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THE COLLISION SPECTRUM OF �-COALESCENTS1
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�-coalescents model the evolution of a coalescing system in which any
number of blocks randomly sampled from the whole may merge into a larger
block. For the coalescent restricted to initially n singletons, we study the col-
lision spectrum (Xn,k : 2 ≤ k ≤ n), where Xn,k counts, throughout the history
of the process, the number of collisions involving exactly k blocks. Our focus
is on the large n asymptotics of the joint distribution of the Xn,k’s, as well as
on functional limits for the bulk of the spectrum for simple coalescents. Sim-
ilar to the previous studies of the total number of collisions, the asymptotics
of the collision spectrum largely depends on the behaviour of the measure �

in the vicinity of 0. In particular, for beta(a, b)-coalescents different types of
limit distributions occur depending on whether 0 < a ≤ 1, 1 < a < 2, a = 2
or a > 2.

1. Introduction. The �-coalescents introduced by Pitman [43] and Sagitov
[45] are partition-valued Markov processes which evolve according to the rule: if
at some time the process is restricted to a partition with m separate blocks, then
any k particular blocks collide and merge in one block at rate

(1.1) λm,k =
∫
[0,1]

xk(1 − x)m−kx−2�(dx), 2 ≤ k ≤ m,

where � is a finite measure on [0,1]. For a �-coalescent �n = (�n(t))t≥0 which
starts with n singleton blocks and terminates with a single block, the possible
states are partitions of the set [n] := {1, . . . , n}. Due to consistency for various n,
one can also view �n as the restriction to [n] of an infinite �-coalescent �∞ =
(�∞(t))t≥0 with values in the set of partitions of the infinite set N.

Among the functionals characterising the speed of coalescence, the total number
of collisions Xn (transitions of �n until absorption) has attracted the most atten-
tion; see [24, 27, 31, 33, 36, 38] and a survey paper [25]. Here, we are interested
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in more delicate properties of the coalescent process by distinguishing mergers of
various sizes, that is decomposing the total number of collisions as

Xn =
n∑

k=2

Xn,k, 2 ≤ k ≤ n,

where Xn,k is the number of collisions resulting in a merger of k blocks. We call
the collection of counts (Xn,k : 2 ≤ k ≤ n) the collision spectrum of �n.

There are different threads motivating our study of the collision spectrum. In
the genealogical representation of the path of �n by a tree, directed from leaves
up to the root, a k-fold collision corresponds to a node with in-degree k and out-
degree 1. Thus the collision spectrum carries the same information as the degree
sequence, which is a fundamental characteristic previously studied for other types
of random trees [12, 16, 39].

The classical Kingman coalescent with only binary collisions (where � is an
atomic mass at 0) is widely used in genetics to model the ancestry of neutral
populations. Other �-coalescents, with collisions of arbitrary multiplicity have
been found useful to simulate the ancestry affected by various evolutionary factors
such as the large offspring size, selective sweeps, population bottlenecks and rapid
adaptation [19, 42, 46]. Outside of biology, in the field of machine learning coales-
cents have been adopted in hierarchical clustering networks [34, 49]. The choice
of model is of paramount importance for the applications. The components of the
collision spectrum are easy to compute and can be used for statistical inference on
the parameter measure �. See [9] for related example of computing likelihoods
and model fitting.

A tractable parametric family of �-coalescents are the beta-coalescents with
characteristic measure

(1.2) �(dx) = 1

B(a, b)
xa−1(1 − x)b−11(0,1)(x)dx, a, b > 0,

which have collision rates expressible in terms of the beta function B(·, ·). The
instance a = b = 1, where � is the uniform distribution on [0,1], is known as the
Bolthausen–Sznitman coalescent. In application to beta(a, b)-coalescents, our re-
sults on limit distributions of (Xn,k − an,k)/bn,k are summarised in Table 1. Here,
S2−a denotes a random variable with a (2 − a)-stable distribution, E2−a a random
variable representable as the exponential functional of a subordinator (nondecreas-
ing Lévy process), and N a standard normal random variable. Explanation for the
scaling/centering constants will appear in a due course.

Some beta coalescents can be associated with a continuous time process of cut-
ting a random tree. In [32], it was observed that the Bolthausen–Sznitman coa-
lescent can be realised by pruning a random recursive tree at a uniformly chosen
edge. The same procedure applied to a random binary tree yields the beta(3

2 , 1
2)-

coalescent [1]. In [2], a beta(2 −α,α)-coalescent, α ∈ (0,1/2] is realised by prun-
ing at nodes the stable Galton–Watson tree. The interest so far was focused on Xn,
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TABLE 1
Limits of (Xn,k − an,k)/bn,k for beta(a, b)-coalescents, b > 0

a an,k bn,k Limit Source

0 < a < 1 p
(a)
k−1(1 − a)n p

(a)
k−1(1 − a)n1/(2−a) S2−a Theorem 5.1(i)

a = 1 p
(1)
k−1

n log(n logn)

(logn)2 p
(1)
k−1

n
(logn)2 S1 Theorem 5.1(ii)

1 < a < 2 0 �(k+a−2)
k! n2−a E2−a Theorem 4.2

a = 2 (kν1)−1 logn

√
(
ν2
ν3

1

1
k2 + 1

kν1
) logn N Theorem 4.3

a > 2 0 1 exists Theorem 2.1
a = 3 0 1 Poisson( b

k−1 ) [41], Theorem 3.1

interpreted in this context as the number of cuts needed to isolate the root of the
tree. The collision spectrum gives a much more detailed account on the sizes of
subtrees removed in the pruning process.

In two cases, the collision spectrum is trivial. If � is the unit mass at 0, then �∞
is Kingman’s coalescent with only binary collisions, hence Xn = Xn,2 = n − 1.
If � is the unit mass at 1, then �n has a sole transition, and Xn = Xn,n = 1.
In the sequel, we shall assume that � has no atoms at 0 and 1. Still, the two
extremes offer the intuition that concentration of the measure � near 0 affects the
abundance of collisions involving small number of blocks. A rough quantification
of the concentration of the measure � near 0 involves the first two moments of
negative order

(1.3) m−r :=
∫
[0,1]

x−r�(dx), r = 1,2

which may be finite or infinite. If m−1 < ∞, then the infinite coalescent has a
nontrivial dust component, which is the collection of singleton blocks of �∞(t),
for every t ≥ 0. Under the stronger condition m−2 < ∞, the coalescent is simple,
in the sense that transitions of �∞ occur at isolated times of a Poisson process.
If m−1 = ∞, there is a further division in coalescents �∞ that terminate in finite
time, and coalescents that have infinitely many blocks for every t ≥ 0.

In many respects the collision spectrum is similar to the collection of counts of
component sizes in decomposable combinatorial structures [4, 44]. By this anal-
ogy, it is of interest to look at the large-n behaviour of the first few components
of the collision spectrum, as well as to identify the counts that make a major con-
tribution to the total number of collisions. Other types of spectra were studied for
�-coalescents with mutations (or freeze; see, e.g., [15]), where the terminal state
of the process is the so-called allelic partition. These are the site frequency spec-
trum [7, 10, 11, 14, 18, 48] (for the general �-coalescents) and the allelic partition
frequency spectrum [6] (for the Bolthausen–Sznitman coalescent). Compared to
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these, the collision spectrum is simpler and better amenable to analysis for a large
class of measures � by the methods previously developed for Xn.

The rest of the paper is organised as follows. In Section 2, we consider the
case m−2 < ∞ of simple coalescents, showing that the Xn,k’s jointly converge
without scaling as n grows. Thus for every fixed k the contribution of Xn,k to Xn

is asymptotically negligible, and so is for every finite collection of the values of k.
In Section 3 for simple coalescents we assess the joint contribution to Xn in the
form of a functional limit theorem for the process of cumulative counts

(1.4) Xn(s) :=
�ns�∑
k=2

Xn,k, s ∈ [0,1],

where �·� is the floor function. In Section 4, we consider the case where m−2 = ∞
but m−1 < ∞, showing that under an assumption of regular variation each Xn,k

is asymptotic to a constant multiple of Xn, while for coalescents related to the
gamma-type subordinators the spectrum has a nondegenerate multivariate normal
distribution. In Section 5, we consider beta(a, b)-coalescents with a ∈ (0,1] (for
which m−1 = ∞), and show that the Xn,k’s, properly centered and normalised,
jointly converge to multiples of the same stable random variable.

