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We study the recovery of sparse vectors from subsampled random con-
volutions via �1-minimization. We consider the setup in which both the sub-
sampling locations as well as the generating vector are chosen at random. For
a sub-Gaussian generator with independent entries, we improve previously
known estimates: if the sparsity s is small enough, that is, s �

√
n/ log(n),

we show that m� s log(en/s) measurements are sufficient to recover s-sparse
vectors in dimension n with high probability, matching the well-known condi-
tion for recovery from standard Gaussian measurements. If s is larger, then es-
sentially m ≥ s log2(s) log(log(s)) log(n) measurements are sufficient, again
improving over previous estimates. Our results are shown via the so-called
robust null space property which is weaker than the standard restricted isom-
etry property. Our method of proof involves a novel combination of small ball
estimates with chaining techniques which should be of independent interest.

1. Introduction. Compressive sensing [6, 14, 18] considers the recovery of
(approximately) sparse vectors from incomplete and possibly perturbed linear
measurements via efficient algorithms such as �1-minimization. Provably optimal
bounds for the minimal number of required measurements in terms of the sparsity
have been shown for Gaussian and, more generally, sub-Gaussian random matrices
[4, 9, 14, 15, 18, 29, 30, 40].

Practical applications demand for structure in the measurement process which is
clearly not present in Gaussian random matrices with independent entries. Several
types of structured random matrices have been studied, including random partial
Fourier matrices [5–7, 36, 38, 40], partial random circulant matrices (subsampled
random convolutions) [25, 35–37, 39], time-frequency structured random matrices
[25, 33, 34] and more [2, 21]. In this article, we improve known recovery results
for partial random circulant matrices.
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In mathematical terms, linear measurements of a signal (vector) x ∈ R
n can be

written as

y = Ax with A ∈ R
m×n,

and we are particularly interested in the case m < n. Compressive sensing predicts
that this system can be solved for x using efficient algorithms if x is sparse enough,
say in the sense that ‖x‖0 = |{� : x� �= 0}| is small. While �0-minimization is NP-
hard [18], several tractable algorithms have been introduced as alternatives, most
notably �1-minimization (basis pursuit) [6, 10, 14, 18] which produces a minimizer
of

min
z∈Rn

‖z‖1 subject to Az = y.

If A ∈ R
m×n is a random draw of a Gaussian matrix, that is, all entries are standard

normal random variables, then with probability at least 1 − e−cm, any s-sparse
vector x ∈ R

n (i.e., ‖x‖0 ≤ s), can be reconstructed in a stable way (see below)
using �1-minimization from the given data y = Ax, provided that

(1.1) m ≥ Cs ln(en/s)

for some absolute constant C > 0. This bound is optimal [14, 17, 18] in the sense
that the combination of any recovery algorithm with any measurement matrix re-
quires at least (1.1) many measurements in order to achieve stable reconstruction,
that is, for any x ∈ R

n (not necessarily s-sparse), the reconstruction x� obtained
from y = Ax, satisfies

(1.2)
∥∥x − x�

∥∥
1 ≤ Cσs(x)1 := C inf

{‖x − z‖1 : ‖z‖0 ≤ s
};

see [17], Theorem 2.7, for details. Moreover, exact s-sparse recovery via �1-
minimization necessarily requires (1.1); see [17], Lemma 2.4.

Unfortunately, Gaussian random matrices are not suitable for many applica-
tions of compressive sensing, because of their lack of structure. In fact, structure
is required in order to model realistic measurement scenarios and also to speed
up the matrix-vector-multiplications that have to be applied many times in known
�1-minimization algorithms.

An important example of structured random matrices are m×n matrices that are
generated from the n × n discrete Fourier (more generally, from a Hadamard-type
matrix; see Definition 2.6 below), by randomly subsampling m rows. This corre-
sponds to taking m random samples of the discrete Fourier transform of a vector.
Again, �1-minimization successfully recovers s-sparse vectors with probability at
least 1 − ε provided that

m ≥ Cs max
{
log2(s) log(n), log

(
ε−1)};

see, for example, [5, 7, 20, 36, 40].
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In this article, we will be concerned with subsampled random convolutions. The
circular convolution on R

n is defined for two vectors x, ξ ∈ R
n as

(x ∗ ξ)k =
n∑

j=1

xj ξk−j modn+1, k = 1, . . . , n.

For a subset � ⊂ {1, . . . , n} =: [n] of cardinality m, let P� : Rn → R
m be the

projection onto the coordinates indexed by �, that is, (P�x)j = xj for j ∈ �.
A subsampled convolution is defined as

(1.3) Bx = P�(x ∗ ξ)

and the corresponding matrix is a partial circulant matrix generated by ξ . Subsam-
pled random convolutions find applications in radar and coded aperture imaging
[3, 19, 39, 43], as well as in fast dimensionality reduction maps [26].

It was shown in [25] that if ξ is a (standard) Gaussian vector and � is an arbi-
trary (deterministic) subset of cardinality m, then with probability at least 1 − ε,
every s-sparse vector can be reconstructed from Bx via �1-minimization if

(1.4) m ≥ Cs max
{
log2(s) log2(n), log

(
ε−1)}.

Stability in the sense of (1.2) holds for such matrices, and the results are robust
when the given measurements are corrupted by noise (see more details below).
Moreover, the recovery result can be extended to circulant matrices generated by
a sub-Gaussian random vector—an object of central importance to our discussion
which will be defined later.

Our focus is on sparse recovery via subsampled random convolutions, where
the set � is chosen at random via independent selectors: let (δi)

n
i=1 be indepen-

dent, {0,1}-valued random variables with mean δ = m/n ∈ (0,1], and set � = {i :
δi = 1}. Then the expected size of � is E|�| = m and it follows from Bernstein’s
inequality that m/2 ≤ |�| ≤ 3m/2 with probability at least 1 − 2 exp(−m/9).

For the sake of simplicity of this exposition, we shall first formulate our main
theorem for a standard Gaussian generator, that is, a random vector with inde-
pendent, mean zero, variance one, normally distributed coordinates. However, the
proof we present holds for more general L-sub-Gaussian random vectors with in-
dependent coordinates and a more general class of random matrices (see Theo-
rem 2.5).

THEOREM 1.1. Let ξ ∈ R
n be a draw of a standard Gaussian random vector

and let � ⊂ [n] be chosen at random, using independent selectors of mean δ =
m/n. Let B be the corresponding partial random circulant matrix defined in (1.3).
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Let s ≤ c1
n

log4(n)
and assume that

m ≥ c3s log(en/s) if s ≤ c2

√
n

log(n)
,

m ≥ c3s log(en/s)α2
s log(eαs) if c2

√
n

log(n)
≤ s ≤ c1

n

log4(n)
,

(1.5)

where αs = log( s2

n
max{log(en/s), log(s)}). Then with probability at least

1 − 2 exp
(
−c0 min

{
n

s
, s log(en/s)

})
the following holds. For all x ∈ R

n, all e ∈ R
m with ‖e‖2 ≤ η and y = Bx + e, the

minimizer x� of

(1.6) min‖z‖1 subject to ‖Bz − y‖2 ≤ η

satisfies

∥∥x − x�
∥∥

1 ≤ Cσs(x)1 + D

√
sη√
m

and(1.7)

∥∥x − x�
∥∥

2 ≤ C
σs(x)1√

s
+ D

η√
m

.(1.8)

The constants c1, c2, c3,C,D > 0 are absolute.

Our estimates indicate a phase-transition that occurs when s is roughly of
the order of

√
n. Below this level, the partial circulant matrix exhibits the same

behavior as the Gaussian matrix (which is the optimal scaling of the num-
ber of measurements m as a function of the sparsity parameter s)—it requires
Cs log(en/s) measurements to recover an s sparse vector. Above that level, our
estimates require more measurements; for example, if s = nα for 1/2 < α < 1
then c(L,α)s log3 n · log logn measurements are needed.

As we will see later, the phase transition at
√

n/ log(n) is not a coincidence—the
analysis required in the low-sparsity case is truly different from the one needed to
deal with the high-sparsity one. However, it is presently not clear whether the anal-
ysis for the high-sparsity case can be improved in order to remove the additional
logarithmic factors.

In both cases (low and high sparsity), we improve the estimates from [25],
though it should be noted that (1.4) applies to any set � ⊂ [n] of cardinality m,
while (1.5) applies only to randomly chosen �. A random selection � has been
considered in [39], but the estimates there require m ≥ Cs log6(n). On the other
hand, [39] applies to vectors that are sparse in an arbitrary (fixed) orthonormal
basis and not only in the canonical basis; our proof technique does not seem to
extend to this case in a simple way.
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We stress that (1.1) provides a uniform recovery guarantee in the sense that a
single random draw of the partial circulant matrix is able to recovery all s-sparse
vectors simultaneously. This is in contrast to other previous so-called nonuniform
results found in the literature [22, 35, 36] that only imply recovery of a fixed sparse
vector from a random draw of the matrix. Moreover, these nonuniform results
give no or weaker stability estimates than (1.7) and (1.8); see, for example, [18],
Theorem 4.33, or [16].

Another improvement on known estimates is that our results hold for noisy mea-
surements when the noise is bounded in �q for q ≥ 2 and the �2-constraint in (1.6)
is replaced by an �q -constraint (and the error estimates scale with the �q norm of
the noise); see Theorem 2.5 for details. (Note that a standard RIP-based argument
appeared after the first submission of this manuscript in [12], Theorem A.1.) This
allows us, for example, to explore quantized compressive sensing (see, e.g., [13]),
when the quantization error has a natural �∞-bound.

We note that for a few other constructions of structured random matrices (with
fast matrix-vector multiplication), recovery results with the optimal number of
measurements (1.1) have been shown under similar size restrictions on the sparsity
as in our main theorem above [1, 2]. However, it seems that our construction is the
simplest one and is arguably the only one among these which models a physically
realizable measurement device. In contrast to these previous results, we are able to
extend our bounds to the near-linear sparsity regime at the cost of some additional
logarithmic factors.

Apart from our main results themselves, we believe that our proof techniques
are of independent interest. In fact, the crucial ingredient is a probabilistic lower
bound on terms of the form infv∈Vr ‖�vξ‖2, where �v are matrices indexed by a set
of unit-norm r-sparse vectors, and ξ is a sub-Gaussian random vector with inde-
pendent coordinates. It is based on a new approach that can be generalized to other
generating random vectors with heavier tails and less independence assumptions,
for instance, to log-concave random vectors.

