for |x| ≤ 1,

with A
α

+ B
β

= 1 and β ∈ (α,∞). We can easily determine θ = A
α

, �n = A
2dα

n and

Sn = �
− 1

α
n

∑n
i=1 ξi and

M1(x) = 0, M2(x) = (Bα)(Aβ)−1x−(β−α), x ≥ 1.

To use Theorem 2.6, we need to compute nKα(t,N) and RN,n therein. By a
straightforward calculation, we have

nK1(t,N) = dα

α − 1

((|t | ∨ �
− 1

α
n

)1−α − N1−α)

+ Bn�
− β

α
n

2(β − 1)

((|t | ∨ �
− 1

α
n

)1−β − N1−β)
.

By a similar computation as in Example 1, when β �= 2,

∫ N

−N

∣∣αKα(t,N) − nK1(t,N)
∣∣ dt = 2dα�

α−2
α

n

2 − α
+ 2Adα

B(β − 2)

(
�

α−2
α

n − �
α−β

α
n N2−β);

when β = 2,

∫ N

−N

∣∣αKα(t,N) − nK1(t,N)
∣∣ dt = 2dα�

α−2
α

n

2 − α
+ 2Adα

B
�

α−2
α

n

[
logN + 1

α
log�n

]
.

By (2.9), we immediately obtain

RN,n = Dα,γ

(
A

α − γ
+ B

β − γ

)
�
− γ

α
n

(3.8)

+ 4dα

[
α + 1

α − 1
+ Bα

A(β − 1)
�

α−β
α

n Nα−β

]
N1−α.

Combining the previous relations, we immediately obtain an explicit bound for
dW(L(Sn),μ), which has a leading term and a remainder R(n), both having ex-
plicit values. More precisely, (note �n = A

2dα
n), we have

(1) When β > 2, take N → ∞,

dW

(
L(Sn),μ

) ≤ 2dαDα

α

(
1

2 − α
+ A

B(β − 2)

)
�
− 2−α

α
n +R(n)

with

R(n) = Dα,γ

(
A

α − γ
+ B

β − γ

)
�
− γ

α
n .
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(2) When β = 2, take N = �
q
n with q ≥ 2−α

α(α−1)
being arbitrary,

dW

(
L(Sn),μ

) ≤ 2dαDαA(αq + 1)

α2B
�
− 2−α

α
n log�n +R(n)

with

R(n) = 2dαDα

(2 − α)α
�
− 2−α

α
n + Dα,γ

(
A

α − γ
+ B

2 − γ

)
�
− γ

α
n

+ 4dα

(
α + 1

α − 1
�−(α−1)q
n + αB

A
�
− 2−α

α
−q

n

)
.

(3) When α < β < 2, take N = �
q
n with q = β−α

α(α+1−β)
being arbitrary,

dW

(
L(Sn),μ

) ≤ 2dα

[
Dα

(2 − β)α
+ 2(α + 1)

α − 1

]
�
− (β−α)(α−1)

α(α+1−β)
n +R(n)

with

R(n) = 2dα

(
1

2 − α
− A

(2 − β)B

)
�
− 2−α

α
n + Dα,γ

(
A

α − γ
+ B

2 − γ

)
�
− γ

α
n

+ 4Aαdα

B(β − 1)
�
− 2α+2+αβ−3β−α2

α(α+1−β)
n .

Note that the case (1) covers the example considered in [4], Appendix B, in
which β = 1 + α. By a standard argument, the bound in (1) implies

dKol
(
L(Sn),μ

) ≤ Cn− 2−α
2α ,

which is better than the rate n− 1
2 (1− α

2 ) in [4].
We can consider a more general distribution:

P(ξ1 > x) = A

2|x|α + B1(x)

2|x|β , x > a,

P(ξ1 < x) = A

2|x|α + B2(x)

2|x|β , x < −a,

(3.9)

where α ∈ (1,2), α < β , a > 0, B1(x) and B2(x) are both continuous functions
such that −L ≤ B1(x),B2(x) ≤ L for all x ∈ R and some constant L > 0. Take
θ = A and �n = θα

2dα
n, we have

Sn ⇒ μ with Sn = �
− 1

α
n

n∑
i=1

(ξi −Eξi).

By Theorem 2.6, we can obtain an explicit bound for dW(L(Sn),μ) by a similar
but much more complicated calculation. Here, we would like to omit the detailed
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FIG. 1. The optimal choice of γ with n = 106.

calculation but get the order of the rate. More precisely, by Corollary 2.7 we have

dW

(
L(Sn),μ

) ≤ C
(
n

α−2
α + N1−α + N2−βn1− β

α
)
, β �= 2,

dW

(
L(Sn),μ

) ≤ C
(
n

α−2
α + N1−α + n1− 2

α logn + n1− 2
α logN

)
, β = 2,

where C depends on α,β, a,L,A,B . Hence,
(i) When β > 2, let N → ∞, we get

dW
(
L(Sn),μ

) ≤ Cn− 2−α
α .

(ii) When β = 2, taking N = n
2−α

α(α−1) , we get

dW
(
L(Sn),μ

) ≤ Cn− 2−α
α logn.

(iii) When α < β < 2, taking N = n
β−α

α(1+α−β) , we have

dW

(
L(Sn),μ

) ≤ Cn
− (α−1)(β−α)

α(1+α−β) .

As seen from the results in the previous two examples, the γ in the bounds of
dW(L(Sn),μ) may vary from 0 to 1; its optimal choice depends on α and n. When
n = 106, we plot Figure 1 to demonstrate the optimal γ as a function of α for
α = 1 + j/100 with j ∈ {1, . . . ,99} for the following four cases: (1) Example 1
(red line); (2) Example 2 with β = 4 and A = B = αβ

α+β
(green line); (3) Example 2

with A = B and β = 2 (blue line); (4) Example 2 with A = B and β = α + 0.1
(black line).
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EXAMPLE 3 (An example of Hall [28]). Let Z1, . . . ,Zn, . . . be a sequence of
i.i.d. random variables such that Z1 has a density function f (x) in the interval
−ε < x < ε for some ε > 0. For further use, we denote f (x) = a0 + h1(x) for
x ∈ [0, ε) and f (x) = b0 + h2(|x|) for x ∈ (−ε,0] where a0 > 0, b0 > 0, h1, h2

are both continuous positive functions from [0, ε) to R
+. Let Xi = sgn(Zi)|Zi |− 1

α ,
Hall studied the convergence rate of the following sum:

(3.10) n− 1
α

[
n∑

i=1

Xi − kn(α)

]
,

where kn(α) is some number and 0 < α < 2, he proved the following.

THEOREM 3.1 (Theorem 3 of [28]). Suppose 1 < α < 2, f (x) = a0 + h1(x)

for x ∈ [0, ε) and f (x) = b0 + h2(|x|) for x ∈ (−ε,0] where |h1(x)| + |h2(x)| ≤
b|x|c for some c > 0 with α(c+1) < 2, that is, 0 < c < 2−α

α
, then n− 1

α (
∑n

i=1 Xi −
nEX1) weakly converges to a stable distribution with the distribution function
A(x). Moreover,

(3.11) sup
x∈R

∣∣∣∣∣P
[
n− 1

α

(
n∑

i=1

Xi − nEX1

)
≤ x

]
− A(x)

∣∣∣∣∣ = O
(
n−c).

As an application of the case (3.7) above, we can study a special case of (3.10)
and give an explicit bound of the convergence in W1 distance. More precisely,
let α ∈ (1,2), we assume a0 = b0 = a and h1(x) = h2(x) = bxc for [0,1], by a
straightforward calculation,

P(X1 > x) = 2a

2xα
+

2b
c+1

2xα(c+1)
, x > 1;

P(X1 < x) = 2a

2|x|α +
2b

c+1

2|x|α(c+1)
, x < −1.

We have the following theorem about explicit bound of convergence rate in W1
distance.

THEOREM 3.2. Let the above assumptions hold. Take A = 2a, B = 2b
c+1 , β =

α(c + 1), �n = Aα
2dα

n and Sn = �
− 1

α
n

∑n
i=1 ξi , we have Sn ⇒ μ with μ a stable

distribution having characteristic function e−|λ|α . Moreover, dW(L(Sn),μ) has an
explicit bound the same as the cases (1)–(3) in Example 2. More precisely,

• If β > 2, that is, c > 2−α
α

, the bound of the case (1) holds with leading order

n− 2−α
α .