2. Simple coalescents: Convergence of the spectrum. Let Nn(t) be the
number of blocks of the partition �n(t). The counting process Nn := (Nn(t))t≥0
is Markovian, starting at Nn(0) = n and decrementing from m to m − k at rate( m
k+1

)
λm,k+1, 1 ≤ k < m. The total collision rate on n blocks is

λn :=
n∑

k=2

(
n

k

)
λn,k =

∫
[0,1]

x−2(
1 − nx(1 − x)n−1 − (1 − x)n

)
�(dx), n ≥ 2,

and the first transition of �n is a collision of k + 1 blocks with probability

(2.1) pn,k :=
(

n

k + 1

)
λn,k+1

λn

, 1 ≤ k < n.

Hence by the first collision event Nn decrements from state n to n − In, where In

has distribution P{In = k} = pn,k .
For the remainder of this and in the next section, we assume that m−2 < ∞. For

the simple �-coalescents λn → m−2, which is the rate of the Poisson process of
collision times of �∞. Let W be a random variable taking values in (0,1) with
distribution function

(2.2) P{W ≤ x} =
∫
[1−x,1] y−2�(dy)

m−2
, x ∈ [0,1].

Using the weak law of large numbers for binomial random variables, we infer

lim
n→∞

�nx�+1∑
k=2

(
n

k

)
yk(1 − y)n−k = 1{y≤x}, x, y ∈ [0,1),
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and thereupon

lim
n→∞

�nx�∑
k=1

pn,k = 1

m−2
lim

n→∞
�nx�+1∑

k=2

(
n

k

)
λn,k

= 1

m−2

∫
[0,1]

lim
n→∞

(�nx�+1∑
k=2

(
n

k

)
yk(1 − y)n−k

)
y−2�(dy)(2.3)

= 1

m−2

∫
[0,x]

y−2�(dy) = P{1 − W ≤ x}, x ∈ [0,1).

Since the expression in the parentheses is bounded by one the second equality
is justified by the dominated convergence theorem. Thus, the variable W has the
intuitive meaning of the asymptotic proportion (n− In)/n of the blocks remaining
after the first collision in �n.

Introduce the logarithmic moments

μ := E| logW |, σ 2 := Var
(| logW |)

which may be finite or infinite and note that

μ = 1

m−2

∫
[0,1]

∣∣log(1 − x)
∣∣x−2�(dx).

Our first result states the joint convergence in distribution of the collision spec-
trum. We set Xn,k := 0 for k > n.

THEOREM 2.1. Suppose m−2 < ∞ and that the distribution of | logW | is non-
arithmetic.

(i) If μ < ∞, then there exists a nondegenerate random vector (X∞,k)k≥2 such
that

(Xn,k)k≥2 =⇒ (X∞,k)k≥2, n → ∞,

where =⇒ denotes the weak convergence in the product space R
∞.

(ii) If μ = ∞, then

Xn,k
P→ 0, n → ∞

for every fixed k ≥ 2.

Note that the limit variable X∞,k appearing in this theorem is not the number
of k-collisions for the infinite coalescent. For simple coalescents, partition �∞(t)

has infinitely many blocks and every collision takes infinitely many of them.
The proof of Theorem 2.1 will be based on three lemmas.
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LEMMA 2.2. Let ξ be a random variable with values in [1,∞). There exists
a nondecreasing function ϕ : [1,∞) → [0,∞) slowly varying at ∞ such that

lim
x→∞ϕ(x) = ∞ and Eϕ(ξ) < ∞.

PROOF. This follows from the two rather obvious facts. First, there exists a
positive function ψ diverging to ∞ such that Eψ(ξ) < ∞. Second, there ex-
ists a nondecreasing slowly varying function ϕ diverging to ∞ and satisfying
limx→∞(ϕ(x)/ψ(x)) = 0. One possible construction of such a ϕ can be found
in the proof of Lemma 4.4 in [20]. �

Applying Lemma 2.2 to ξ = 1/(1 − W) gives the following.

COROLLARY 2.3. If m−2 < ∞ then there exists a nondecreasing function ϕ :
[1,∞) → [0,∞) slowly varying at ∞ such that limx→∞ ϕ(x) = ∞ and

(2.4) Eϕ
(
1/(1 − W)

) =
∫
[0,1]

y−2ϕ
(
y−1)

�(dy) < ∞.

LEMMA 2.4. Let (ak)k∈N be a sequence defined recursively as follows:

a1 = a2 = · · · = a
 = 0, an = pn,
ϕ(n) +
n−1∑
k=1

pn,kan−k, n > 
,

where 
 ∈ N is fixed, and ϕ is a positive function slowly varying at ∞ such that
(2.4) holds. Then the sequence (an) is bounded.

PROOF. Choose θ ∈ (0,1) such that
∫
[1−θ,1] y−2�(dy) > 0. We first prove by

induction that there is a constant C
 > 0 such that

an ≤ C


n∑
m=
+1

pm,
ϕ(m)

m
, n > 
.

By adjusting C
 if necessary it is enough to show this for n > n0, where n0 is any
fixed integer. We have

an = pn,
ϕ(n) +
n−1∑
k=1

pn,n−kak = pn,
ϕ(n) +
n−1∑

k=
+1

pn,n−kak

≤ pn,
ϕ(n) + C


n−1∑
k=
+1

pn,n−k

k∑
m=
+1

pm,
ϕ(m)

m

= pn,
ϕ(n) + C


n−1∑
m=
+1

pm,
ϕ(m)

m

n−m∑
k=1

pn,k.
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We need to check that for some C
 > 0 the inequality

pn,
ϕ(n) + C


n−1∑
m=
+1

pm,
ϕ(m)

m

n−m∑
k=1

pn,k ≤ C


n∑
m=
+1

pm,
ϕ(m)

m

holds for large enough n. This is equivalent to

(2.5) pn,
ϕ(n) ≤ C


n∑
m=
+1

pm,
ϕ(m)

m

m−1∑
j=1

pn,n−j

for large enough n. We have

n∑
m=
+1

pm,
ϕ(m)

m

m−1∑
j=1

pn,n−j

≥
n∑

m=�θn�

pm,
ϕ(m)

m

m−1∑
j=1

pn,n−j(2.6)

≥ inf�θn�≤m≤n

((
m


 + 1

)
ϕ(m)

mλm

)
λn,
+1

n∑
k=�θn�

k−1∑
j=1

pn,n−j .

Since λn → m−2 ∈ (0,∞), the sequence (
( m

+1

)ϕ(m)
mλm

) is regularly varying with in-
dex 
. Therefore,

(2.7) inf�θn�≤m≤n

((
m


 + 1

)
ϕ(m)

mλm

)
≥ C′




(
n


 + 1

)
ϕ(n)

n

for some C′

 > 0 and large enough n, by [8] (Theorem 1.5.3). Finally,

(2.8) lim inf
n→∞

1

n

n∑
k=�θn�

k−1∑
j=1

pn,n−j > 0

is a consequence of

lim inf
n→∞

1

n

n∑
k=�θn�

k−1∑
j=1

pn,n−j ≥ (1 − θ) lim inf
n→∞

�θn�−1∑
j=1

pn,n−j > 0,

where the last inequality follows from (2.3) and our choice of θ .
Inequality (2.5) now follows from (2.6), (2.7), (2.8), Definition (2.1) and the

convergence of λn.
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Next, we argue that the series
∑

m≤
+1
pm,
ϕ(m)

m
converges. Indeed, since λn =

O(1) we can find some C ′′

 > 0 such that∑

m≥
+1

pm,
ϕ(m)

m
≤ C′′




∑
m≥
+1

m
ϕ(m)λm,
+1

= C′′



∫
[0,1]

x
−1(1 − x)−
−1
( ∑

m≥
+1

m
ϕ(m)(1 − x)m
)
�(dx).

By dominated convergence the integrand is bounded in some left vicinity of 1. By
the Abelian theorem for power series [see, e.g., [21] (Chapter XIII.5, Theorem 5)],∑

m≥
+1

m
ϕ(m)(1 − x)m ∼ const · x−
−1ϕ(1/x), x → 0+

which in combination with (2.4) shows that the integral converges in some right
vicinity of 0. �

Now we are in position to prove Theorem 2.1.