The article is structured as follows. Section 2 discusses preliminaries such as
the null space property, sub-Gaussian random vectors, states the main result and
gives a brief explanation of its proof. Section 3 introduces the small ball estimates
required for the proof as well as moment estimates for norms of sub-Gaussian
random vectors. It further provides some covering number estimates required in
the sequel. Section 4 provides the main technical ingredient of the proof of our
main results: a lower bound for infv∈Vr ‖�vξ‖2. Section 5 provides an upper bound
for one-sparse vectors, which is the final ingredient in the proof of the null space
property; see also Theorem 2.3.

2. Preliminaries and the main result.

2.1. The null space property. Our analysis is based on a robust version of the
null space property, which is a sufficient and necessary condition for sparse re-
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covery via �1-minimization. This version is stable when passing to approximately
sparse vectors and robust when the measurements are noisy.

Given v ∈ R
n and S ⊂ [n] = {1, . . . , n}, let vS ∈ R

n with entries (vS)j = vj for
j ∈ S and (vS)j = 0 for j /∈ S. Further, Sc = [n] \ S denotes the complement of S.

DEFINITION 2.1. For 1 ≤ q ≤ ∞, a matrix A satisfies the �q -robust null-
space property of order s with constants ν ∈ (0,1) and τ > 0 if

‖vS‖2 ≤ ν√
s
‖vSc‖1 + τ‖Av‖q

for every v ∈ R
n and every S ⊂ [n] of cardinality at most s.

The following result is standard by now (see, e.g., [18], Theorem 4.22). It uses
the notion of the error of best s-term approximation, defined as

σs(x)1 = min
z:‖z‖0≤s

‖x − z‖1;

that is, σs(x)1 is the �1-distance between x and the set of s-sparse vectors.

THEOREM 2.2. Let 1 ≤ q ≤ ∞ and let A satisfy the �q -robust null space
property of order s with constants ν ∈ (0,1) and τ > 0. Let ‖e‖q ≤ η, x ∈ R

n and
put y = Ax + e. Then a minimizer x� of

min
z∈Rn

‖z‖1 subject to ‖Az − y‖q ≤ η

satisfies ∥∥x − x�
∥∥

1 ≤ Cσs(x)1 + D
√

sη,(2.1)

∥∥x − x�
∥∥

2 ≤ C√
s
σs(x)1 + Dη,(2.2)

where the constants are given by C = (1+ν)2

1−ν
and D = (3+ν)

1−ν
τ .

Roughly speaking, even if x is not s-sparse, but only approximated by an s-
sparse vector, and if one receives linear measurements of x (i.e., Ax) that are cor-
rupted by the “noise” e, then a solution to the minimization problem still yields a
good approximation of x if A possesses the null space property. In particular, if
x is s-sparse then σs(x)1 = 0, and if η = 0 (no noise), then the reconstruction via
equality constrained �1-minimization is exact.

In order to show the �q -robust null-space property, we will proceed in the fol-
lowing way. Let

Tν,s :=
{
v ∈ R

n : ‖vS‖2 ≥ ν√
s
‖vSc‖1

}
.
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One may show (see, e.g., [13, 23]) that if

inf
x∈Tν,s∩Sn−1

‖Ax‖q ≥ 1

τ
,

then A satisfies the �q -robust null space property with constants ν and τ . Moreover,
if we set

Vs = {
x ∈ R

n : ‖x‖0 ≤ s,‖x‖2 = 1
}

to be the set of s-sparse vectors in the unit sphere, then ([23], Lemma 3, see also
[40])

(2.3) Tν,s ∩ Sn−1 ⊂ (
2 + ν−1) convVs,

allowing one to study convVs instead of Tν,s , where convS denotes the convex
hull of a set S, that is, the set of all convex combinations of finite subsets of S.

It turns out that one may replace convVs with Vr for r sufficiently large by
adding a condition on one-sparse vectors. This was observed for q = 2 in [32],
Lemma 5.1 (see also [27], Theorem B), but extends also to q > 2 as we outline
below.

THEOREM 2.3. Let A ∈R
m×n satisfy

(2.4) inf
x∈Vr

‖Ax‖2 ≥ τ−1 and max
j≤[n] ‖Aej‖2 ≤ M.

If c(ν) = ν2/(2ν + 1)2 and

s ≤ c(ν)
r − 1

M2τ 2 − 1
,

then

inf
x∈Tν,s

‖Ax‖2 ≥ 1√
2τ

.

Consequently, A also satisfies the �q -robust NSP, for q > 2:

inf
x∈Tν,s

‖Ax‖q ≥ 1

m1/2−1/q
inf

x∈Tν,s

‖Ax‖2 ≥ 1

m1/2−1/q
√

2τ
.

PROOF. By (2.3), it suffices to show that the conditions in (2.4) imply that

inf
x∈(2+ν−1) convVs∩Sn−1

‖Ax‖2 ≥ 1/(
√

2τ).

Applying [27], Lemma 2.6, it follows from (2.4) that for any y ∈ R
n,

(2.5) ‖Ay‖2
2 ≥ τ−2‖y‖2

2 − 1

r − 1

(
‖y‖1

n∑
j=1

‖Aej‖2
2|yj | − τ−2‖y‖2

1

)
.
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Let Bn
1 be the unit ball in �n

1 and observe that convVs ⊂ √
sBn

1 . Thus, if c1(ν) =
2 + 1/ν and y ∈ Sn−1 ∩ c1(ν) convVs ,

‖y‖2 = 1 and ‖y‖1 ≤ c1(ν)
√

s.

Therefore,

‖Ay‖2
2 ≥ τ−2

(
1 − ‖y‖2

1

r − 1

(
τ 2 max

1≤j≤n
‖Aej‖2 − 1

))

≥ τ−2
(

1 − c2
1(ν)s

r − 1

(
τ 2M2 − 1

)) ≥ 1

2τ 2

by our choice of s. The first inequality in (2.5) is due to Hölder. �

With Theorem 2.3 at hand, we will take the following course of action: we will
show that

(2.6) inf
x∈Vr

‖P�Ax‖2 �
√

m and max
j∈[n] ‖P�Aej‖2 �

√
m

for a partial circulant matrix P�A, whose rows are chosen using i.i.d. selectors.

2.2. Sub-Gaussian random vectors. Just as in [25] we will focus on generators
ξ that are isotropic, L-sub-Gaussian and have independent coordinates.

DEFINITION 2.4. A centered random vector ξ = (ξi)
n
i=1 is L-sub-Gaussian

if, for every x ∈R
n, (

E
∣∣〈ξ, x〉∣∣p)1/p ≤ L

√
p
(
E
∣∣〈ξ, x〉∣∣2)1/2

.

Assume that ξ1, . . . , ξn are independent, mean-zero, variance 1, L-sub-Gaussian
random variables. In other words, for every p ≥ 1,(

E|ξi |p)1/p ≤ L
√

p
(
E|ξi |2)1/2 = L

√
p.

Then ξ is an isotropic random vector on R
n: for every x ∈ R

n, E〈ξ, x〉2 = ‖x‖2
2,

and it is standard to verify that it is L-sub-Gaussian as well (see, e.g., [44]). Is
it straightforward to show that if ξ is an L-sub-Gaussian random vector, then for
every x ∈ R

n and u ≥ 1,

Pr
(∣∣〈ξ, x〉∣∣ ≥ uL

(
E
∣∣〈ξ, x〉∣∣2)1/2) ≤ 2 exp

(−cu2),
for a suitable absolute constant c. If, in addition, ξ is isotropic, then

Pr
(∣∣〈ξ, x〉∣∣ ≥ uL‖x‖2

) ≤ 2 exp
(−cu2).
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2.3. Main result. Our main result provides a bound for the null-space property
of partial random circulant matrices. It implies Theorem 1.1 via Theorem 2.2.

Recall that:

• ξ is a random vector whose coordinates are independent, mean-zero, variance
1, L-sub-Gaussian random variables;

• A is the complete circulant matrix generated by ξ ;
• (δi)

n
i=1 are independent selectors of mean δ = m/n, and � = {i : δi = 1}.

THEOREM 2.5. There exist constants c0, . . . , c6 that depend only on L, ρ and
τ for which the following holds for all q ≥ 2. With probability at least

1 − 2 exp
(
−c0 min

{
n

r
, r log

(
en

r

)})
,

the partial circulant matrix P�A satisfies the �q -robust null-space property of or-
der r with constants ρ ∈ (0,1) and τ

m1/q , where

δn = c3r log
(

en

r

)
if r ≤ c4

√
n

logn
,

and

δn = c3r log
(

en

r

)
· α2

r log(eαr) if c4

√
n

logn
< r ≤ c5

n

log4 n
.

The constant αr satisfies

αr ≤ log
(
c6

r2

n
max

{
log

(
en

r

)
, log(er)

})
.

Theorem 2.5 is obtained from the analysis to follow by combining Theorem 5.1
and Corollary 4.2, and applying Theorem 2.3. Actually, our analysis holds for a
more general class of random matrices; see Definition 2.6 and the remarks follow-
ing it.

2.4. The heart of the argument. The proof of Theorem 2.5 has two main
components. We will begin by analyzing the way a complete circulant matrix
A : Rn → R

n generated by ξ acts on Vr , and then apply a random “selector pro-
jection” P� to the image AVr . Our primary goal is to obtain a lower bound on

(2.7) inf
v∈Vr

‖P�Av‖2
2 = inf

v∈Vr

n∑
i=1

δi〈Av, ei〉2.

Thanks to the nature of circulant matrices, there is a standard representation
of {Av : v ∈ Vr} via the Fourier transform. Let F be the (un-normalized) Fourier
transform, that is, Fj,k = e−2πijk/n (which we treat as a “real operator” from R

n
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onto the image of Rn in order to avoid working with C
n) and set v̂ = Fv. If Dx =

diag(x1, . . . , xn), then

Av = F−1Dv̂Fξ.

We will consider a more general set of matrices.

DEFINITION 2.6. An orthogonal matrix O is of Hadamard-type with constant
β ≥ 1 if for every i, j ∈ [n], |Oi,j | ≤ β/

√
n.