• If β = 2, that is, c = 2−α
α

, the bound of the case (2) holds with leading order

n− 2−α
α logn.
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• If α < β < 2, that is, c ∈ (0, 2−α
α

), the bound of the case (3) holds with leading

order n− (α−1)c
1−αc .

We can give the exact values of coefficients in Theorem 3.2 and those of
dW(L(Sn),μ), the results are the same as those in Example 2, thus we omit them.
Similar as the case (3.9) in the previous example, we can apply Theorem 2.6
to more general distributions and get an explicit bound for the corresponding
dW(L(Sn),μ) by much more complicated calculations. Here, we only use Corol-
lary 2.7 to give the order of the convergence rate as the following.

THEOREM 3.3. Suppose 1 < α < 2, a0 = b0 = a and |h1(x)| + |h2(x)| ≤
b|x|c for x ∈ [0, ε) with b > 0, ε > 0, c > 0. Let �n = aα

dα
n, then Sn :=

�
− 1

α
n (

∑n
i=1 Xi − nEX1) weakly converges to a stable distribution μ with char-

acteristic function e−|λ|α . Moreover,

(3.12) dW

(
L(Sn),μ

) ≤ C

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

n− 2−α
α , c >

2 − α

α
,

n− 2−α
α logn, c = 2 − α

α
,

n− (α−1)c
1−αc , 0 < c <

2 − α

α
.

4. Proof of Theorem 2.1: Stein’s method.

4.1. Stein’s equation and its regularity estimates. Let us first recall the def-
inition of fractional Laplacian �

α
2 with α ∈ (0,2); see, for instance, [36]. Let

f :R→R be a measurable function, for any x ∈ R, �
α
2 f (x) is defined by

(4.1) �
α
2 f (x) = dα

(
p.v.

∫
R

f (x + y) − f (x)

|y|1+α
dy

)
,

provided the principal value p.v.
∫
R

f (x+y)−f (x)

|y|1+α dy exists, where dα =
(
∫ ∞
−∞

1−cosy

|y|1+α dy)−1 and

p.v.

∫
R

f (x + y) − f (x)

|y|1+α
dy = lim

r↓0

∫
R\(−r,r)

f (x + y) − f (x)

|y|1+α
dy.

The definition (4.1) with a principle value is not convenient for use, if some suit-
able regularity of f is further assumed, �α/2f (x) can be rewritten in a form with-
out limit.

When α > 1, if f ′ and f ′′ are both bounded, then �α/2f (x) is well defined for
all x ∈ R and can be rewritten as

(4.2) �
α
2 f (x) = dα

∫
R

f (x + y) − f (x) − yf ′(x)

|y|1+α
dy.
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Indeed, using Taylor’s expansions, we easily see that∣∣∣∣
∫
R

f (x + y) − f (x) − yf ′(x)

|y|1+α
dy

∣∣∣∣
≤

∣∣∣∣
∫
|y|≤1

1
2f ′′(x + θ1y)y2

|y|1+α
dy

∣∣∣∣
+

∣∣∣∣
∫
|y|>1

f ′(x + θ2y)y − f ′(x)y

|y|1+α
dy

∣∣∣∣ < ∞,

(4.3)

where θ1, θ2 ∈ (0,1). On the other hand,∫
R

f (x + y) − f (x) − yf ′(x)

|y|1+α
dy

= lim
r↓0

∫
R\(−r,r)

f (x + y) − f (x) − yf ′(x)

|y|1+α
dy

= lim
r↓0

∫
R\(−r,r)

f (x + y) − f (x)

|y|1+α
dy.

(4.4)

In our paper, thanks to that the solution f of Stein’s equation has bounded first-
and second- order derivatives, we will use the form (4.2) to avoid the limit in (4.1).
Moreover, �

α
2 f (x) can be rewritten as (4.20) and (4.21) below, these two new

formulations will play an important role in our analysis.
It is well known that �α/2 is the infinitesimal generator of the standard 1d sym-

metric α-stable process (Zt )t≥0 [2] with Z0 = 0, the distribution of Zt has a den-
sity p(t, x) satisfying

(4.5)
∫ ∞
−∞

eiλxp(t, x)dx = e−t |λ|α ,

it is well known that p(t, x) is uniquely determined by its characteristic function
[22], Section 3.3.1. Note that p(t, x) is called Green’s function of symmetric pro-
cess and satisfies the differential equation:

(4.6) ∂tp(t, x) = �α/2p(t, x), p(0, x) = δ0(x),

where δ0(x) is Dirac function at 0, that is, δ0(x) = 0 for all x �= 0 and∫ ∞
−∞ δ0(x)dx = 1; see [33], (1.8), with A ≡ 0 and d = 1 therein.

Let us now consider the Orenstein–Uhlenbeck α-stable process as the follow-
ing:

(4.7) dXt = − 1

α
Xt dt + dZt, X0 = x,

we denote by Xt(x) the solution to the SDE (4.7). Its infinitesimal generator is

Af (x) = �
α
2 f (x) − 1

α
xf ′(x) ∀f ∈ S(R,R),
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where S(R,R) is the Schwartz function space, the set of all smooth functions
whose derivatives are rapidly decreasing [46]. The domain D(A) of the operator
A is the closure of S(R,R) by a standard procedure depending on the underlying
function space that we consider [42], Chapter 2.

The following characterization theorem of stable distribution is well known; see
[2], Proposition 3.2, for instance.

THEOREM 4.1. Let Y be a random variable. If the following equation holds:

E
[
�

α
2 f (Y )

] − 1

α
E

[
Yf ′(Y )

] = 0 ∀f ∈ S(R,R),(4.8)

where α ∈ (0,2), then Y has a symmetric α-stable distribution μ with the charac-
teristic function e−|λ|α . Moreover, the distribution of Y is uniquely determined by
(4.8).

PROOF. By [2], Proposition 3.2, with a1 = 0 and a2 = αdα in (3.6) therein
(note that the linear operator in [2] is L = αA), we get μ is the unique invariant
measure of A in the sense that∫

R

Af (x)μ(dx) = 0.

See [2], Definition 3.1. This means that Y has a distribution μ and this distribution
is uniquely determined. �

For any Lipschitz function h : R→R, Stein’s equation is

(4.9) �
α
2 f (x) − 1

α
xf ′(x) = h(x) − μ(h),

that is,

(4.10) Af (x) = h(x) − μ(h).

It is also known that equation (4.10) is called a Poisson equation; we can represent
its solution by the stochastic process generated by A. More precisely,

LEMMA 4.2. Equation (4.9) has a solution

f (x) = −
∫ ∞

0

∫ ∞
−∞

p
(
1 − e−t , y − e− t

α x
)(

h(y) − μ(h)
)

dy dt,(4.11)

where p(·, ·) is determined by its characteristic function (4.5).

We will leave the proof of Lemma 4.2 later. With the help of this lemma, we
shall prove the following regularity results of f , which plays a crucial role in the
proof of Theorem 2.1.
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PROPOSITION 4.3. Let f be the solution to equation (4.9) defined by (4.11).
We have the following estimates:∥∥f ′∥∥ ≤ α

∥∥h′∥∥,(4.12)

∥∥f ′′∥∥ ≤ 4

π

√
2α + 1

α
B

(
α − 1

α
,

2

α

)∥∥h′∥∥,(4.13)

where ‖ · ‖ is the uniform norm, that is, ‖g‖ = supx∈R |g(x)| for any bounded
measurable function g.

PROPOSITION 4.4. For any γ ∈ (0,1), we have

sup
x �=y

|�α
2 f (x) − �

α
2 f (y)|

|x − y|γ
(4.14)

≤ dα

α

[
16

π(2 − α)

√
α + 3

α
+ 16

π(α − 1)

√
2α + 1

α

]
B

(
1 − γ

α
,
γ + α

α

)∥∥h′∥∥.
4.2. Proof of Theorem 2.1. Recall that ζn,1, . . . , ζn,n are a sequence of inde-

pendent random variables with Eζn,i = 0 and E|ζn,i | < ∞ for 1 ≤ i ≤ n. Recall
the notation

Sn = ζn,1 + · · · + ζn,n;
Sn(i) = Sn − ζn,i, 1 ≤ i ≤ n.