PROOF OF THEOREM 2.1.
CASE μ < ∞. According to the Cramér–Wold device it is enough to show that

Z(N)
n :=

N∑
k=2

αkXn,k
d→

N∑
k=2

αkX∞,k, n → ∞

for every choice of N ≥ 2 and nonnegative reals α2, . . . , αN . Observe the stochas-
tic recurrence

Z
(N)
1 = 0, Z(N)

n
d=

N∑
k=2

αk1{In=k−1} + Ẑ
(N)
n−In

, n ≥ 2,

where In is the size of the first decrement of Nn, Ẑm
d= Zm, and In is independent

of Ẑm’s. Let A be the span of α2, . . . , αN with nonnegative integer weights. For
z ∈ A, we get

P
{
Z(N)

n = z
} =

n−1∑
m=1

pn,n−mP

{
Z(N)

m = z −
N∑

k=2

αkδn−m,k−1

}

=
n−1∑
m=1

pn,n−mP
{
Z(N)

m = z
}

+
n−1∑
m=1

pn,n−m

(
P

{
Z(N)

m = z −
N∑

k=2

αkδn−m,k−1

}
− P

{
Z(N)

m = z
})



THE COLLISION SPECTRUM OF �-COALESCENTS 3865

=
n−1∑
m=1

pn,n−mP
{
Z(N)

m = z
}

+
n−1∑

m=n−N+1

pn,n−m

(
P

{
Z(N)

m = z − αn−m+1
} − P

{
Z(N)

m = z
})

=
n−1∑
m=1

pn,n−mP
{
Z(N)

m = z
}

+
N∑

m=2

pn,m−1
(
P

{
Z

(N)
n−m+1 = z − αm

} − P
{
Z

(N)
n−m+1 = z

})

=:
n−1∑
m=1

pn,n−mP
{
Z(N)

m = z
} + s(N)

n,z ,

where δx,y is the Kronecker delta.

Interpreting, for 1 ≤ k ≤ n and fixed z ∈ A, s
(N)
k,z as a “reward” collected by the

block-counting process Nn on visiting state k, we conclude that the total expected
reward of Nn is P{Z(N)

n = z}. For k ≤ n let h(n, k) be the probability that Nn ever
visits state k. Since Nn is a.s. decreasing, h(n, k) is also the expected number of
visits of Nn to k, whence

P
{
Z(N)

n = z
} = δz,0 +

n∑
k=2

h(n, k)s
(N)
k,z , z ∈ A,

where the initial condition P{Z(N)
1 = z} = δz,0 has to be recalled. Formally, the last

formula is verified by induction on n. For Ln the number of blocks involved in the
last collision, we have

P{Ln = k} = h(n, k)pk,k−1.

Thus,

P
{
Z(N)

n = z
} = δz,0 +Ef (N)

z (Ln), z ∈ A,

where

f (N)
z (m) := s

(N)
m,z

pm,m−1
, m ≥ 2.

By [40] (Theorem 2), Ln converges in distribution to a random variable L∞.
Hence,

lim
n→∞P

{
Z(N)

n = z
} = δz,0 +Ef (N)

z (L∞), z ∈ A,
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provided that the family (f
(N)
z (Ln))n∈N is uniformly integrable. In view of

∣∣f (N)
z (m)

∣∣ ≤
∑N−1

k=1 pm,k

pm,m−1
, m ≥ 2,

it suffices to check uniform integrability of (g
(k)
1 (Ln))n∈N for every fixed k ∈ N,

where g
(k)
1 (m) := pm,k/pm,m−1. According to the Vallée–Poussin criterion in the

form given in [47] (Lemma 3, page 267) the latter is secured by

(2.9) sup
n∈N

E
(
g

(k)
1 (Ln)ϕ

(
log+ g

(k)
1 (Ln)

))
< ∞

with a nondecreasing slowly varying function ϕ as given in Corollary 2.3. We will
show even more, namely that

(2.10) sup
n∈N

Eg
(k)
2 (Ln) < ∞,

where g
(k)
2 (m) := pm,k

pm,m−1
ϕ(| logpm,m−1|). The expectation under the supremum

can be written as

Eg
(k)
2 (Ln) =

n∑
m=2

h(n,m)pm,kϕ
(| logpm,m−1|).

We use Jensen’s inequality

− logpm,m−1 = − log

∫
[0,1] xm−2�(dx)

�([0,1]) − log�
([0,1]) + logλm

≤ (m − 2)

∫
[0,1] | logx|�(dx)

�([0,1]) − log�
([0,1]) + logλm

in combination with limm→∞ λm = m−2 to conclude that

− logpm,m−1 ≤ const · m, m ≥ 2

and thereupon

Eg
(k)
2 (Ln) ≤ const

n∑
m=2

h(n,m)pm,kϕ(m)

by monotonicity of ϕ. The last sum is uniformly bounded by Lemma 2.4.
CASE μ = ∞. This follows immediately from the observation

lim
n→∞h(n,m) = 0, m ∈ N

which is a consequence of [40] (Theorem 3). �
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REMARK. Under the assumptions of Theorem 2.1 we also have convergence
of all joint moments: for every N ≥ 2 and m2,m3, . . . ,mN ≥ 0,

lim
n→∞E

(
X

m2
n,2X

m3
n,3 · · ·XmN

n,N

) = E
(
X

m2∞,2X
m3∞,3 · · ·XmN∞,N

)
.

In order to see this, it is enough to check that

(2.11) sup
n≥2

EXm
n,k < ∞

for all k ≥ 2 and all m ∈ N. Uniform integrability of (X
m2
n,2X

m3
n,3 · · ·XmN

n,N)n≥2 will
then follow from Hölder’s inequality. While condition (2.11) for m = 1 follows
from the recursion

EXn,k = pn,k−1 +
n−k∑
j=1

pn,n−jEXj,k, n ≥ 2,

for m ≥ 2 it is checked by induction. We omit the details.

Theorem 2.1 is a pure existence result. Nevertheless, for beta(3, b)-coalescents,
it is possible to describe the asymptotic joint distribution of the collision spectrum
explicitly. This result is strikingly similar to the classical Poisson limit for the
small-block counts of Ewens’ partitions [4].

EXAMPLE (Theorem 3.1 in [41]). Suppose � is a beta(3, b)-distribution.
Then

(Xn,k)k≥2 =⇒ (X∞,k)k≥2, n → ∞,

where (X∞,k)k≥2 are independent with X∞,k
d= Poisson(b/(k − 1)).

3. Simple coalescents: Functional limits. A consequence of Theorem 2.1 is
that the contribution of Xn,k to Xn for every fixed k remains bounded as n grows.
In this section, we prove functional limit theorems for the process of cumulative
counts (Xn(s))s∈[0,1] defined by (1.4). The cases of finite and infinite μ are treated
separately (Theorems 3.1 and 3.2).

The process (Xn(s))s∈[0,1] has paths belonging to the Skorohod space D[0,1]
of càdlàg functions. We endow D[0,1] with either the J1- or the M1-topology and

denote the associated weak convergence of probability measures by
J1=⇒ and

M1=⇒,
respectively.

THEOREM 3.1. Assume m−2 < ∞ and that for some a > 0

(3.1) E
∣∣log(1 − W)

∣∣a = 1

m−2

∫
[0,1]

| logx|ax−2�(dx) < ∞.
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Suppose further that μ < ∞ and set

un(s) := μ−1
∫ logn

(1−s) logn
P

{∣∣log(1 − W)
∣∣ ≤ y

}
dy,

for s ∈ [0,1].
(A1) If σ 2 < ∞, then as n → ∞(

Xn(s) − un(s)√
μ−3σ 2 logn

)
s∈[0,1]

J1=⇒ (
B(s)

)
s∈[0,1],

where (B(s))s∈[0,1] is a standard Brownian motion.
(A2) If σ 2 = ∞ and

E(logW)21{| logW |≤x} ∼ 
(x), x → ∞,

for some function 
 slowly varying at infinity, then as n → ∞(
Xn(s) − un(s)

μ−3/2c(logn)

)
s∈[0,1]

J1=⇒ (
B(s)

)
s∈[0,1],

where c is a positive function satisfying limx→∞(c(x))−2x
(c(x)) = 1.
(A3) If

(3.2) P
{| logW | > x

} ∼ x−α
(x), x → ∞,

for some α ∈ (1,2) and some 
 slowly varying at infinity, then as n → ∞(
Xn(s) − un(s)

μ−(α+1)/αc(logn)

)
s∈[0,1]

M1=⇒ (
Sα(s)

)
s∈[0,1],

where c is a positive function satisfying limx→∞(c(x))−αx
(c(x)) = 1 and
(Sα(s))s∈[0,1] is a spectrally negative α-stable Lévy process such that Sα(1) has
the characteristic function

(3.3) z 
→ exp
{−|z|α�(1 − α)

(
cos(πα/2) + i sin(πα/2) sgn(z)

)}
, z ∈R

with � being the gamma function.