In what follows, we will fix three matrices, U , W and O , each of which is of
Hadamard-type with constant β , and for x ∈ R

n we set

(2.8) �x = √
nUDWxO,

where DWx = diag((〈Wi,x〉)ni=1). Clearly, the representation of Av is precisely
of this form: if A is the complete circulant matrix with the generator ξ then for
every v ∈ R

n, Av = √
nUDWvOξ for the choice of U = n−1/2F−1 and W =

O = n−1/2F ; in this case β = 1.
From here on, for V ⊂R

n set

�V = {√nUDWvO : v ∈ V };
naturally, the set of matrices we will be interested in is �Vr .

Observe that if ξ is an isotropic random vector then for every v ∈ Sn−1,
E‖�vξ‖2

2 = n, and at least on average, for a single vector v ∈ Vr , one expects
to have ‖�vξ‖2 ∼ √

n.
Unfortunately, showing that infv∈Vr ‖�vξ‖2 ≥ c

√
n alone does not lead to a

nontrivial lower bound on (2.7). To see why, set

x1 = (
√

n,0, . . . ,0) and x2 = (1, . . . ,1).

Both x1 and x2 have a Euclidean norm of
√

n, but any attempt of selecting a ran-
dom subset of coordinates of cardinality m � n fails miserably for x1 and succeeds
for x2: typically, P�x1 = 0 while ‖P�x2‖2 = √

m. We will be looking at this type
of “good behavior”, exhibiting a (one sided) standard shrinking phenomenon. The
term “one-sided standard shrinking” used in this context usually refers to a random
projection operator T of rank m, for which, with high probability,

‖T v‖2 ≥ c
√

m/n‖v‖2 for all vectors of interest.

The operator we are interested in is indeed random, and of the form T = P�—a
random coordinate projection—but as the example of x1 shows, P� may map x to
0 even if x has a large norm—unless one imposes some additional condition on x.

The condition we will focus on here is that x has a regular coordinate structure,
that is, for suitable constants α and θ ,

(2.9)
∣∣∣∣
{
i : |xi | ≥ ‖x‖2

α√
n

}∣∣∣∣ ≥ θn.
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The notion of regularity in (2.9) implies that |xi | is at least ∼ ‖x‖2/
√

n for a large
subset of coordinates—of cardinality that is proportional to the dimension n. That
set of coordinates contributes at least a proportion of the Euclidean norm of x, and
moreover, for a random choice of � ⊂ [n], ‖P�x‖2 ≥ c‖x‖2 · √|�|/n with high
probability.

Thus, in addition to showing that infv∈Vr ‖�vξ‖2 ≥ c
√

n, we will prove that
each of the vectors �vξ is regular in the sense of (2.9). We will do so by represent-
ing a typical realization of the set {�vξ : v ∈ Vr} as a subset of the Minkowski sum
of two (random) sets T1 + T2 defined in the following way: Let H ⊂ Vr be a fine
enough net with respect to the Euclidean distance and set T1 = {�xξ : x ∈ H }. For
each v ∈ Vr , choose x = π(v) ∈ H minimizing ‖x − v‖2. Then T2 = {�v−π(v)ξ :
v ∈ Vr}. We will show the following properties of the sets T1, T2:

• Every t ∈ T1 satisfies ‖t‖2 � √
n and has regular coordinate structure in the

sense of (2.9). As a consequence, a random coordinate projection P� will not
shrink the �2-norm of elements in T1 by more than a factor of ∼ √

δ and, there-
fore, with high probability,

inf
x∈H

‖P��xξ‖2 ≥ c
√

δn.

• The set of “random oscillations” T2 has Euclidean diameter smaller than
(c/2)

√
δn. Thus, its effect is negligible.

What may still appear mysterious is the claim that there is a phase transition
in the choice of δ, and thus in the required number of measurements. The ori-
gin of the phase transition lies in a gap between the cardinality of the net H

and the probability estimate one is likely to have for each �v . Indeed, for rea-
sons that will be clarified later, the probability that �vξ is “well behaved” can
be estimated by exp(−cn/r). In contrast, as a nontrivial Euclidean net in Vr ,
|H | ≥ exp(c1r log(en/r)). In the low-sparsity case, when n/r � r log(en/r), the
individual probability estimate is strong enough to allow uniform control on all
the vectors in the net H . In the high-sparsity case that is no longer true, and an
additional argument is required to bridge the gap between n/r and r log(en/r).
Specifically, we will show how one may “transfer information” from a set of car-
dinality exp(cn/r) to the net H whose cardinality is much larger—of the order of
exp(cr log(en/r)).

2.5. Notation. Throughout this article, absolute constants are denoted by c, c1,
C, etc. The notation c(L) refers to a constant that depends only on the parameter
L; a ∼ b implies that there are absolute constants c and C for which ca ≤ b ≤ Ca;
and a ∼L b means that the constants c and C depend only on L. The analogous
one-sided notation is a � b and a �L b. Constants whose values remain unchanged
throughout the article are denoted by κ1, κ2, etc.
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For 1 ≤ p ≤ ∞, let �n
p be the normed space (Rn,‖ ‖p) and set Bn

p to be its unit
ball. Sn−1 is the Euclidean unit sphere in R

n. The expectation is denoted by E and
Pr denotes the probability of an event. The Lp-norm of a random variable X is
denoted ‖X‖Lp = (E|X|p)1/p . We also recall that [n] = {1, . . . , n}.

3. Small ball estimates and chaining.

3.1. The random generator. Recall that the random vector ξ we are interested
in has independent coordinates (ξi)

n
i=1 that are mean-zero, variance 1 and L-sub-

Gaussian. In particular, ξ is an isotropic, L-sub-Gaussian random vector.
A simple observation is that the ξi ’s satisfy a small-ball property: there are pos-

itive constants c1 and c2 that depend only on L for which

(3.1) sup
u∈R

Pr
(|ξi − u| ≥ c1

) ≥ c2.

Indeed, for any u ∈ R, ‖ξi − u‖L2 ∼ max{‖ξi‖L2, |u|}, and thus ‖ξi − u‖L4 ≤
c3L‖ξi − u‖L2 for a suitable absolute constant c3. The small-ball property (3.1)
is an immediate outcome of the Paley–Zygmund inequality (see, e.g., [18],
Lemma 7.16) applied to each Xu = |ξi − u|.

The small-ball property (3.1) tensorizes, leading to a vector small-ball property
for ξ = (ξi)

n
i=1. To formulate this property, let ‖�‖HS and ‖�‖2→2 denote the

Hilbert–Schmidt (Frobenius) and operator norms of a matrix �, respectively, and
set

d� =
( ‖�‖HS

‖�‖2→2

)2
.

THEOREM 3.1 ([41]). For 0 < p < 1, there exists a constant c = c(p) > 0 for
which the following holds. Let X1, . . . ,Xn be independent random variables that
satisfy for some t > 0 and 0 < p < 1,

sup
u∈R

Pr
(|Xi − u| ≤ t

) ≤ p.

Then, for X = (X1, . . . ,Xn) and every matrix � :Rn →R
m,

Pr
(‖�X‖2 ≤ t‖�‖HS

) ≤
(

1

2

)cd�

.

The small-ball property for individual ξi ’s from (3.1) and Theorem 3.1 imply
that the random vector ξ satisfies a small-ball estimate.

COROLLARY 3.2. There exist constants κ1 and κ2 that depend only on L such
that, for any matrix � :Rn →R

m,

(3.2) Pr
(‖�ξ‖2 ≤ κ1‖�‖HS

) ≤
(

1

2

)κ2d�

.
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It should be noted that a sub-Gaussian vector with independent coordinates is
not the only random vector that satisfies a small-ball estimate like (3.2). Moreover,
such small-ball estimates can be used to extend our main result to a larger class of
generators—a direction we will not explore further in this work.

The other type of bound we require deals with the way the moments of ‖ξ‖
grow, for an arbitrary norm ‖ ‖ on R

n. Unlike Corollary 3.2, this feature does not
require ξ to have independent coordinates, and it holds for any (isotropic) sub-
Gaussian random vector (see, e.g., [25], Theorem 2.3).

THEOREM 3.3. There exists an absolute constant c for which the following
holds. Let ξ be an isotropic, L-sub-Gaussian random vector in R

n and set G =
(g1, . . . , gn) to be the standard Gaussian vector in R

n. Let ‖ ‖ be a norm on R
n

and set B◦ to be the unit ball of its dual norm. Then for every p ≥ 1,

(
E‖ξ‖p)1/p ≤ cL

(
E‖G‖ + √

p sup
t∈B◦

‖t‖2

)
.

We will consider two families of norms associated with the nonincreasing rear-
rangement of the coordinates of a vector.

DEFINITION 3.4. Let (x∗
i )ni=1 denote the nonincreasing rearrangement of

(|xi |)ni=1. For k ∈ [n], set

‖x‖[k] = max|I |=k

(∑
i∈I

x2
i

)1/2
=

(
k∑

i=1

(
x∗
i

)2

)1/2

.

When k = n, the norm ‖ ‖[k] is simply the Euclidean norm, and the unit ball of
the dual norm is just the standard Euclidean unit ball. When 1 ≤ k < n, the dual
unit ball consists of the set of unit-�2-norm k-sparse vectors, that is,

Vk = {
v ∈ Sn−1 : ‖v‖0 ≤ k

}
.

In order to apply Theorem 3.3 to ‖ ‖[k], one has to control E‖G‖[k] =
E(

∑k
i=1(g

∗
i )2)1/2. The following result for sub-Gaussian random variables does

not require independence.

LEMMA 3.5 ([24]). Let Z1, . . . ,Zn be mean-zero and L-sub-Gaussian ran-
dom variables such that maxi∈[n] ‖Zi‖L2 ≤ M . Then

E

(
k∑

i=1

(
Z∗

i

)2

)1/2

≤ cLM
√

k log(en/k).
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PROOF. Since the proof of this result is not provided in [24], we give it here
for convenience. Since the Zi are L-sub-Gaussian, there exist constants c0, c1 > 0
such that (see, e.g., [18], Proposition 7.23)

E exp
(
c0

Z2
i

L2‖Zi‖2
L2

)
≤ c1.