LEMMA 4.5. We have

(4.15) E
[
Snf

′(Sn)
] =

n∑
i=1

∫ N

−N
E

[
Ki(t,N)f ′′(Sn(i) + t

)]
dt +R1 ∀N > 0,

where Ki(t,N) = E[ζn,i1{0≤t≤ζn,i≤N} − ζn,i1{−N≤ζn,i≤t≤0}], and

R1 =
n∑

i=1

E
{
ζn,i

[
f ′(Sn) − f ′(Sn(i)

)]
1{|ζn,i |>N}

} ∀N > 0.(4.16)

PROOF. By the independence and Eζn,i = 0 for each i, we have

E
[
Snf

′(Sn)
] =

n∑
i=1

E
[
ζn,if

′(Sn)
]

=
n∑

i=1

E
{
ζn,i

[
f ′(Sn) − f ′(Sn(i)

)]} =
n∑

i=1

I (i) +R1,

(4.17)
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where

I (i) = E
{
ζn,i

[
f ′(Sn) − f ′(Sn(i)

)]
1{|ζn,i |≤N}

}
,

R1 =
n∑

i=1

E
{
ζn,i

[
f ′(Sn) − f ′(Sn(i)

)]
1{|ζn,i |>N}

}
.

(4.18)

For I (i), we have

I (i) = E
{
ζn,i

[
f ′(Sn) − f ′(Sn(i)

)]
1{|ζn,i |≤N}

}
= E

{
ζn,i

[∫ ζn,i

0
f ′′(Sn(i) + t

)
dt

]
1{|ζn,i |≤N}

}

= E

{
ζn,i

[∫ ∞
−∞

f ′′(Sn(i) + t
)
(1{0≤t≤ζn,i} − 1{ζn,i≤t≤0})dt

]
1{|ζn,i |≤N}

}
(4.19)

=
∫ ∞
−∞

E
[
f ′′(Sn(i) + t

)
(1{0≤t≤ζn,i} − 1{ζn,i≤t≤0})ζn,i1{|ζn,i |≤N}

]
dt

=
∫ ∞
−∞

E
[
f ′′(Sn(i) + t

)]
E

[
(1{0≤t≤ζn,i} − 1{ζn,i≤t≤0})ζn,i1{|ζn,i |≤N}

]
dt

=
∫ N

−N
Ki(t,N)E

[
f ′′(Sn(i) + t

)]
dt,

where the last second inequality is by the independence of Sn(i) and ζn,i .
Combining all the relations above, we immediately get the equality in the

lemma, as desired. �

LEMMA 4.6. For all x ∈R, we have

(4.20) �
α
2 f (x) = dα

α

∫ ∞
−∞

f ′(x + z) − f ′(x)

sgn(z)|z|α dz.

Moreover, for all x ∈ R,

(4.21) �
α
2 f (x) =

∫ N

−N
Kα(t,N)f ′′(x + t)dt +R2(x),

where N > 0 is an arbitrary number and

Kα(t,N) = dα

α(α − 1)

(|t |1−α − N1−α)
,

R2(x) = dα

α

∫
|z|>N

f ′(x + z) − f ′(x)

sgn(z)|z|α dz.
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PROOF. We observe

�
α
2 f (x) = dα

∫
R

f (x + y) − f (x) − yf ′(x)

|y|1+α
dy

=
∫
R

dα

|y|1+α

∫ y

0

(
f ′(x + z) − f ′(x)

)
dz dy

=
∫ ∞

0

dα

y1+α

∫ y

0

(
f ′(x + z) − f ′(x)

)
dz dy

+
∫ 0

−∞
dα

(−y)1+α

∫ y

0

(
f ′(x + z) − f ′(x)

)
dz dy.

It is easy to see that

∫ ∞
0

dα

y1+α

∫ y

0

(
f ′(x + z) − f ′(x)

)
dz dy

=
∫ ∞

0

(
f ′(x + z) − f ′(x)

) ∫ ∞
z

dα

y1+α
dy dz

= dα

α

∫ ∞
0

f ′(x + z) − f ′(x)

zα
dz.

Similarly,

∫ 0

−∞
dα

(−y)1+α

∫ y

0

(
f ′(x + z) − f ′(x)

)
dz dy = −dα

α

∫ 0

−∞
f ′(x + z) − f ′(x)

(−z)α
dz.

Combining the previous two relations, we immediately obtain (4.20).
Now we write (4.20) as

�
α
2 f (x) = J1(x) −J2(x) +R2(x),

with

J1(x) = dα

α

∫ N

0

f ′(x + z) − f ′(x)

zα
dz,

J2(x) = dα

α

∫ 0

−N

f ′(x + z) − f ′(x)

(−z)α
dz,

R2(x) = dα

α

∫ ∞
N

f ′(x + z) − f ′(x)

zα
dz

− dα

α

∫ −N

−∞
f ′(x + z) − f ′(x)

(−z)α
dz.

(4.22)
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Moreover,

J1(x) =
∫ N

0

dα

αzα

∫ z

0
f ′′(x + t)dt dz

=
∫ ∞

0

∫ z

0

dα

αzα
f ′′(x + t)1{0≤t≤z≤N} dt dz

=
∫ ∞

0

∫ ∞
t

dα

αzα
1{0≤t≤z≤N} dzf ′′(x + t)dt

= dα

α(α − 1)

∫ N

0

(
t−α+1 − N−α+1)

f ′′(x + t)dt.

(4.23)

Similarly, we have

J2(x) = −dα

α(α − 1)

∫ 0

−N

[
(−t)−α+1 − N−α+1]

f ′′(x + t)dt.(4.24)

Combining the above relations of J1(x),J2(x) and R2(x), we immediately con-
clude the proof. �

Combining Lemmas 4.5 and 4.6, we prove the following.

LEMMA 4.7. The following equality holds:

E

[
�

α
2 f (Sn) − 1

α
Snf

′(Sn)

]

=
n∑

i=1

∫ N

−N
E

[(Kα(t,N)

n
− Ki(t,N)

α

)
f ′′(Sn(i) + t

)]
dt

− 1

α
R1 + 1

n

n∑
i=1

E
[
R2

(
Sn(i)

)] +R3,

(4.25)

where R1 and R2(x) are defined in Lemmas 4.5 and 4.6, respectively, and

R3 = 1

n

n∑
i=1

E
[
�

α
2 f (Sn) − �

α
2 f

(
Sn(i)

)]
.

PROOF. Observe

E
[
�

α
2 f (Sn)

] − 1

α
E

[
Snf

′(Sn)
] = 1

n

n∑
i=1

E
[
�

α
2 f

(
Sn(i)

)] − 1

α
E

[
Snf

′(Sn)
] +R3.
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By Lemmas 4.5 and 4.6, we have

1

n

n∑
i=1

E
[
�

α
2 f

(
Sn(i)

)] − 1

α
E

[
Snf

′(Sn)
]

= 1

n

n∑
i=1

E

{∫ N

−N
Kα(t,N)f ′′(Sn(i) + t

)
dt +R2

(
Sn(i)

)}

− 1

α

n∑
i=1

∫ N

−N
E

[
Ki(t,N)f ′′(Sn(i) + t

)]
dt − 1

α
R1

=
n∑

i=1

∫ N

−N
E

[(Kα(t,N)

n
− Ki(t,N)

α

)
f ′′(Sn(i) + t

)]
dt

+ 1

n

n∑
i=1

E
[
R2

(
Sn(i)

)] − 1

α
R1.

Hence, the lemma is proved. �

PROOF OF THEOREM 2.1. By equation (4.9), we have

E
[
h(Sn)

] − μ(h) = E

[
�

α
2 f (Sn) − 1

α
Snf

′(Sn)

]
.

To bound |E[h(Sn)] − μ(h)|, by Lemma 4.7, it suffices to bound the four terms on
the right-hand side of (4.25). By (4.12), we have

R1 ≤ 2α
∥∥h′∥∥ n∑

i=1

E
[|ζn,i |1{|ζn,i |>N}

]
,

1

n

n∑
i=1

E
∣∣R2

(
Sn(i)

)∣∣ ≤ 2dα

∥∥h′∥∥∫
|z|>N

1

|z|α dz ≤ 4dα

α − 1

∥∥h′∥∥N1−α.

For the integral term, by (4.13) we have∣∣∣∣∣
n∑

i=1

∫ N

−N
E

[(Kα(t,N)

n
− Ki(t,N)

α

)
f ′′(Sn(i) + t

)]
dt

∣∣∣∣∣
≤ ∥∥f ′′∥∥ n∑

i=1

∫ N

−N

∣∣∣∣Kα(t,N)

n
− Ki(t,N)

α

∣∣∣∣ dt

≤ Dα

∥∥h′∥∥ n∑
i=1

∫ N

−N

∣∣∣∣Kα(t,N)

n
− Ki(t,N)

α

∣∣∣∣ dt.
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Finally, for R3, by Proposition 4.4, for all γ ∈ (0,1) we have

|R3| ≤ 1

n

n∑
i=1

∣∣E[
�

α
2 f (Sn) − �

α
2 f

(
Sn(i)

)]∣∣

≤ 1

n

n∑
i=1

E

[ |�α
2 f (Sn) − �

α
2 f (Sn(i))|

|ζn,i |γ |ζn,i |γ
]

≤ Dα,γ

n

n∑
i=1

E|ζn,i |γ
∥∥h′∥∥.

