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We consider the Voronoi tessellation based on a homogeneous Poisson
point process in an Euclidean space. For a geometric characteristic of the
cells (e.g., the inradius, the circumradius, the volume), we investigate the
point process of the nuclei of the cells with large values. Conditions are ob-
tained for the convergence in distribution of this point process of exceedances
to a homogeneous compound Poisson point process. We provide a character-
ization of the asymptotic cluster size distribution which is based on the Palm
version of the point process of exceedances. This characterization allows us
to compute efficiently the values of the extremal index and the cluster size
probabilities by simulation for various geometric characteristics. The exten-
sion to the Poisson–Delaunay tessellation is also discussed.

1. Introduction. Stationary tessellations and the Poisson–Voronoi tessella-
tion. A tessellation m in R

d , d ≥ 1, endowed with its Euclidean norm | · |, is a
countable collection of nonempty convex compact subsets, called cells, with dis-
joint interiors which subdivides the space and such that the number of cells inter-
secting any bounded subset of Rd is finite. The set T of tessellations is endowed
with the σ -field generated by the sets {m ∈ T : ⋃

C∈m ∂C ∩ K = ∅}, where ∂K

is the boundary of K for any compact set K in R
d . By a random tessellation m,

we mean a random variable with values in T. For a complete account on random
tessellations and their applications, we refer to the books [29, 32].

A tessellation m is said to be stationary if its distribution is invariant under
translations of the cells. Given a fixed realization of a stationary tessellation m,
we associate with each cell C ∈ m, in a deterministic way, a point z(C) which is
called the nucleus of the cell, such that z(C + x) = z(C) + x for all x ∈ R

d . To
describe the mean behavior of the tessellation, the notions of intensity and typical
cell are introduced as follows. Let A ⊂ R

d be a Borel subset such that λd(A) = 1,
where λd is the d-dimensional Lebesgue measure. The intensity of a stationary
tessellation m is defined as

γm := E
[
#
{
C ∈ m : z(C) ∈ A

}]
,

where #S denotes the cardinality of any finite set S . Thanks to the stationarity of
m, the intensity does not depend on the choice of A. Without loss of generality, we
assume that γm = 1.
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The typical cell C of a stationary tessellation m is a random polytope with dis-
tribution given by

(1.1) E
[
f (C)

] = E

[ ∑
C∈m:z(C)∈A

f
(
C − z(C)

)]
,

where f : Kd → R is any bounded measurable function on the family of convex
bodies Kd (i.e., nonempty convex compact sets in R

d ), where Kd is endowed with
the Hausdorff topology.

Let χ be a locally finite subset of Rd . The Voronoi cell with nucleus x ∈ χ is the
set of all sites y ∈ R

d whose distance from x is smaller or equal than the distances
to all other points of χ , that is,

Cχ(x) := {
y ∈ R

d : |y − x| ≤ ∣∣y − x′∣∣, x′ ∈ χ
}
.

When χ = η is a homogeneous Poisson point process, the family m := {Cη(x) :
x ∈ η} is the so-called Poisson–Voronoi tessellation. The intensity of such a tes-
sellation equals the intensity of η. A consequence of the theorem of Slivnyak (see,
e.g., Theorem 3.3.5 in [29]) shows that

(1.2) C D= Cη∪{0}(0),

where D= denotes the equality in distribution. The study of this typical cell in the
literature includes mean values calculations [21], second-order properties [14] and
distributional estimates [5, 22]. Voronoi tessellations are extensively used in many
domains such as cellular biology [26], astrophysics [33], telecommunications [3]
and finance [24]. For a complete account on Poisson–Voronoi tessellations and
their applications, we refer to the book by Okabe et al. (see Chapter 5 in [23]).

Point process of exceedances for a stationary sequence of real random vari-
ables. Let (Xn)n∈Z be a strictly stationary sequence of real random variables.
Assume that for each τ > 0 there exists a sequence of levels (un(τ )) such that
limn→∞ nP(X1 > un(τ)) = τ . The point process of time normalized exceedances
is defined by φB(τ) := n−1 · {i ∈ B : Xi > un(τ)} for any Borel set B ⊂ Wn :=
[−n/2, n/2]. If (Xn) satisfies a long range dependence condition [known as con-
dition 
(un(τ))] and if the point process φWn(τ ) weakly converges to a point pro-
cess in [−1/2,1/2], then the limiting point process is necessarily a homogeneous
compound Poisson process with intensity ν ≥ 0 and limiting cluster size distri-
bution π (see Corollary 3.3 in [15]). According to Leadbetter [19], the constant
θ = ν/τ is referred to as the extremal index. It may be shown that 0 ≤ θ ≤ 1 and
that the compound Poisson limit becomes Poisson when θ = 1.

If limn→∞ P(#φWn(τ ) = 0) = e−θτ , then a necessary and sufficient condition
for the convergence of φWn is the convergence of the conditional distribution of
#φBn , with Bn = [0, qn], given that there is at least one exceedance of un(τ ) among
X1, . . . ,Xqn , to the distribution π = (πk)k≥1, that is,

(1.3) lim
n→∞P

(
#φBn(τ ) = k|#φBn(τ ) > 0

) := πk, k ≥ 1,



CLUSTER SIZE DISTRIBUTIONS OF EXTREME VALUES FOR THE PVT 3293

where (qn) is a 
(un(τ))-separating sequence, with limn→∞ qn/n = 0 (see The-
orem 4.2 in [15]). This condition is known as the blocks characterization of the
cluster size distribution π . Under additional mild conditions (see, e.g., [30]) the
extremal index is equal to the reciprocal of the mean of π .

An equivalent condition to (1.3) is proposed in Theorem 4.1 in [28] (see also
Theorem 2.5 in [25]) and is given by

(1.4) lim
n→∞P

(
#φBn(τ ) = k|X0 > un(τ)

) := p′
k = θ

∞∑
m=k

πm, k ≥ 1.

In particular, we have θ = p′
1. This second condition is useful to compute the val-

ues of the extremal index and the cluster size probabilities when the conditional
distributions of the exceedances may be derived from the dynamics of (Xn)n∈Z,
for example, for the regularly varying multivariate time series [4] or the Markov
sequences [25]. This condition may be called the runs characterization of the clus-
ter size distribution since the runs estimator of the extremal index is based on the
following result:

θ = lim
n→∞P

( qn⋂
i=1

{
Xi ≤ un(τ )

}∣∣∣X0 > un(τ)

)
.

The runs characterization is natural for a random object as a time series where
the direction of time is used to design the dynamics of the series. Estimators of
the extremal index and the cluster size distribution, based on the blocks and runs
characterizations, are extensively investigated; see, for example, [27, 31].

However, we claim that it could also be useful to consider a new condition where
the conditional event {X0 > un(τ)} is not used as the starting point of the consid-
ered cluster, but as a part of this cluster. We therefore introduce a new discrete
probability distribution p = (pk)k≥1 and the following condition:

(1.5) lim
n→∞P

(
#φCn(τ ) = k|X0 > un(τ)

) := pk, k ≥ 1,

where Cn = [−qn/2, qn/2]. If p exists, an adaptation of our main result (see The-
orem 4) shows that pk = θkπk for k ≥ 1, and therefore θ = ∑∞

k=1 k−1pk . Such
a condition will be proposed for random tessellations for which there is no natu-
ral direction in the space R

d . However, we think that our new condition could be
fruitful for time series.

Point process of exceedances for a stationary tessellation. Let m be a stationary
tessellation in R

d . We consider a geometric characteristic g : Kd → R satisfying
g(C + x) = g(C) for all C ∈ Kd and x ∈ R

d , and such that, for some τ0 > 0, there
exists a sequence of thresholds vρ(τ0) satisfying

(1.6) lim
ρ→∞ρP

(
g(C) > vρ(τ0)

) = τ0.

By Theorem 1.7.13 in [18], it is equivalent to the existence of sequences of thresh-
olds vρ(τ ) for any τ > 0 satisfying limρ→∞ ρP(g(C) > vρ(τ )) = τ .
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We observe only a part of the stationary tessellation m in the window Wρ :=
ρ1/d · [−1/2,1/2]d , ρ > 0, and we are interested in the point process of ex-
ceedances �Wρ(τ) where, for any Borel set B ⊂ R

d , we let

�B(τ) := ρ−1/d · {
z(C) : z(C) ∈ B,g(C) > vρ(τ ),C ∈ m

}
.

In this paper, we investigate the weak convergence of the point process �Wρ(τ) in
[−1/2,1/2]d as ρ tends to infinity. In [10], a first result was obtained for geometric
characteristics for which a short range dependence condition holds (equivalent to
the so-called condition D′ for stationary sequences of real random variables): it is
shown that the point process �Wρ(τ) weakly converges to a homogeneous Poisson
point process with intensity τ . In this paper, we are interested in finding weaker
conditions for other geometric characteristics such that the point process �Wρ(τ)

weakly converges to a homogeneous compound Poisson point process.
Let Bρ be a subcube of Wρ such that limρ→∞ λd(Bρ)/ρ = 0. Condition (1.3)

for the tessellation m will be written in the following way:

(1.7) lim
ρ→∞P

(
#�Bρ(τ) = k|#�Bρ(τ) > 0

) = πk, k ≥ 1,

for a discrete probability distribution π = (πk)k≥1, which we also call the cluster
size distribution. Additional assumptions on Bρ will be necessary and will depend
on the mixing properties of the tessellation. Condition (1.4) cannot be translated
for stationary tessellations as explained previously. Condition (1.5) has to be mod-
ified since the cell which contains the origin (the Crofton cell) is not distributed as
the typical cell. To overcome this difficulty, we consider a Palm version �0

Rd (τ ) of
�Rd (τ ), that is, a point process whose distribution is given by the Palm distribu-
tion of �Rd (τ ) (see Sections 3.3 and 3.4 in [29] for a complete account on Palm
theory). For any B ⊂ R

d , we also let �0
B(τ) = �0

Rd (τ ) ∩ B . An analogous version
of Condition (1.5) in the context of random tessellations can be stated as follows:

(1.8) lim
ρ→∞P

(
#�0

Bρ
(τ ) = k

) := pk, k ≥ 1,

for a discrete probability distribution p = (pk)k≥1.
In general, the distributions π and p cannot be made explicit. It is necessary

to use simulations to compute approximate values of the probabilities πk and pk .
The blocks method (1.7) competes with the Palm approach (1.8). The idea of the
Palm approach is to consider clusters close to the origin given that the cell whose
nucleus is the origin has an exceedance. Our approach provides better approxi-
mations of the extremal index and the cluster size distribution and requires less
simulations. Indeed, we simulate only blocks that contain at least one exceedance
(the one of the Crofton cell that contains the origin), while with the blocks ap-
proach, it is necessary to simulate a very large number of blocks (including those
without any extreme value). More precisely, in our numerical illustrations in R2,
we simulate tessellations only observed in the square [−173,173]2 to approximate
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θ and p = (pk)k≥1 thanks to our Palm approach. A blocks approach would have
required to simulate tessellations in the square [−5.18 · 1021,5.18 · 1021] for the
same accuracy, which is practically impossible.