By Jensen’s inequality and concavity of the logarithm,[
E

(
1

k

k∑
i=1

(
Z∗

i

)2

)1/2]2

≤ E
1

k

k∑
i=1

(
Z∗

i

)2

≤ c−1
0 M2L2

E
1

k

k∑
i=1

log
(
exp

(
c0

(
Z∗

i

)2
/
(
L
∥∥Z∗

i

∥∥
L2

)2))

≤ c−1
0 M2L2 log

(
1

k

k∑
i=1

E exp
(
c0

(Z∗
i )2

L2‖Z∗
i ‖2

L2

))

≤ c−1
0 M2L2 log

(
1

k

n∑
i=1

E exp
(
c0

Z2
i

L2‖Zi‖2
L2

))

≤ c−1
0 M2L2 log(c1n/k).

Rearranging this inequality and adjusting constants yields the claim. �

For the choice Zi = ξi , it follows from Lemma 3.5 and Theorem 3.3 that for
every p ≥ 1 and k ∈ [n],

(3.3)
(
E‖ξ‖p

[k]
)1/p ≤ cL

(√
k log(en/k) + √

p
)
.

The second family of norms we require is a generalization of the first one. Let �

be a matrix and set

‖x‖�,k = ‖�x‖[k] =
(

k∑
i=1

(〈�x, ei〉∗)2

)1/2

= sup
t∈�∗Vk

〈x, t〉,

where the last equality follows from ‖z‖[k] = supt∈Vk
〈z, t〉.

LEMMA 3.6. Let ξ be an isotropic, L-sub-Gaussian random vector. Then for
every matrix � and any p ≥ 1,

(
E‖�ξ‖p

[k]
)1/p ≤ cL

(√
k log(en/k) max

1≤i≤n

∥∥�∗ei

∥∥
2 + √

p sup
t∈Vk

∥∥�∗t
∥∥

2

)
.
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PROOF. By Theorem 3.3, it suffices to estimate

E‖G‖�,k = E sup
t∈�∗Vk

〈G, t〉 = E

(
k∑

i=1

(〈
G,�∗ei

〉∗)2

)1/2

for a standard Gaussian vector G. This expectation may be controlled us-
ing Lemma 3.5 for the choice of Zi = 〈G,�∗ei〉 and that fact that M =
maxi∈[n] ‖Zi‖L2 = maxi∈[n] ‖�∗ei‖2. �

The following standard relation between moments and tails is recorded for con-
venience as it will be used frequently in the sequel. Its proof follows immediately
from Markov’s inequality.

LEMMA 3.7. Assume that a random variable Z satisfies (E|Z|p)1/p ≤ A for
some p > 0 and A > 0. Then, for α > 1,

Pr
(|Z| ≥ αA

) ≤ α−p.

As noted above, the matrices we will be interested in are of the form

�v = √
nUDWvO,

where U , W and O are Hadamard-type matrices with constant β and v ∈ R
n. Thus,

‖�v‖HS = √
n‖v‖2, ‖�v‖2→2 = √

n‖Wv‖∞ ≤ β‖v‖1/2
0 ‖v‖2,

and for every i ∈ [n],

(3.4)
∥∥�∗

vei

∥∥
2 = √

n

(
n∑

�=1

〈W�,v〉2 · U2
i,�

)1/2

≤ β‖v‖2.

Combining Corollary 3.2, Lemma 3.6 and Lemma 3.7, one has the following.

COROLLARY 3.8. There exist constants κ1, κ2 and κ3 that depend only on L

and β for which the following holds. If v ∈ Vr then

(3.5) Pr
(‖�vξ‖2 ≤ κ1

√
n‖v‖2

) ≤
(

1

2

)κ2n/r

,

and if v ∈ R
n and then with probability at least 1 − exp(−p),

(3.6) ‖�vξ‖[k] ≤ κ3
(‖v‖2

√
k log(en/k) + √

p · √n‖Wv‖∞
)
.

REMARK 3.9. In what follows, (3.5) and (3.6) are the key features of ξ that
we will use. To establish those two facts, we used rather special properties of ξ ,
but while those special properties (e.g., that ξ is stochastically dominated by a
Gaussian vector) are highly restrictive, (3.5) and (3.6), or even further relaxations
of the two, actually hold for a wider variety of random vectors. We will pursue this
direction in a future contribution.
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3.2. Definitions and basic facts. Let (T , d) be a metric space. A subset T ′ ⊂ T

is called ε-separated if for every x, y ∈ T ′, d(x, y) ≥ ε. By a standard comparison
of packing and covering numbers (see, e.g., [18], Lemma C.2), if T ′ is a maximal
ε-separated subset of T , it is also an ε-cover: that is, for every x ∈ T there is some
y ∈ T ′ for which d(x, y) ≤ ε.

In what follows, we denote by N(T ,d, ε) the cardinality of a minimal ε-cover
of T . Note that if T ⊂ R

n and d is a norm on R
n whose unit ball is B , then

N(T ,d, ε) is the minimal number of translates of εB needed to cover T . Therefore,
we will sometimes abuse notation and write N(T , εB) instead of N(T ,d, ε).

We will also use the language of Generic Chaining [42] extensively.

DEFINITION 3.10. Given a metric space (T , d), an admissible sequence
(Ts)s≥0 is a sequence of subsets of T , with |T0| = 1 and |Ts | ≤ 22s

. Together with
an admissible sequence one defines a collection of maps πs : T → Ts . Usually, πst

is chosen as a nearest point to t in Ts with respect to the metric d . For s ≥ 0, set

�st = πs+1t − πst.

Let us define several parameters that will be used throughout the proof of The-
orem 2.5.

1. For r ∈ [n] set

(3.7) ρ = 10 log2 e · max
{

1,
log(er)

log(en/r)

}
.

2. Using the notation introduced earlier, put

(3.8) κ4 = min
{
κ2

2
,

κ2
1

256κ2
3L2β2

}
,

and observe that κ4 depends only on L and β . Moreover, without loss of generality,
κ4 ≤ 1, and κ3,L,β ≥ 1.

3. Set s0 and s1 to satisfy

(3.9) 2s0 = κ4n

r
and 2s1 = ρr log(en/r)

and without loss of generality we will assume that s0 and s1 are integers.
4. Finally, let

(3.10) αr = max
{

1, log
(

ρr log(en/r)

κ4(n/r)

)}
= max

{
1, log

(
2s1−s0

)}
.

A key part in the proof of Theorem 2.5 requires a different argument when
2s0 ≥ 2s1 and when the reverse inequality holds. As we indicated earlier, we will
call the former the “low-sparsity” case, and the latter the “high-sparsity” case. It is
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straightforward to verify that in the low-sparsity case (2s0 ≥ 2s1 ), this corresponds
to

r ≤ cκ
1/2
4

√
n

log(cn/κ4)
, ρ = 10 log2 e and αr = 1,

while in the “high-sparsity” case,

r ≥ cκ
1/2
4

√
n

log(cn/κ4)
;

if r ≤ √
n then ρ = 10 log2 e, and otherwise, ρ = 10 log2 e · log(er)

log(en/r)
. Thus,

αr = log
(

cr2

κ4n
· log

(
en

r

))
if r ≤ √

n,

and

αr = log
(

cr2

κ4n
· log(er)

)
otherwise.

Let us again emphasize that κ1, κ2, κ3 and κ4 are all constants that depend only on
L and β—an observation that will be used throughout this article.

3.3. Covering of Vr . Let us begin by constructing (a part of) an admissible
sequence for Vr .

LEMMA 3.11. Let 1 ≤ r ≤ n/2 and s1 as above. There exists an admissible
sequence (Vr,s)s≥s1 for which

sup
v∈Vr

∑
s≥s1

(√
n + √

r2s/2)‖�sv‖2 ≤ c

n3/2 ,

where πsv is the nearest point to v in Vr,s with respect to the Euclidean norm,
�sv = πs+1v − πsv and c is an absolute constant.

We note that the exponent 3/2 above is rather arbitrary. We could easily replace
it by a larger one by adjusting constants.

PROOF. Let Vr,s be a maximal εs separated subset of Vr with respect to the
Euclidean norm and of cardinality 22s

. Thus it is also an εs -cover of Vr and

‖�sv‖2 ≤ ‖πs+1v − v‖2 + ‖πsv − v‖2 ≤ 2εs.

To estimate εs , observe that by a standard volumetric estimate (see, e.g., [18],
Proposition C.3) and summing over all

(n
r

)
possible support subsets of [n] of car-

dinality r , for any 0 < ε < 1/2, the cardinality of a maximal ε-separated subset of
Vr is at most (

n

r

)(
1 + 2

ε

)r

≤
(
n

r

)(
3

ε

)r

≤
(

3en

rε

)r

.
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Hence,

εs ≤ 2−2s/r

(
3en

r

)
,

and

sup
v∈Vr

∑
s≥s1

2s/2‖�sv‖2 ≤ 2
∑
s≥s1

2s/2εs ≤ c0

(
n

r

)
· ∑
s≥s1

2s/2−2s/r .

It is straightforward to verify that for every s ≥ s1,

(3.11) 2s/r ≥ 2(s/2).

This follows for s1 because 2s1 = ρr log(en/r) and

2s1

r
= (10 log2 e) · max

{
log

(
en

r

)
, log(er)

}
≥ s1,

and for s > s1 because s �→ 2s/s is increasing. Therefore,

sup
v∈Vr

∑
s≥s1

2s/2‖�sv‖2 ≤ c0
n

r
· ∑
s≥s1

2−2s/(2r),

which is dominated by a geometric series with power 2−2s1/2r = 2−(ρ/2) log(en/r) ≤
1/4. Therefore,

n

r

∑
s≥s1

2−2s/2r � n

r
· 2−2s1/(2r) ≤ e−1

(
r

en

) ρ
2 log2 e

−1
.

Note that

(3.12)
(

r

en

) ρ
2 log2 e

−1
≤ 1

(en)2 .