Combining the above estimates, we immediately obtain the inequality in the theo-
rem, as desired. �

5. Proofs of Theorem 2.6 and Corollary 2.7. Let us first prove Theorem 2.6
and then Corollary 2.7, and as stressed before, Corollary 2.7 can help us to fast
determine the leading order of convergence rates, while Theorem 2.6 can give us
an explicit bounds for dW(L(Sn),μ).

PROOF OF THEOREM 2.6. It suffices to prove the inequality in the theorem
by bounding the integral and the remainder RN,n in Theorem 2.1. For the integral
term, we have

n∑
i=1

∫ N

−N

∣∣∣∣Kα(t,N)

n
− Ki(t,N)

α

∣∣∣∣ = 1

α

∫ N

−N

∣∣αKα(t,N) − nK1(t,N)
∣∣ dt.(5.1)

Let us first estimate RN,n, in which we need to bound the two sums. Recall

ζn,1 = �
− 1

α
n (ξ1 −Eξ1), for the first sum, by Lemma 2.8,

n∑
i=1

E
(|ζn,i |1{|ζn,i |>N}

)

= n�
− 1

α
n

[
�

1
α
n NP

(|ξ1 −Eξ1| > �
1
α
n N

) +
∫ ∞
�

1
α
n N

P
(|ξ1 −Eξ1| > r

)
dr

]

≤ nNP
(|ξ1| > �

1
α
n N − |Eξ1|) + n�

− 1
α

n

∫ ∞
�

1
α
n N−|Eξ1|

P
(|ξ1| > r

)
dr

= nNP
(|ξ1| > �

1
α
n Nδn

) + n�
− 1

α
n

∫ ∞
�

1
α
n Nδn

P
(|ξ1| > r

)
dr,

where δn = 1 − �
− 1

α
n N−1|Eξ1|. This and the assumption (ii′) yields

nNP
(|ξ1| > �

1
α
n Nδn

) = nN
θ(1 + M2(�

1
α
n Nδn))

(�
1
α
n Nδn)α

= 2dα(1 + M2(�
1
α
n Nδn))

αδα
nNα−1
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and

n�
− 1

α
n

∫ ∞
�

1
α
n Nδn

P
(|ξ1| > r

)
dr = n�

− 1
α

n
θ(�

1
α
n Nδn)

−α+1

(α − 1)
+ n�

− 1
α

n

∫ ∞
�

1
α
n Nδn

M2(r)

rα
dr

= 2dα(δnN)1−α

(α − 1)α
+ 2dα

αNα−1

∫ ∞
δn

M2(r�
1
α
n N)

rα
dr.

Therefore,
n∑

i=1

E
(|ζn,i |1{|ζn,i |>N}

)

≤ 2dα

αδα−1
n

(
1

α − 1
+ 1

δn

+ M2(�
1
α
n Nδn)

δn

+
∫ ∞
δn

M2(r�
1
α
n N)

rαδ1−α
n

dr

)
N1−α.

Moreover, the other sum can be bounded as follows: we immediately obtain

Dα,γ

n

n∑
i=1

E|ζn,i |γ = Dα,γ �
− γ

α
n E|ξ1 −Eξ1|γ .

Combining all the estimates with the inequality in Theorem (2.1), we immediately
obtain the estimate in the theorem, as desired. �

It is easy to verify that (i′) and (ii′) imply

P(ξ1 > x) = 1 + M1(x)

2

(
1 + M2(x)

)
θx−α, x > A;

P(ξ1 < x) = 1 − M1(|x|)
2

(
1 + M2

(|x|))θ |x|−α, x < −A.

(5.2)

PROOF OF COROLLARY 2.7. By Theorem 2.6 and noticing �n = αθ
2dα

n, we
have

RN,n ≤ Cα

[
n− 2−α

α + N1−α]
.

It remains to bound the integral∫ N

−N

∣∣αKα(t,N) − nK1(t,N)
∣∣ dt.

Recall the definitions of Kα(t,N), K1(t,N) and ζn,1, we have∫
|t |≤4(A+|Eξ1|)�− 1

α
n

∣∣αKα(t,N) − nK1(t,N)
∣∣ dt

≤ dα

α − 1

∫
|t |≤4(A+|Eξ1|)�− 1

α
n

1

|t |α−1 dt + n

∫
|t |≤4(A+|Eξ1|)�− 1

α
n

E|ζn,1|dt

≤ Cαn− 2−α
α .
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Now let us estimate∫
|t |≥4(A+|Eξ1|)�− 1

α
n

∣∣αKα(t,N) − nK1(t,N)
∣∣ dt.

For t > 4(A + |Eξ1|)�− 1
α

n , we have

αKα(t,N) − nK1(t,N) = I1 − I2,

where bt = �
1
α
n t +Eξ1 and

I1 = dα

α − 1
t1−α − n�

− 1
α

n

[
E(ξ11{ξ1≥bt }) − P(ξ1 ≥ bt )Eξ1

]
,

I2 = dα

α − 1
N1−α − n�

− 1
α

n

[
E(ξ11{ξ1≥bN }) − P(ξ1 ≥ bN)Eξ1

]
.

By Lemma 2.8 and (5.2), we have

E[ξ11{ξ1>bt }] = btP(ξ1 > bt) +
∫ ∞
bt

P(ξ1 > r)dr = αθ

2(α − 1)
b1−α
t + rt ,

where rt is defined by (2.8). Therefore,

I1 = dα

α − 1
t1−α − αθn�

− 1
α

n

2(α − 1)
b1−α
t − n�

− 1
α

n rt + n�
− 1

α
n P(ξ1 > bt)Eξ1

= dα

α − 1
t1−α − dα

α − 1
t1−α(

1 + t−1�
− 1

α
n Eξ1

)1−α − n�
− 1

α
n rt + n�

− 1
α

n Rt ,

where Rt is defined by (2.7).

As t > 4(A+|Eξ1|)�− 1
α

n , we have |t−1�
− 1

α
n Eξ1| ≤ 1

4 . By Taylor expansion |(1+
x)1−α − 1| ≤ 4x with |x| ≤ 1

4 and the easy fact |Rt | ≤ Ct−αn−1, we get

|I1| ≤ Cα

(
t−αn− 1

α + n1− 1
α |rt |).

Similarly, we have

|I2| ≤ Cα

(
N−αn− 1

α + n1− 1
α |rN |).

Hence,∫
t>4(A+|Eξ1|)�− 1

α
n

∣∣∣∣ dα

α − 1

(
1

|t |α−1 − 1

Nα−1

)
− nK1(t,N)

∣∣∣∣ dt

≤ Cα

(
n− 2−α

α + N1−αn− 1
α + n1− 1

α

∫
t>4(A+|Eξ1|)�− 1

α
n

|rt |dt + n1− 1
α N |rN |

)
.
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By the same argument, we get∫
t<−4(A+|Eξ1|)�− 1

α
n

∣∣∣∣ dα

α − 1

(
1

|t |α−1 − 1

Nα−1

)
− nK1(t,N)

∣∣∣∣ dt

≤ Cα

(
n− 2−α

α + N1−αn− 1
α + n1− 1

α

∫
t<−4(A+|Eξ1|)�− 1

α
n

|rt |dt + n1− 1
α N |rN |

)
.

Combining the previous two inequalities, we get the inequality in the corollary.
�

6. Proofs of Lemma 4.2 and Propositions 4.3 and 4.4. Before proving the
lemma and propositions, we first list some well-known results about symmetric
α-stable process and �α/2 that we shall use. It is easy to verify by the definition of
�α/2 that if z = x − y, then

(6.1) �α/2
x f (x − y) = �α/2

y f (x − y) = �α/2
z f (z),

where �
α/2
x means that the operator �α/2 acts on the variable x. Similarly, for

z = cx for some constant c ∈ R, we have

(6.2) �α/2
x f (cx) = |c|α�α/2

z f (z).

Recall that p(t, x) is the transition probability density of standard symmetric α-
stable process Zt , it is well known that

(6.3) p(t, x) = t−1/αp
(
1, t−1/αx

)
, t > 0, x ∈ R.