The point process �Wρ(τ) can be derived from the marked point process
{(z(C), Ig(C)>vρ(τ)) : C ∈ m}. The theory of marked point processes is however
not enough to investigate the convergence of the point process �Wρ(τ) because
additional properties of the structure of the random tessellation have to be used. In
this paper, we only focus on the Poisson–Voronoi tessellation and we explain how
our results can be extended to the Poisson–Delaunay tessellation.

Our paper is organized as follows. In Section 2, we give several preliminaries by
introducing notation and conditions on our geometric characteristic. In Section 3,
we investigate the convergence in distribution of the point process of exceedances
to a homogeneous compound Poisson point process. This convergence is stated in
our main result (Theorem 4). In Section 4, we give three examples and numerical
illustrations. The extension to the Poisson–Delaunay tessellation is discussed in
Section 5.

2. Preliminaries. In this section, we introduce some notation and conditions
which will be used throughout the paper.

Notation.

• Let x ∈ R
d and let A,B ⊂ R

d be two subsets. We write x+A := {x+a : a ∈ A},
A⊕B := {a +b : a ∈ A,b ∈ B} and A�B := {x ∈ R

d : x +B ⊂ A}. Moreover,
we denote the complement of A by Ac := R

d \ A, and the set of points in B

which do not belong to A by B \ A := B ∩ Ac.
• For any A,B ⊂ R

d , we denote the distance between A and B by δ(A,B) :=
inf(a,b)∈A×B |a − b|. If a ∈ A, we use the simpler notation δ(a,B) := δ({a},B).

• For any k-tuple of points x1, . . . , xk ∈ R
d , we write x1:k := (x1, . . . , xk). With a

slight abuse of notation, we also write {x1:k} := {x1, . . . , xk}.
• We denote by Flf the set of locally finite subsets in R

d . This set is endowed with
the σ -field induced by the so-called Fell topology on Flf (see, e.g., page 563 in
[29]).

• We denote by η a homogeneous Poisson point process in R
d . Excepted in Sec-

tion 5, we assume that the intensity of η is γη = 1.
• For any pair of functions h1, h2 : R → R, we write h1(ρ) ∼

ρ→∞ h2(ρ) and

h1(ρ) = O(h2(ρ)) to respectively mean that h1(ρ)/h2(ρ) → 1 as ρ → ∞ and
h1(ρ)/h2(ρ) is bounded for ρ large enough.

Throughout the paper, we use c to signify a universal positive constant not de-
pending on ρ but which may depend on other quantities. When required, we as-
sume that ρ is sufficiently large.

Conditional independence. Let η be a homogeneous Poisson point process in R
d

and let Wρ = ρ1/d · [−1/2,1/2]d . We begin with a first lemma that characterizes
the dependence structure of the Poisson–Voronoi tessellation induced by η.
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Let ε > 0 be fixed. We partition Wρ(1+ε) into a set Vρ of nd
ρ subcubes of equal

size, where nρ := �(logρ)−(1+ε)/d · ρ1/d�. The fact that we consider a subdivision
of Wρ(1+ε) instead of Wρ allows us to deal with boundary effects. The subcubes are
indexed by the set of i := (i1, . . . , id) ∈ [1, nρ]d . With a slight abuse of notation,
we identify a cube with its index. We now introduce a distance between subcubes
i and j as d(i, j) := max1≤s≤d |is − js |. Let S(i, r) = {j ∈ Vρ : d(i, j) ≤ r} be the
ball of subcubes of radius r around i. If I and J are two sets of subcubes, we let

S(I, r) = ⋃
i∈I

S(i, r) and d(I,J ) = min
i∈I,j∈J d(i, j).

For any A ⊂ R
d , we define

I(A) = {i ∈ Vρ : i ∩ A �= ∅}.
Let χ ∈ Flf . For any x1:k ∈ χk and for any v ≥ 0, we write gχ(x1:k) > v to spec-

ify that g(Cχ(xj )) > v for any 1 ≤ j ≤ k. In particular, we let gχ(x) := g(Cχ(x)).
Moreover, we introduce the following σ -algebra:

(2.1) �
η∪{x1:k}
A := σ

{
gη∪{x1:k}(x) : x ∈ (

η ∪ {x1:k}) ∩ A
}
.

Finally, to ensure several independence properties, we introduce the event

Aρ := ⋂
i∈Vρ

{η ∩ i �=∅}.

The event Aρ is extensively used in stochastic geometry to derive central limit
theorems or to deal with extremes (see, e.g., [2, 10]). It will play a crucial role in
the rest of the paper. The following lemma is the heart of our development and
captures the idea of “local dependence.”

LEMMA 1. Let x1, . . . , xk ∈ R
d , with k ≥ 0, and let A,B ⊂ Wρ . Then

(i) conditional on Aρ , the σ -fields �
η∪{x1:k}
A and �

η∪{x1:k}
B are independent

when d(I(A),I(B)) > D, where D := 4(�√d� + 1);
(ii) for any α > 0, we have ρα · P(A c

ρ ) −→
ρ→∞ 0.

PROOF. For the first assertion, we use the same arguments as in the proof
of Proposition 3 in [2]. The main idea is to show that, conditional on the event
Aρ , the σ -algebras �

η∪{x1:k}
A and �

η∪{x1:k}
B only depend on the set of points of η

restricted to two disjoint neighborhoods of A and B . Since η is a Poisson point
process, this will show that �

η∪{x1:k}
A and �

η∪{x1:k}
B are independent. To do it, let

x ∈ (η ∪ {x1:k}) ∩ A, with x ∈ i for some subcube i ∈ Vρ . Let N (x) be the set of
Voronoi neighbors of x, that is,

N (x) = {
y ∈ η ∪ {x1:k} : Cη∪{x1:k}(x) ∩ Cη∪{x1:k}(y) �= ∅

}
.
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We show below that, under the event Aρ , the set of Voronoi neighbors N (x) is
included in S(i,R), with

R = D

2
= 2

(�√d� + 1
)
.

Indeed, let y ∈ N (x). Then there exists a ball containing x and y on its boundary,
with no point of η∪{x1:k} in its interior. Conditional on the event Aρ , the center of
this ball belongs to some subcube j ∈ Vρ . Moreover, since the diameter of j equals√

d · (λd(i))1/d and since, conditional on the event Aρ , the subcube j contains
at least one point of η ∪ {x1:k}, the radius of the ball is larger than (�√d� + 1) ·
(λd(i))1/d . Hence

|x − y| ≤ 2
(�√d� + 1

) · (
λd(i)

)1/d
.

Therefore, y ∈ k for some subcube k such that d(i,k) ≤ 2(�√d� + 1), which
proves that N (x) ⊂ S(i,R).

Since N (x) ⊂ S(i,R) for any point x ∈ (η ∪ {x1:k}) ∩ i, this shows that
{
gη∪{x1:k}(x) : x ∈ (

η ∪ {x1:k}) ∩ i
} ∈ σ

(
η ∩ S(i,R)

)
.

Because d(I(A),I(B)) > D implies that S(I(A),R) and S(I(B),R) are disjoint
and because η ∩ S(I(A),R) and η ∩ S(I(B),R) are independent, the σ -algebras
�

η∪{x1:k}
A and �

η∪{x1:k}
B are independent. This proves the first assertion of Lemma 1.

The second assertion comes from (3.3) and from the fact that

P
(
A c

ρ

) = P

( ⋃
k∈Vρ

{η ∩ k = ∅}
)

≤ #Vρ · P(η ∩ i = ∅) = nd
ρe−(1+ε)ρ/nd

ρ .
�

Condition on the geometric characteristic. To state our main theorem, we as-
sume some condition on the geometric characteristic g, referred to as Condi-
tion (C).

CONDITION (C). For any τ > 0, there exists a constant c such that, for any
(k − 1)-tuple of points y2:k ∈ R

d(k−1), for any z ∈ {0, y2:k}, we have

(2.2) P
(
gη∪{0,y2:k}(z) > vρ(τ )

) ≤ c · ρ−1,

where vρ(τ ) satisfies equation (1.6), with the convention {y2:k} =∅ when k = 1.

In particular, Condition (C) is satisfied when gη∪{0,y2:k}(x) ≤ gη∪{0}(x) for any
x ∈ η ∪ {0} and for any y2:k ∈ R

d(k−1), that is, when the geometric characteristic
of a cell always decreases if new points are added to the point process η.
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3. Weak convergence of the point process of exceedances for a Poisson–
Voronoi tessellation. Let χ ∈ Flf . For any ρ > 0 and τ > 0, we denote by
�χ(τ) the point process of exceedances of the Voronoi tessellation induced by
χ , that is,

�χ(τ) := ρ−1/d · {
x ∈ χ : gχ(x) > vρ(τ )

}
.

