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MUTATION FREQUENCIES IN A BIRTH–DEATH
BRANCHING PROCESS

BY DAVID CHEEK1 AND TIBOR ANTAL

University of Edinburgh

First, we revisit the stochastic Luria–Delbrück model: a classic two-type
branching process which describes cell proliferation and mutation. We prove
limit theorems and exact results for the mutation times, clone sizes and num-
ber of mutants. Second, we extend the framework to consider mutations at
multiple sites along the genome. The number of mutants in the two-type
model characterises the mean site frequency spectrum in the multiple-site
model. Our predictions are consistent with previously published cancer ge-
nomic data.

1. Introduction. Luria and Delbrück’s famous work of 1943 combined math-
ematical modelling with experiment [28]. They considered an exponentially grow-
ing population of bacterial cells which is sensitive to attack by a lethal virus. The
bacteria may mutate to become resistant to the virus. Lea and Coulson [27] ob-
tained a probability distribution for the number of mutants, commonly known as
the Luria–Delbrück distribution. The distribution has seen empirical evidence and
become a standard tool for the estimation of mutation rates in bacteria [33]. While
early formulations of the model were semi-deterministic, stochastic cell growth
was subsequently incorporated (see [35] for a review). Notably, Kendall allowed
for cells to grow as birth–death branching processes [21].

Kendall’s two-type branching process, often referred to as the stochastic Luria–
Delbrück model, has been foundational in the mathematical understanding of can-
cer evolution. The model and various extensions have been used to study drug
resistance [5, 13, 16, 24], driver mutations [10, 11] and metastasis [7, 14, 29, 30],
for example. As introduced by Kendall, wild-type (type A) and mutant (type B)
cells are assumed to divide, die and mutate independently of each other, according

Received November 2017; revised June 2018.
1Supported by The Maxwell Institute Graduate School in Analysis and its Applications, a Cen-

tre for Doctoral Training funded by the UK Engineering and Physical Sciences Research Council
(grant EP/L016508/01), the Scottish Funding Council, Heriot-Watt University and the University of
Edinburgh.

MSC2010 subject classifications. Primary 60J80; secondary 60J28, 92D10, 92D20.
Key words and phrases. Branching processes, cancer, population genetics.

3922

http://www.imstat.org/aap/
https://doi.org/10.1214/18-AAP1413
http://www.imstat.org
http://www.ams.org/mathscinet/msc/msc2010.html


MUTATION FREQUENCIES IN A BRANCHING PROCESS 3923

to ⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

A → AA, rate αA;
A →∅, rate βA;
A → AB, rate ν;
B → BB, rate αB;
B →∅, rate βB.

Whether the model represents the emergence of drug resistance in cancer or bac-
teria, the total number of mutants is of key interest. In recent years, [1, 2, 15, 16,
22, 23, 25] derived exact and approximate distributions for the number of mutants
at fixed times and population sizes.

Our first objective is to offer a mathematically rigorous account of the two-type
model, looking at the number of mutants, mutation times and clone sizes (a clone
is a subpopulation of mutant cells initiated by a mutation). Both previously known
and new results are presented. We explore small mutation limits and long-term
almost sure convergence. Specialising to neglect cell death, we give some exact
distributions.

Our second objective is to introduce a neutral model of cancer evolution, which
keeps track of mutations at S sites on the genome. A site refers to a base pair. In
our multiple-site model, each cell is labelled by a sequence (z1, . . . , zS) ∈ {0,1}S ,
where zi = 1 means that the cell is mutated at site i. The number of mutants with
respect to a particular site follows the two-type model. Thus many of the two-type
results are applicable in the multiple-site setting.

A standard summary statistic of genomic data is the site frequency spectrum.
It is defined as the number of sites who see mutations in k cells, for k ∈ Z≥0. We
prove that the mean site frequency spectrum can be approximated with a gener-
alisation of the Luria–Delbrück distribution. This result is consistent with cancer
genomic data presented in [4, 34].

Of course, many works have attempted to predict mutation frequencies in can-
cer. Prominent examples are [4, 8, 31, 34], who gave approximations for the mean
site frequency spectrum in a population of cancer cells. Every one of these works
and countless others have used the infinite sites assumption, which says that each
mutation occurs at a unique site. However, recent statistical analysis of cancer ge-
nomic data has refuted the validity of this simplification [26]. We do not use the
infinite sites assumption, and make a theoretical argument against it.

The rest of the paper is organised as follows. In Section 2, we introduce the two-
type model. In Section 3, we present long-term almost sure convergence results.
In Section 4, we define and study the large population small mutation limit. In
Section 5, we look at the large time small mutation limit. In Section 6, we present
results on the number of mutants at a finite population size. In Section 7, we in-
troduce the multiple-site model and present results on the site frequency spectrum.
In Section 8, we discuss the multiple-site model in relation to recent works and
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data. In Section 9, we present proofs of our main results. See the Appendix for a
generalisation of the results of Sections 4 and 5.

2. Two-type model. The wild-type cells grow as a linear birth–death pro-
cess (A(t))t≥0, with birth and death rates αA and βA, respectively. That is to say,
(A(t))t≥0 is a continuous time Markov process on Z≥0 with transition rates

i �→
{
i + 1, rate iαA;
i − 1, rate iβA.

The initial number of wild-type cells A(0) ∈ N is fixed. The mutation rate is ν > 0.
Mutation events occur as a Cox process (K(t))t≥0 with intensity (νA(t))t≥0. The
mutation times are

Ti := inf
{
t ≥ 0 : K(t) = i

}
for i ∈ N. Each mutation event initiates a clone which grows as a linear birth–death
process with birth and death rates αB and βB . Clones grow independently of the
wild-type growth and mutation times, and are represented by the i.i.d. processes
(Yi(t))t≥0 for i ∈N, with Yi(0) = 1. The total mutant population size at time t is

B(t) =
K(t)∑
i=1

Yi(t − Ti).