We have the following estimate.

LEMMA 6.1. Let p(1, x) be the transition probability density of Z1, we have

∣∣∂xp(1, x)
∣∣ ≤ 1

απ
,

∣∣∂xp(1, x)
∣∣ ≤ 2α + 1

π

1

x2 ;
∣∣∂2

xp(1, x)
∣∣ ≤ 2

απ
,

∣∣∂2
xp(1, x)

∣∣ ≤ 2α + 6

π

1

x2 .

PROOF. The proof is based on the inverse Fourier transform and will be given
in the Appendix. �

REMARK 6.2. A sharp heat kernel estimate of p(1, x) is as the following
([18], (1.3) and [18], (2.11)):

(6.4) ∂k
xp(1, x) ≤ Ck,α

(1 + |x|)α+1+k
, k ∈ N∪ {0},

but exact values of the above constants Ck,α are often difficult to be found. See
[16] for more details about heat kernel estimates of stable-type processes.
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6.1. Proof of Lemma 4.2.

PROOF OF LEMMA 4.2. Note that μ has a density p(1, x), by the property
p(t, x) = t−1/αp(1, t−1/αx) and a change of variable, we have∫ ∞

−∞
p

(
1 − e−t , y − e− t

α x
)(

h(y) − μ(h)
)

dy

=
∫
R

p
(
1 − e−t , y − e− t

α x
)
h(y)dy −

∫
R

p(1, y)h(y)dy

=
∫
R

p
(
1 − e−t , y

)
h
(
y + e− t

α x
)

dy −
∫
R

p(1, y)h(y)dy

=
∫
R

p(1, y)h
((

1 − e−t ) 1
α y + e− t

α x
)

dy −
∫
R

p(1, y)h(y)dy.

(6.5)

This implies ∣∣∣∣
∫ ∞
−∞

p
(
1 − e−t , y − e− t

α x
)(

h(y) − μ(h)
)

dy

∣∣∣∣
≤ Cα

∥∥h′∥∥e− t
α

(
|x| +

∫
R

|y|p(1, y)dy

)

≤ Cα

∥∥h′∥∥e− t
α
(|x| + 1

)
,

and hence f (x) is well defined for all x ∈ R.
By the Fubini theorem, we have

�
α
2 f (x) = −

∫ ∞
0

∫ ∞
−∞

�
α
2
x p

(
1 − e−t , y − e− t

α x
)(

h(y) − μ(h)
)

dy dt.(6.6)

On the other hand, denote s = 1 − e−t and z = y − e− t
α x, we have

d

dt
p

(
1 − e−t , y − e− t

α x
)

= e−t ∂sp
(
1 − e−t , y − e− t

α x
) + 1

α
e− t

α x∂zp
(
1 − e−t , y − e− t

α x
)

= e−t�
α
2
z p

(
1 − e−t , y − e− t

α x
) + 1

α
e− t

α x∂zp
(
1 − e−t , y − e− t

α x
)

= �
α
2
x p

(
1 − e−t , y − e− t

α x
) − x

α
∂xp

(
1 − e−t , y − e− t

α x
)
,

where the second equality is by (4.6) and the third one is by (6.1) and (6.2). Sub-
stituting the previous relation into (6.6), we get

�
α
2 f (x) = −

∫ ∞
0

∫ ∞
−∞

d

dt
p

(
1 − e−t , y − e− t

α x
)(

h(y) − μ(h)
)

dy dt



488 L. XU

−
∫ ∞

0

∫ ∞
−∞

x

α
∂xp

(
1 − e−t , y − e− t

α x
)(

h(y) − μ(h)
)

dy dt(6.7)

= −
∫ ∞

0

∫ ∞
−∞

d

dt
p

(
1 − e−t , y − e− t

α x
)(

h(y) − μ(h)
)

dy dt + x

α
f ′(x).

By (4.6), the Fubini theorem and a straightforward calculation, we get

(6.8) −
∫ ∞

0

∫ ∞
−∞

d

dt
p

(
1 − e−t , y − e− t

α x
)(

h(y) − μ(h)
)

dy dt = h(x) − μ(h).

Hence, f (x) solves equation (4.9). �

6.2. Proof of Proposition 4.3. In this and the next subsections, we shall of-
ten exchange differential operators and integrals without detailed proofs, since the
exchangeability can be justified by a standard argument thanks to Lemma 6.1.

LEMMA 6.3. The density of Xt(x) is p(1 − e−t , y − e− t
α x) where p(t, x) is

the probability density function determined by equation (4.5).

PROOF. For f ∈ S(R,R), define

Qtf (x) =
∫ ∞
−∞

p
(
1 − e−t , y − e− t

α x
)
f (y)dy, t > 0.

We shall show that

(6.9) ∂tQtf (x) = �α/2Qtf (x) − 1

α
x(Qtf )′(x), Q0f (x) = f (x).

Note that equation (6.9) is the Kolmogorov backward equation associated to SDE
(4.7), which admits a unique solution with the form

Qtf (x) = E
[
f

(
Xt(x)

)]
.

Since f ∈ S(R,R) is arbitrary, the probability of Xt(x) has a density function as
in the lemma.

It remains to prove equation (6.9). Q0f (x) = f (x) is obvious. Let us now show
the equation. Denote s = 1 − e−t and z = y − e− t

α x, we have

∂tQtf (x) = ∂t

∫ ∞
−∞

p(s, z)f (y)dy

=
∫ ∞
−∞

∂tp(s, z)f (y)dy

=
∫ ∞
−∞

e−t ∂sp(s, z)f (y)dy + 1

α
xe− t

α

∫ ∞
−∞

∂zp(s, z)f (y)dy.

(6.10)
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On the one hand, by (4.6), we have

∂sp(s, z) = �α/2
z p(s, z)

= dα

∫
R

p(s, z + u) − p(s, z)

|u|1+α
du

= dα

∫
R

p(s, y − e− t
α x + u) − p(s, y − e− t

α x)

|u|1+α
du

= etdα

∫
R

p(s, y − e− t
α (x + ũ)) − p(s, y − e− t

α x)

|ũ|1+α
dũ

= et�α/2
x p

(
s, y − e− t

α x
)

= et�α/2
x p(s, z),

(6.11)

where the fourth equality is by taking ũ = −e
t
α u.

On the other hand, it is easy to check

e− t
α ∂zp(s, z) = −∂xp(s, z).

Combing the previous three relations, we immediately obtain

∂tQtf (x) =
∫ ∞
−∞

�α/2
x p(s, z)f (y)dy − 1

α
x

∫ ∞
−∞

∂xp(s, z)f (y)dy

= �α/2
x

∫ ∞
−∞

p(s, z)f (y)dy − 1

α
x∂x

∫ ∞
−∞

p(s, z)f (y)dy

= �α/2Qtf (x) − 1

α
x∂xQtf (x).

(6.12)

�

PROOF OF PROPOSITION 4.3. By Lemma 4.2, we have

(6.13) f (x) = −
∫ ∞

0

∫ ∞
−∞

p
(
1 − e−t , y − e− t

α x
)(

h(y) − μ(h)
)

dy dt.

Denote s = 1 − e−t and z = y − e− t
α x, it is easy to check

∂xp(s, z) = −e− t
α ∂zp(s, z), ∂yp(s, z) = ∂zp(s, z).

We have

f ′(x) =
∫ ∞

0

∫ ∞
−∞

∂xp(s, z)
(
h(y) − μ(h)

)
dy dt

= −
∫ ∞

0

∫ ∞
−∞

e− t
α ∂yp(s, z)

(
h(y) − μ(h)

)
dy dt

=
∫ ∞

0

∫ ∞
−∞

e− t
α p(s, z)h′(y)dy dt.

(6.14)
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Therefore,

∥∥f ′∥∥ ≤ ∥∥h′∥∥∫ ∞
0

e− t
α

∫ ∞
−∞

p(s, z)dy dt

= ∥∥h′∥∥∫ ∞
0

e− t
α

∫ ∞
−∞

p(s, z)dz dt = α
∥∥h′∥∥.