Without moment condition (3.1), the conclusions of Theorem 3.1 are still valid
in the weaker sense of the convergence of the finite-dimensional distributions of
(Xn(s))s∈[0,1]; see [3] (Remark 2.3).

THEOREM 3.2. Assume m−2 < ∞. If relation (3.2) holds with α ∈ (0,1), then
as n → ∞
(3.4)

(

(logn)Xn(s)

(logn)α

)
s∈[0,1]

J1=⇒ (
W←

α (1) − W←
α (1 − s)

)
s∈[0,1],

where W←
α (s) := inf{y ≥ 0 : Wα(y) > s} for s ≥ 0 and (Wα(y))y≥0 is an α-

stable subordinator (nondecreasing Lévy process) with the Laplace exponent
− logE(−zWα(1)) = �(1 − α)zα , z ≥ 0.
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For simple �-coalescents, each partition �∞(t) has a dust component. There-
fore, a coupling between the infinite coalescent and a subordinator (which is a
compound Poisson process in the case m−2 < ∞) [24, 27] can be applied to relate
Nn with a simpler counting process derived from the dust component. We briefly
summarise the combinatorial part of this connection.

Consider an extended coalescent, which is a process on partitions of [n] where
every initial singleton block {1}, . . . , {n} is regarded as primary and every other
block as secondary. We stress that a singleton block may become at a later stage
a secondary block. Whenever the partition has m blocks (some of which being
primary and some secondary), every k-tuple of the blocks is merging in one block
at rate λm,k (for 2 ≤ k ≤ m), and every primary block transforms into secondary
at rate λm,1. The rate λm,1 is defined by formula (1.1) with k = 1, and we have
0 < λm,1 < ∞ because m−1 < ∞. Let N∗

n (t) be the number of primary blocks at
time t , and let Kn,k be the number of decrements of size k ∈ [n] of the process
N∗

n := (N∗
n (t))t≥0. With the extended coalescent, we may associate a partition of

[n] by the first event, which has two integers i and j �= i in the same block if the
first event involving {i} (which could have been collision or transformation into
secondary block) is a collision which is also the first event for {j}. The number of
blocks of size k of this partition is then Kn,k . With the natural time-ordering of the
blocks, the partition by the first event is a regenerative composition as introduced in
[28]. Figure 1 represents a realisation of an extended coalescent with seven initial
blocks.

Let Zn be the number of secondary blocks emerging throughout the history of
the extended coalescent. Clearly, Zn ≤ Kn,1 + Xn, since a secondary block results
from either a collision or a transformation of a primary block, while the number of
transformations into a secondary block does not exceed Kn,1. Choosing c0 > μ−1

we have

(3.5) P{Zn > c0 logn} → 0, n → ∞,

as follows from [24] (Proposition 5.1 and Theorem 5.1) in conjunction with [23]
(Corollary 1.1).

Similarly to [24] [formula (5.3)], the number of collisions involving at most
�ns� blocks can be decomposed as

(3.6) Xn(s) = X∗
n(s) + Dn(s),

where, for s ∈ [0,1], X∗
n(s) is the number of collisions involving between 2 and

�ns� blocks such that at least two of them are primary, and Dn(s) is the number
of collisions involving at most �ns� blocks with at most one block being primary.
Trivially, Dn(s) ≤ Dn where Dn := Dn(1). Furthermore,

�ns�−Zn∑
k=2

Kn,k ≤ X∗
n(s) ≤

�ns�∑
k=2

Kn,k,
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{1} {2} {3} {4} {5} {6} {7}

{1,2,3}

{1,2,3,4,5,6,7}

{5,6,7}

{6,7}

×

FIG. 1. A sample path of �7 with four collisions and one transformation (denoted by ×) of the
primary block 4 into the secondary block. The process Nn has transitions 7 → 5 → 4 → 3 → 1,
thus X7 = 4, X7,2 = X7,3 = 2, the process N∗

n has transitions 7 → 4 → 3 → 1 → 0, thus
K7,1 = 2,K7,2 = 1,K7,3 = 1.

where the upper bound is obvious, and the lower bound follows since a decrement
of N∗

n of size at least two and at most �ns� − Zn occurs by a collision of size at
most �ns� involving at least two primary particles.

Denoting Kn(s) := ∑�ns�
k=1 Kn,k for s ∈ [0,1] and combining the aforementioned

estimates we arrive at

(3.7) sup
s∈[0,1]

∣∣Xn(s) − Kn(s)
∣∣ ≤ sup

s∈[0,1]

( �ns�∑
k=�ns−Zn�∨1

Kn,k

)
+ Dn + Kn,1.

The analogues of Theorems 3.1 and 3.2 have been proved for Kn(s); see [3] (The-
orems 2.2 and 2.5). Hence, it is sufficient to show that for every fixed ε > 0

(3.8)
sups∈[0,1](

∑�ns�
k=�(ns−Zn)∨1� Kn,k) + Dn + Kn,1

(logn)ε
P→ 0, n → ∞.

According to [24], the sequence (Dn + Kn,1)n∈N is tight (see Lemma 5.1, Propo-
sition 5.1 and also the proof of Theorem 5.1 therein). Appealing to (3.5), we see
that (3.8) will follow from

(3.9)
sups∈[0,1](

∑�ns�
k=�(ns−c0 logn)∨1�+1 Kn,k)

(logn)ε
P→ 0, n → ∞.
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It remains to prove (3.9). Let (Wk)k∈N be a sequence of independent copies of
the random variable W with distribution (2.2),

Pk := W1 · · ·Wk−1(1 − Wk), k ∈N and

ρ(x) := #{k ∈ N : Pk ≥ 1/x}, x ≥ 0.

We will use the following lemma borrowed from [3] [formula (35) and Lemma
6.1].

LEMMA 3.3. We have, for every fixed ε > 0,

sups∈[0,1] |Kn(s) − (ρ(n) − ρ(n(1−s)))|
(logn)ε

P→ 0, n → ∞.

Set

wn(s) := log+(ns − c0 logn)

logn
and s0(n) := log(1 + c0 logn)

logn
, s ∈ [0,1]

and note that

sup
s∈[0,1]

∣∣(1 − s) logn − (
1 − wn(s)

)
logn

∣∣
= sup

s∈[0,1]
∣∣s logn − log+(

ns − c0 logn
)∣∣

= max
{
s0(n) logn, sup

s∈[s0(n),1]

∣∣∣∣log
(

1 − c0 logn

ns

)∣∣∣∣}
= log(1 + c0 logn).

(3.10)

Furthermore, (3.9) is equivalent to

(3.11)
sups∈[0,1](Kn(s) − Kn(wn(s)))

(logn)ε
P→ 0, n → ∞,

and applying Lemma 3.3 we see that (3.11) follows if one can show that

sups∈[0,1] |ρ(n1−wn(s)) − ρ(n1−s)|
(logn)ε

P→ 0, n → ∞.

By (3.10), the left-hand side of the last formula satisfies

sups∈[0,1] |ρ(e(1−wn(s)) logn) − ρ(e(1−s) logn))|
(logn)ε

≤ sups∈[0,1](ρ(es logn+log(1+c0 logn)) − ρ(es logn))

(logn)ε
.
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Letting b(t) := log(1 + c0t) the right-hand side of the latter inequality is bounded
from above by∑�b(logn)�

k=0 sups∈[0,1](ρ(es logn+k+1) − ρ(es logn+k))

(logn)ε

≤ ([
b(logn)

] + 1
)sups∈[0,1](ρ(e(c+1)s logn+1) − ρ(e(c+1)s logn))

(logn)ε
,

where the last estimate follows from b(t) ≤ c0t and

sup
s∈[0,1]

(
ρ

(
es logn+k+1) − ρ

(
es logn+k))

≤ sup
s∈[0,1]

(
ρ

(
e(c0+1)s logn+1) − ρ

(
e(c0+1)s logn))

for 0 ≤ k ≤ b(logn). Finally, according to [3] (Proposition 3.3)

sups∈[0,1](ρ(e(c0+1)s logn+1) − ρ(e(c0+1)s logn))

((c logn)ε/2
P→ 0, n → ∞,

whence (3.9).

4. Other coalescents with dust. We turn to the coalescents with m−2 = ∞,
yet m−1 < ∞. In this case, the collision times of �∞ can be identified with the
jump times of a subordinator (St )t≥0 with the Laplace exponent

�(z) = logEe−zS1 =
∫
[0,1]

(
1 − (1 − x)z

)
x−2�(dx).