Write λA = αA − βA and λB = αB − βB for the fitnesses of the wild-type and
mutant cells. We shall only be concerned with the case of supercritical wild-type
growth, λA > 0.

Note that the process counting the number of cells, (A(t),B(t))t≥0, is a Markov
process on Z≥0 ×Z≥0, with transition rates

(i, j) �→

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(i + 1, j), rate iαA;
(i − 1, j), rate iβA;
(i, j + 1), rate iν + jαB;
(i, j − 1), rate jβB.

We are interested in the process at a fixed time t , and at the random times

σn := inf
{
t ≥ 0 : A(t) + B(t) ≥ n

}
and

τn := inf
{
t ≥ 0 : A(t) ≥ n

}
,

for n ∈ N. Trivially, σn ≤ τn.
A classic application of the model is the emergence of drug resistance in cancer.

Here, type A and B cells represent drug sensitive and resistant cells, respectively.
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While the age of a tumour is typically unknown, its size can be measured. Thus
the times σn are relevant.

Another interpretation of the model is metastasis. Here, type A cells make up
the primary tumour, and the clones represent secondary tumours. In this case, the
times τn are relevant.

3. Large time and population limits. Keeping the mutation rate fixed, the
long-term behaviour of the model is mostly already well understood. Durrett and
Moseley [11] study the case λA < λB . Janson [17] studies a broad class of urn
models, which encompasses Kendall’s model in the case λA > λB . We do not
present results as detailed as Janson’s. Our aim for this section is not to offer a
comprehensive study, but rather bring together basic results which give valuable
insight.

First, we make note of a classic result:

(1) lim
t→∞ e−λAtA(t) = W

almost surely (see [3] or [9]). Here,

W
d=

A(0)∑
i=1

χiψi,

where the χi ∼ Bernoulli(λA/αA) and the ψi ∼ Exponential(λA/αA) are indepen-
dent.

REMARK 3.1. The event that the wild-type population eventually becomes
extinct agrees with the event {W = 0} almost surely.

We see a trichotomy, depending on the relative fitness of wild-type and mutant
cells. Part 1 of Theorem 3.2 is a special case of [17], Theorem 3.1, and part 3 is
[11], Theorem 2.

THEOREM 3.2 (Large time limit). The following limits hold almost surely:

1. For λA > λB ,

lim
t→∞ e−λAtB(t) = ν

λA − λB

W.

2. For λA = λB ,

lim
t→∞ t−1e−λAtB(t) = νW.

3. For λA < λB ,

lim
t→∞ e−λBtB(t) = V.
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The limit random variable W comes from (1). The limit random variable V is
[0,∞)-valued with mean

E[V ] = A(0)ν

λB − λA

.

The full distribution of V is given in [2], Section 4.3, which we do not state here
for the sake of brevity.

For λA ≥ λB , conditioned on wild-type nonextinction, any individual clone ul-
timately makes up zero proportion of the mutant population. That is to say, condi-
tioned on W > 0,

lim
t→∞

Yi(t − Ti)

B(t)
= 0

almost surely. We say that the mutant population is driven by the wild-type growth.
This is seen in the limit random variables’ dependence on W .

For λA < λB , early arriving clones make an important contribution to the mutant
population. Conditioned on W > 0,

lim
t→∞

Yi(t − Ti)

B(t)
= Xie

−λBTi

V

almost surely. Note that if W > 0, then V > 0 [11]. The Xi are i.i.d. with distribu-
tion χBψB , where χB ∼ Bernoulli(λB/αB) and ψB ∼ Exponential(λB/αB) are
independent. We say that the mutant population is driven by the clone growth.

To see the asymptotic behaviour of the number of mutations, simply consider
αB = βB = 0 in Theorem 3.2:

lim
t→∞ e−λAtK(t) = ν

λA

W

almost surely.
As corollaries to Theorem 3.2, we obtain large population limits. Note that con-

ditioned on W > 0, limn→∞ τn = limn→∞ σn = ∞ almost surely.

COROLLARY 3.3 (Large wild-type population limit). Conditioned on W > 0,
the following limits hold almost surely:

1. For λA > λB ,

lim
n→∞n−1B(τn) = ν

λA − λB

.

2. For λA = λB ,

lim
n→∞

(
n log(n)

)−1
B(τn) = ν

λA

.

3. For λA < λB ,

lim
n→∞n−λB/λAB(τn) = V W−λB/λA.



MUTATION FREQUENCIES IN A BRANCHING PROCESS 3927

COROLLARY 3.4 (Large total population limit). Conditioned on W > 0, the
following limits hold almost surely.

1. For λA > λB ,

lim
n→∞n−1B(σn) = ν

λA − λB + ν
.

2. For λA = λB ,

lim
n→∞n−1 log(n)

(
n − B(σn)

) = λA

ν
.

3. For λA < λB ,

lim
n→∞n−λA/λB

(
n − B(σn)

) = V −λA/λBW.

Note that n−B(σn) = A(σn). In case 1, the wild-type and mutant cells come to
coexist in a constant ratio. In cases 2 and 3, the mutant cells eventually dominate
the overall population, with

(2) lim
n→∞n−1B(σn) = 1

almost surely.

4. Large population small mutation limit. A tumour may comprise around
109 cells upon detection, with mutation rates per base pair per cell division esti-
mated as 5 × 10−10 in colorectal cancer [19], for example. Hence, a biologically
relevant limit can be found by taking the population size to infinity and the muta-
tion rate to zero, while keeping their product fixed.

Suppose that (νn)n∈N is a sequence of mutation rates satisfying

(3) lim
n→∞nνn = θ,

for some θ ∈ (0,∞). For each n ∈ N, consider the two-type model with mutation
rate νn. For the wild-type population, mutant population, clone sizes, number of
mutations and mutation times, write A(n)(·), B(n)(·), Y

(n)
i (·), K(n)(·), and T

(n)
i ,

respectively. Write

σ ′
n := inf

{
t ≥ 0 : A(n)(t) + B(n)(t) ≥ n

}
and

τ ′
n := inf

{
t ≥ 0 : A(n)(t) ≥ n

}
.