Indeed, if r ≤ n/r , that is, if r ≤ √
n, then ρ/ log2 e ≥ 10 and(

r

en

)(ρ/2 log2 e)−1
≤

(
1√
en

)4
≤ 1

(en)2 ;

otherwise,
√

n ≤ r ≤ n/2 and ρ/ log2 e = 10 log(er)/ log(en/r) so that

log
((

en

r

)(ρ/2 log2 e)−1)
= log

(
en

r

)[
5 log(er)

log(en/r)
− 1

]
≥ log

(
(en)2),

so that (3.12) holds also in this case. Therefore,

sup
v∈Vr

∑
s≥s1

(√
n + √

r2s/2)‖�sv‖2 ≤ c1

n3/2

for an absolute constant c1. �
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4. The structure of a typical {�vξ : v ∈ Vr}. The main component in the
proof of Theorem 2.5 is a structural result on a typical realization of the random
set {�vξ : v ∈ Vr}.

THEOREM 4.1. Recall the definitions of ρ, s0, s1, and αr from (3.7), (3.9) and
(3.10), respectively. There exist constants c0, . . . , c3 that depend only on L and β

for which the following holds. With probability at least 1 − 2−c0 min{2s0 ,2s1 },
{�vξ : v ∈ Vr} ⊂ T1 + T2,

where

|T1| ≤ 22s1 and T2 ⊂ c1n
−3/2Bn

2 .

Moreover, for each t ∈ T1:

1. ‖t‖2 ≥ κ1
√

n, and

2. ‖tI‖2 ≤ κ1
√

n
4 on the set I = I (t) ⊂ [n] of largest-magnitude coordinates of

t of cardinality |I | ≥ c2
n

α2
r log(eαr )

.

Theorem 4.1 implies that a typical realization of {�vξ : v ∈ Vr} is just a per-
turbation of the (random) set T1, and that T1 consists of vectors with a regular
coordinate structure: for each t ∈ T1 consider the set J = I (t)c and observe that it
follows from ‖t‖2 ≥ κ1

√
n and ‖tI‖2 ≤ κ1

√
n

4 that ‖tJ ‖2 ≥ 15κ1
16

√
n and

(4.1) ‖tJ ‖∞ ≤ ∣∣t∗|I (t)|
∣∣ ≤ (

1

|I (t)|
∑

j∈I (t)

∣∣t∗j ∣∣2
)1/2

≤ κ1

4
√

c2
αr

√
log(eαr).

This implies that at least θ = c/(α2
r log(eαr)) coordinates of tJ are larger than a

constant. When s0 ≥ s1 (the low-sparsity case), αr = 1 and the claim is that with
probability at least 1 − 2−c0ρr log(en/r), for every t ∈ T1, there is a subset I ⊂ [n]
of cardinality |I | ≥ c2n of coordinates which are larger than a constant, and thus,
each one of the vectors t ∈ T1 has a regular coordinate structure in the sense of
(2.9).

When s1 > s0, a similar type of claim holds, but with probability at least
1 − 2−c0κ4n/r , and the regularity condition on the coordinates of t ∈ T1 is slightly
weaker: one no longer has a subset of cardinality that is proportional to n consist-
ing of coordinates that are larger than a constant, but rather a (marginally) smaller
set I .

Thanks to this information on the structure of a typical {�vξ : v ∈ Vr}, one may
establish the required lower bound on infv∈Vr ‖P��vξ‖2.

COROLLARY 4.2. There exist constants c0, c1 and c2 that depend only on L

and β for which the following holds. Let

δn ≥ c0
(
α2

r log(eαr)
) · ρr log(en/r),
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with ρ defined in (3.7) and set (δi)i=1 to be independent selectors with mean δ.
Then with probability at least 1 − 2−c1 min{2s0 ,2s1 },

inf
v∈Vr

n∑
i=1

δi〈�vξ, ei〉2 ≥ c2δn.

PROOF. Let ξ be a realization of the event from Theorem 4.1—which holds
with probability at least 1 − 2−c0 min{2s0 ,2s1 } relative to ξ—and let (δi)

n
i=1 be inde-

pendent selectors with mean δ that are also independent of ξ .
Using the notation of Theorem 4.1, let �vξ = t + y for t ∈ T1 and y ∈ T2; hence(

n∑
i=1

δi〈�vξ, ei〉2

)1/2

≥ inf
t∈T1

(
n∑

i=1

δit
2
i

)1/2

− sup
y∈T2

(
n∑

i=1

δiy
2
i

)1/2

≥ inf
t∈T1

(
n∑

i=1

δit
2
i

)1/2

− c1

n3/2

(4.2)

for an absolute constant c1. It suffices to show that

inf
t∈T1

n∑
i=1

δit
2
i ≥ c2δn,

the right-hand side being larger than 2c1/n3, where c2 is a suitable constant.
Fix t ∈ T1, let J = J (t) = I c(t) be the complement of the set I (t) identified by

Theorem 4.1 and put x = PJ t . Then as argued in (4.1) and the line above

(4.3) ‖x‖2 ≥ 15c1

16

√
n and ‖x‖∞ ≤ c3αr

√
log(eαr).

By Bernstein’s inequality,

Pr
(∣∣∣∣∑

i∈J

(δi − δ)x2
i

∣∣∣∣ ≥ w

)
≤ 2 exp

(
−c4 min

{
w2

δ
∑

i∈J x4
i

,
w

maxi∈J x2
i

})
.

Observe that
∑

i∈J x4
i ≤ ‖x‖2∞

∑
i∈J x2

i , and thus, for w = (δ/2)
∑

i∈J x2
i , the

probability estimate becomes

2 exp
(−c4δ‖x‖2

2/‖x‖2∞
) ≤ 2 exp

(
−c5(L,β)

δn

α2
r log(eαr)

)
.

By a union bound, with probability at least

1 − 2|T1|2 exp
(
−c5

δn

α2
r log(eαr)

)
,

relative to (δi)
n
i=1, this implies that, for every t ∈ T1,

n∑
i=1

δit
2
i ≥ ∑

i∈J (t)

δi t
2
i ≥ δ

2

∑
i∈J (t)

x2
i ≥ κ2

1

32
δn.
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The claim follows by setting

δn ≥ c−1
5

(
α2

r log(eαr)
) · 2s1+1 = c7(L,β) · α2

r log(eαr) · ρr log(en/r). �

REMARK 4.3. The following alternative argument starting from (4.3) leads
to a lower bound in �q for any 1 ≤ q < ∞—at least in the small sparsity regime
s0 ≤ s1, that is, s ≤ c

√
n/ log(n). For fixed t ∈ T1, choose I = I (t) as the θn

largest absolute coefficients of t where θ is defined in (4.5) below (with suitable
constants). We know from the theorem that ‖t‖2 ≥ κ1

√
n and ‖t‖[θn] ≤ κ

4

√
n. This

implies that

t∗θn ≥
(

1

(1 − θ)n

n∑
i=θn

(
t∗i
)2

)1/2

=
(

1

(1 − θ)n

(‖t‖2
2 − ‖t‖2[θn]

))1/2

≥
(

1

n

(
κ2

1n − κ2
1n/16

))1/2
=

√
15κ1

4
= c6.

For � = {i : δi = 1}, let K = K(t) = I (t) ∩ �. Then, by Chernov’s inequality
the cardinality of K satisfies |K| = ∑

j∈I (t) δi ≥ 1
2δ|I | = 1

2δθn probability at least
1 − e−δθn/8. On this event,

‖P�t‖q ≥
(∑

j∈K

|tj |q
)1/q

≥ c6(θδn/2)1/q

By the union bound, this holds for all t ∈ T1 with probability at least

1 − 2|T1| exp(−δθn) ≥ 1 − 2 · 22s1 exp(−δθn/8)

≥ 1 − 2 exp
(−δθn/8 + ln(2)ρr log(en/r)

)
.

Therefore, in the small sparsity regime s0 ≤ s1, that is, θ = c3, a combination with
a similar estimate as in (4.2) gives

inf
v∈Vr

n∑
i=1

δi〈�vξ, ei〉q ≥ c
q
8δn

with probability at least 1 − 2 exp(−c9δn) provided that

δn ≥ c10r log(en/r).

The proof of Theorem 4.1 is based on the following idea: (Vr,s)s≥s1 will be
selected as an maximal εs -separated subset of Vr and T1 = {�vξ : v ∈ Vr,s1}. We
will show that for every v ∈ Vr , v − πs1v = ∑

s≥s1
�sv is small enough to ensure

that with high probability,

sup
v∈Vr

‖�v−πs1vξ‖2 ≤ ∑
s≥s1

‖�sv‖2 ≤ c′

n3/2
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for c′ that depends on L and β . Then we will turn to the more difficult part of the
argument—that with high probability, for every v ∈ Vr,s1 ,

(4.4) ‖�vξ‖2 ≥ c
√

n and ‖�vξ‖[θn] ≤ (c/4)
√

n

for well chosen c and

(4.5) θ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

c1 for r ≤ c2

√
κ4n

log(c2n/κ4)
,

c3

α2
r log(eαr)

for c2

√
κ4n

log(c2n/κ4)
≤ r ≤ c4n

log4(n)
,

where all constants c, c1, c2, c3, c4 only depend on L and β and κ4 is defined in
(3.8); see (4.10) and the following remarks as well as Lemma 4.11. Moreover, here
and in the following, we assume for simplicity that θn is an integer. (The general
case may need slightly different constants.)

We begin the proof with its simpler part: a high probability estimate on
supv∈Vr

‖�v−πs1vξ‖2.

LEMMA 4.4. There exist constants c and c1 that depend only on L and β for
which the following holds. If (Vr,s)s≥s1 is an admissible sequence of Vr , then with
probability at least 1 − 2−2s1 , for every v ∈ Vr and s ≥ s1,

(4.6) ‖��svξ‖2 ≤ c
(√

n + 2s/2√r
)‖�sv‖2.

In particular, if Vr,s1 is a maximal separated subset of Vr , then with probability at
least 1 − 2−2s1 ,

sup
v∈Vr

‖�v−πs1vξ‖2 ≤ c1

n3/2 .

PROOF. The first part of the proof is a straightforward outcome of (3.6). In-
deed, if we set k = n and p = 2s+3, then by Corollary 3.8, with probability at least
1 − exp(−2s+3),

‖��svξ‖2 ≤ 4κ3
(√

n‖�sv‖2 + 2s/2 · √n‖W�sv‖∞
)
.

Since v is r-sparse, �sv = πs+1v − πsv is 2r-sparse, and since W is a Hadamard-
type matrix with constant β ,

√
n‖W�sv‖∞ = √

nmax
i∈[n]

∣∣〈Wi,�sv〉∣∣ ≤ β‖�sv‖1 ≤ β‖�sv‖1/2
0 · ‖�sv‖2.