(6.15)

We further have

f ′′(x) = −
∫ ∞

0

∫ ∞
−∞

e− 2t
α ∂zp(s, z)h′(y)dy dt.(6.16)

Thanks to the property p(s, z) = s−1/αp(s−/αz) with p(x) = p(1, x) for x ∈ R,
we have

∥∥f ′′∥∥ ≤ ∥∥h′∥∥∫ ∞
0

s− 1
α e− 2t

α

∫ ∞
−∞

s− 1
α
∣∣p′(s− 1

α z
)∣∣ dy dt.(6.17)

Setting u = s−1/αz and applying the two estimates of p′(x) in Lemma 6.1 to the
two integrals

∫
|u|≤√

α(2α+1) and
∫
|u|>√

α(2α+1) below, we have∫ ∞
−∞

s− 1
α
∣∣p′(s− 1

α z
)∣∣ dy =

∫ ∞
−∞

∣∣p′(u)
∣∣ du

=
∫
|u|≤√

α(2α+1)

1

απ
du +

∫
|u|>√

α(2α+1)

2α + 1

πu2 du(6.18)

≤ 4

π

√
2α + 1

α
.

Hence,

∥∥f ′′∥∥ ≤ 4

π

√
2α + 1

α

∫ ∞
0

s− 1
α e− 2t

α dt
∥∥h′∥∥

= 4

π

√
2α + 1

α
B

(
α − 1

α
,

2

α

)∥∥h′∥∥,
(6.19)

where the last equality is by the change of variable u = e−t . �

6.3. Proof of Proposition 4.4.

LEMMA 6.4. Let f ∈ C2
b(R,R), the space of all second-order differentiable

functions with bounded zero, first-, second-order derivatives. For any differentiable
h such that limx→±∞ f (x)h(x) = 0, we have

(6.20)
∫ ∞
−∞

�
α
2 f (x)h(x)dx =

∫ ∞
−∞

I(f )(x)h′(x)dx,
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where

I(f )(x) = −dα

α

∫ ∞
−∞

f (x + w) − f (x)

sgn(w)|w|α dw.

PROOF. Recalling (4.20),

�
α
2 f (x) = dα

α

∫ ∞
−∞

f ′(x + z) − f ′(x)

sgn(z)|z|α dz,

and using Fubini’s theorem two times and an integration by parts, we get∫ ∞
−∞

�
α
2 f (x)h(x)dx = dα

α

∫ ∞
−∞

∫ ∞
−∞

f ′(x + z) − f ′(x)

sgn(z)|z|α h(x)dx dz

= −dα

α

∫ ∞
−∞

∫ ∞
−∞

f (x + z) − f (x)

sgn(z)|z|α dzh′(x)dx.

(6.21)

The proof is complete. �

PROOF OF PROPOSITION 4.4. Observe

�
α
2 f (x) − �

α
2 f (y)

=
∫ ∞

0

∫ ∞
−∞

�
α
2
x p

(
1 − e−t , z − e− t

α x
)(

h(z) − μ(h)
)

dz dt

−
∫ ∞

0

∫ ∞
−∞

�
α
2
y p

(
1 − e−t , z − e− t

α y
)(

h(z) − μ(h)
)

dz dt.

(6.22)

Denote s = 1 − e−t and p(x) = p(1, x), we have

(6.23) p
(
s, z − e− t

α x
) = s− 1

α p
(
s− 1

α
(
z − e− t

α x
))

.

By (6.1) and (6.2), we have

�
α
2
x p

(
s, z − e− t

α x
) = s− 1

α �
α
2
x p

(
s− 1

α
(
z − e− t

α x
))

= s− 1
α e−t�

α
2
z p

(
s− 1

α
(
z − e− t

α x
))

.

Hence, by Lemma 6.4,∫ ∞
0

∫ ∞
−∞

�
α
2
x p

(
s, z − e− t

α x
)(

h(z) − μ(h)
)

dz dt

=
∫ ∞

0
s− 1

α e−t
∫ ∞
−∞

�
α
2
z p

(
s− 1

α
(
z − e− t

α x
))(

h(z) − μ(h)
)

dz dt

=
∫ ∞

0
s− 1

α e−t
∫ ∞
−∞

I
(
p

(
s− 1

α
(· − e− t

α x
)))

(z)h′(z)dz dt

=
∫ ∞

0
s−1+ 1

α e−t
∫ ∞
−∞

I
(
p

(· − s− 1
α e− t

α x
))

(z)h′(s 1
α z

)
dz dt,

(6.24)



492 L. XU

where the last equality is by a change of variables on z and the w in I . Similarly,∫ ∞
0

∫ ∞
−∞

�
α
2
y p

(
s, z − e− t

α y
)(

h(z) − μ(h)
)

dz dt

=
∫ ∞

0
s−1+ 1

α e−t
∫ ∞
−∞

I
(
p

(· − s− 1
α e− t

α y
))

(z)h′(s 1
α z

)
dz dt.

(6.25)

Observe

1

|x − y|γ
∣∣I(

p
(· − s− 1

α e− t
α x

))
(z) − I

(
p

(· − s− 1
α e− t

α y
))

(z)
∣∣

= dα

α

∣∣∣∣
∫ ∞
−∞

δwp(z − s− 1
α e− t

α x) − δwp(z − s− 1
α e− t

α y)

sgn(w)|w|α|x − y|γ dw

∣∣∣∣
= dα

α
s− γ

α e− γ t
α

∣∣∣∣
∫ ∞
−∞

δwp(z − x̃) − δwp(z − ỹ)

sgn(w)|w|α|x̃ − ỹ|γ dw

∣∣∣∣,
where δwp(z) = p(z + w) − p(z), x̃ = s− 1

α e− t
α x and ỹ = s− 1

α e− t
α y. Therefore,

for any x �= y,

|�α
2 f (x) − �

α
2 f (y)|

|x − y|γ

≤ dα‖h′‖
α

∫ ∞
0

s− γ+α−1
α e− (γ+α)t

α

×
∫ ∞
−∞

∣∣∣∣
∫ ∞
−∞

δwp(z − x̃) − δwp(z − ỹ)

sgn(w)|w|α|x̃ − ỹ|γ dw

∣∣∣∣ dz dt.

(6.26)

Let us bound the integral above. When |x̃ − ỹ| ≤ 1, observe

δwp(z − x̃) − δwp(z − ỹ) =
∫ w

0

∫ ỹ

x̃
p′′(z + r − a)da dr,

δwp(z − x̃) − δwp(z − ỹ) =
∫ ỹ

x̃

(
p′(z + w − a) − p′(z − a)

)
da,

we have∫ ∞
−∞

∣∣∣∣
∫ ∞
−∞

δwp(z − x̃) − δwp(z − ỹ)

sgn(w)|w|α|x̃ − ỹ|γ dw

∣∣∣∣ dz

≤
∫ ∞
−∞

∫
|w|≤1

1

|w|α|x̃ − ỹ|γ
∣∣∣∣
∫ w

0

∫ ỹ

x̃

∣∣p′′(z + r − a)
∣∣ da dr

∣∣∣∣ dw dz(6.27)

+
∫ ∞
−∞

∫
|w|>1

1

|w|α|x̃ − ỹ|γ
∣∣∣∣
∫ ỹ

x̃

∣∣p′(z + w − a) − p′(z − a)
∣∣ da

∣∣∣∣ dw dz.
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Applying the two estimates of ∂2
xp(1, x) in Lemma 6.1 to the two integrals∫

|z|≤√
α(α+3) and

∫
|z|>√

α(α+3) below respectively, we obtain

∫ ∞
−∞

∣∣p′′(z + r − a)
∣∣ dz =

∫ ∞
−∞

∣∣p′′(z)
∣∣ dz

≤
∫
|z|≤√

α(α+3)

2

απ
dz +

∫
|z|>√

α(α+3)

2α + 6

πz2 dz

≤ 8

π

√
α + 3

α
.

(6.28)

Applying the two estimates of ∂xp(1, x) in Lemma 6.1 similarly, we obtain∫ ∞
−∞

∣∣p′(z + w − a) − p′(z − a)
∣∣ dz ≤ 2

∫ ∞
−∞

∣∣p′(z)
∣∣ dz

= 2
(∫

|z|≤√
α(2α+1)

+
∫
|z|>√

α(2α+1)

)∣∣p′(z)
∣∣ dz

≤ 8

π

√
2α + 1

α
.

Hence, these two inequalities and (6.27), together with Fubini’s theorem, imply∫ ∞
−∞

∣∣∣∣
∫ ∞
−∞

δwp(z − x̃) − δwp(z − ỹ)

sgn(w)|w|α|x̃ − ỹ|γ dw

∣∣∣∣ dz

≤ 8

π

√
α + 3

α

∫
|w|≤1

1

|w|α−1 dw + 8

π

√
2α + 1

α

∫
|w|>1

1

|w|α dw

≤ 16

π(2 − α)

√
α + 3

α
+ 16

π(α − 1)

√
2α + 1

α
, |x̃ − ỹ| ≤ 1.