First, we see a connection between the times τ ′
n and σ ′

n in the large n limit.

PROPOSITION 4.1. Conditioning on τ ′
n < ∞,

τ ′
n − σ ′

n → 0

in probability, as n → ∞.
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All of our large population small mutation limit results will hold both in terms
of the wild-type population and total population size. That is to say, using τ ′

n or σ ′
n

as the time variable will yield the same distributions in the large n limit. To save
writing each result twice, we introduce the sequence (ρn), which may refer to (τ ′

n)

or (σ ′
n).

Underlying all subsequent results of this section is that the times of mutation
centered about (ρn) converge.

THEOREM 4.2 (Mutations times). Conditioning on ρn < ∞,

K(n)(ρn + t) → K∗(t)

in finite dimensional distributions, as n → ∞. K∗(t) is a Poisson process on R

with intensity θeλAt .

A direct consequence of Theorem 4.2 is that for each i ∈ N, conditioning on
ρn < ∞,

T
(n)
i − ρn → T ∗

i := inf
{
t ∈ R : K∗(t) = i

}
in distribution, as n → ∞. In particular, T ∗

1 has Gumbel distribution:

P
[
T ∗

1 ≥ t
] = exp

(
− θ

λA

eλAt

)
.

Next, we look at the number of mutants.

PROPOSITION 4.3 (Number of mutants). Conditioning on ρn < ∞,

B(n)(ρn + t) → B∗(t) :=
K∗(t)∑
i=1

Yi

(
t − T ∗

i

)

in finite dimensional distributions, as n → ∞. The Yi(·) and K∗(·) are indepen-
dent.

In particular, B(n)(ρn) converges in distribution to

(4) B∗ = B∗(0)
d=

K∗∑
i=1

Yi(ξi),

where K∗ = K∗(0) ∼ Poisson(θ/λA), and ξi are i.i.d. Exponential(λA) random
variables independent of the Yi(·) and K∗(·).

Here, ξi corresponds to the age of a randomly selected clone, and Yi(ξi) the size
of the clone. From [3], page 109,

(5) E
[
zYi(t)

] = βB(z − 1) − e−λBt (αBz − βB)

αB(z − 1) − e−λBt (αBz − βB)
,
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and so

r(z) : = E
[
zYi(ξi )

]
=

∫ ∞
0

E
[
zYi(t)

]
λAe−λAt dt(6)

= 1 − (1 − qB)F

(
1, λA/λB

1 + λA/λB
; qB − z

1 − z

)
.

The function F is Gauss’s hypergeometric function, and qB = βB/αB , which is a
clone’s ultimate extinction probability if qB ≤ 1. The third equality of (6) can be
seen by making a change of variable s = e−λBt , and then using a standard integral
representation for F (e.g., [20], C.8).

Clearly, B∗ is a compound Poisson random variable (4), and has generating
function

(7) E
[
zB∗] = exp

(
θ

λA

(
r(z) − 1

))
.

This recovers recent results of Kessler and Levine [23] who provided a heuristic
derivation of this expression, and Keller and Antal [20] who derived it for a deter-
ministic exponentially growing wild-type population. Its large θ limit appeared in
Durrett and Moseley [11] for λA < λB (see [20] for a discussion). If αB = λA and
βB = 0, (7) reduces to the Luria–Delbrück distribution [27]:

E
[
zB∗] = (1 − z)

θ
λA

(z−1−1)
.

REMARK 4.4. For λB > 0, the generating functions (6) and (7) yield power
law tails:

lim
k→∞k1+λA/λBP

[
Yi(ξi) = k

] = λA

λB

(1 − qB)1−λA/λB (1 + λA/λB)

and

lim
k→∞k1+λA/λBP

[
B∗ = k

] = θ

λB

(1 − qB)1−λA/λB (1 + λA/λB),

which are given in [20, 23, 30].

Of potential interest is the number of clones of a given size, perhaps above some
lower limit for reliable detection. Let I be a subset of Z≥0. Consider

C
(n)
I (t) =

K(n)(t)∑
i=1

1{Y (n)
i (t−T

(n)
i )∈I }(t),

giving the number of clones whose size is in I at time t .
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PROPOSITION 4.5 (Number of clones of a given size). Conditioning on ρn <

∞,

C
(n)
I (ρn) → C∗

I ∼ Poisson
(

θ

λA

P
[
Yi(ξi) ∈ I

])

in distribution, as n → ∞.

Consider

M(n)(t) = max
1≤i≤K(n)(t)

Y
(n)
i

(
t − T n

i

)
,

giving the size of the largest clone at time t .

PROPOSITION 4.6 (Size of largest clone). Conditioning on ρn < ∞,

M(n)(ρn) → M∗ = max
1≤i≤K∗ Yi(ξi)

in distribution, as n → ∞. Here, P[M∗ ≤ k] = exp(− θ
λA

P[Yi(ξi) > k]).

For an example, we take the simplest choice of mutant cell growth: βB = 0 and
αB = λA. The number of clones above size k is

C∗{i∈N:i≥k} ∼ Poisson
(

θ

λAk

)
.

The size of the largest clone is

P
[
M∗ ≤ k

] = exp
(
− θ

λA(k + 1)

)
.

REMARK 4.7. In this section, we have considered a limit in which the product
of the population size and mutation rate, θ = nν, remains finite. It should be noted
that alternative limits are also possible here. For example, Kessler and Levine [22]
investigate large θ . In a different twist, Hamon and Ycart [15], Theorem 1.1, take
the initial population size to infinity, the time of measurement to infinity, and the
mutation rate to zero.

5. Large time small mutation limit. Here, we investigate results similar to
Section 4, but with a view to approximating the process at a fixed time rather than
population size. Let (tn) be a sequence of nonrandom times converging to infinity,
and (νn) a sequence of mutation rates satisfying

lim
n→∞ eλAtnνn = η,

for some η ∈ (0,∞). For each n ∈ N, consider the two-type model with mutation
rate νn. We use the superscript (n) notation established in Section 4.
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PROPOSITION 5.1 (Mutation times). As n → ∞,

K(n)(tn + t) → K◦(t)

in finite dimensional distributions. K◦(t) is a Cox process on R with intensity
WηeλAt , where W is distributed as (1).