Therefore,

(4.7) ‖��svξ‖2 ≤ 4κ3
(√

n + β
√

2r2s/2)‖�sv‖2.

There are at most 22s · 22s+1 ≤ 22s+2
vectors of the form �sv, and thus, by a union

bound, with probability at least 1 − 2−2s+2
, (4.7) holds for every v ∈ Vr for that
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choice of s. Summing the probabilities for s ≥ s1, one has that with probability at
least 1 − 2−2s1+1

, for every v ∈ Vr ,

‖�v−πs1vξ‖2 =
∥∥∥∥∑
s≥s1

��svξ

∥∥∥∥
2
≤ ∑

s≥s1

‖��svξ‖2

≤ 4
√

2κ3β
∑
s≥s1

(√
n + √

r2s/2)‖�sv‖2 ≤ c(L,β)

n3/2 ,

where the last inequality is just Lemma 3.11. �

Lemma 4.4 shows that if we set T2 = {�v−πs1vξ : v ∈ Vr}, then with probability
at least 1−2−2s1 , supt∈T2

‖t‖2 = supv∈Vr
‖�v−πs1vξ‖2 ≤ c(L,β)/n3/2, as required

in Theorem 4.1. Therefore, all that is left is to study the structure of T1 = {�πs1vξ :
v ∈ Vr}, and to show that with high probability, it consists of vectors with a regular
coordinate structure. To that end, we shall split the argument into two cases: the
low-sparsity case, when s0 ≥ s1 and the high-sparsity one, in which the reverse
inequality holds. The analysis is based on Corollary 3.8 in both cases.

The low-sparsity case. Assume that 2s0 ≥ 2s1 , that is, κ4n
r

≥ ρr log(en/r) and
in particular, by the choice of κ4 in (3.8),

(4.8)
κ2

2
· n

r
≥ ρr log

(
en

r

)
.

Fix v ∈ Vr,s1 . It follows from (3.5) that with probability at least 1 − 2−κ2n/r ,

(4.9) ‖�vξ‖2 ≥ κ1
√

n.

Let 0 < θ < 1 to be named later. Observe that by (3.6) for k = θn and p =
2ρr log(en/r) = 2s1+1, with probability at least 1 − e−2s1+1

,

‖�vξ‖[k] ≤ 2κ3
(‖v‖2

√
k log(en/k) +

√
ρr log(en/r)

√
n‖Wv‖∞

)
≤ 2κ3

(√
n
√

θ log(e/θ) + β
√

ρr log(en/r) · √r
)
,

(4.10)

because ‖v‖2 = 1 and
√

n‖Wv‖∞ ≤ β
√

r .
Recall that |Vr,s1 | ≤ 22s1 , and thus, by (4.8) and the union bound, with probabil-

ity at least 1 − 2−2s1 , (4.9) and (4.10) hold for every v ∈ Vr,s1 . All that remains is
to ensure that

2κ3β
√

θ log(e/θ)
√

n ≤ κ1

8

√
n and 2κ3β

√
r ·

√
ρr log(en/r) ≤ κ1

8

√
n.

The first condition holds for the right choice of the constant θ = θ(L,β). For the
second, note that by the definition of κ4 in (3.8)

ρr log(en/r) = 2s1 ≤ 2s0 ≤ κ2
1

256κ2
3L2β2

· n

r
.
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Therefore,

2κ3β
√

r ·
√

ρr log(en/r) ≤ 2κ3β
√

r · κ1

16κ3Lβ
·
√

n

r
≤ κ1

8

√
n,

because L ≥ 1.
This concludes the proof of Theorem 4.1 in the low sparsity case.

The high-sparsity case. Now consider the case 2s0 ≤ 2s1 , that is, κ4n/r ≤
ρr log(en/r). Then there is a substantial gap between the individual probability
estimate (3.5) and the cardinality of Vr,s1 , so that a simple union bound does not
give a nontrivial probability estimate. The difficulty one faces here is bridging this
gap, and the key to the proof in the high-sparsity case is the following result.

THEOREM 4.5. There exist constants c1 and c2 that depend only on L and
β for which the following holds. If r ≤ c1n/ log4 n, then with probability at least
1 − 2 exp(−c2n/r),

eq inf
v∈Vr,s1

‖�vξ‖2 ≥ κ1

2

√
n.

For the proof of Theorem 4.5, one has to “transfer” the lower bound on
infv∈Vr,s0

‖�vξ‖2, which may be obtained directly from (3.5) and the union bound,
to the much larger set Vr,s1 . Thus, it suffices to show that with high probability,

(4.11) sup
v∈Vr,s1

∣∣‖�vξ‖2
2 − ‖�πs0v‖2

2
∣∣ ≤ κ2

1

4
n,

for an approximating πs0v ∈ Vr,s0 .
To address (4.11), we proceed along the lines of [25] and consider the following,

more general situation: let A be a class of matrices, |A| ≤ 22s1 and set (As)s≥s0 to
be an admissible sequence of A; that is, As is of cardinality at most 22s

. Let πsA

to be the nearest point to A in As with respect to the ‖ ‖2→2 norm, set �sA =
πs+1A − πsA, and put

γs0,s1(A) = sup
A∈A

s1−1∑
s=s0

2s/2‖�sA‖2→2.

LEMMA 4.6. Assume A = As1 to be finite. Let ξ be an isotropic, L-sub-
Gaussian random vector and set ξ ′ to be an independent copy of ξ . Let NA(ξ) =
supA∈A ‖Aξ‖2 and put

Z = sup
A∈A

∣∣〈Aξ,Aξ ′〉 − 〈
(πs0A)ξ, (πs0A)ξ ′〉∣∣.

Then, for every p ≥ 1,

‖Z‖Lp ≤ cL sup
A∈A

γs0,s1(A)
∥∥NA(ξ)

∥∥
Lp

for an absolute constant c.
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Since the proof of Lemma 4.6 is contained in the proof of Lemma 3.3 in [25], it
will not be presented here.

We will be interested in the specific class of matrices A = {�v : v ∈ Vr,s1}.
THEOREM 4.7. There exist constants c1 and c2 that depend only on L and β

for which the following holds. Let A = {�v : v ∈ Vr,s1} and set (As)s≥s0 to be an
admissible sequence of A. Then, with probability at least 1 − 2−c1n/r ,

(4.12) sup
A∈A

∣∣‖Aξ‖2
2 − ‖πs0Aξ‖2

2
∣∣ ≤ c2γs0,s1(A)

(
γs0,s1(A) + √

n
)
.

Before proving Theorem 4.7, let us recall a standard fact that can be established
using tail integration.

LEMMA 4.8. Let Z be a nonnegative random variable and assume that

Pr(Z ≥ A1 + uA2) ≤ 2 exp
(−u2/2

)
for every u ≥ A3.

Then, for every p ≥ 1, ‖Z‖Lp ≤ c(A1 + A2 · max{A3,
√

p}), and c is an absolute
constant.

PROOF OF THEOREM 4.7. Denote by Aj , j ∈ [n], the columns of the matrix
A and observe that

‖Aξ‖2
2 − ‖πs0Aξ‖2

2 = 〈Aξ,Aξ〉2 − 〈πs0Aξ,πs0Aξ〉2

= ∑
j,k

ξj ξk

(〈
Aj ,Ak 〉 − 〈

(πs0A)j , (πs0A)k
〉)
.

Since each A is of the form �v for some v ∈ Sn−1, we have 〈Aj ,Aj 〉 = ‖v‖2
2 = 1,

and the same holds for πs0A. Therefore, 〈Aj ,Aj 〉 − 〈(πs0A)j , (πs0A)j 〉 = 0 and
all that remains is to control the “off-diagonal” terms,∑

j �=k

ξj ξk

(〈
Aj ,Ak 〉 − 〈

(πs0A)j , (πs0A)k
〉) =: FA.

Denoting by ξ ′ an independent copy of ξ , applying a standard decoupling argu-
ment (see, e.g., [25], Theorem 2.4, or [11]) and Lemma 4.6,(

E sup
A∈A

|FA|p
)1/p =

∥∥∥ sup
A∈A

(∗)A

∥∥∥
Lp

≤ 4
∥∥∥∥ sup
A∈A

∣∣∣∣∑
j,k

ξj ξ
′
k

(〈
Aj ,Ak 〉 − 〈

(πs0A)j , (πs0A)k
〉)∣∣∣∣

∥∥∥∥
Lp

= 4
∥∥∥ sup
A∈A

∣∣〈Aξ,Aξ ′〉 − 〈
πs0Aξ,πs0Aξ ′〉∣∣∥∥∥

Lp

≤ c1Lγs0,s1(A) · ∥∥NA(ξ)
∥∥
Lp

.
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Moreover,∥∥(NA(ξ)
)2∥∥

Lp
≤

∥∥∥ sup
A∈A

∣∣‖Aξ‖2
2 − ‖πs0Aξ‖2

2
∣∣∥∥∥

Lp

+
∥∥∥ sup
A∈A

‖πs0Aξ‖2
2

∥∥∥
Lp

≤ c1Lγs0,s1(A) · ∥∥NA(ξ)
∥∥
Lp

+
∥∥∥ sup
A∈A

‖πs0Aξ‖2
2

∥∥∥
Lp

.

By (3.6) for k = n and p = u2 ≥ 2s0+3, it follows that with probability at least
1 − 2 exp(−u2/2),

sup
A∈A

‖πs0Aξ‖2 = sup
v∈Vr,s0

‖�vξ‖2 ≤ κ3
(√

n + u
√

n‖Wv‖∞
)

≤ c2(L,β)(
√

n + u
√

r),

where we used that ‖Wv‖∞ ≤ β
√

r/n. Thus, the random variable Z =
supA∈A ‖πs0Aξ‖2 satisfies the conditions of Lemma 4.8 for A1 = c3

√
n, A2 =

c3
√

r and A3 = 4 · 2s0/2, implying that for every p ≥ 1,∥∥∥ sup
A∈A

‖πs0Aξ‖2
2

∥∥∥
Lp

≤ (
EZ2p)1/p ≤ c4(L,β)

(√
n + √

r max
{
2s0/2,

√
p
})2

.