The dust component has frequency exp(−St ), that is for large n the partition �n(t)

has about n exp(−St ) primary singleton blocks.
We wish to approximate Xn,k by Kn,k , the number of collisions which involve

k primary blocks (and possibly some secondary). Let Dn,k := Xn,k − Kn,k . Our
main tool is the following estimate.

LEMMA 4.1. For k = 2,3, . . .

(4.1) E|Dn,k| ≤ ck

n∑
j=1

(
�(j)

j

)2
,

where ck is a positive constant.

PROOF. We modify the argument for Xn in [24] (Section 5.1). Let Xn,k+ be
the number of collisions involving at least k blocks, and let Kn,k+ be the num-
ber of collisions involving at least k primary blocks. These variables are easier to
compare, because Xn,k+ ≥ Kn,k+ and dn,k+ := E(Xn,k+ − Kn,k+) ≥ 0.
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Decomposing Xn,k+ at the first collision event of �n, we get

(4.2) X1,k+ = 0, Xn,k+ d= X̂n−In,k+ + 1{In≥k−1}, k ≥ 2

with the usual convention about the variables in the right-hand side, and In hav-
ing distribution (2.1). In the same way, restricting the coalescent to the set of the
primary blocks

(4.3) K0,k+ = K1,k+ = 0, Kn,k+ d= K̂n−In−1,k+ + 1{In≥k−1}, k ≥ 2.

To make the right-hand sides comparable, we need to adjust for −1 in recursion
(4.3). To that end, we focus on the singleton {n} in the evolution of �n, and identify
�n−1 with the restriction of �n to [n−1]. Thus Xn−1,k+ is realised as the count of
mergers of at least k blocks for the restricted process. The first collision involving
{n} occurs at some random time, say τ , and for τ ≥ t the partitions �n(t) and
�n−1(t) have the same number of blocks, that is, Nn(t) = Nn−1(t) for τ ≥ t .
Now, if {n} at time τ is merged together with k − 1 other blocks (a k-merger),
then Xn,k+ = Xn−1,k+ + 1; otherwise, Xn,k+ = Xn−1,k+. We see that Xn−1,k and
Xn,k differ only in the case when the first collision taking {n} is a k-merger, hence
involving at most k primary blocks. It follows that Xn,k+ ≤ Xn−1,k+ +Yn,k , where
Yn,k is the indicator of the event that the first collision with {n} takes at most k

primary blocks.
From (4.2), we now conclude that

(4.4) Xn,k+
d≤ Xn−In−1,k+ + Yn−In,k + 1{In≥k−1},

where the inequality is meant in the sense of stochastic order. With yn,k := EYn,k =
P{Yn,k = 1}, taking expectations in (4.3) and (4.4), and subtracting the first relation
from the second we obtain

d0,k+ = d1,k+ = 0, dn,k+ ≤
n−1∑
j=1

pn,n−j (dj−1,k+ + yj,k), n ≥ 2.

Consider the exchangeable partition of [n] by the first collision event, where
two primary singletons i and j are assigned to the same block if the first collision
engaging one of these elements also takes the other. In these terms, yn,k is the
probability that in this partition the block containing element n has size at most
k. Since there are

∑k
r=1 rKn,r elements in blocks of size at most k, and since by

exchangeability given the block sizes the distribution of partition is uniform, we
obtain

yn,k = 1

n

k∑
r=1

rEKn,r .

Following the same line as in [24] (Section 5.1) we obtain for some positive con-
stants cr , c

′, ck+,

EKn,r ≤ cr�(n),
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whence yn,k ≤ c′�(n) and, therefore (see [24]),

dn,k+ ≤ ck+
n∑

j=1

(
�(j)

j

)2
.

Using Xn,k = Xn,k+ − Xn,(k−1)+ and Kn,k = Kn,k+ − Kn,(k−1)+, we decompose
the difference in question as

Dn,k = (Xn,k+ − Kn,k+) − (Xn,(k−1)+ − Kn,(k−1)+).

Since the differences in parantheses are both nonnegative, taking expectations and
applying the triangle inequality we obtain

E|Dn,k| ≤ dn,k+ + dn,(k−1)+.

The desired estimate (4.1) easily follows with constant ck = ck+ + c(k−1)+. �

In [24], we used a coupling with a subordinator to derive a limit law for Xn

under the condition of regular variation

(4.5)
∫
[x,1]

y−2�(dy) ∼ x−γ 
(1/x), x → 0+
for some γ ∈ (0,1) and a function 
 slowly varying at infinity. Specifically,

(4.6)
Xn

nγ 
(n)

d→ �(2 − γ )Eγ ,

where the random variable

Eγ :=
∫ ∞

0
e−γ St dt

is known as an exponential functional of a subordinator. The following result is the
extension for the collision spectrum.

THEOREM 4.2. If condition (4.5) holds, then as n → ∞,

(4.7)
1

nγ 
(n)
(Xn,k)k≥2 =⇒

(
γ�(k − γ )

k! Eγ

)
k≥2

weakly in the product space R
∞. Moreover, the convergence of joint moments

holds: for all m ≥ 2 and nonnegative integers q2, . . . , qm, as n → ∞,

E

m∏
k=2

(
Xn,k

nγ 
(n)

)qk

→
m∏

k=2

(
γ�(k − γ )

k!
)qk

E(Eγ )q2+···+qm(4.8)

=
m∏

k=2

(
γ�(k − γ )

k!
)qk

q2+···+qm∏
j=1

j

�(γj)
.
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PROOF. Convergence (4.7) is concluded from the counterpart result for
(Kn,k)k≥2 viewed in the context of �∞. Indeed, by [29] (Theorem 4.1),

Kn,k

nγ 
(n)
→ γ�(k − γ )

k! Eγ a.s.

On the other hand, changing a variable and integrating by parts followed by an
application of Karamata’s Tauberian theorem [8] (Theorem 1.7.1’) give �(z) ∼
�(1 − γ )zγ 
(z) as z → ∞. Using this asymptotics along with (4.1) readily yields

EDn,k = o(nγ 
(n)), whence |Kn,k − Xn,k|/(nγ 
(n))
P→ 0.

The assertion about the convergence of moments (4.8) follows by dominated
convergence from the analogous fact for Xn proved in [33], and the familiar for-
mula for moments of Eγ (see, e.g., [29] and references therein). �

Formal summation in (4.7) yields (4.6). We see that with the same scaling the
variables Xn, Xn,k’s all converge in distribution to multiples of Eγ .

Theorem 4.2 covers beta(a, b)-coalescents with a ∈ (1,2). In this case, (4.5)
holds with γ = 2 − a ∈ (0,1) and constant function 
(x) ≡ 1/(γ B(a, b)). The
related exponential functional is denoted by E2−a (Table 1 in Section 1). Extension
to the case γ = 1 is possible for some slowly varying factors (for instance, 
(z) =
(log z)−θ with θ > 2). A further extension concerns the spectrum of coalescent
(�n(t), t ∈ [0, T ]) with finite time horizon T ; the assertions of Theorem 4.2 hold
then with Eγ replaced by the incomplete exponential functional

∫ T
0 exp(−γ St )dt .

Another edge case is that of slow variation, where (4.5) holds with γ = 0 and some
unbounded function 
. In that case, the series (4.1) converges which implies by
Lemma 4.1 that the sequence (Dn,k)n∈N is tight for every k. Moreover, each EXn,k

is then of smaller order of growth than EXn. However, the limit laws for small
block counts Kn,k are only available for functions 
 of logarithmic growth [30],
although there are plentiful results on Kn [5, 22] which have their counterparts
for Xn [24] (Section 5.3). Thus we confine ourselves with the framework of [30],
assuming that the characteristic measure satisfies∫

[x,1]
y−2�(dy) = | logx| + c + O

(
x−ε), x → 0+,(4.9) ∫

[x,1]
y−2�(dy) = O

(
(1 − x)ε

)
, x → 1−(4.10)

for some constants ε > 0 and c. Introduce the logarithmic moments

νr :=
∫
[0,1]

∣∣log(1 − x)
∣∣rx−2�(dx), r = 1,2

(so ν1 = ES1 and ν2 = VarS1 for the corresponding subordinator).
Our next result follows from [30] (Theorem 15) and the discussion above.
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THEOREM 4.3. If conditions (4.9) and (4.10) hold, then(
Xn,k − (kν1)

−1 logn√
logn

)
k≥2

=⇒ (Nk)k≥2

weakly in R
∞, where the limit is a zero-mean Gaussian sequence with the covari-

ance matrix (
ν2

ν3
1

1

ij
+ δi,j

1

jν1

)
i,j≥2

.