A direct consequence of Proposition 5.1 is that for each i ∈N,

T
(n)
i − tn → T ◦

i := inf
{
t ∈ R : K◦(t) = i

}
in distribution, as n → ∞.

PROPOSITION 5.2 (Number of mutants). As n → ∞,

B(n)(tn + t) → B◦(t) =
K◦(t)∑
i=1

Yi

(
t − T ◦

i

)
,

in finite dimensional distributions. The Yi(·) are independent of K◦(·).
Observe that

(8) B◦ = B◦(0)
d=

K◦∑
i=1

Yi(ξi),

where K◦ = K◦(0) conditioned on W is Poisson distributed with mean Wη/λA.
The generating function of B◦ is

(9)

E
[
zB◦] = E

[
exp

(
Wη

λA

(
r(z) − 1

))]

=
(

λ2
A − βAη(r(z) − 1)

λ2
A − αAη(r(z) − 1)

)A(0)

,

where r(z) is the clone size generating function, given by (6).

REMARK 5.3. For λB > 0, the generating function (9) yields the same power-
law tail as (6) and (7) (see Remark 4.4):

lim
k→∞k1+λA/λBP

[
B◦ = k

] = A(0)η

λB

(1 − qB)1−λA/λB (1 + λA/λB).

The number of clones of a given size and the size of the largest clone can be seen
in the large time small mutation limit. Simply replace K∗ with K◦ in Propositions
4.5 and 4.6.

Finally, we comment that the large time small mutation limit justifies a com-
mon approximation of the model, in which the wild-type population grows as
(WeλAt )t∈R. Here, B◦(·) corresponds to Z∗

1(·) defined in [11], for example.
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6. Finite size results. For simplicity, we consider (A(0),B(0)) = (1,0) in
this section. However, it should not be too difficult to extend to arbitrary initial cell
numbers.

We are able to give the distribution of B(τn) in the special case of no wild-type
cell death.

PROPOSITION 6.1. For βA = 0,

(10) B(τn)
d=

n−1∑
i=1

Ki(ξi )∑
j=1

Yi,j (Ui,j ξi),

where (Ki(t))t≥0 are Poisson processes with intensity ν, Yi,j (·) d= Yi(·), ξi ∼
Exponential(αA), and Ui,j ∼ Uniform[0,1], which are all independent.

To interpret (10), let us consider a randomly selected type A cell, labelled i,
of the n − 1 cells present just before time τn. The cell has been alive for time
ξi , and initiated Ki(ξi) mutant clones, with mutation times (1 − Ui,j )ξi for j =
1,2, . . . ,Ki(ξi). The clone sizes are Yi,j (Ui,j ξi).

The mean number of mutant cells at time τn is

E
[
B(τn)

] =
⎧⎪⎨
⎪⎩

(n − 1)ν

αA − λB

, λB < αA;
∞, λB ≥ αA.

The generating function of B(τn) is

E
[
zB(τn)] =

[∫ ∞
0

αAe−αAt exp
(
νt

∫ 1

0
E
[
zYi,j (ut)] − 1du

)
dt

]n−1

=
⎡
⎣ 1

1 + λBν
αAαB

F

(
1, ν/αB

1 + ν/αB + αA/λB
; qB − z

qB − 1

)⎤⎦
n−1

,

where E[zYi,j (ut)] is given by (5). The computation is lengthy but straightforward;
one can apply the integral expression [20], C.8, for the hypergeometric function,
and the identity [20], C.10. As in Remarks 4.4 and 5.3, for λB > 0,

(11) lim
k→∞k1+αA/λBP

[
B(τn) = k

] ∈ (0,∞)

exists. The limit can be obtained using the method of [20], Section 6 (which is
based on [12]), but is too cumbersome to include here. Power-law tails have often
appeared in two-type branching processes, but were generally considered to be an
artefact of approximation [11, 35].

REMARK 6.2. Contrary to (11), moments of B(τn) are finite in the standard
semi-deterministic version of the model (e.g., [27] and [20]).
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Next, specialising further to neglect wild-type and mutant death, we connect the
distributions of the B(σn) and B(τn).

LEMMA 6.3. For βA = βB = 0, and integers 0 ≤ k < n,

P
[
B(σn) ≤ k

] = P
[
B(τn−k) ≤ k

]
.

A similar result was given by Janson [18], Lemma 9.1, for a different class of urn
models. Although Lemma 6.3 can be combined with Proposition 6.1 to determine
the distribution of B(σn), it does not seem likely that a tractable explicit expression
can be obtained in general. However, for neutral mutations, Angerer was able to
solve a recursion for the probabilities P[B(σn) = k] [1], Corollary 2.2.

PROPOSITION 6.4 (Angerer). For αA + ν = αB and βA = βB = 0,

P
[
B(σn) = k

] =
n−k∑
i=1

(−1)n−i

(
n − k − 1

i − 1

)(
i αA
αB

− 1

n − 1

)
.

7. Multiple site model and site frequency spectrum. In the case of neutral
mutations, we extend the two-type model to consider mutations at multiple sites
on the genome.

The overall population (C(t))t≥0 grows as a birth–death branching process.
Cells divide and die at rates a and b, where a > b. Consider S sites, labelled
i ∈ {1, . . . , S}. Each cell is labelled by some (z1, . . . , zS) ∈ {0,1}S , where zi = 1
corresponds to a mutation at site i. Initially, there are an arbitrary number of cells
all with label (0, . . . ,0).

The mutations are modelled to occur in such a way that the number of mutants
with respect to a particular site follows the two-type model. At each division event,
the parent cell dies, and two daughter cells are produced. The daughter cells inherit
the parent’s mutations and may receive further mutations. Suppose that site i is not
already mutated in the parent cell. With probability 1 − μ site i does not receive
a mutation in either daughter cell. With probability μ exactly one of the daughter
cells receives a mutation at site i.