Besides, for any B ⊂ R
d , we write �

χ
B(τ) := �χ(τ) ∩ (ρ−1/dB).

For each τ > 0, we denote by �η,0(τ ) the Palm version of �η(τ). In particular,
for any B ⊂ R

d we let �
η,0
B (τ) := �η,0(τ ) ∩ (ρ−1/dB). We also associate two

probabilities defined as follows:

πk,B(τ ) := P
(
#�

η
B(τ) = k|#�

η
B(τ) > 0

)
and

pk,B(τ ) := P
(
#�

η,0
B (τ) = k

)
.

The quantity πk,B(τ ) is the probability that there are k exceedances in B condi-
tional on the fact that there is at least an exceedance in B , whereas the quantity
pk,B(τ ) is the probability that there are k exceedances in B conditional on the
fact that the origin is a nucleus and that the cell with nucleus at the origin is an
exceedance. Notice that these probabilities also depend on ρ.

3.1. An explicit representation for pk,B . According to the theorem of
Slivnyak, the Palm distribution of η is given by the distribution of η ∪ {0}. As
a consequence, the following lemma shows that for any B ⊂ R

d , the distribution
of #�

η,0
B (τ) is the same as the one of #�

η∪{0}
B (τ) given that gη∪{0}(0) > vρ(τ ).

LEMMA 2. For any B ⊂R
d , ρ > 0 and k ≥ 1, we have

pk,B(τ ) = P
(
#�

η∪{0}
B (τ) = k|gη∪{0}(0) > vρ(τ )

)
.

PROOF. Since pk,B(τ ) = P(#�η,0(τ )∩ (ρ−1/dB) = k) and since the intensity
of �η(τ) equals ρ P(g(C) > vρ(τ )), we obtain for any Borel subset A ⊂ R

d , with
λd(A) = 1, that

(3.1) pk,B(τ ) = 1

ρ P(g(C) > vρ(τ ))
E

[ ∑
z∈�η(τ)∩A

I#(�η(τ)−z)∩(ρ−1/dB)=k

]
.

Moreover, it results from the Slivnyak–Mecke formula (e.g., Corollary 3.2.3 in
[29]) that

E

[ ∑
z∈�η(τ)∩A

I#(�η(τ)−z)∩(ρ−1/dB)=k

]

=
∫
ρ1/dA

P
(
#�

η∪{x}−x
B (τ ) = k, gη∪{x}(x) > vρ(τ )

)
dx.



CLUSTER SIZE DISTRIBUTIONS OF EXTREME VALUES FOR THE PVT 3299

Thanks to the stationarity of η and because g is translation-invariant, the above
integrand does not depend on x. By integrating over x ∈ ρ1/dA and by using the
fact that λd(ρ1/dA) = ρ, it follows that

E

[ ∑
z∈�η(τ)∩A

I#(�η(τ)−z)∩(ρ−1/dB)=k

]

= ρ · P(
#�

η∪{0}
B (τ) = k, gη∪{0}(0) > vρ(τ )

)
.

This together with (1.2) and (3.1) concludes the proof of Lemma 2. �

3.2. A technical result. In this section, we establish a technical proposition
which will be the key ingredient to prove our main theorem. To state this proposi-
tion, we first give some notation. We denote by q : ρ �→ qρ a generic function such
that, for any α,β > 0, we have simultaneously

(3.2) qρ · (logρ)α · ρ−1 −→
ρ→∞ 0 and q−1

ρ · (logρ)β −→
ρ→∞ 0.

We also consider for ε > 0, ρ > 0 the following integers:

nρ := ⌊
(logρ)−(1+ε)/d · ρ1/d⌋

and
(3.3)

mρ := ⌊
q−1/d
ρ · (logρ)−(1+ε)/d · ρ1/d⌋

.

Notice that nρ has already been defined on page 3296. We also define two cubes
centered at 0 as follows:

(3.4) Cρ := ((1 + ε)ρ)1/d

nρ

· [−D,D]d and Qρ := ρ1/d

mρ

· [−1/2,1/2]d,

where we recall that D = 4(�√d� + 1) (see Lemma 1). Notice that for each sub-
cube i ∈ Vρ , we have λd(i) = (2D)−d · λd(Cρ). Besides, λd(Cρ) = o(λd(Qρ)),
with

(3.5) λd(Cρ) ∼
ρ→∞ (1 + ε)(logρ)1+ε(2D)d and λd(Qρ) ∼

ρ→∞ qρ(logρ)1+ε.

We are now prepared to state our technical proposition.

PROPOSITION 3. Assume that g satisfies Condition (C). Then, for any k ≥ 1,
we have

kP
(
#�

η
Qρ

(τ ) = k
) − λd(Qρ) · P(

#�
η∪{0}
Qρ

(τ ) = k, gη∪{0}(0) > vρ(τ )
)

(3.6)
= o

(
λd(Qρ) · ρ−1)

.

Notice that the previous proposition is trivial if we replace o(λd(Qρ) · ρ−1) by
O(λd(Qρ) · ρ−1) in (3.6). Indeed, for each k ≥ 1, we have

P
(
#�

η
Qρ

(τ ) = k
) = O

(
λd(Qρ) · ρ−1)
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and

P
(
#�

η∪{0}
Qρ

(τ ) = k, gη∪{0}(0) > vρ(τ )
) = O

(
ρ−1)

.

The main difficulty is to prove that the left-hand side in (3.6) is negligible com-
pared to λd(Qρ) · ρ−1, which constitutes the main ingredient to prove Theorem 4.

Since qρ is any function such that (3.2) holds, we can take in practice qρ =
(log logρ)log logρ . Actually, we think that Proposition 3 remains true when qρ =
logρ, which is slightly more efficient for simulating estimators of θ and pk .

In what follows, we write M
χ
B := maxx∈χ∩B gχ(x) for any χ ∈ Flf and for any

B ⊂ R
d . When χ ∩ B =∅, we take M

χ
B := −∞.

PROOF. We split the proof into two cases: k = 1 and k ≥ 2. These two cases
share similar arguments. We begin with the case k = 1 because it is the simplest
one.

Case k = 1. To deal with, we first give an integral representation of the left-hand
side of (3.6). Since η is stationary and since g is translation-invariant, we obtain
from the Slivnyak–Mecke formula that

P
(
#�

η
Qρ

(τ ) = 1
) = E

[ ∑
x∈η∩Qρ

Igη(x)>vρ(τ)IM
η
Qρ\{x}≤vρ(τ )

]
=

∫
Qρ

px dx,

where, for any x ∈ R
d , we let

px := P
(
gη∪{0}(0) > vρ(τ ),M

η∪{0}
(Qρ−x)\{0} ≤ vρ(τ )

)
.

In particular, we have P(#�
η∪{0}
Qρ

(τ ) = 1, gη∪{0}(0) > vρ(τ )) = p0. Integrating p0

over Qρ , we obtain

P
(
#�

η
Qρ

(τ ) = 1
) − λd(Qρ) · P(

#�
η∪{0}
Qρ

(τ ) = 1, gη∪{0}(0) > vρ(τ )
)

(3.7)
=

∫
Qρ

(px − p0)dx.

Now, we provide an upper bound for the integrand in (3.7). To do it, let x ∈ Qρ

be fixed. Then

|px − p0| ≤ P
(
gη∪{0}(0) > vρ(τ ),M

η∪{0}
Qρ\(Qρ−x) > vρ(τ )

)
(3.8)

+ P
(
gη∪{0}(0) > vρ(τ ),M

η∪{0}
(Qρ−x)\Qρ

> vρ(τ )
)
.

To bound the two probabilities of the right-hand side in the above equation, we
proceed in a similar way. Each time, we discuss whether the events appearing in
these probabilities are, or are not, independent conditional on the event Aρ . To
deal with the first probability, we notice that{

gη∪{0}(0) > vρ(τ )
} ∈ �

η∪{0}
{0}
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and {
M

η∪{0}
Qρ\(Qρ−x) > vρ(τ )

} ∈ �
η∪{0}
Qρ\(Qρ−x).

We now discuss two possibilities:
(i) If d(I({0}),I(Qρ \(Qρ −x))) > D then, according to Lemma 1, conditional

on Aρ the events {gη∪{0}(0) > vρ(τ )} and {Mη∪{0}
Qρ\(Qρ−x) > vρ(τ )} are independent.

Hence

P
(
gη∪{0}(0) > vρ(τ ),M

η∪{0}
Qρ\(Qρ−x) > vρ(τ )|Aρ

)
Id(I({0}),I(Qρ\(Qρ−x)))>D

≤ P
(
gη∪{0}(0) > vρ(τ )|Aρ

) · P(
M

η∪{0}
Qρ\(Qρ−x) > vρ(τ )|Aρ

)
.

Besides, we know that P(gη∪{0}(0) > vρ(τ )) ≤ c · ρ−1. Moreover, it results from
the Slivnyak–Mecke formula that

P
(
M

η∪{0}
Qρ\(Qρ−x) > vρ(τ )

)
= P

(∃z ∈ (
Qρ \ (Qρ − x)

) ∩ η : gη∪{0}(z) > vρ(τ )
)

≤ E

[ ∑
z∈η∩Qρ

Igη∪{0}(z)>vρ(τ)

]

=
∫
Qρ

P
(
gη∪{0,z}(z) > vρ(τ )

)
dz

≤ c · λd(Qρ)ρ−1,

where the last line is a consequence of Condition (C). This implies that

P
(
gη∪{0}(0) > vρ(τ ),M

η∪{0}
Qρ\(Qρ−x) > vρ(τ )

)
Id(I({0}),I(Qρ\(Qρ−x)))>D

≤ c · λd(Qρ)ρ−2.