(6.29)

When |x̃ − ỹ| > 1, observe

δwp(z − x̃) − δwp(z − ỹ) =
∫ w

0

(
p′(z + r − x̃) − p′(z + r − ỹ)

)
dr,(6.30)

we have∫ ∞
−∞

∣∣∣∣
∫ ∞
−∞

δwp(z − x̃) − δwp(z − ỹ)

sgn(w)|w|α|x̃ − ỹ|γ dw

∣∣∣∣ dz

≤
∫ ∞
−∞

∫
|w|≤1

1

|w|α
∣∣∣∣
∫ w

0

∣∣p′(z + r − x̃) − p′(z + r − ỹ)
∣∣ dr

∣∣∣∣ dw dz

+
∫ ∞
−∞

∫
|w|>1

1

|w|α
[∣∣δwp(z − x̃)

∣∣ + ∣∣δwp(z − ỹ)
∣∣] dw dz.
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By a similar argument as above and
∫
R

|δwp(z − c)|dz ≤ 2 for any c ∈ R, we have∫ ∞
−∞

∣∣∣∣
∫ ∞
−∞

δwp(z − x̃) − δwp(z − ỹ)

sgn(w)|w|α|x̃ − ỹ|γ dw

∣∣∣∣ dz

≤ 8

π

√
2α + 1

α

∫
|w|≤1

1

|w|α−1 dw + 4
∫
|w|>1

1

|w|α dw

≤ 16

π(2 − α)

√
2α + 1

α
+ 8

α − 1
, |x̃ − ỹ| > 1.

(6.31)

Combining (6.26), (6.29) and (6.31), we immediately obtain

|�α
2 f (x) − �

α
2 f (y)|

|x − y|γ

≤ dα

α

[
16

π(2 − α)

√
α + 3

α
+ 16

π(α − 1)

√
2α + 1

α

]∥∥h′∥∥∫ ∞
0

s− γ+α−1
α e− (γ+α)t

α dt

= dα

α

[
16

π(2 − α)

√
α + 3

α
+ 16

π(α − 1)

√
2α + 1

α

]
B

(
1 − γ

α
,
γ + α

α

)∥∥h′∥∥.
�

APPENDIX

A.1. Example 4: An example in [48]. Let us assume that ξ1, . . . , ξn, . . . be a
sequence of i.i.d. random variables. The authors of [48] considered the following
case: ξ1 has a density function as

(A.1) p(x) = K0
(log |x|)β
|x|1+α

for |x| > x0, p(x) = 0 for |x| ≤ x0,

where K0 > 0, x0 > 0, α ∈ (0,2) and β ∈ R. It is easy to check that this example
is out of the scope of Theorem 2.6 because the conditions (i′) and (ii′) are not
satisfied.

By [48], Proposition 1, we have Bn = 0 and An = n1/αh(n) with h(n) =
C log

γ
α (Cn

1
α log

γ
α (n

1
α )) and as n → ∞,

Tn/An ⇒ ν,

where Tn = ξ1 +· · ·+ξn and ν is a symmetric stable distribution with characteristic
function exp(−α|λ|α

2dα
). The following bound was proved in [48], Proposition 1:

dKol
(
L(Tn/An), ν

) = O
(
(logn)−1)

,

whose proof heavily depends on the special form of (A.1). Recall Sn = ( α
2dα

)− 1
α

Tn

An
,

by Remark 2.4, we have

(A.2) dKol
(
L(Sn),μ

) = O
(
(logn)−1)

,
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where μ is a symmetric stable distribution with characteristic function e−|λ|α . Ap-
plying Theorem 2.1, we can prove that if (A.1) is satisfied with α ∈ (1,2), a con-

vergence rate O((logn)−1+ 1
α ) can be obtained in W1 distance.

Here, we consider a new example which is more complicated than (A.1), more
precisely,

(A.3) P
(|ξ1| > x

) = K0(logx)β

xα
, x > x0.

Note that K0 and x0 here may be different from those in (A.1). The corresponding
density function is

p(x) = K0[α(log |x|)β − β(log |x|)β−1]
2|x|α+1 , |x| > x0;

p(x) = 0, |x| ≤ x0.

It seems that the method in [48] cannot deal with this example directly. However,
by our first main result Theorem 2.1, we can prove

(A.4) dW
(
L(Sn),μ

) ≤ Cα,β(logn)−1+ 1
α .

It can be seen from the proof that (A.4) also holds under the condition (A.1) by a
similar but simpler argument. Because the proof of (A.4) under the condition (A.3)
is long, we only give the leading order of the convergence.

Let L,A be two quantities with A > 0, if there exist some C > 0 (which may
depend on some parameters) such that

|L| ≤ CA,

we denote L = O(A).
By Theorem 2.5, An = inf{x > 0 : P(|ξ1| > x) ≤ 1

n
} can be determined by

K0(logAn)β

Aα
n

= 1
n

, which gives

(A.5)
n

Aα
n

= 1

K0(logAn)β
.

It is easy to see Cα,βn
1
α ≤ An ≤ Cα,βn

1
α (logn)

β
α . By the symmetry property, Bn =

nE[ξ11{|ξ1|≤An}] = 0.

Now we apply Theorem 2.1 with N = (logAn)
1
α and

ζn,i = 1

Ãn

ξi with Ãn =
(

α

2dα

)1/α

An.

Let us first estimate the remainder term RN,n. Let γ = 2 − α, we get

1

n

n∑
i=1

E|ζn,i |2−α ≤ CαA−2+α
n .
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By Lemma 2.8, we get

n∑
i=1

E
(|ζn,i |1{|ζn,i |>N}

) = n

Ãn

E
(|ξ1|1{|ξ1|>ÃnN}

)

= nNP
(|ξ1| > ÃnN

) + n

Ãn

∫ ∞
ÃnN

P
(|ξ1| > r

)
dr.

By (A.5), N = (logAn)
1
α and An ≥ Cα,βn

1
α ,

nNP
(|ξ1| > ÃnN

) = 2dαN1−α

α

(
log(ÃnN)

logAn

)β

≤ Cα,βN1−α.

Moreover, by (A.5) and a change of variable s = r

ÃnN
,

n

Ãn

∫ ∞
ÃnN

P
(|ξ1| > r

)
dr

= N1−α

K0(log Ãn)β

∫ ∞
1

(log s + log(ÃnN))β

sα
ds

= 2dαN1−α

αK0

(
log(ÃnN)

logAn

)β ∫ ∞
1

(1 + log s

log(ÃnN)
)β

sα
ds

≤ Cα,βN1−α,

where the inequality is by An ≥ Cα,βn
1
α and an easy observation that the above

integral is bounded. Hence,

n∑
i=1

E
(|ζn,i |1{|ζn,i |>N}

) ≤ Cα,βN1−α.

Collecting all the above estimates, we immediately obtain

(A.6) RN,n ≤ Cα,β

(
A−2+α

n + 1

Nα−1

)
≤ Cα,β(logn)−1+ 1

α .

Now let us estimate the integral term in the theorem, observe

n∑
i=1

∫ N

−N

∣∣∣∣Kα(t,N)

n
− Ki(t,N)

α

∣∣∣∣ dt

=
∫ N

−N

∣∣∣∣Kα(t,N) − n

α
K1(t,N)

∣∣∣∣ dt

=
(∫

|t |≤ x0
Ãn

+
∫

x0
Ãn

<|t |<N

)∣∣∣∣Kα(t,N) − n

α
K1(t,N)

∣∣∣∣ dt.

(A.7)
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It is easy to see that
∫
|t |≤ x0

Ãn

∣∣∣∣Kα(t,N) − n

α
K1(t,N)

∣∣∣∣ dt

≤ Cα

(∫
|t |≤ x0

Ãn

|t |1−α dt +
∫
|t |≤ x0

Ãn

nÃ−1
n E|ξ1|dt

)
(A.8)

≤ Cα,β

(logn)β

n
2
α
−1

.

We shall show below that∫
x0
Ãn

<|t |<N

∣∣∣∣Kα(t,N) − n

α
K1(t,N)

∣∣∣∣ dt ≤ Cα,β

N

logAn

.(A.9)

By N = (logn)
1
α and An ≥ Cα,βn

1
α , we have

∫ N

−N

∣∣∣∣Kα(t,N) − n

α
K1(t,N)

∣∣∣∣ dt ≤ Cα,β(logn)−1+ 1
α .