To state this more precisely, let us consider a parent cell with label (z1, . . . , zS) ∈
{0,1}S dividing. The two daughter cells have labels (Z

[1]
1 , . . . ,Z

[1]
S ) and (Z

[2]
1 , . . . ,

Z
[2]
S ), where for each i

(
Z

[1]
i ,Z

[2]
i

) =

⎧⎪⎪⎨
⎪⎪⎩

(zi, zi), probability 1 − μ;(
min{zi + 1,1}, zi

)
, probability μ/2;(

zi,min{zi + 1,1}), probability μ/2.

REMARK 7.1. For our purposes, we do not need to specify the joint distribu-
tion of (Z

[1]
i ,Z

[2]
i )Si=1.
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REMARK 7.2. As in Kendall’s model, we neglect back mutations, and neglect
the event that a cell division sees both daughter cells receiving the same mutation
(see [25] for a biological justification).

For each i ∈ {1, . . . , S}, let Bi(t) be the number of cells at time t with zi = 1.
Now we establish the connection between the multiple-site model and two-type

model. Put αA + ν = αB = a, βA = βB = b, ν = μa. Then for each i,(
C(t) − Bi(t),Bi(t)

)
t≥0

d= (
A(t),B(t)

)
t≥0.

The site frequency spectrum is defined to be the number of sites who see muta-
tions in a given number of cells, that is, the sequence(

S∑
i=1

1{Bi(t)=k}
)

k∈Z≥0

.

By linearity of expectation, the mean site frequency spectrum is determined by

(12) E

[
S∑

i=1

1{Bi(t)=k}
]

= SP
[
B(t) = k

]
.

Antal and Krapivsky [2] found the distribution of B(t), by solving the Kolmogorov
equations. For brevity, we do not state their result. To see the mean site frequency
spectrum at a fixed population size, define

σn := inf
{
t ≥ 0 : C(t) ≥ n

}
,

as in the two-type model. Then for b = 0 and C(0) = 1,

E

[
S∑

i=1

1{Bi(σn)=k}
]

= S

n−k∑
i=1

(−1)n−i

(
n − k − 1

i − 1

)(
i αA
αB

− 1

n − 1

)
,

by Proposition 6.4.
Let us return to the general setting of b ≥ 0 and C(0) ∈ N. We briefly comment

on the long term behaviour of the site frequency spectrum. The number of sites
who are mutated in a given number of cells converges to zero: for any k ≥ 1

lim
t→∞

S∑
i=1

1{Bi(t)=k} = 0,

almost surely. Let x ∈ [0,1). The number of sites who are mutated in at least
proportion x of the population converges to S:

lim
n→∞

S∑
i=1

1{Bi(σn)≥xn} = S,

almost surely, due to (2).
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Next, we look at the large population/time small mutation limits. Take a se-
quence of mutation probabilities (μn)n∈N. For each n ∈ N, consider the multiple-
site model with mutation probability μn, birth rate a and death rate bn = b(1−μn)

(with λ = a −b > 0). Write C(n)(t) for the population size and B
(n)
i (t) for number

of site i mutants at time t . Write

σ ′
n := inf

{
t ≥ 0 : C(n)(t) ≥ n

}
.

The purpose of choosing the sequence of death rates (bn) in this way is to allow
for a straightforward adaptation of the two-type results.

PROPOSITION 7.3 (Large population small mutation limit). Suppose that
(μn) satisfies

lim
n→∞nμna = θ,

for some θ ∈ (0,∞). Then

lim
n→∞E

[
S∑

i=1

1{B(n)
i (σ ′

n)=k}
∣∣∣σ ′

n < ∞
]

= SP
[
B∗ = k

]
,

where B∗ is distributed according to (4) with αA = αB = a and βA = βB = a.

PROPOSITION 7.4 (Large time small mutation limit). Take a sequence of
times (tn) converging to infinity, with

lim
n→∞ eλtnμna = η,

for some η ∈ (0,∞). Then

lim
n→∞E

[
S∑

i=1

1{B(n)
i (tn)=k}

]
= SP

[
B◦ = k

]
,

where B◦ is distributed according to (8) with αA = αB = a and βA = βB = a.

REMARK 7.5. Our approximations for the mean site frequency spectrum have
power-law tails:

lim
k→∞k2SP

[
B∗ = k

] = Sθ

λ

and

lim
k→∞k2SP

[
B◦ = k

] = SηC(0)

λ
,

which are special cases of Remarks 4.4 and 5.3.
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FIG. 1. Simulated and theoretical expected site frequency spectrum, with a = 0.25, b = 0.18,
S = 50, C(0) = 1, n = 103. Two different mutation rates are plotted: μ = 10−3 (left) and
μ = 10−2 (right). The average has been taken over 104 simulations in each case.

Since the size, rather than age, of a tumour can be observed, we are most in-
terested in the large population small mutation limit. To give the reader an idea of
its appearance, in Figure 1 the mean site frequency spectrum as given by Propo-
sition 7.3 is plotted. The theoretical result is compared to simulations, with birth,
death and scaled mutation rates taken from biological literature. In particular, we
consider a = 0.25 and b = 0.18 (per day), which were estimated in colorectal
cancers by [6]. According to [19], θ may be of the order of a; we consider two
different values for θ in this region. We take a relatively small population size of
n = 103 and number of sites S = 50, so that computation time is reasonable. It is
expected that taking larger n and fixed θ will give an even closer fit between theory
and simulations.

8. Discussion. From a single cancer cell, a tumour may grow to comprise bil-
lions of cells. Mutations can occur at cell divisions, ultimately leading to great
genetic diversity within a single tumour. With the advent of next-generation DNA
sequencing, vast quantities of cancer genomes have been sequenced. Data has been
made publicly available through the Cancer Genome Atlas and International Can-
cer Genome Consortium, for example. Considerable efforts have been made in
recent years to explain observed mutation patterns with mathematical models, and
from the observed mutation patterns to infer the evolutionary history of tumours.