(ii) If d(I({0}),I(Qρ \ (Qρ − x))) ≤ D, then δ(0,Qρ \ (Qρ − x)) ≤ c ·
(λd(Cρ))1/d , where δ(·, ·) is defined on page 3295. Besides, we know that
P(gη∪{0}(0) > vρ(τ )) ≤ c · ρ−1. This implies that

P
(
gη∪{0}(0) > vρ(τ ),M

η∪{0}
Qρ\(Qρ−x) > vρ(τ )

)
Id(I({0}),I(Qρ\(Qρ−x)))≤D

≤ c · ρ−1
Iδ(0,Qρ\(Qρ−x))≤c·(λd(Cρ))1/d .

Hence

P
(
gη∪{0}(0) > vρ(τ ),M

η∪{0}
Qρ\(Qρ−x) > vρ(τ )

)
≤ c · λd(Qρ)ρ−2 + c · ρ−1

Iδ(0,Qρ\(Qρ−x))≤c·(λd(Cρ))1/d .
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Proceeding along the same lines as above, we also get

P
(
gη∪{0}(0) > vρ(τ ),M

η∪{0}
(Qρ−x)\Qρ

> vρ(τ )
)

≤ c · λd(Qρ)ρ−2 + c · ρ−1
Iδ(0,(Qρ−x)\Qρ)≤c·(λd(Cρ))1/d .

We can now conclude the case k = 1. Indeed, by integrating over x ∈ Qρ , it
follows from the above inequalities and (3.8) that∣∣∣∣

∫
Qρ

(px − p0)dx

∣∣∣∣
≤ c · λd(Qρ)2 · ρ−2

+ c · ρ−1 · λd

({
x ∈ Qρ : δ(

0,Qρ \ (Qρ − x)
) ≤ c · λd(Cρ)1/d})

+ c · ρ−1 · λd

({
x ∈ Qρ : δ(

0, (Qρ − x) \ Qρ

) ≤ c · λd(Cρ)1/d})
.

We can easily prove that for each x ∈ Qρ , such that δ(0,Qρ \ (Qρ − x)) is lower
than c · λd(Cρ)1/d , we have x ∈ Qρ \ (Qρ � c1/d · Cρ). Hence

λd

({
x ∈ Qρ : δ(

0,Qρ \ (Qρ − x)
) ≤ c · λd(Cρ)1/d})

(3.9)
≤ λd

(
Qρ \ (

Qρ � c1/d · Cρ

)) = O
(
λd(Qρ)(d−1)/d · λd(Cρ)1/d)

.

Moreover, for ρ large enough, we have

(3.10) λd

({
x ∈ Qρ : δ(

0, (Qρ − x) \ Qρ

) ≤ c · λd(Cρ)1/d}) = 0

since for any x ∈ R
d , we have δ(0, (Qρ − x) \ Qρ) ≥ (λd(Qρ))1/d and λd(Cρ) =

o(λd(Qρ)). According to (3.7), this shows that∣∣P(
#�

η
Qρ

(τ ) = 1
) − λd(Qρ) · P(

#�
η∪{0}
Qρ

(τ ) = 1, gη∪{0}(0) > vρ(τ )
)∣∣

≤ c · λd(Qρ)2 · ρ−2 + c · ρ−1λd(Qρ)
d−1
d λd(Cρ)1/d .

The right-hand side equals o(λd(Qρ)ρ−1) because, according to (3.2) and (3.5),
the quantities λd(Qρ) · ρ−1 and λd(Qρ)−1/d · λd(Cρ)1/d converge to 0 as ρ goes
to infinity. This concludes the proof of the case k = 1.

Case k ≥ 2. To deal with the case k ≥ 2, we also give an integral representation
of the left-hand side of (3.6). According to the Slivnyak–Mecke formula, we have

P
(
#�

η
Qρ

(τ ) = k
) = E

[ ∑
{x1:k}⊂η∩Qρ

Igη(x1:k)>vρ(τ)IM
η
Qρ\{x1:k }≤vρ(τ )

]

= 1

k!
∫
Qρ

∫
(Qρ−x)k−1

px(y2:k)dy2:k dx,

where, for any x ∈ R
d and for any y2:k ∈ R

(k−1)d , we write

px(y2:k) := P
(
gη∪{0,y2:k}(0, y2:k) > vρ(τ ),M

η∪{0,y2:k}
(Qρ−x)\{0,y2:k} ≤ vρ(τ )

)
.
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In the same spirit as in the case k = 1, we can show that

kP
(
#�

η
Qρ

(τ ) = k
) − λd(Qρ) · P(

#�
η∪{0}
Qρ

(τ ) = k, gη∪{0}(0) > vρ(τ )
)

= 1

(k − 1)!
∫
Qρ

(∫
(Qρ−x)k−1

px(y2:k)dy2:k −
∫
Qk−1

ρ

p0(y2:k)dy2:k
)

dx.

Recall that the event {gη∪{0,y2:k}(0, y2:k) > vρ(τ )} means that the cells with nu-
cleus 0, y2, . . . , yk are simultaneously exceedances in the Voronoi tessellation as-
sociated with the point process η ∪ {0, y2:k}. As in the case k = 1, we have to deal
with the possibilities where {gη∪{0,y2:k}(0, y2:k) > vρ(τ )} and {Mη∪{0,y2:k}

(Qρ−x)\{0,y2:k} ≤
vρ(τ )} are, or are not, conditionally independent. However, an additional prob-
lem compared to the case k = 1 has also to be considered. Indeed, when the
distance between each pair of nuclei in 0, y2, . . . , yk is large enough, condi-
tional on the event Aρ , we also know that the events {gη∪{0,y2:k}(0) > vρ(τ )},
{gη∪{0,y2:k}(y2) > vρ(τ )}, . . . , {gη∪{0,y2:k}(yk) > vρ(τ )} are independent (on the
opposite, these events are not independent). To overcome this difficulty, we intro-
duce, for each 1 ≤ m ≤ k, the following configuration of points:

Em := {
y2:k ∈ R

(k−1)d : S0(y2:k) has m connected components
}
,

where, for any y2:k ∈ R
d(k−1), the set S0(y2:k) ⊂R

d is defined as (see Figure 1)

S0(y2:k) := Cρ ∪
k⋃

j=2

(yj + Cρ).

Hence the set S0(y2:k) is a (finite) union of cubes, with volume λd(Cρ) centered
at 0, y2, . . . , yk . Splitting R

(k−1)d into the union of E1, . . . ,Ek , we have

kP
(
#�

η
Qρ

(τ ) = k
) − λd(Qρ) · P(

#�
η∪{0}
Qρ

(τ ) = k, gη∪{0}(0) > vρ(τ )
)

= 1

(k − 1)!
k∑

m=1

∫
Qρ

Px[m]dx,

where, for any x ∈ R
d , we write

(3.11) Px[m] :=
∫
(Qρ−x)k−1∩Em

px(y2:k)dy2:k −
∫
Qk−1

ρ ∩Em

p0(y2:k)dy2:k.

It is enough to prove that
∫
Qρ

Px[m]dx = o(λd(Qρ)ρ−1) for any 1 ≤ m ≤ k.
Let us first give some heuristics for the approach. The main idea is to consider

two subcases. The first one deals with the subcase m = 1, that is, when S0(y2:k) is a
connected space. In that subcase, as described above, the main difficulty is that the
events considered in the probabilities px(y2:k) and p0(y2:k) are not independent
because the points 0, y2, . . . , yk are close to each other. However, we show that∫
Qρ

Px[1]dx is o(λd(Qρ)ρ−1) because the sets (Qρ − x)k−1 ∩ E1 and Qk−1
ρ ∩
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FIG. 1. A configuration of points y2:8, where S0(y2:k) has three connected components.

E1 are small in the sense of the Lebesgue measure. On the opposite, when m ≥
2, there exist m points among 0, y2, . . . , yk which are far enough, in the sense
that they belong to m different connected components in S0(y2:k). In that subcase,
the probability of the event {gη∪{0,y2:k}(0, y2:k) > vρ(τ )} is lower than c · ρ−m

according to Lemma 1 and Condition (C). We now formally deal with the two
subcases described above.

Subcase where the set S0(y2:k) has m = 1 connected component. In this subcase,
we have S0(y2:k) ⊂ (2k + 1)Cρ . Let x ∈ R

d be fixed. First, we notice that

Px[1] =
∫
((Qρ−x)∩Qρ)k−1∩E1

(
px(y2:k) − p0(y2:k)

)
dy2:k

+
∫
(Qρ−x)k−1∩E1

px(y2:k)I∃j≤k:yj∈Qc
ρ

dy2:k

−
∫
Qk−1

ρ ∩E1

p0(y2:k)I∃j≤k:yj∈(Qρ−x)c dy2:k.

Actually, the second integral in the above equation equals 0 for ρ large enough
because

E1 ∩ {
y2:k ∈ R

(k−1)d : ∃j ≤ k s.t. yj ∈ Qc
ρ

} = ∅.



CLUSTER SIZE DISTRIBUTIONS OF EXTREME VALUES FOR THE PVT 3305

Indeed, if y2:k ∈ E1, we have yj ∈ (2k + 1)Cρ for any 1 ≤ j ≤ k, so that yj ∈ Qρ

for ρ large enough. Hence

Px[1] =
∫
((Qρ−x)∩Qρ)k−1∩E1

(
px(y2:k) − p0(y2:k)

)
dy2:k

(3.12)
−

∫
Qk−1

ρ ∩E1

p0(y2:k)I∃j≤k:yj∈(Qρ−x)c dy2:k.

We provide below bounds for the two terms considered in the right-hand side of
the above equation.