Setting p = 2s0 = κ4n/r , we obtain∥∥∥ sup
A∈A

‖πs0Aξ‖2
2

∥∥∥
Lp

≤ c5(L,β)n.

Therefore, ∥∥(NA(ξ)
)2∥∥

Lp
≤ c6(L,β)

(
γs0,s1(A)

∥∥NA(ξ)
∥∥
Lp

+ n
)
,

implying that ∥∥NA(ξ)
∥∥
Lp

≤ c7(L,β)max
{
γs0,s1(A),

√
n
}

and (
E sup

A∈A
∣∣‖Aξ‖2

2 − ‖πs0Aξ‖2
2
∣∣p)1/p ≤ c8(L,β)γs0,s1(A)

(
γs0,s1(A) + √

n
)
.

The claim now follows from Lemma 3.7 with α = 2 and the definition of p =
κ4n/r . �

The next step is to estimate γs0,s1(A) for our choice A = {�v : v ∈ Vr,s1}. We
will construct the admissible sequence As = {�v : v ∈ Vr,s} for s0 ≤ s < s1 based
on the fact that

‖�sA‖2→2 = ‖�πs+1v − �πs+1v‖2→2 = √
n‖W�sv‖∞,

for �sv = πs+1v − πsv. Hence,

γs0,s1(A) = sup
v∈Vr,s1

s1−1∑
s=s0

2s/2 · √n‖W�sv‖∞,
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and the admissible sequence will be constructed as maximal separated subsets of
Vr,s1 with respect to the norm

√
n‖W(·)‖∞.

We will require a well-known fact, due to Carl [8].

LEMMA 4.9. There is an absolute constant c for which the following holds.
Let w1, . . . ,wn ∈ R

n that satisfy ‖wi‖∞ ≤ K , put ‖z‖ = maxi∈[n] |〈z,wi〉| and set
B to be the unit ball with respect to that norm. Then for every t > 0,

logN
(√

rBn
1 , tB

) ≤ C
K2r

t2 log2(nt2/r
)
.

In the case we are interested in, wi = √
nWi and ‖wi‖∞ ≤ β . Moreover, Vr,s1 ⊂

Vr ⊂ √
rBn

1 ; therefore,

(4.13) logN(Vr,s1, tB) ≤ logN
(√

rBn
1 , tB

) ≤ C
β2r

t2 log2(nt2/r
)
.

COROLLARY 4.10. There is an admissible sequence of Vr,s1 , for which, for
every v ∈ Vr,s1 ,

√
n‖W�sv‖∞ ≤ cβ2−s/2√r log

(
en/2s) for s ≤ s1,

for an absolute constant c. Therefore,

(4.14) sup
v∈Vr,s1

s1−1∑
s=s0

2s/2 · √n‖W�sv‖∞ ≤ c1β
√

rαr log(er/κ4).

Corollary 4.10 follows from (4.13), a straightforward computation and the def-
inition of s0 and s1. We omit the details.

PROOF OF THEOREM 4.5. Combining the individual small ball estimate in
(3.5), Theorem 4.7 and Corollary 4.10, one has that with probability at least 1 −
2−c1(L,β)n/r , for every v ∈ Vr,s1 ,

‖�πs0vξ‖2 ≥ κ1
√

n,

and ∣∣‖�vξ‖2
2 − ‖�πs0vξ‖2

2
∣∣ ≤ c2(L,β)

√
n · √rαr log(c2r).

It is straightforward verify that the latter term is bounded by (κ2
1/4)n provided that

r ≤ c3(L,β)n/ log4 n. �

The more difficult step consists in exposing the regular coordinate structure of
vectors in a typical {�vξ : v ∈ Vr,s1}, and we will do that by finding a suitable upper
bound on

(4.15) sup
v∈Vr,s1

‖�vξ‖[k] = sup
v∈Vr,s1

(∑
i≤k

(〈�vξ, ei〉∗)2
)1/2

.
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Specifically, the next result bounds the largest possible k for which (4.15) is smaller
than (κ1/4)

√
n.

LEMMA 4.11. Assume that 2s0 ≤ 2s1 , r ≤ c1n/ log4(n) and

(4.16) k ≤ c2
n

α2
r log(eαr)

.

Then with probability at least 1 − 2−c32s0 ,

(4.17) sup
v∈Vr,s1

‖�vξ‖[k] ≤ κ1

4

√
n.

The constants c1, c2, c3 > 0 only depend on L and β .

REMARK 4.12. One should note that an upper bound on the supremum in
(4.17) cannot be obtained via an individual estimate and the union bound. The
sub-Gaussian property of ξ is enough to ensure that for a fixed v,(

E‖�vξ‖p
[k]

)1/p ≤ cL
(‖v‖2

√
k log(en/k) + √

p
√

n‖Wv‖∞
)
.

However, because one only knows that for v ∈ Vr ,
√

n‖Wv‖∞ ≤ β
√

r‖v‖2, indi-
vidual tail estimates suffice for a uniform bound in Vr,s0 , but not in the much larger
set Vr,s1 .

PROOF. Observe that

sup
v∈Vr,s1

‖�vξ‖[k] = sup
x∈Vk

sup
v∈Vr,s1

〈
ξ,�∗

vx
〉
.

We will study the supremum of the linear process w �→ 〈ξ,w〉 indexed by the set{
�∗

vx : v ∈ Vr,s1, x ∈ Vk

}
.

Let (Vk,s)s≥s0 be an admissible sequence of Vk which will be specified later on.
For x ∈ Vk , we consider πs1x ∈ Vk,s1 , whose cardinality is 22s1 , and πs0x ∈

Vk,s0 , whose cardinality is 22s0 and write, for v ∈ Vr,s1 ,

(4.18) �∗
vx = �∗

v(x − πs1x)︸ ︷︷ ︸
=:H1

+ (
�∗

vπs1x − �∗
πs0vπs0x

)
︸ ︷︷ ︸

=:H2

+�∗
πs0vπs0x︸ ︷︷ ︸
=:H3

.

While H3 corresponds to the “starting points” of every chain, the difference be-
tween H1 and H2 lies in the “balance” between the contribution of Vk and Vr,s1 to
each one of them. For H1, there are ∼22s1 points v ∈ Vr,s1 , but for an admissible
sequence for Vk one has

�∗
v(x − πs1x) = ∑

s≥s1

�∗
v(πs+1x − πsx) = ∑

s≥s1

(
�∗

v�sx
)
,
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and for s ≥ s1, |{�sx : x ∈ Vk}| ≥ 22s1 = |Vr,s1 |. Hence, it is possible to treat H1 for
each v ∈ Vr,s1 separately and apply a simple union bound. In contrast, the situation
for H2 is “more balanced,” and requires a different argument.

To deal with H1 in (4.18), fix v ∈ Vr,s1 and apply Lemma 3.5 for a standard
Gaussian vector G in R

n together with (3.4) to obtain

E sup
t∈�∗

vVk

〈G, t〉 = E‖�vG‖[k] = E

(
k∑

i=1

(〈
G,�∗

vei

〉∗)2

)1/2

≤ c
√

k log(en/k)max
i∈[n]

∥∥�∗
vei

∥∥
2 ≤ cβ

√
k log(en/k).

By the majorizing measures theorem [42], there exists an admissible sequence of
Vk for which

sup
x∈Vk

∞∑
s=0

2s/2∥∥�∗
v�sx

∥∥
2 ∼ E sup

t∈�∗
vVk

〈G, t〉 ≤ cβ
√

k log(en/k).

Let us consider a part of that admissible sequence, namely, (Vk,s)s≥s1 . As ξ is an
isotropic, L-sub-Gaussian random vector, it follows that for every s ≥ s1 and every
x ∈ Vk , with probability at least 1 − 2−2s+3

,∣∣〈ξ,�∗
v�sx

〉∣∣ ≤ cL2s/2∥∥�∗
v�sx

∥∥
2.

Summing for s ≥ s1, one has that with probability at least 1 − 2−2s1+2
, for every

x ∈ Vk , ∣∣〈ξ,�∗
v(x − πs1x)

〉∣∣ ≤ ∑
s≥s1

∣∣〈ξ,�∗
v�sx

〉∣∣ ≤ cL
∑
s≥s1

2s/2∥∥�∗
v�sx

∥∥
2

≤ cβL
√

k log(en/k) ≤ κ1

16

√
n

(4.19)

for a suitable choice of c2 in (4.16). Repeating this argument for every v ∈ Vr,s1

and applying the union bound, one has that with probability at least 1 − 2−2s1+1
,

(4.19) holds for every v ∈ Vr,s1 .
Next, let us turn to H2 in (4.18). We will construct approximating subsets in

the following way: let (Vr,s)
s1
s=s0 be the admissible sequence of Vr,s1 used earlier,

consisting of maximal separated subsets with respect to the norm
√

n‖W(·)‖∞,
and put νs to be the mesh width of the net Vr,s . For every s0 ≤ s ≤ s1 and z ∈ Vr,s ,
let ‖ ‖z be the ellipsoid norm

‖x‖2
z = ∥∥DWzU

∗x
∥∥2

2 = n

n∑
�=1

〈W�, z〉2〈U�, x
〉2
,

and set Ts(z) to be a maximal separated subset in Vk with respect to ‖ ‖z, of
cardinality 22s

. Denote its mesh width by εs(z). Thus, for s0 ≤ s < s1, v ∈ Vr,s+1
and x ∈ Vk ,

(4.20) �vx = �∗
v−v′x + �∗

v′
(
x − x′) + �∗

v′x′,
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where v′ ∈ Vs,r satisfies
√

n‖W(v − v′)‖∞ ≤ νs , and x′ ∈ Vk belongs to Ts(v
′)—

the net of Vk with respect to the norm ‖ ‖v′ , and fulfills

(4.21)
∥∥�∗

v′
(
x − x′)∥∥

2 = ∥∥x − x′∥∥
v′ ≤ εs

(
v′).

Moreover, the cardinality of
⋃

v′∈Vr,s
Ts(v

′) is at most 22s · 22s ≤ 22s+1
.