Combining this with that of RN,n, we immediately obtain the estimate (A.4), as
desired.

It remains to prove (A.9). For t >
x0

Ãn
, we have

nK1(t,N) = nE

[
1

Ãn

ξ11{Ãnt≤ξ1≤ÃnN}
]

= n

Ãn

[
E(ξ11{ξ1>Ãnt}) −E(ξ11{ξ1>ÃnN})

]
(A.10)

= ntP(ξ1 > Ãnt) − nNP(ξ1 > ÃnN)

+ n

Ãn

∫ ÃnN

Ãnt
P(ξ1 > r)dr,

where the last equality is by Lemma 2.8. For the first term in the last line above,
by (A.3), (A.5) and a straightforward computation, we get

ntP(ξ1 > Ãnt) − nNP(ξ1 > ÃnN)

= dα

α

[
t1−α

(
log(Ãnt)

logAn

)β

− N1−α

(
log(ÃnN)

logAn

)β]

= (α − 1)Kα(t,N) + O

(
logN

logAn

)
t1−α,
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where Kα(t,N) = dα

α(α−1)
(t1−α − N1−α). For the integral term in (A.10), as t >

x0

Ãn
, by (A.5), we have

n

Ãn

∫ ÃnN

Ãnt
P(ξ1 > r)dr

= nK0

2Ãn

∫ ÃnN

Ãnt

(log r)β

rα
dr

= nK0

2Ãn

∫ ÃnN

Ãnt

(log Ãn)
β

rα
dr + nK0

2Ãn

∫ ÃnN

Ãnt

(log r)β − (log Ãn)
β

rα
dr

= Kα(t,N) + O

(
logN

logAn

)
t1−α + nK0

2Ãn

∫ ÃnN

Ãnt

(log r)β − (log Ãn)
β

rα
dr.

From the previous estimate, it is easy to check

Kα(t,N) − nKN,1(t,N)

α
(A.11)

= K0n

2αÃn

∫ ÃnN

Ãnt

(log r)β − (log Ãn)
β

rα
dr + O

(
logN

logAn

)
t1−α.

When t >
x0
An

, we first observe∣∣(log r)β − (log Ãn)
β
∣∣

≤
∣∣∣∣
(

log Ãn + log
r

Ãn

)β

− (log Ãn)
β

∣∣∣∣
≤ (log Ãn)

β

∣∣∣∣
(

1 +
log r

Ãn

log Ãn

)β

− 1
∣∣∣∣

≤ Cα,β(logAn)
β−1

∣∣∣∣log
r

Ãn

∣∣∣∣,

(A.12)

where the last inequality is by Taylor’s expansion and the easy fact | log r

Ãn

log Ãn
| < 1

when 1 ≤ r ≤ NÃn. The previous two relations, (A.5) and a change of variable
s = r/Ãn yield∣∣∣∣Kα(t,N) − n

α
K1(t,N)

∣∣∣∣
≤ Cα,β

[
n(logAn)

β−1K0

2Aα
n

∫ N

t

| log s|
sα

ds + logN

logAn

t1−α

]

= Cα,β

[
(logAn)

−1
∫ N

t

| log s|
sα

ds + logN

logAn

t1−α

]
.

(A.13)
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It is easy to check when t ≥ 1,∫ N

t

| log s|
sα

ds ≤ Cα

(α − 1)2 ,(A.14)

when 0 < t ≤ 1, we have∫ N

t

| log s|
sα

ds =
∫ 1

t

| log s|
sα

ds +
∫ N

1

| log s|
sα

ds

≤ | log t |t1−α

α − 1
+ 2t1−α

(α − 1)2 .

(A.15)

Collecting the above estimates, we get∣∣∣∣Kα(t,N) − n

α
K1(t,N)

∣∣∣∣
(A.16)

≤ Cα,β

⎧⎨
⎩

(logAn)
−1(

1 + t1−α logN
)
, 1 ≤ t ≤ N;

(logAn)
−1t1−α(

1 + | log t | + logN
)
,

x0

Ãn

≤ t < 1.

Hence,∫ N

x0/Ãn

∣∣∣∣Kα(t,N) − n

α
K1(t,N)

∣∣∣∣ dt ≤ Cα,β

(
N

logAn

+ N2−α logN

logAn

+ 1

logAn

)

≤ Cα,β

N

logAn

.

By the same argument, we get∫ −x0/Ãn

−N

∣∣∣∣Kα(t,N) − n

α
K1(t,N)

∣∣∣∣ dt ≤ Cα,β

N

logAn

.

Hence, (A.9) is proved.

A.2. Proof of Lemma 6.1. For notational simplicity, we write p(x) =
p(1, x). Due to the symmetry property p(x) = p(−x) for all x ∈ R, it suffices
to consider p(x) for x ≥ 0. We shall frequently use the easy relations


(z + 1) = z
(z) ∀z ∈ R; 
(z) ≤ 1 ∀z ∈ (1,2).

For θ ∈ (−1,∞), we denote

Iθ (x) =
∫ ∞

0
λθe−λα

cos(λx)dλ, Jθ (x) =
∫ ∞

0
λθe−λα

sin(λx)dλ.

It is easy to verify by the easy estimate | cos(λx)|, | sin(λx)| ≤ 1 and a change of
variable t = λα that

∣∣Iθ (x)
∣∣ ≤ 
(θ+1

α
)

α
,

∣∣Jθ (x)
∣∣ ≤ 
(θ+1

α
)

α
.
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By the inverse of Fourier transform, we have

p(x) = 1

2π

∫ ∞
−∞

e−|λ|αe−ixλ dλ = 1

2π

∫ ∞
−∞

e−|λ|α cos(λx)dλ = I0(x)

π
.(A.17)

Hence,

p(x) ≤ 
( 1
α
)

πα
= 
(1 + 1

α
)

π
≤ 1

π
.(A.18)

For x > 0, using integration by parts two times, we get

I0(x) = α(α − 1)Iα−2(x) − α2I2α−2(x)

x2 .(A.19)

Moreover,

∣∣Iα−2(x)
∣∣ ≤ 
(1 − 1

α
)

α
= 
(2 − 1

α
)

α − 1
≤ 1

α − 1
,(A.20)

∣∣I2α−2(x)
∣∣ ≤ 
(2 − 1

α
)

α
≤ 1

α
.(A.21)

Hence,

(A.22) p(x) = I0(x)

π
≤ 2α

πx2 .

Now we estimate p′(x). It is obvious that

I ′
0(x) = −J1(x),

and thus

∣∣I ′
0(x)

∣∣ ≤ 
( 2
α
)

α
≤ 1

α
.

Hence,

∣∣p′(x)
∣∣ = |I ′

0(x)|
π

≤ 1

πα
.

For x > 0, using integration by parts, we have

(A.23) I0(x) = αJα−1(x)

x
,

which implies

(A.24) I ′
0(x) = −αJα−1(x)

x2 + αIα(x)

x
.

It is easy to check

(A.25)
∣∣∣∣αJα−1(x)

x2

∣∣∣∣ ≤ 1

x2 .
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Using integration by parts, we have

(A.26) Iα(x) = αJ2α−1(x) − αJα−1(x)

x
,

which gives

(A.27)
∣∣∣∣αIα(x)

x

∣∣∣∣ ≤ α2

x2

(

(2)

α
+ 
(1)

α

)
= 2α

x2 .

Hence,

∣∣p′(x)
∣∣ ≤ |I ′

0(x)|
π

≤ (2α + 1)

πx2 .

For p′′(x), we have

(A.28) p′′(x) = −I2(x)

π
,

which immediately implies

∣∣p′′(x)
∣∣ ≤ 
( 3

α
)

απ
≤ 2

απ
.

Using integration by parts two times,

(A.29) I2(x) = − 2

x2 I0(x) + α2 + 3α

x2 Iα(x) − α2

x2 I2α(x).

By a similar computation, we get the second estimate of p′′(x), as desired.
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[5] BARBOUR, A. D., ČEKANAVIČIUS, V. and XIA, A. (2007). On Stein’s method and perturba-
tions. ALEA Lat. Am. J. Probab. Math. Stat. 3 31–53. MR2324747

[6] BARBOUR, A. D., GAN, H. L. and XIA, A. (2015). Stein factors for negative binomial ap-
proximation in Wasserstein distance. Bernoulli 21 1002–1013. MR3338654

[7] BAXTER, G. and SHAPIRO, J. M. (1960). On bounded infinitely divisible random variables.
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