Upper bound for the first term in (3.12) In the same spirit as (3.8), we get∣∣∣∣
∫
((Qρ−x)∩Qρ)k−1∩E1

(
px(y2:k) − p0(y2:k)

)
dy2:k

∣∣∣∣
≤

∫
((Qρ−x)∩Qρ)k−1∩E1

P
(
gη∪{0,y2:k}(0, y2:k) > vρ(τ ),

M
η∪{0,y2:k}
Qρ\(Qρ−x) > vρ(τ )

)
dy2:k(3.13)

+
∫
((Qρ−x)∩Qρ)k−1∩E1

P
(
gη∪{0,y2:k}(0, y2:k) > vρ(τ ),

M
η∪{0,y2:k}
(Qρ−x)\Qρ

> vρ(τ )
)

dy2:k.

We begin with the first term of the right-hand side of (3.13). The second term will
be dealt in a similar way. To do it, let y2:k ∈ ((Qρ − x) ∩ Qρ)k−1 ∩ E1 be fixed.
As in the case k = 1, we consider two possibilities:

(i) If d(I(S0(y2:k)),I(Qρ \ (Qρ − x))) > D then, according to Lemma 1,
conditional on Aρ , we know that the events {gη∪{0,y2:k}(0, y2:k) > vρ(τ )} and

{Mη∪{0,y2:k}
Qρ\(Qρ−x) > vρ(τ )} are independent. In the same spirit as in the case k = 1,

we derive from the Condition (C) that

P
(
gη∪{0,y2:k}(0, y2:k) > vρ(τ ),M

η∪{0,y2:k}
Qρ\(Qρ−x) > vρ(τ )

)
× Id(I(S0(y2:k)),I(Qρ\(Qρ−x)))>D(3.14)

≤ c · λd(Qρ)ρ−2.

(ii) If not, we have δ(0,Qρ \ (Qρ − x)) ≤ c · λd(Cρ)1/d , which shows that

P
(
gη∪{0,y2:k}(0, y2:k) > vρ(τ ),M

η∪{0,y2:k}
Qρ\(Qρ−x) > vρ(τ )

)
× Id(I(S0(y2:k)),I(Qρ\(Qρ−x)))≤D(3.15)

≤ c · ρ−1
Iδ(0,Qρ\(Qρ−x))≤c·λd(Cρ)1/d .
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Integrating over y2:k ∈ ((Qρ −x)∩Qρ)k−1 ∩E1, it follows from (3.14) and (3.15)
that ∫

((Qρ−x)∩Qρ)k−1∩E1

P
(
gη∪{0,y2:k}(0, y2:k) > vρ(τ ),

M
η∪{0,y2:k}
Qρ\(Qρ−x) > vρ(τ )

)
dy2:k

(3.16)
≤ c · λ(k−1)d(E1) · (

λd(Qρ)ρ−2 + ρ−1
Iδ(0,Qρ\(Qρ−x))≤c·λd(Cρ)1/d

)
≤ c · λd(Cρ)k−1 · (

λd(Qρ) · ρ−2 + ρ−1
Iδ(0,Qρ\(Qρ−x))≤c·λd(Cρ)1/d

)
,

where the last line comes from the fact that λ(k−1)d(E1) ≤ c · λd(Cρ)k−1.
Proceeding along the same lines as above, we also obtain∫
((Qρ−x)∩Qρ)k−1∩E1

P
(
gη∪{0,y2:k}(0, y2:k) > vρ(τ ),M

η∪{0,y2:k}
(Qρ−x)\Qρ

> vρ(τ )
)

dy2:k

≤ c · λd(Cρ)k−1 · (
λd(Qρ) · ρ−2 + ρ−1

Iδ(0,(Qρ−x)\Qρ)≤c·λd(Cρ)1/d

)
.

This together with (3.13) and (3.16) implies that∣∣∣∣
∫
((Qρ−x)∩Qρ)k−1∩E1

(
px(y2:k) − p0(y2:k)

)
dy2:k

∣∣∣∣
≤ c · λd(Cρ)k−1 · λd(Qρ) · ρ−2

+ c · λd(Cρ)k−1 · ρ−1 · (Iδ(0,Qρ\(Qρ−x))≤c·λd(Cρ)1/d

+ Iδ(0,(Qρ−x)\Qρ))≤c·λd(Cρ)1/d ).

This deals with the first term of the right-hand side in (3.12).
Upper bound for the second term in (3.12). To deal with this term, we notice that

if E1 ∩{y2:k ∈ Qk−1
ρ : ∃j ≤ k s.t. yj ∈ (Qρ −x)c} �=∅, then δ(0,Qρ \(Qρ −x)) ≤

c · λd(Cρ)1/d because the diameter of S0(y2:k) is lower than (2k + 1) · λd(Cρ)1/d .
Besides, since p0(y2:k) ≤ c · ρ−1 according to Condition (C), we obtain by inte-
grating over y2:k ∈ Qk−1

ρ ∩ E1 that∫
Qk−1

ρ ∩E1

p0(y2:k)I∃j≤k:yj∈(Qρ−x)c dy2:k

≤ c · λd(Cρ)k−1 · ρ−1 · Iδ(0,Qρ\(Qρ−x))≤c·λd(Cρ)1/d .

This deals with the second term of the right-hand side in (3.12).
By considering the two upper bounds discussed above and by integrating over

x ∈ Qρ , we get∣∣∣∣
∫
Qρ

Px[1]dx

∣∣∣∣
≤ c · λd(Cρ)k−1 · λd(Qρ)2 · ρ−2
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+ c · λd(Cρ)k−1 · ρ−1 · λd

({
x ∈ Qρ : δ(

0,Qρ \ (Qρ − x)
)

≤ c · λd(Cρ)1/d})
+ c · λd(Cρ)k−1 · ρ−1 · λd

({
x ∈ Qρ : δ(

0, (Qρ − x) \ Qρ

)
≤ c · λd(Cρ)1/d})

.

According to (3.9), (3.10) and (3.2), we deduce that∣∣∣∣
∫
Qρ

Px[1]dx

∣∣∣∣ ≤ c · (
λd(Cρ)k−1+1/d · λd(Qρ)−1/d) · (

λd(Qρ) · ρ−1)
= o

(
λd(Qρ) · ρ−1)

.

This concludes the proof for the subcase m = 1.
Subcase where the set S0(y2:k) has m connected components with m ≥ 2. As-

sume that m ≥ 2 and y2:k ∈ Em.
First, we provide a uniform upper bound for px(y2:k) which is independent of

y2, . . . , yk , with x ∈ Qρ . Since y2:k ∈ Em, we can subdivide the set S0(y2:k) into
its m connected components, say C1(y2:k), . . . ,Cm(y2:k). In particular, for each
1 ≤ l ≤ m, the set Cl(y2:k) is a connected space and is a finite union of l cubes with
volume λ(Cρ) centered at l points among 0, y2, . . . , yk . Let Jl ⊂ {1, . . . , k} be the
set of indices j of these points, that is, Jl is such that Cl(y2:k) = ⋃

j∈Jl
(yj + Cρ),

with the convention y1 := 0. Conditional on the event Aρ , the restrictions of the
Voronoi tessellation to these connected components are independent because the
distance between each pair of connected components is at least λd(Cρ)1/d . More
precisely, for each 1 ≤ l < l′ ≤ m, we have{

gη∪{0,y2:k}(yJl
) > vρ(τ )

} ∈ �
η∪{0,y2:k}{yJl

} and
(3.17)

d
(
I

({yJl
}),I({yJl′ }

))
> D,

where we recall that gη∪{0,y2:k}(yJl
) > vρ(τ ) means that gη∪{0,y2:k}(y) > vρ(τ ) for

any y ∈ Jl .
We are now prepared to provide a uniform upper bound for px(y2:k). Indeed,

we first notice that

px(y2:k) ≤ P
(
gη∪{0,y2:k}(0, y2:k) > vρ(τ )

)
= P

(
m⋂

l=1

{
gη∪{0,y2:k}(yJl

) > vρ(τ )
})

.

According to (3.17) and Lemma 1(i), conditional on the event Aρ , the events
{gη∪{0,y2:k}(yJl

) > vρ(τ )}, 1 ≤ l ≤ m, are independent, that is,

P
(
gη∪{0,y2:k}(0, y2:k) > vρ(τ )|Aρ

) =
m∏

l=1

P
(
gη∪{0,y2:k}(0, yJl

) > vρ(τ )|Aρ

)
.
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Since g satisfies Condition (C), it follows from Lemma 1(ii) that there exists a
constant c > 0 such that, for any x ∈ Qρ and for any y2:k ∈ Em, we have px(y2:k) ≤
c · ρ−m.

Now, we derive an upper bound for | ∫Qρ
Px[m]dx|. Indeed, by integrating over

y2:k , we obtain from (3.11) that∣∣Px[m]∣∣ ≤ c · ρ−m · sup
x∈Qρ

λ(k−1)d

(
(Qρ − x)k−1 ∩ Em

)

≤ c · ρ−m · λd(Qρ)m−1 · λd(Cρ)k−m.

Integrating over x ∈ Qρ , we get∣∣∣∣
∫
Qρ

Px[m]dx

∣∣∣∣ ≤ c · ρ−m · λd(Qρ)m · λd(Cρ)k−m.

Since ρ−1 ·λd(Qρ) ·λd(Cρ)(k−m)/(m−1) converges to 0, we have | ∫Qρ
Px[m]dx| =

o(λd(Qρ) · ρ−1). This concludes the proof of Proposition 3 for any k ≥ 2. �

3.3. Our main theorem. Let g be a geometric characteristic such that (1.6)
holds for some τ0 > 0. According to Leadbetter [19], we say that the extremal in-
dex θ ∈ (0,1] of the Poisson–Voronoi tessellation exists if limρ→∞P(#�

η
Wρ

(τ0) =
0) = e−θτ0 . We are now prepared to state our main theorem on the weak conver-
gence of the point process �

η
Wρ

(τ ) for each τ > 0.

THEOREM 4. Let g be a geometric characteristic satisfying Condition (C).
Assume that there exist τ0 > 0 such that (1.6) holds and (ak)k≥1 such that
πk,Qρ (τ0) ≤ ak for any k ≥ 1 and any ρ > 0, with

∑∞
k=1 ak < ∞.