Despite the seemingly limited scope, the theorem covers a number of important

cases. For instance, �(dx) = x2(1−x)θ−1

| log(1−x)| 1(0,1)(x)dx is the case where (St )t≥0 is
the classic gamma-subordinator with parameter θ > 0 and the Laplace exponent
�(z) = log(1 + z/θ) (see [24] for constants and the normal limit for Xn). Another
example is the beta(2, b)-coalescent; in that case the logarithmic moments can
be evaluated in terms of the Hurwitz zeta function ζ(z, b) := ∑

i≥0(i + b)−z as
ν1 = ζ(2, b) and ν2 = 2ζ(3, b).

5. Beta-coalescents without dust component. The �-coalescents with
m−1 = ∞ are very different from the coalescents with dust component, and, as
such, require other approaches. The most general available result on the total num-
ber of collisions Xn states a stable limit distribution for the coalescents with char-
acteristic measure satisfying �([0, x]) ∼ cxa for x → 0+ [where c > 0, a ∈ (0,1)]
and a condition on the remainder of the expansion at 0; see [31] (Theorem 7). This
covers, in particular, all beta(a, b)-coalescents with 0 < a < 1. We also know that
a stable limit for Xn holds for beta(1, b)-coalescents [26].

In what follows, we shall confine ourselves to the family of beta(a, b)-
coalescents with a ∈ (0,1]. The qualitative difference between the beta coalescents
with 0 < a < 1 and a = 1 is that in the first case �∞(t) has finitely many blocks
for all t > 0 (the coalescent ‘comes down from infinity’) and terminates in finite
time, while in the second case the number of blocks always stays infinite.

THEOREM 5.1. Suppose � is a beta(a, b)-distribution with parameters a ∈
(0,1] and b > 0. Let

p
(a)
k := (2 − a)�(k + a − 1)

�(a)(k + 1)! , k ∈ N,

in particular, p
(1)
k = (k2 + k)−1.

(i) If 0 < a < 1, then as n → ∞,(
Xn,k − p

(a)
k−1(1 − a)n

(1 − a)n1/(2−a)

)
k≥2

=⇒ (
p

(a)
k−1S2−a

)
k≥2
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weakly in R
∞, where Sα , for α ∈ (1,2), is an α-stable random variable with char-

acteristic function

z 
→ exp
{|z|α(

cos(πα/2) + i sin(πα/2) sgn(z)
)}

, z ∈ R.

(ii) If a = 1, then as n → ∞,(
n−1(logn)2Xn,k − p

(1)
k−1(logn + log logn)

)
k≥2 =⇒ (

p
(1)
k−1S1

)
k≥2

weakly in R
∞, where S1 is a 1-stable random variable with characteristic function

z 
→ exp
(

iz log |z| − π

2
|z|

)
= (iz)iz, z ∈ R.

PROOF. For m ≥ 2 and β2, . . . , βm ∈ R, we consider the linear combinations
q(a) := ∑m

k=2 βkp
(a)
k−1 and Zn := ∑m

k=2 βkXn,k . To apply the Cramér–Wold device,
we need to prove that

(5.1)
Zn − q(a)(1 − a)n

(1 − a)n1/(2−a)

d→ q(a)S2−a, n → ∞
in case (i), and that

(5.2) n−1(logn)2Zn − q(1)(logn + log logn)
d→ q(1)S1, n → ∞

in case (ii). As before, we denote by In the number of blocks involved in the
first collision of �n minus one. Decomposing at the first collision, we obtain a
stochastic recurrence

(5.3) Z1 = 0, Zn
d=

m∑
k=2

βk1{In=k−1} + Z̃n−In, n ≥ 2,

where Z̃k
d= Zk for every k ∈N and (Z̃k)k∈N is independent of In.

It is known (see [13] (Lemma 2.1) for a ∈ (0,1) and [17] (page 1409) for a = 1)
that under the assumptions of Theorem 5.1 there exists a distributional limit

(5.4) In
d→ ξ, n → ∞,

where ξ is a random variable with distribution P{ξ = k} = p
(a)
k , k ∈ N and Eξ =

(1 − a)−1.
Consider an ordinary random walk (Sj )j∈N0 defined by S0 := 0 and Sj := ξ1 +

· · · + ξj for j ∈ N, where ξ1, ξ2, . . . are independent copies of ξ , and denote by
Tn := inf{j ∈ N0 : Sj ≥ n}, n ∈ N0 the level n first-passage time. For n ∈ N0 and
k ∈N, let

Jn,k :=
Tn∑

j=1

1{ξj=k} = ∑
j≥1

1{ξj=k,Sj−1≤n−1}
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be the number of jumps of size k before the random walk passes level n, and set
Yn := ∑m

k=2 βkJn,k−1. A standard conditioning argument yields the recursion

(5.5) Y0 = 0, Yn
d=

m∑
k=2

βk1{ξ=k−1} + Ỹn−ξ∧n, n ∈N,

where Ỹk
d= Yk for every k ∈ N0 and (Ỹk)k∈N0 is independent of ξ . Comparing

(5.3) and (5.5) and keeping in mind (5.4), we may anticipate that if Yn, properly
centered and normalised, converges in distribution, then the same holds for Zn.
The subsequent proof of this intuition is split in two steps. The first step shows
that relations (5.1) and (5.2) hold with Yn replacing Zn. The second step derives
from this the convergence for Zn.

STEP 1. The representation

Yn+1 =
m∑

k=2

βk

Tn+1∑
j=1

1{ξj=k−1}

=
m∑

k=2

βk

∑
j≥1

1{ξj=k−1,Sj−1≤n}

= ∑
j≥0

1{Sj≤n}
m∑

k=2

βk1{ξj+1=k−1}

= ∑
j≥0

ηj+11{Sj≤n}, n ∈ N0

with ηj := ∑m
k=2 βk1{ξj=k−1}, j ∈ N, shows that (Yn)n∈N0 has the same distribu-

tion as random process with immigration in the sense of [35] [formula (1)] with
random but constant response process η := ∑m

k=2 βk1{ξ=k−1}. Thus, (5.1) with
Yn replacing Zn follows from [35] (Theorem 2.4 applied with u = 1, α = 2 − a,
h(t) = Eη = qa , ρ = 0 and p = 1). In order to see that (5.2) holds with Yn replac-
ing by Zn decompose

Yn+1 = ∑
j≥0

ηj+11{Sj≤n} = (Eη)
∑
j≥0

1{Sj≤n} + ∑
j≥0

(ηj+1 −Eη)1{Sj≤n}.

By [37] (Proposition 2), n−1(logn)2 ∑
j≥0 1{Sj≤n} − logn − log logn

d→ S1
as n → ∞. In view of Slutsky’s lemma, it would be enough to prove that

n−1(logn)2 ∑
j≥0(ηj+1 − Eη)1{Sj≤n}

P→ 0 as n → ∞. The latter convergence
even holds in the mean-square sense, since

E

(∑
j≥0

(ηj+1 −Eη)1{Sj≤n}
)2

= (Varη)
∑
j≥0

P{Sj ≤ n} = o(n)
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as n → ∞, where the last estimate is a consequence of the elementary renewal
theorem.

STEP 2. As in [26], we use probability distances. For q ∈ (0,1] and random
variables X and Y having finite qth moment, the Wasserstein distance dq is de-
fined via dq(X,Y ) = infE|X̂ − Ŷ |q , where the infimum is taken over all couplings

(X̂, Ŷ ) such that X̂
d= X and Ŷ

d= Y . For properties of dq , we refer the reader to
[26] (Proposition 4.1).

To prove (5.1), it suffices to show that

(5.6) dq(Yn,Zn) = o
(
nq/(2−a)), n → ∞

for some q ∈ (0,1]. Likewise, (5.2) will follow from

(5.7) dq(Yn,Zn) = o
(
nq(logn)−2q)

, n → ∞
for some q ∈ (0,1]; see [26] [formulae (5.1) and (5.2)].