Striking examples are Williams et al. [34] and Bozic et al. [4], who consider
deterministic and branching process models, respectively. They both derive that
the expected frequency of mutations occurring in x proportion of cells has density
proportional to x−2 (away from 0). In [34], 323 out of 904 cancers considered are
deemed to fit the x−2 power-law. In [4], 14 out of 42 cancers are deemed to fit the
power-law.

The models of [4, 8, 31, 34] all used the infinite sites assumption, which states
that each site can mutate at most once over the lifetime of a tumour. Statistical anal-
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ysis of cancer genomic data refutes this assumption [26]. Furthermore, we make a
theoretical argument against the infinite sites assumption in the branching process
setting. According to Proposition 4.2, the number of times a particular site has
mutated before the population size reaches n is approximately Poisson(nν/λA).
Therefore, the infinite sites simplification may be appropriate when nν/λA is much
smaller than 1. However, [34] estimated effective mutation rates, ν/λA, of single
base pairs to be in the region of 10−7 − 10−6. If a detected tumour comprises
108 − 109 cells (e.g., [4]), then nν/λA is not sufficiently small.

In Proposition 7.3, we have shown that the mean site frequency spectrum can
be approximated by a well-known generalisation of the Luria–Delbrück distribu-
tion. The distribution’s x−2 tail agrees with theoretical predictions and data in [4,
34]. But our predictions disagree at the lower end of the frequency spectrum. Due
to unreliable data, [4, 34] did not make a model-data comparison for mutations
occurring in less than 10% of cells.

In upcoming work, we extend the multiple-site model to nonneutral mutations.

9. Proofs.

Proofs for Section 3.

PROOF OF THEOREM 3.2. For part 2, one needs to observe that(
e−λAtB(t) − te−λAtνA(t)

)
t≥0

is a martingale with respect to the obvious filtration, and is bounded in L2.
For part 1, the reader may refer to [17] for a full proof in a more general and

notation-heavy setting. For the reader’s convenience, we offer the essence of Jan-
son’s proof here. Crucially,(

M(t)
)
t≥0 =

(
e−λBtB(t) − ν

λA − λB

e−λBtA(t)

)
t≥0

is a martingale. Janson obtains bounds for the probabilities

P

[
sup

t∈[n−1,n]
∣∣e(λB−λA)tM(t)

∣∣ > ε
]
,

via Doob’s martingale inequality, and then applies the Borel–Cantelli lemma. �

PROOF OF COROLLARY 3.4, PART 2. First, rewrite
log(n)A(σn)

n
= log(A(σn) + B(σn))A(σn)

A(σn) + B(σn)

= 1

σn

[
log

(
A(σn) + B(σn)

σneλAσn

)
+ log(σn) + λAσn

]

× e−λAσnA(σn)

σ−1
n e−λAσn(A(σn) + B(σn))

.

Then apply Theorem 3.2 and (1), to take n → ∞. �
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The remaining parts of Corollaries 3.3 and 3.4 can be proven in a similar man-
ner.

Proofs for Sections 4 and 5. For each n ∈N, the joint distribution of

(13)
(
A(n)(·),B(n)(·), (Y (n)

i (·))i∈N,K(n)(·), (T (n)
i

)
i∈N, σ ′

n, τ
′
n

)
has been specified, with respect to the mutation rate νn. Note that the distributions
of A(n)(·) and Y

(n)
i (·) do not depend on n. We will construct the sequence (13)

ranging over n ∈ N on a single probability space (�,F,P) in a way that allows
weak convergence to be shown via almost sure convergence.

On (�,F,P) define the independent processes (A(t))t≥0, (Yi(t))t≥0 for i ∈ N,

and (N(t))t≥0. As one would expect we take A(·) d= A(n)(·) and Yi(·) d= Y
(n)
i (·).

Take N(·) to be a Poisson counting process with intensity 1.
Define the mutation counting process by

K(n)(t) = N

(∫ t

0
νnA(s) ds

)
.

The mutation times are given by

T
(n)
i = inf

{
t ≥ 0 : K(n)(t) = i

}
.

The total mutant population is

B(n)(t) =
K(n)(t)∑

i=1

Yi

(
t − T

(n)
i

)
.

So the only dependence on n comes from the mutation times. As before, define

σ ′
n = inf

{
t ≥ 0 : A(t) + B(n)(t) ≥ n

}
and

τ ′
n = inf

{
t ≥ 0 : A(t) ≥ n

}
.

The large population small mutation limit results all involve conditioning on
σ ′

n < ∞ or τ ′
n < ∞. Lemmas 9.1 and 9.2 will demonstrate that the results can be

equivalently formulated by instead conditioning on nonextinction of the wild-type
population.

LEMMA 9.1. Suppose that (En)n∈N and (Fn)n∈N are sequences of events,
such that:

1. ∀n ∈N (Fn ⊃ Fn+1),
2.

⋂
n∈N Fn = F , and

3. P[F ] > 0.
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Then

lim
n→∞P[En|Fn] = lim

n→∞P[En|F ],
if it exists.

PROOF. Write

P[En|Fn] = P[F ]
P[Fn]P[En|F ] + P[En ∩ Fn \ F ]

P[Fn] ,

and take n → ∞. �

LEMMA 9.2.

{W > 0} = ⋂
n∈N

{
τ ′
n < ∞} = ⋂

n∈N

{
σ ′

n < ∞}
,

where W is given by (1).

PROOF. That {W > 0} ⊂ ⋂
n∈N{τ ′

n < ∞} and
⋂

n∈N{τ ′
n < ∞} ⊂ ⋂

n∈N{σ ′
n <

∞} should be clear. We show that⋂
n∈N

{
σ ′

n < ∞} ⊂ {W > 0}.