(i) The following assertions are equivalent:
(A) there exists θ ∈ (0,1] such that limρ→∞ P(#�

η
Wρ

(τ0) = 0) = e−θτ0 and
the following limit exist pk := limρ→∞ pk,Qρ (τ0) for any k ≥ 1;

(B) for any τ > 0, the point process �
η
Wρ

(τ ) converges to a homogeneous

compound Poisson point process in W := [−1/2,1/2]d with a positive in-
tensity ν(τ ) and cluster size distributions πk := limρ→∞ πk,Qρ (τ0), with
k ≥ 1.

(ii) If one of the above assertions holds, we have pk = kθπk for any k ≥ 1 and
θ = ∑∞

k=1 k−1pk .

Our theorem provides a new characterization of the extremal index. Indeed, this
index was previously interpreted as the reciprocal of the mean of the cluster size
distribution π . Now, it can be viewed as the mean of the reciprocal of the Palm
version of the cluster size. Besides, our new characterization: θ = ∑∞

k=1 k−1pk

will be extensively used in Section 4 to estimate the extremal indices for various
geometric characteristics.
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To prove Theorem 4, we associate with the point process �
η
Wρ

(τ ) its Laplace
transform Lρ defined as follows: for any continuous function f : W → R+, we
have

Lρ(f ) := E

[
exp

(
− ∑

y∈�
η
Wρ

(τ)

f (y)

)]
.

It is well known that the weak convergence of �
η
Wρ

(τ ) is equivalent to the conver-
gence of its Laplace transform for any positive and continuous function f . For a
sequence of real random variables, the weak convergence of the point process of
exceedances has been investigated in [15] and generalized to random fields on N

d+
in [12]. We use below the same type of approach. However, we have to take into
account specific features of random tessellations in R

d .
The first step consists in showing that exceedances over disjoint subcubes be-

have asymptotically as if they were independent. To do it, we divide Wρ into md
ρ

disjoint subcubes B[l], l = 1, . . . ,md
ρ , with the same volume as Qρ , where mρ is

defined in (3.3).

LEMMA 5. (i) For any measurable function f : W →R+, we have

Lρ(f ) −
md

ρ∏
l=1

E

[
exp

(
− ∑

y∈�
η
Wρ

(τ)∩ρ−1/dB[l]
f (y)

)]
−→
ρ→∞ 0.

(ii) Moreover, we have

P
(
M

η
Wρ

≤ vρ(τ )
) −

md
ρ∏

l=1

P
(
M

η
B[l] ≤ vρ(τ )

) −→
ρ→∞ 0.

PROOF. We begin with the first assertion. To apply Lemma 1, we have to
consider blocks whose distances from each others are large enough. To do it, we
remove a stripe of size Cρ from the boundary of B[l]. More precisely, for any
l ≤ md

ρ , we define the block B◦[l] := B[l] � Cρ . Let

Lρ,l(f ) = exp
(
− ∑

y∈�
η
Wρ

(τ)∩ρ−1/dB[l]
f (y)

)

and

L◦
ρ,l(f ) = exp

(
− ∑

y∈�
η
Wρ

(τ)∩ρ−1/dB◦[l]
f (y)

)
.
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We write

Lρ(f ) −
md

ρ∏
l=1

E
[
Lρ,l(f )

] = 
Lρ,1(f ) + 
Lρ,2(f ) + 
Lρ,3(f ) + 
Lρ,4(f ),

where


Lρ,1(f ) = E

[md
ρ∏

l=1

Lρ,l(f )

]
−E

[md
ρ∏

l=1

L◦
ρ,l(f )

]
,


Lρ,2(f ) = E

[md
ρ∏

l=1

L◦
ρ,l(f )

]
−

md
ρ∏

l=1

E
[
L◦

ρ,l(f )
]
,


Lρ,3(f ) =
md

ρ∏
l=1

E
[
L◦

ρ,l(f )
] −

md
ρ∏

l=1

E
[
Lρ,l(f )

]
,


Lρ,4(f ) = E

[
exp

(
− ∑

y∈�
η
Wρ

(τ)

f (y)

)]
−E

[md
ρ∏

l=1

Lρ,l(f )

]
.

We prove below that each term converges to 0. For the third term, using the fact
that |∏xi − ∏

yi | ≤ ∑ |xi − yi | for 0 ≤ xi, yi ≤ 1 and the fact that | exp(−x) −
exp(−y)| ≤ |x − y| for all x, y ≥ 0, we get

∣∣
Lρ,3(f )
∣∣ ≤ md

ρ · sup
l≤md

ρ

E

[ ∑
y∈�

η
Wρ

(τ)∩ρ−1/d (B[l]\B◦[l])
f (y)

]

≤ md
ρ · sup

l≤md
ρ

E

[ ∑
x∈η∩(B[l]\B◦[l])

f
(
ρ−1/dx

)
Igη(x)>vρ(τ)

]

= c · md
ρ · sup

l≤md
ρ

∫
B[l]\B◦[l]

f
(
ρ−1/dx

)
P

(
gη∪{x}(x) > vρ(τ )

)
dx

≤ c · md
ρ · λd

(
B[l] \ B◦[l]) · P(

g(C) > vρ(τ )
)
,

where the third line comes from the Slivnyak–Mecke formula and where the fourth
line comes from (1.1) and the fact that f is bounded because it is continuous on
the compact set W . Since md

ρ ∼
ρ→∞ ρ · q−1

ρ · (logρ)−(1+ε) and

λd

(
B[l] \ B◦[l]) ≤ c · q(d−1)/d

ρ · (logρ)(1+ε),

we deduce that ∣∣
Lρ,3(f )
∣∣ = O

(
q−1/d
ρ

)
.
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In the same spirit as above, we prove that 
Lρ,1(f ) and 
Lρ,4(f ) converges to
0.

For 
Lρ,2(f ), we notice that conditional on Aρ , the random variables consid-
ered in the expectations are independent. Then we have

E

[md
ρ∏

l=1

L◦
ρ,l(f )

]
=

md
ρ∏

l=1

E
[
L◦

ρ,l(f )|Aρ

]

+ P
(
A c

ρ

)(
E

[md
ρ∏

l=1

L◦
ρ,l(f )

∣∣∣A c
ρ

]
−

md
ρ∏

l=1

E
[
L◦

ρ,l(f )|Aρ

])
.

Moreover, noting the fact that

E
[
L◦

ρ,l(f )
] = E

[
L◦

ρ,l(f )|Aρ

] + P
(
A c

ρ

)(
E

[
L◦

ρ,l(f )|A c
ρ

] −E
[
L◦

ρ,l(f )|Aρ

])
,

we write

md
ρ∏

l=1

E
[
L◦

ρ,l(f )
] :=

md
ρ∏

l=1

E
[
L◦

ρ,l(f )|Aρ

] + md
ρP

(
A c

ρ

)
Hρ(f ).

The term Hρ(f ) appearing in the above equation is such that |Hρ(f )| ≤ c: this is a
consequence of Lemma 1(ii) and the fact that E[L◦

ρ,l(f )|A c
ρ ] and E[L◦

ρ,l(f )|Aρ]
belong to the interval [0,1]. By applying again Lemma 1(ii), it follows that

Lρ,2(f ) converges to 0. We proceed in a similar way for the proof of the second
assertion. �

We now adapt two theorems due to Leadbetter, Lindgren and Rootzén in our
context. The following result is an adaptation of Theorem 4.2 in [15] (resp., Propo-
sition 4.2 in [12]) and gives sufficient conditions to derive the convergence of
�

η
Wρ

(τ ) to a homogeneous compound Poisson point process.

PROPOSITION 6. Assume that P(#�
η
Wρ

(τ0) = 0) −→
ρ→∞ e−ν for some τ0 > 0

and ν > 0. If (πk,Qρ )k≥1 converges to a probability distribution π on N+, then
�

η
Wρ

(τ0) converges in distribution to a homogeneous compound Poisson point pro-
cess with intensity ν and limiting cluster size distribution π .

The following result adapted from Theorem 5.1 in [15] (resp., Proposition 4.3.
in [12]) shows that if �

η
Wρ

(τ0) has a limit for some τ0 > 0, it has a limit for all
τ > 0.

PROPOSITION 7. Assume that �
η
Wρ

(τ0) converges to a homogeneous com-
pound Poisson point process in W with intensity ν > 0 and cluster size distribution
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π , for some τ0 > 0. Then �
η
Wρ

(τ ) converges to a homogeneous compound Poisson
point process with intensity ν · τ/τ0 and limiting cluster size distribution π , for
each τ > 0.

We do not give the proofs of Propositions 6 and 7 since they are readily obtained
through [12] substituting Lemma 2.1 by our Lemma 5. We are now prepared to
give a proof of Theorem 4.

PROOF OF THEOREM 4. Proof of (i). First we show that (A)⇒(B). By
Lemma 5, we have

P
(
M

η
Wρ

≤ vρ(τ0)
) = (

P
(
M

η
Qρ

≤ vρ(τ0)
))ρ·(λd(Qρ))−1 + o(1).

Since limρ→∞P(M
η
Wρ

≤ vρ(τ0)) = e−θτ0 and since {Mη
Qρ

≤ vρ(τ0)} if and only if

{#�
η
Qρ

(τ0) = 0}, it follows that

P
(
#�

η
Qρ

(τ0) > 0
) ∼

ρ→∞
λd(Qρ)

ρ
· θτ0.

This together with Proposition 3 implies that πk = limρ→∞ πk,Qρ (τ0) exists and
πk = pk/(k · θ) for any k ≥ 1. Since πk,Qρ (τ0) ≤ ak with

∑∞
k=1 ak < ∞, it follows

from the dominated convergence theorem that π := (πk)k≥1 is a probability mea-
sure on N+. Applying Proposition 6, we deduce that �

η
Wρ

(τ0) converges to a ho-
mogeneous compound Poisson point process with intensity ν(τ0) := θτ0 > 0 and
cluster size distribution π . This together with Proposition 7 proves Assertion (B).