From |Ji,k − Jj,k| ≤ |i − j | for i, j ∈ N0 and k ∈ N (the number of k-jumps
while the random walks stays in [i ∧ j − 1, i ∨ j − 1) is dominated by the number
of 1-jumps which is |i − j |), it follows that

(5.8) |Yi − Yj | ≤ ‖β‖|i − j |,
where ‖β‖ := ∑m

k=2 |βk|.
Let (În, ξ̂ ) be a coupling of In and ξ such that dq(In, ξ ∧ n) = E|În − ξ̂ ∧

n|q . Further, let (Ŷj )j∈N0 [resp., (Ẑj )j∈N] be an arbitrary copy of (Yj )j∈N0 [resp.,
(Zj )j∈N] independent of (În, ξ̂ ). Using recurrences (5.3) and (5.5) in combination
with the inequality |x + y|q ≤ |x|q + |y|q for x, y ∈ R, we infer

tn := dq(Yn,Zn)

≤ E

∣∣∣∣∣
m∑

k=2

βk1{ξ̂=k−1} + Ŷ
n−ξ̂∧n

−
m∑

k=2

βk1{În=k−1} − Ẑ
n−În

∣∣∣∣∣
q

≤ E

∣∣∣∣∣
m∑

k=2

βk(1{ξ̂=k−1} − 1{În=k−1})
∣∣∣∣∣
q

+E|Ŷ
n−ξ̂∧n

− Ẑ
n−În

|q

≤ E

∣∣∣∣∣
m∑

k=2

βk(1{ξ̂=k−1} − 1{În=k−1})
∣∣∣∣∣
q

+E|Ŷ
n−ξ̂∧n

− Ŷ
n−În

|q +E|Ŷ
n−În

− Ẑ
n−În

|q .

Passing to the infimum over all pairs ((Ŷj , Ẑj ))1≤j≤n−1 in the last summand leads
to

tn ≤ cn +
n−1∑
k=1

P{In = k}tn−k, n ≥ 2
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with cn := E|∑m
k=2 βk(1{ξ̂=k−1} − 1{În=k−1})|q + E|Ŷ

n−ξ̂∧n
− Ŷ

n−În
|q . Applying

(5.8), we obtain

cn ≤ ‖β‖q(
P{În �= ξ̂ ∧ n} +E|În − ξ̂ ∧ n|q)

= ‖β‖q(
P

{|În − ξ̂ ∧ n|q ≥ 1
} +E|În − ξ̂ ∧ n|q)

≤ 2‖β‖q
E|În − ξ̂ ∧ n|q = 2‖β‖qdq(In, ξ ∧ n).

The proof of (5.6) and (5.7) is completed along the lines of the argument in [26]
(the bottom of page 504). �

The instance b = 1 in part (ii) of the theorem is the asymptotics of the collision
spectrum for the Bolthausen–Sznitman coalescent. Note that neither the limit law
nor the scaling/centering constants depend on b. This suggests that the stable limit
for the collision spectrum in part (i) also holds in the more general setting of [31].

REMARK. We conjecture that in the situation of Theorem 5.1 the moments
of Xn,k differ only little from those of p

(a)
k−1Xn if n is sufficiently large. While

this is open for a ∈ (0,1), for a = 1 an adaptation of the method of sequential
approximation [see [26] (Section 5.3)] shows that, for every k ≥ 2 and j ∈ N,

(5.9) EX
j
n,k =

(
p

(1)
k−1

n

logn

)j(
1 + mj

logn
+ O

(
1

log2 n

))
, n → ∞,

where the sequence (mj )j∈N0 is recursively defined via m0 := 0 and mj := mj−1+
κj/j for j ∈N, with κj := (j +b−1)�(j +b)+j − (b−1)�(b), j ∈ N. Here, �
denotes the logarithmic derivative of the gamma function. By [26] (Theorem 3.2),
(5.9) coincides with the second order expansion of the j th moment of p

(1)
k−1Xn.

Acknowledgements. We thank two anonymous referees for a careful reading
and useful comments which helped improving the presentation.

REFERENCES

[1] ABRAHAM, R. and DELMAS, J.-F. (2013). A construction of a β-coalescent via the pruning
of binary trees. J. Appl. Probab. 50 772–790. MR3102514

[2] ABRAHAM, R. and DELMAS, J.-F. (2015). β-coalescents and stable Galton-Watson trees.
ALEA Lat. Am. J. Probab. Math. Stat. 12 451–476. MR3368966

[3] ALSMEYER, G., IKSANOV, A. and MARYNYCH, A. (2017). Functional limit theorems for the
number of occupied boxes in the Bernoulli sieve. Stochastic Process. Appl. 127 995–1017.
MR3605718

[4] ARRATIA, R., BARBOUR, A. D. and TAVARÉ, S. (2003). Logarithmic Combinatorial
Structures: A Probabilistic Approach. European Mathematical Society (EMS), Zürich.
MR2032426

[5] BARBOUR, A. D. and GNEDIN, A. V. (2006). Regenerative compositions in the case of slow
variation. Stochastic Process. Appl. 116 1012–1047. MR2238612

http://www.ams.org/mathscinet-getitem?mr=3102514
http://www.ams.org/mathscinet-getitem?mr=3368966
http://www.ams.org/mathscinet-getitem?mr=3605718
http://www.ams.org/mathscinet-getitem?mr=2032426
http://www.ams.org/mathscinet-getitem?mr=2238612


THE COLLISION SPECTRUM OF �-COALESCENTS 3881

[6] BASDEVANT, A.-L. and GOLDSCHMIDT, C. (2008). Asymptotics of the allele frequency spec-
trum associated with the Bolthausen-Sznitman coalescent. Electron. J. Probab. 13 486–
512. MR2386740

[7] BERESTYCKI, J., BERESTYCKI, N. and LIMIC, V. (2014). Asymptotic sampling formulae for
�-coalescents. Ann. Inst. Henri Poincaré Probab. Stat. 50 715–731. MR3224287

[8] BINGHAM, N. H., GOLDIE, C. M. and TEUGELS, J. L. (1989). Regular Variation. Ency-
clopedia of Mathematics and Its Applications 27. Cambridge Univ. Press, Cambridge.
MR1015093

[9] BIRKNER, M. and BLATH, J. (2008). Computing likelihoods for coalescents with multiple
collisions in the infinitely many sites model. J. Math. Biol. 57 435–465. MR2411228

[10] BIRKNER, M., BLATH, J. and ELDON, B. (2013). Statistical properties of the site-frequency
spectrum associated with �-coalescents. Genetics 195 1037–1053.

[11] BLATH, J., CRONJÄGER, M. C., ELDON, B. and HAMMER, M. (2016). The site-frequency
spectrum associated with �-coalescents. Theor. Popul. Biol. 110 36–50.

[12] COOPER, C. (2006). Distribution of vertex degree in web-graphs. Combin. Probab. Comput.
15 637–661. MR2248318

[13] DELMAS, J.-F., DHERSIN, J.-S. and SIRI-JEGOUSSE, A. (2008). Asymptotic results on the
length of coalescent trees. Ann. Appl. Probab. 18 997–1025. MR2418236

[14] DIEHL, C. and KERSTING, G. (2018). Tree lengths for general �-coalescents and the asymp-
totic site frequency spectrum around the Bolthausen–Sznitman coalescent. Preprint.
Available at https://arxiv.org/abs/1804.00961.

[15] DONG, R., GNEDIN, A. and PITMAN, J. (2007). Exchangeable partitions derived from Marko-
vian coalescents. Ann. Appl. Probab. 17 1172–1201. MR2344303

[16] DRMOTA, M. and GITTENBERGER, B. (1999). The distribution of nodes of given degree in
random trees. J. Graph Theory 31 227–253. MR1688949

[17] DRMOTA, M., IKSANOV, A., MOEHLE, M. and ROESLER, U. (2007). Asymptotic results con-
cerning the total branch length of the Bolthausen-Sznitman coalescent. Stochastic Pro-
cess. Appl. 117 1404–1421. MR2353033

[18] ELDON, B., BIRKNER, M., BLATH, J. and FREUND, F. (2014). Can the site-frequency spec-
trum distinguish exponential population growth from multiple-merger coalescents? Ge-
netics 199 841–856.

[19] ELDON, B. and WAKELEY, J. (2006). Coalescent processes when the distribution of offspring
number among individuals is highly skewed. Genetics 172 2621–2633.