The required estimate on H2 follows from (4.14) and once we control εs(z) with
respect to each one of the ‖ ‖z norms. Indeed, using the above notation∣∣〈ξ,�∗

vx
〉 − 〈

ξ,�∗
πsv

π̃sx
〉∣∣ ≤ ∣∣〈ξ,�∗

v−πsv
x
〉∣∣ + ∣∣〈ξ,�∗

πsv
(x − π̃sx)

〉∣∣,
where, for v ∈ Vr,s+1, πsv ∈ Vr,s is closest to v with respect to

√
n‖W(·)‖∞,

x ∈ Ts+1(v) and π̃sx ∈ Ts(πsv) is closest to x with respect to ‖ ‖πsv . Since ξ

is isotropic and L-sub-Gaussian, we have with probability at least 1 − 22s+2
, for

every v ∈ Vr,s+1 and x ∈ Ts+1(v),∣∣〈ξ,�∗
vx

〉 − 〈
ξ,�∗

πsv
π̃sx

〉∣∣
≤ cL

(
2s/2∥∥�∗

v−πsv
x
∥∥

2 + 2s/2∥∥�∗
πsv

(x − π̃sx)
∥∥

2

)
= cL

(
2s/2 · √n

∥∥W(v − πsv)
∥∥∞ + 2s/2‖x − π̃sx‖πsv

)
≤ cL

(
2s/2νs + 2s/2 sup

z∈Vr

εs(z)
)
.

(4.22)

Iterating (4.22), summing for s0 ≤ s < s1 and recalling that 2s0 = κ4n/r , it follows
that with probability at least 1 − 2−c1(L,β)n/r , for every v ∈ Vr,s1 and every x ∈ Vk ,

(4.23)
∣∣〈ξ,�∗

vπs1x − �∗
πs0vπ̃s0x)

〉∣∣ ≤ c2(L,β)

(
s1−1∑
s=s0

2s/2νs +
s1−1∑
s=s0

2s/2 sup
z∈Vr

εs(z)

)
.

The first sum in (4.23) has been estimated earlier, in (4.14). In particular,

c2

s1−1∑
s=s0

2s/2νs ≤ c3
√

rαr · log(c3r) ≤ κ1

32

√
n

for c3 = c3(L,β) and as long as r ≤ c4(L,β)n/ log4 n.
In order to bound the second sum in (4.23), we require another covering esti-

mate.

THEOREM 4.13. There exists an absolute constant c for which, for every z ∈
Sn−1,

logN
(
Vk,‖ ‖z, ε

) ≤ cβε−2k log(en/k).
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PROOF. The proof of Theorem 4.13 is an outcome of Sudakov’s inequality.
Fix z ∈ Sn−1 and define a linear operator S : Rn → R

n by Sei = Ui . Observe that
for i ∈ [n] and t ∈ R

n〈√
nDWzS

∗t, ei

〉 = √
n
〈
S∗t,DWzei

〉 = √
n〈Wi, z〉〈S∗t, ei

〉
= √

n〈Wi, z〉〈Ui, t
〉
.

Therefore, ‖√nDWzS
∗t‖2 = ‖t‖z and

logN
(
Vk,‖ ‖z, ε

) = logN
(√

nDWzS
∗Vk, εB

n
2
)
.

Set T = √
nDWzS

∗Vk and let G be a standard Gaussian vector in R
n. By Su-

dakov’s inequality (see, e.g., [28]), there is an absolute constant c for which

(4.24) cε2 logN
(
T , εBn

2
) ≤ E sup

t∈T

〈G, t〉,
and

E sup
t∈T

〈G, t〉 = E sup
v∈Vk

〈
G,

√
nDWzS

∗v
〉

= √
nE sup

v∈Vk

n∑
i=1

gi〈Wi, z〉〈Ui, v
〉 ≡ E

(∑
j≤k

(
Z∗

j

)2
)1/2

,

for Zj = √
n
∑n

i=1 gi〈Wi, z〉〈Ui, ej 〉. Each one of the Zj ’s is a Gaussian variable,
and since U is a Hadamard-type matrix with constant β ,

EZ2
j = n

n∑
i=1

〈Wi, z〉2〈Ui, ej

〉2 ≤ β2.

Finally, Lemma 3.5 yields E(
∑k

j=1(Z
∗
j )2)1/2 ≤ cβ

√
k log(en/k), which completes

the proof by (4.24). �

Invoking Theorem 4.13, it follows that

sup
z∈Vr

εs(z) ≤ c
√

β2−s/2
√

k log(en/k),

and due to the definition of αr in (3.10) the second sum in (4.23) is bounded by
s1∑

s=s0

2s/2 sup
z∈Vr

εs(z) ≤ c(L,β)(s1 − s0)
√

k log(en/k)

≤ c1(L,β)αr

√
k log(en/k) ≤ κ1

32

√
n

provided that

(4.25) k ≤ c2(L,β)
n

α2
r log(eαr)

.

This concludes the required estimate on H2 and leads to the condition on k.
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The final and easiest component is to control H3 in (4.18). Indeed,∥∥�∗
πs0vπs0x

∥∥
2 ≤ √

n‖Wπs0
v‖∞ ≤ β

√
r,

and there are at most 22s0 · 22s0 = 22s0+1
pairs (πs0v,πs0x). Since ξ is isotropic and

L-sub-Gaussian, one has that with probability at least 1 − 2 exp(−u2/2),∣∣〈ξ,�∗
πs0vπs0x

〉∣∣ ≤ Lu
∥∥�∗

πs0vπs0x
∥∥

2 ≤ Luβ
√

r.

For u = 2(s0+2)/2, the union bound yields that, with probability at least 1 −
2 exp(−c2s0),

sup
v∈Vr,s1 ,x∈Vk

∣∣〈ξ,�∗
πs0vπs0x

〉∣∣ ≤ 2(s0+2)/2Lβ
√

r ≤ 2κ1

16κ3Lβ

√
n

r
· Lβ

√
r ≤ κ1

8

√
n,

because κ3 ≥ 1. Taking the union bound over the events in which the bounds for
H1, H2 and H3 apply, we deduce that

sup
v∈Vr,s1

‖�vξ‖[k] ≤ κ1

4

√
n

with probability at least 1−2−c1n/r −2e−c22s0 −2−2s1+1 ≥ 1−2−c′2s0 for a suitable
constant c′, under condition (4.25) on k. This completes the proof of Lemma 4.11
after relabeling constants. �

5. The upper bound on one-sparse vectors. To complete the proof of The-
orem 2.5, one has to show that with high probability,

max
i∈[n] ‖P��ei

ξ‖2 ≤ c
√

δn,

for a suitable constant c and � = {i : δi = 1}; see also Theorem 2.3.

THEOREM 5.1. There exist constants c0, c1 and c2 that depend only on L

and β for which the following holds. If δ ≥ c0
logn

n
, then with probability at least

1 − 2 exp(−c1δn),

max
i∈[n]

(
n∑

j=1

δj 〈�ei
ξ, ej 〉2

)1/2

≤ c2
√

δn.

The proof of Theorem 5.1 is based on the fact that for every i ∈ [n], �ei
ξ has a

regular coordinate structure, in the sense that is clarified in the following lemma.

LEMMA 5.2. There exist an absolute constant c1 and a constant c2 that de-
pends on β and L for which the following holds. Let ξ be an isotropic, L-sub-
Gaussian random vector and let m ∈ [n]. Then for every i ∈ [n], with probability
at least 1 − exp(−c1m log(en/m)), �ei

ξ = x + y, where

‖x‖2 ≤ c2

√
m log(en/m) and max

i∈[n]
y∗
i√

log(en/i)
≤ c2.
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PROOF. Let i ∈ [n] and set z = �ei
ξ . Let I be the (random) set of the m largest

coordinates of z and define

(5.1) x = ∑
j∈I

zj ej and y = ∑
j∈I c

zj ej .

Observe that ‖x‖2 = ‖�ei
ξ‖[m]. By (3.6) for p = m log(en/m), and noting that

‖Wei‖∞ ≤ β/
√

n, one has

Pr
(‖x‖2 ≥ c(L,β)

√
m log(en/m)

) ≤ exp
(−m log(en/m)

)
.

Repeating this argument for m ≤ � ≤ n, it follows that with probability at least

1 −
n∑

�=m

exp
(−� log(en/�)

) ≥ 1 − exp
(−c1m log(en/m)

)
,

for every m ≤ � ≤ n,

z∗
� ≤ 1√

�
‖z‖[�] ≤ 2c(β,L)

√
log(en/�),

and the claim follows. �

The coordinate structure of �ei
ξ comes into play thanks to a fact from [31].

LEMMA 5.3. Let a ∈ R
n, set ‖a‖ψn

1
= max1≤j≤n a∗

j / log(en/j) and put 0 <

t < ‖a‖ψn
1
/2. Then

Pr

(∣∣∣∣∣
n∑

j=1

(δj − δ)aj

∣∣∣∣∣ > tδn

)
≤ 2 exp

(−ct2δn/‖a‖2
ψn

1

)
,

where c is an absolute constant and (δi)
n
j=1 are independent selectors with

mean δ.
In particular, if aj = log(en/j) then with probability at least 1 − 2 exp(−c1δn),

n∑
i=1

δj log(en/j) ≤ 5δn.

PROOF OF THEOREM 5.1. Let m = δn/ log(e/δ) and consider the decompo-
sition of �ei

ξ = x + y established in Lemma 5.2. Conditioned on the event from
that lemma which holds with probability at least 1 − 2 exp(−c0δn),(

n∑
j=1

δjx
2
j

)1/2

≤
(

n∑
j=1

x2
j

)1/2

≤ c1(L,β)
√

m log(en/m) ≤ c2(L,β)
√

δn.
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Also, by Lemma 5.3, with probability at least 1 − 2 exp(−c3δn),
n∑

j=1

δjy
2
j ≤ c4(L,β)

n∑
i=1

δj log(en/j) ≤ c5(L,β)δn.

Hence, with probability at least 1 − 2 exp(−c6δn) with respect to both ξ and
(δj )

n
j=1, one has that(

n∑
j=1

δj 〈�ei
ξ, ej 〉2

)1/2

≤ c7(L,β)
√

δn.

Recalling that δn ≥ c8 logn for a well chosen c8, it follows from the union bound
that with probability at least 1 − 2n exp(−c6δn) ≥ 1 − 2 exp(−c9δn),

max
i∈[n]

(
n∑

j=1

δj 〈�ei
ξ, ej 〉2

)1/2

≤ c7(L,β)
√

δn.
�
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