Second, we show that (B)⇒(A). The fact that the extremal index exists and is
positive is a consequence of the fact that

lim
ρ→∞P

(
M

η
Wρ

(1) ≤ vρ(τ0)
) = lim

ρ→∞P
(
#�

η
Wρ

(τ0) = 0
) = e−θτ0,

where θ := ν(τ0)/τ0 ∈ (0,1]. By applying Proposition 3, we show that the limit of
pk := pk,Qρ (τ0) exists and pk = kθπk . This proves Assertion (A).

Proof of (ii). The fact that pk = kθπk is established above. Moreover, we have∑∞
k=1 k−1pk = θ

∑∞
k=1 πk = θ since π = (πk)k≥1 is a probability measure. �

4. Numerical illustrations. Layout. In this section, we illustrate our main
theorem throughout simulations for three geometric characteristics for which the
value of the extremal index is known or can be conjectured. For sake of sim-
plicity, we only do our simulations in the particular setting d = 2. We provide
approximations of p1, . . . , p9 and of the extremal index by using the fact that
θ = ∑∞

k=1 k−1pk [see Theorem 4(ii)] and we compare this approximation to the
theoretical value of θ .

For each geometric characteristic g, we proceed as follows. We take τ = 1 and
ρ = exp(100). In particular, the cube Qρ , as defined in (3.4), is approximatively

Qρ � [−173,173]2,
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by taking qρ = (log logρ)log logρ � 1134 and ε = 0.01. Then, we compute theoret-
ically vρ(1) so that ρ · P(g(C) > vρ(1)) −→

ρ→∞ 1. We simulate 10,000 realizations

of independent Poisson–Voronoi tessellations given that the typical cell is an ex-
ceedance, that is, gη∪{0}(0) > vρ(1) (see Lemma 2). This sample of size 10,000
is divided into 100 subsamples of size 100. For each 1 ≤ i ≤ 100 and for each
1 ≤ k ≤ 9, we denote by p̂

(i)
k the empirical mean of pk , that is, the mean num-

ber of realizations in which there exist exactly k Voronoi cells with nucleus in
Qρ � [−173,173] and such that the geometric characteristic is larger than vρ(1).

We summarize our empirical results by box plots associated with the empirical
values (p̂

(i)
k )1≤i≤100. For each geometric characteristic, we explain how we simu-

late a Poisson–Voronoi tessellation conditional on the fact that gη∪{0}(0) > vρ(1).

4.1. Inradius. For any x ∈ η ⊂ R
d , we define the so-called inradius of the

Voronoi cell Cη(x) as

rη(x) := r
(
Cη(x)

) := sup
{
r ≥ 0 : B(x, r) ⊂ Cη(x)

}
,

where B(x, r) is the ball centered at x with radius r . The Condition (C) is satisfied
since rη∪{y2:k}(x) ≤ rη∪{0}(x) for any x ∈ η ∪ {0} and for any y2:k ∈ R

d(k−1). The
distribution of r(C), where r(C) = rη∪{0}(0) is the typical inradius, is given by
P(r(C) > v) = P(η ∩ B(0,2v) �= ∅) = e−2dκdvd

for each v ≥ 0. Hence, for any
τ > 0, we have ρ · P(r(C) > vρ(τ )) = τ , when

vρ(τ ) := 2−1κ
−1/d
d

(
log

(
ρτ−1))1/d

.

Moreover, it is proved in [7] that

P

(
max

x∈η∩Wρ

rη(x) ≤ vρ(τ )
)

−→
ρ→∞ e−τ .

Actually, the convergence was established for a fixed window and for a Poisson
point process such that the intensity goes to infinity. By scaling property of the
Poisson point process, the result can be rewritten as above for a fixed intensity
and for a window Wρ as ρ goes to infinity. Therefore, we deduce that the ex-
tremal index of the inradius of a Poisson–Voronoi tessellation exists and is equal to
θ = 1. Actually, according to Theorem 2 in [10], the point process of exceedances
�

η
Wρ

(τ ) converges to a simple Poisson point process of intensity τ in W . In par-
ticular, the distributions π and p are equal to the Dirac measure at 1.

Now, we explain how we evaluate by simulation the value of the extremal index
and the distribution p when d = 2. It is known (see, e.g., [20]) that for each v ≥ 0,
we have (

η ∪ {0}|rη∪{0}(0) = v
) D= ηB(0,2v)c ∪ {

(2v)X0
} ∪ {0},

where ηB(0,2v)c is a Poisson point process of intensity measure I{x∈B(0,2v)c} dx and
where X0 is a random point uniformly distributed on the boundary of B(0,1).
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FIG. 2. Large inradius for a Poisson–Voronoi tessellation.

Hence, to simulate a Poisson–Voronoi tessellation provided that rη∪{0}(0) >

vexp(100)(1) � 2.82, we first simulate a random variable r with distribution given

by P(r > v) = e−4πv2
, conditional on the fact that r > 2.82. Then we gener-

ate a Poisson–Voronoi tessellation associated with the point process ηB(0,2r)c ∪
{(2r)X0} ∪ {0}.

On the left part of Figure 2, we provide a simulation of a Poisson–Voronoi
tessellation given that rη∪{0}(0) > 2.82. We notice that the typical cell has a shape
which tends to be circular. Actually, such an observation is related to the D. G.
Kendall’s conjecture which claims that the shape of the typical Poisson–Voronoi
cell in R

d , given that the volume of the cell goes to infinity, tends a.s. to a ball
in R

d . Many results concerning typical cells with a large geometric characteristic
can be found in [8] and [16]. On the left part of Figure 2, we also notice that there
is no cell with a large inradius, excepted the typical cell. This confirms that the
cluster of exceedances are of size 1, that is, p1 = 1 and θ = 1. The right part of
Figure 2 provides the box plots of the empirical distributions. In particular, for all
simulations, we notice that there is always exactly one cell with a large inradius.

4.2. Reciprocal of the inradius. In this example, we consider the large values
of the reciprocal of the inradii for a Poisson–Voronoi tessellation in R

d . Equiv-
alently, this consists of the small values of the inradii. Since P(r(C)−1 > v) =
1 − e−2dκdvd

, we have ρ · P(r(C)−1 > vρ(τ)) −→
ρ→∞ τ , when

vρ(τ ) := 2−1(κdρ)−1/dτ 1/d .

Note that Condition (C) is not satisfied. But a slight modification of the proof of
Proposition 3 shows that Theorem 4 remains true if we replace the inequality (2.2)
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FIG. 3. Small inradius for a Poisson–Voronoi tessellation.

of Condition (C) by the inequality

P
(
gη∪{0,y2:k}(z) > vρ(τ )

) ≤ c · max
{
ρ−1, Iδ(z,{0,y2:k}\{z})≤c·ρ−1/d

}
,

which is satisfied for the reciprocal of the inradius.
Moreover, according to [7], we know that

P

(
min

x∈η∩Wρ

rη(x) ≥ vρ(τ )
)

−→
ρ→∞ e−τ/2.

We deduce that the extremal index of the reciprocal of the inradius of a Poisson–
Voronoi tessellation exists and equals θ = 1/2.

As in Section 4.1, we can easily simulate a Poisson–Voronoi tessellation in
R

2, conditional on the fact that rη∪{0}(0) < vexp(100)(1) � 5.44 · 10−23. The left
part of Figure 3 provides a realization of a Poisson–Voronoi tessellation when
rη∪{0}(0) < vexp(4)(1) � 0.0381 [here, we have taken the threshold vexp(4)(1) in-
stead of vexp(100)(1) for convenience]. The fact that θ = 1/2 can be explained by a
trivial heuristic argument: if a cell minimizes the inradius, one of its neighbors has
to do the same (see also the left part of Figure 3). Moreover, we can easily prove
that the probability that there is more than one such a cell is negligible. Therefore,
clusters are necessarily of size 2, that is, p2 = 1. The right part of Figure 3 pro-
vides the box plots of the empirical distributions. In particular, for all simulations,
we notice that there are always exactly two cells with a small inradius.

4.3. Circumradius. For x ∈ η ⊂ R
2, we define the so-called circumradius of

Cη(x) as

Rη(x) := R
(
Cη(x)

) := inf
{
r ≥ 0 : B(x, r) ⊃ Cη(x)

}
.
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The Condition (C) is satisfied since Rη∪{y2:k}(x) ≤ Rη∪{0}(x) for any x ∈ η ∪ {0}
and for any y2:k ∈R

d(k−1). According to Theorem 3 in [6], we know that

2ve−v ≤ P
(
πR(C)2 > v

) ≤ 4ve−v

for each v ≥ 0.337. Actually, simulations suggest that the upper bound above is
the order of P(πR(C)2 > v) as v goes to infinity (see Table 1 in [6]). If we as-
sume that P(πR(C)2 > v) ∼

ρ→∞ ave−v for some 2 ≤ a ≤ 4, we have ρ · P(R(C) >

vρ(τ )) −→
ρ→∞ τ , when

vρ(τ ) := π−1/2(
log

(
aρ logρτ−1))1/2

.

Thanks to (2.c) in [7], we know that

P

(
max

x∈η∩Wρ

Rη(x) ≤ vρ(τ )
)

−→
ρ→∞ e−τ/a.

Hence, provided that P(πR(C)2 > v) ∼
ρ→∞ ave−v , the extremal index of the max-

imum of circumradius of a planar Poisson–Voronoi tessellation exists and should
be equal to θ = 1/a.