[20] FAŸ, G., GONZÁLEZ-ARÉVALO, B., MIKOSCH, T. and SAMORODNITSKY, G. (2006).
Modeling teletraffic arrivals by a Poisson cluster process. Queueing Syst. 54 121–140.
MR2268057

[21] FELLER, W. (1971). An Introduction to Probability Theory and Its Applications. Vol. II. 2nd
ed. Wiley, New York. MR0270403

[22] GNEDIN, A. and IKSANOV, A. (2012). Regenerative compositions in the case of slow variation:
A renewal theory approach. Electron. J. Probab. 17 Paper no. 77. MR2981902

[23] GNEDIN, A., IKSANOV, A. and MARYNYCH, A. (2010). Limit theorems for the number of
occupied boxes in the Bernoulli sieve. Theory Stoch. Process. 16(32) 44–57. MR2777900

[24] GNEDIN, A., IKSANOV, A. and MARYNYCH, A. (2011). On �-coalescents with dust compo-
nent. J. Appl. Probab. 48 1133–1151. MR2896672

[25] GNEDIN, A., IKSANOV, A. and MARYNYCH, A. (2014). �-coalescents: A survey. J. Appl.
Probab. 51A 23–40. MR3317347

[26] GNEDIN, A., IKSANOV, A., MARYNYCH, A. and MÖHLE, M. (2014). On asymptotics of the
beta coalescents. Adv. in Appl. Probab. 46 496–515. MR3215543

[27] GNEDIN, A., IKSANOV, A. and MÖHLE, M. (2008). On asymptotics of exchangeable coales-
cents with multiple collisions. J. Appl. Probab. 45 1186–1195. MR2484170

http://www.ams.org/mathscinet-getitem?mr=2386740
http://www.ams.org/mathscinet-getitem?mr=3224287
http://www.ams.org/mathscinet-getitem?mr=1015093
http://www.ams.org/mathscinet-getitem?mr=2411228
http://www.ams.org/mathscinet-getitem?mr=2248318
http://www.ams.org/mathscinet-getitem?mr=2418236
https://arxiv.org/abs/1804.00961
http://www.ams.org/mathscinet-getitem?mr=2344303
http://www.ams.org/mathscinet-getitem?mr=1688949
http://www.ams.org/mathscinet-getitem?mr=2353033
http://www.ams.org/mathscinet-getitem?mr=2268057
http://www.ams.org/mathscinet-getitem?mr=0270403
http://www.ams.org/mathscinet-getitem?mr=2981902
http://www.ams.org/mathscinet-getitem?mr=2777900
http://www.ams.org/mathscinet-getitem?mr=2896672
http://www.ams.org/mathscinet-getitem?mr=3317347
http://www.ams.org/mathscinet-getitem?mr=3215543
http://www.ams.org/mathscinet-getitem?mr=2484170


3882 GNEDIN, IKSANOV, MARYNYCH AND MÖHLE

[28] GNEDIN, A. and PITMAN, J. (2005). Regenerative composition structures. Ann. Probab. 33
445–479. MR2122798

[29] GNEDIN, A., PITMAN, J. and YOR, M. (2006). Asymptotic laws for compositions derived
from transformed subordinators. Ann. Probab. 34 468–492. MR2223948

[30] GNEDIN, A., PITMAN, J. and YOR, M. (2006). Asymptotic laws for regenerative composi-
tions: Gamma subordinators and the like. Probab. Theory Related Fields 135 576–602.
MR2240701

[31] GNEDIN, A. and YAKUBOVICH, Y. (2007). On the number of collisions in �-coalescents.
Electron. J. Probab. 12 1547–1567. MR2365877

[32] GOLDSCHMIDT, C. and MARTIN, J. B. (2005). Random recursive trees and the Bolthausen-
Sznitman coalescent. Electron. J. Probab. 10 718–745. MR2164028

[33] HAAS, B. and MIERMONT, G. (2011). Self-similar scaling limits of non-increasing Markov
chains. Bernoulli 17 1217–1247. MR2854770

[34] HU, Y., BOYD-GRABER, J., DAUMÉ, H. III and YING, Z. I. (2013). Binary to bushy:
Bayesian hierarchical clustering with the beta coalescent. Adv. Neural Inf. Process. Syst.
26.

[35] IKSANOV, A., MARYNYCH, A. and MEINERS, M. (2017). Asymptotics of random processes
with immigration I: Scaling limits. Bernoulli 23 1233–1278. MR3606765

[36] IKSANOV, A., MARYNYCH, A. and MÖHLE, M. (2009). On the number of collisions in
beta(2, b)-coalescents. Bernoulli 15 829–845. MR2555201

[37] IKSANOV, A. and MÖHLE, M. (2007). A probabilistic proof of a weak limit law for the number
of cuts needed to isolate the root of a random recursive tree. Electron. Commun. Probab.
12 28–35. MR2407414

[38] IKSANOV, A. and MÖHLE, M. (2008). On the number of jumps of random walks with a barrier.
Adv. in Appl. Probab. 40 206–228. MR2411821

[39] JANSON, S. (2005). Asymptotic degree distribution in random recursive trees. Random Struc-
tures Algorithms 26 69–83. MR2116576

[40] KERSTING, G., SCHWEINSBERG, J. and WAKOLBINGER, A. (2018). The size of the last
merger and time reversal in �-coalescents. Ann. Inst. Henri Poincaré Probab. Stat. 54
1527–1555. MR3825890

[41] MÖHLE, M. (2018). On strictly monotone Markov chains with constant hitting probabilities
and applications to a class of beta coalescents. Markov Process. Related Fields 24 107–
130.

[42] NEHER, R. A. and HALLATSCHEK, A. (2013). Genealogies of rapidly adapting populations.
Proc. Natl. Acad. Sci. USA 110 437–442.

[43] PITMAN, J. (1999). Coalescents with multiple collisions. Ann. Probab. 27 1870–1902.
MR1742892

[44] PITMAN, J. (2006). Combinatorial Stochastic Processes. Lecture Notes in Math. 1875.
Springer, Berlin. MR2245368

[45] SAGITOV, S. (1999). The general coalescent with asynchronous mergers of ancestral lines.
J. Appl. Probab. 36 1116–1125. MR1742154

[46] SCHWEINSBERG, J. and DURRETT, R. (2005). Random partitions approximating the co-
alescence of lineages during a selective sweep. Ann. Appl. Probab. 15 1591–1651.
MR2152239

[47] SHIRYAEV, A. N. (1989). Probability, Vol. I, 4th ed. Nauka, Moscow.
[48] SPENCE, J. P., KAMM, J. A. and SONG, Y. S. (2016). The site frequency spectrum for general

coalescents. Genetics 202 1549–1561.
[49] TEH, Y. W., DAUMÉ, H. III and ROY, D. M. (2008). Bayesian agglomerative clustering with

coalescents. Adv. Neural Inf. Process. Syst. 20 1473–1480.

http://www.ams.org/mathscinet-getitem?mr=2122798
http://www.ams.org/mathscinet-getitem?mr=2223948
http://www.ams.org/mathscinet-getitem?mr=2240701
http://www.ams.org/mathscinet-getitem?mr=2365877
http://www.ams.org/mathscinet-getitem?mr=2164028
http://www.ams.org/mathscinet-getitem?mr=2854770
http://www.ams.org/mathscinet-getitem?mr=3606765
http://www.ams.org/mathscinet-getitem?mr=2555201
http://www.ams.org/mathscinet-getitem?mr=2407414
http://www.ams.org/mathscinet-getitem?mr=2411821
http://www.ams.org/mathscinet-getitem?mr=2116576
http://www.ams.org/mathscinet-getitem?mr=3825890
http://www.ams.org/mathscinet-getitem?mr=1742892
http://www.ams.org/mathscinet-getitem?mr=2245368
http://www.ams.org/mathscinet-getitem?mr=1742154
http://www.ams.org/mathscinet-getitem?mr=2152239


THE COLLISION SPECTRUM OF �-COALESCENTS 3883

A. GNEDIN

SCHOOL OF MATHEMATICAL SCIENCES

QUEEN MARY UNIVERSITY OF LONDON

LONDON E1 4NS
UNITED KINGDOM

E-MAIL: a.gnedin@qmul.ac.uk

A. IKSANOV

A. MARYNYCH

FACULTY OF COMPUTER SCIENCE AND CYBERNETICS

TARAS SHEVCHENKO NATIONAL UNIVERSITY OF KYIV

01601 KYIV

UKRAINE

E-MAIL: iksan@univ.kiev.ua
marynych@unicyb.kiev.ua

M. MÖHLE

MATHEMATICAL INSTITUTE

EBERHARD KARLS UNIVERSITY OF TÜBINGEN

72076 TÜBINGEN

GERMANY

E-MAIL: martin.moehle@uni-tuebingen.de

mailto:a.gnedin@qmul.ac.uk
mailto:iksan@univ.kiev.ua
mailto:marynych@unicyb.kiev.ua
mailto:martin.moehle@uni-tuebingen.de

	Introduction
	Simple coalescents: Convergence of the spectrum
	Simple coalescents: Functional limits
	Other coalescents with dust
	Beta-coalescents without dust component
	Acknowledgements
	References
	Author's Addresses