Indeed, fix ω ∈ {W = 0} = {∃t ≥ 0,A(t) = 0}.
Then ∫ ∞

0
A(t) dt < ∞.

So one can choose sufficiently large n ∈ N such that both

νn

∫ ∞
0

A(t) dt < sup
{
t ≥ 0 : N(t) = 0

}
,

and

τ ′
n = ∞.

In this case, we must have

ω ∈ {∀t ≥ 0,K(n)(t) = 0
} ∩ {

τ ′
n = ∞} ⊂ {

σ ′
n = ∞}

. �

We will now prove the results of Section 4 by conditioning on W > 0.

LEMMA 9.3. Conditioning on W > 0, as n → ∞,

K(n)(τ ′
n + t

) = N

(∫ t

−τ ′
n

νnA
(
τ ′
n + s

)
ds

)
→ N

(∫ t

−∞
θeλAs ds

)
=: K∗(t)

and

T
(n)
i − τ ′

n → T ∗
i = inf

{
t ∈ R : K∗(t) = i

}
almost surely, for each t ∈ R.
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PROOF. That A(·) is cadlag and satisfies (1), are enough to see that

sup
t≥0

A(t)

eλAt
< ∞,

and

sup
n∈N

eλAτ ′
n

A(τ ′
n)

< ∞

almost surely. Now write

νnA
(
τ ′
n + t

) = nνn

A(τ ′
n + t)

eλA(τ ′
n+t)

eλAτ ′
n

A(τ ′
n)

eλAt .

It becomes apparent that

lim
n→∞νnA

(
τ ′
n + t

) = θeλAt ,

and for all t ∈R

sup
n∈N

νnA
(
τ ′
n + t

) ≤ LeλAt

almost surely, for some positive random variable L. Then, using dominated con-
vergence and the fact that N(·) is almost surely continuous at

∫ t
−∞ θeλAs ds, we

are done. �

Lemma 9.3 corresponds to Theorem 4.2 in the case (ρn) = (τ ′
n). Lemmas 9.4

and 9.5 extend the result to (ρn) = (σ ′
n).

LEMMA 9.4. Conditioning on W > 0,

sup
n∈N

B(n)(σ ′
n

)
< ∞

almost surely.

PROOF. For each n ∈N, consider the process

B̂(n)(t) =
K(n)(t)∑

i=1

Ŷi

(
t − T

(n)
i

)
,

where

Ŷi(t) = sup
s∈[0,t]

Yi(s).

With probability 1,

lim
n→∞ B̂(n)(τ ′

n

) ∈ [0,∞)
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exists, by Lemma 9.3 and the almost sure continuity of the Ŷi at −T ∗
i . Finally,

B(n)(σ ′
n

) ≤ B̂(n)(σ ′
n

) ≤ B̂(n)(τ ′
n

) ≤ sup
n∈N

B̂(n)(τ ′
n

)
< ∞,

using the monotonicity of B̂(n)(·). �

LEMMA 9.5. Conditioning on W > 0,

τ ′
n − σ ′

n → 0

almost surely.

PROOF. Consider a positive sequence (an), such that:

1. limn→∞ an = ∞, and
2. limn→∞(n − an)/n = 1.

For example an = n1/2 will do. Since

eλA(τ ′
n−τ ′

n−an
) = WeλAτ ′

n

A(τ ′
n)

A(τ ′
n)

n

n

n − an

n − an

A(τ ′
n−an

)

A(τ ′
n−an

)

WeλAτ ′
n−an

,

we have that as n → ∞
τ ′
n − τ ′

n−an
→ 0.

By Lemma 9.4,

B(n)(σ ′
n

) ≤ an

for sufficiently large n. For such n,

A
(
σ ′

n

) ≥ n − an,

so

σ ′
n ≥ τ ′

n−an
,

and hence

0 ≤ τ ′
n − σ ′

n ≤ τ ′
n − τ ′

n−an
. �

PROOF OF THEOREM 4.2. Combine Lemmas 9.3 and 9.5 to see that condi-
tioning on W > 0,

lim
n→∞K(n)(ρn + t) = K∗(t)

almost surely, for each t ∈ R. Convergence in finite dimensional distributions fol-
lows. Then apply Lemmas 9.1 and 9.2 so that we may instead condition on the
ρn < ∞. �
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PROOFS OF PROPOSITIONS 4.3, 4.5 AND 4.6. By Lemmas 9.3 and 9.5, con-
ditioning on W > 0,

lim
n→∞ρn + t − T

(n)
i = t − T ∗

i

almost surely. Use that the Yi are almost surely continuous at t − T ∗
i . Then apply

Lemmas 9.1 and 9.2, to condition on ρn < ∞. �

PROOF OF PROPOSITION 5.1. It needs to be shown that for each t ∈ R

N

(∫ t

−tn

νnA(tn + s) ds

)
→ N

(∫ t

−∞
WηeλAs ds

)

almost surely, as n → ∞. Indeed, writing

νnA(tn + s) = νne
λAtn

A(tn + s)

eλA(tn+s)
eλAs,

one sees that νnA(tn + s) converges to the appropriate limit and is dominated by a
multiple of eλAs . �

Proposition 5.2 follows by continuity.

Proofs for Section 6. We first make note of a classic result, which can be found
in [32].

LEMMA 9.6. Assume that βA = 0. For each n, (τn − τk)
n−1
k=1 has the same

distribution as a collection of n−1 i.i.d. Exponential(αA) random variables, which
are ordered by size.

PROOF OF PROPOSITION 6.1. For each i ∈N, let (Ti,j )j∈N be the occurrence
times of a homogeneous Poisson process on [0,∞) with intensity ν. These are the
mutation times corresponding to one particular wild-type cell present from time 0.
Noting that

A(t) =
∞∑
i=1

1[τi ,∞)(t),

it is apparent that the mutation times of all wild-type cells are distributed according
to

(τi + Ti,j )i,j∈N.

The number of mutants at time t is

B(t)
d= ∑

i,j∈N
1{t−τi−Ti,j≥0}Yi,j (t − τi − Ti,j ) = ∑

i∈N
1{t−τi≥0}Di(t − τi),
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where

Di(t) = ∑
j∈N

1{t−Ti,j≥0}Yi,j (t − Ti,j )
d=

Ki(t)∑
j=1

Yi,j (Ui,j t).

The Di(·) are i.i.d. Now, using Lemma 9.6,

B(τn)
d=

n−1∑
i=1

Di(τn − τi)
d=

n−1∑
i=1

Di(ξi),

and by substituting Di(·) the result is obtained. �

PROOF OF LEMMA 6.3. We will show that the events {B(σn) ≤ k} and
{B(τn−k) ≤ k} are equal, using the monotonicity of A(·) and B(·) and the fact
that A(σn) + B(σn) = n. First, assume that B(σn) ≤ k. Then A(σn) ≥ n − k,
so σn ≥ τn−k and, therefore, B(τn−k) ≤ k. Now assume that B(σn) > k. Then
A(σn) < n − k, so σn < τn−k , and hence B(τn−k) > k. �

Proofs for Section 7.

PROOFS OF PROPOSITIONS 7.3 AND 7.4. For i ∈ {1, . . . , S} and n ∈ N,
[C(n)(·) − B

(n)
i (·)] is a birth–death branching process with birth and death rates

a(1 − μn) and b(1 − μn). But we wish to make use of the proofs for the two-type
model. Hence we will rescale time by a factor of (1 − μn).

On a fresh probability space put a birth–death process, (Ã(t))t≥0, with birth
and death rates a and b. Put an independent Poisson process, (Ñ(t))t≥0, with in-
tensity 1. And for i, n ∈ N put the birth–death processes (Ỹ

(n)
i (t))t≥0, which we

ask to satisfy:

1. The Ỹ
(n)
i (·) have birth and death rates a/(1−μn) and b, and initial condition

Ỹ
(n)
i (0) = 1.

2. For each n, the Ỹ
(n)
i (·) are independent ranging over i.

3. The Ỹ
(n)
i (·) are independent of Ã(·) and Ñ(·).

4. For each i, limn→∞ Ỹ
(n)
i (·) = Ỹi(·) exists almost surely, in the standard Sko-

rokhod sense on the space of cadlag functions D[0,∞).

Define K̃(n)(t) = Ñ(
aμn

1−μn

∫ t
0 Ã(s) ds) and T̃

(n)
i = inf{t ≥ 0 : K̃(n)(t) = i}. Define

B̃(n)(t) =
K̃(n)(t)∑

i=1

Ỹ
(n)
i

(
t − T̃

(n)
i

)
,

and then σ̃n = inf{t ≥ 0 : Ã(t) + B̃(n)(t) ≥ n}.
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We have just defined a slight adaptation of the framework used for the small mu-
tation limits of the two-type model. The proofs for the two-type model are readily
adapted to this new setting. Here, the mutation rates are aμn/(1 − μn). Suppose
that the μn satisfy the condition of Proposition 7.3, then limn→∞ naμn/(1−μn) =
θ . Follow the proof of Proposition 4.3 to see that

lim
n→∞P

[
B̃(n)(σ̃n) = k|σ̃n < ∞] = P

[
B∗ = k

]
.

Then use that (
B

(n)
i (t)

)
t≥0

d= (
B̃(n)((1 − μn)t

))
t≥0

and

σ ′
n

d= σ̃n/(1 − μn),

to obtain

lim
n→∞P

[
B

(n)
i

(
σ ′

n

) = k|σ ′
n < ∞] = P

[
B∗ = k

]
.

This gives Proposition 7.3.
Similarly, if the μn and tn satisfy the conditions of Proposition 7.4, then

limn→∞ eλtn/(1−μn)aμn/(1 − μn) = η. Follow the proof of Proposition 5.2 to see
that

lim
n→∞P

[
B̃(n)(tn/(1 − μn)

) = k
] = P

[
B◦ = k

]
.

Then

lim
n→∞P

[
B

(n)
i (tn) = k

] = P
[
B◦ = k

]
,

as required. �

APPENDIX: GENERALISED TWO-TYPE MODEL

Here, we present a generalisation of Kendall’s model in which the results of
Sections 4 and 5 are valid. The broader framework encompasses more general
branching processes as well as semi-deterministic versions of the model (e.g., [11,
20, 27]).

Consider the model defined in Section 2. Relax the requirement that A(·) and
the Yi(·) need to be birth–death branching processes. Instead let A(·) and the Yi(·)
be [0,∞)-valued cadlag processes. Demand further that there exists λA > 0 and a
nonnegative random variable W with:

1. limt→∞ e−λAtA(t) = W , and
2. {W = 0} = {∃T > 0,∀t ≥ T ,A(t) = 0},

almost surely. We claim that Theorem 4.2 and Propositions 4.1, 4.3, 4.5, 4.6, 5.1
and 5.2 remain valid.

To see this, only the proof of Lemma 9.3 requires additional work. Observe that
conditioning on W > 0:
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• τn < ∞ for each n ∈N, and
• limn→∞ τn = ∞.

Then we need Lemma A.1.

LEMMA A.1. Conditioning on W > 0,

lim
n→∞n−1A(τn) = 1

almost surely.

PROOF. Fix ω ∈ {W > 0} and ε > 0. Then there exists T > 0 such that for all
t > T , ∣∣e−λAtA(t) − W

∣∣ ≤ ε.

There is some N ∈ N such that for any integer n ≥ N , τn > T . Now, for all such n,∣∣e−λAτnA
(
τ−
n

) − W
∣∣ = lim

t↑τn

∣∣e−λAtA(t) − W
∣∣ ≤ ε,

where A(τ−
n ) = limt↑τn A(t). That is to say,

lim
n→∞ e−λτnA

(
τ−
n

) = W.

Finally,

1 ≤ A(τn)

n
≤ A(τn)

A(τ−
n )

= A(τn)

eλAτn

eλAτn

A(τ−
n )

→ 1. �
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