Now, we explain how we evaluate by simulation the value of the extremal index
and the distribution p. According to Lemma 1 in [13], we know that Rη∪{0}(0) > v

if and only if there exists a disk of radius v containing the origin on its bound-
ary and no particle inside. Without loss of generality, we can assume that the
disk, that contains the origin on its boundary and no particle inside, has its cen-
ter on the x-axis, since the Poisson point process is isotropic. Hence we proceed
as follows. First, we simulate a random variable Rb, with distribution such that
P(πR2

b > v) ∼
v→∞ bve−v , with b = 4, given that Rb > vexp(100)(1) � 5.81. We

have taken b = 4 since we should have P(πR(C)2 > v) ∼
v→∞ 4ve−v as suggested

in the simulations in [6]. However, this choice is arbitrary and does not have in-
fluence on the final result since the conditional distribution of Rb does not depend
on b for high thresholds. Then we generate a Voronoi tessellation induced by the
point process ηB((R,0),R)c ∪ {0}, where ηB((R,0),R)c is a Poisson point process of
intensity measure Ix∈B((R,0),R)c dx.

On the left part of Figure 4, we provide a simulation of the Palm version of
the Poisson–Voronoi tessellation, given that R(C) > vexp(100)(1) � 5.81. We no-
tice that the typical cell is very elongated and that the same fact holds for a large
number of its connected cells. In particular, the size of a cluster of exceedances is
random. On the right part of Figure 4, we provide the box plots of the empirical
distributions. This time, the empirical distributions of the cluster size probabilities
are not degenerated for k = 3, . . . ,9, and their interquartile ranges are quite large
for k = 3,4,5. We also notice that the empirical value of the extremal index is very
concentrated around a value close to 1/4. This confirms that if a exists, it should
be close to 4.
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FIG. 4. Large circumradius for a Poisson–Voronoi tessellation.

5. The case of the Poisson–Delaunay tessellation. The Poisson–Delaunay
tessellation. Let χ ∈ Flf be a locally finite subset of Rd such that each subset of
size n < d+1 of points are affinely independent and no d+2 points lie on a sphere.
If two points x, y ∈ χ are Voronoi neighbors, that is, Cχ(x) ∩ Cχ(y) �= ∅, we
connect these two points by an edge. The family of these edges defines a partition
of Rd into simplices which is the so-called Delaunay tessellation. Another useful
characterization of the Delaunay tessellation is the following: a simplex associated
with d + 1 points of χ is a Delaunay simplex if and only if its circumball contains
no point of χ in its interior. Delaunay tessellations are very popular structures in
computational geometry [1] and are extensively used in many areas such as surface
reconstruction [9] or mesh generation [11].

For each cell C of the Delaunay tessellation, the nucleus z(C) is defined as
the center of the circumball of C. The set of this nuclei is denoted by Z(χ). Be-
sides, for each z ∈ Z(χ), we denote by C(z) the Delaunay cell whose center of its
circumball is z.

When χ = η is a homogeneous Poisson point process, the family of these cells
is the so-called Poisson–Delaunay tessellation. If we denote by γη the intensity of
η, then the intensity of the Poisson–Delaunay tessellation is γZ(η) = β−1

d · γη (see,
e.g., Theorem 10.2.8 and equation (10.31) in [29]), where

βd := d2(d + 1)

2d+1π
d−1

2

�(d2

2 )

�(d2+1
2 )

[
�(d+1

2 )

�(1 + d
2 )

]d

.

In particular, if d = 2, we have β2 = 1/2. In the rest of the paper, we assume that
γη = βd to ensure that γZ(η) = 1.

The typical cell of a Poisson–Delaunay tessellation can be made explicit as
follows. Let Sd−1 := {x ∈ R

d : |x| = 1} be the unit sphere of Rd and, for u1:d+1 ∈
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(Sd−1)d+1, let 
(u1:d+1) be the convex hull of {u1, . . . , ud+1}. According to Miles
(see, e.g., Theorem 10.4.4 in [29]), for any bounded measurable function f : Kd →
R, we have

E
[
f (C)

] := adγ d
η

∫
R+

∫
Sd−1

· · ·
∫
Sd−1

a(u1:d+1)r
d2−1e−γηκdrd

(5.1)
× f

(

(ru1:d+1)

)
σ(du1:d+1)dr,

where ad := βd/(d + 1) and a(u1:d+1) := λd(
(u1:d+1)). The measure σ(du)

is the uniform distribution on S
d−1 with normalization σ(Sd−1) = ωd−1, where

ωd−1 := dκd is the area of the unit sphere and σ(du1:d+1) := ⊗d+1
i=1 σ(dui). Hence

the typical cell C has the same distribution as the random closed set 
(RU1:d+1),
where R ≥ 0 and U1:d+1 ∈ (Sd−1)d+1 are two independent random variables
whose the distributions are given by

P(R ≤ s) = d(γηκd)d

�(d)

∫ s

0
rd2−1e−γηκdrd

dr

and

P(U1:d+1 ∈ S) = ad�(d)

dκd
d

∫
Sd−1

· · ·
∫
Sd−1

a(u1:d+1)Iu1:d+1∈Sσ (du1:d+1)

for any s ≥ 0 and for any Borel subset S ⊂ (Sd−1)d+1.
The extremes of the Poisson–Delaunay tessellation. Let g be a geometric char-

acteristic such that (1.6) holds. As for a Poisson–Voronoi tessellation, we consider
the point process of normalized exceedances, say

�η(τ) := ρ−1/d · {
z ∈ Z(η) : g(

C(z)
)
> vρ(τ)

}
.

For any Borel subset B ⊂ R
d , we write �

η
B(τ) := �η(τ) ∩ (ρ−1/dB). We also let

�η,0(τ ) be the Palm version of �η(τ) and �
η,0
B (τ) = �η,0(τ ) ∩ B . In the rest

of the paper, the quantity pk,B(τ ) refers to as the probability that there exist k

exceedance cells in B conditional on the fact that the typical cell is an exceedance,
that is, pk,B(τ ) := P(#ψ

η,0
B (τ) = k). In the same spirit as Lemma 2, we provide

below an explicit characterization of this probability.

PROPOSITION 8. Let A be a Borel subset in Flf . Then

P
(
�η,0(τ ) ∈A

) = P
(
�

η
Rd \B(0,R)

∪{RU1:d+1}(τ ) ∈ A|g(

(RU1:d+1)

)
> vρ(τ)

)
.

Therefore, for any B ⊂ R
d ,

pk,B(τ ) = P
(
#�

η
Rd \B(0,R)

∪{RU1:d+1}
B (τ) = k|g(


(RU1:d+1)
)
> vρ(τ)

)
.
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PROOF. Let A ⊂ R
d be such that λd(A) = 1. Since the intensity of �η(τ)

equals ρ P(g(C) > vρ(τ )), it follows from the definition of the Palm distribution
of the point process �η(τ), that

P
(
�η,0(τ ) ∈ A

)
:= 1

ρ P(g(C) > vρ(τ ))
E

[ ∑
z∈�η(τ)∩A

I(�η(τ)−z)∈A
]

= 1

ρ P(g(C) > vρ(τ ))

×E

[ ∑
{x1:d+1}⊂η

I(�η(τ)−ρ1/dz(x1:d+1))∈AIz(x1:d+1)∈Z(η)∩(ρ1/dA)

]
,

where z(x1:d+1) is the center of the circumball of the simplex 
(x1:d+1). Accord-
ing to the Slivnyak–Mecke formula and the Blaschke–Petkantschin formula (e.g.,
Theorem 7.3.1 in [29]), we have

P
(
�η,0(τ ) ∈ A

) = γ d+1
η d!

ρ P(g(C) > vρ(τ ))(d + 1)!
∫
ρ1/dA

∫
R+

∫
Sd−1

rd2−1

× a(u1:d+1)P
((

�η(τ) − ρ1/dz
) ∈ A, η ∩ B(z, r) = ∅

)
× Ig(z+
(ru1:d+1))>vρ(τ)σ (du1:d+1)dr dz.

Since η is stationary and since g is translation-invariant, the integrand does not
depend on z. Integrating over z ∈ ρ1/dA, and using the fact that λd(ρ1/dA) = ρ,
we get

P
(
�η,0(τ ) ∈ A

)
= γ d+1

η ρ

ρ P(g(C) > vρ(τ ))(d + 1)

∫
R+

∫
(Sd−1)d+1

rd2−1a(u1:d+1)

× P
(
�η(τ) ∈ A, η ∩ B(0, r) =∅

)
Ig(
(ru1:d+1))>vρ(τ)σ (du1:d+1)dr.

We give below an explicit representation for the integrand. Let ηB(0,r) and
ηRd\B(0,r) be two independent Poisson point processes with intensity measures
γηIx∈B(0,R) dx and γηIx∈Rd\B(0,r) dx, respectively. We know that

η
D= ηB(0,r) ∪ ηRd\B(0,r).

This gives

P
(
�η(τ) ∈A, η ∩ B(0, r) = ∅

)
= P

(
�

η
Rd \B(0,r)

∪{ru1:d+1}(τ ) ∈ A, ηB(0,r) ∩ B(0, r) = ∅
)

= e−γηκdrd

P
(
�

η
Rd \B(0,r)

∪{ru1:d+1}(τ ) ∈ A
)
.
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Hence

P
(
�η,0(τ ) ∈ A

)
= γ d+1

η ρ

ρ P(g(C) > vρ(τ ))(d + 1)

∫
R+

∫
(Sd−1)d+1

rd2−1a(u1:d+1)

× e−γηκdrd

P
(
�

η
Rd \B(0,r)

∪{ru1:d+1}(τ ) ∈ A
)

× Ig(
(ru1:d+1))>vρ(τ)σ (du1:d+1)dr.

Since γη = (d + 1)ad , we get

P
(
�η,0(τ ) ∈A

)
= adγ d

η

P(g(C) > vρ(τ ))

∫
R+

∫
(Sd−1)d+1

rd2−1a(u1:d+1)

× e−γηκdrd

P
(
�

η
Rd \B(0,r)

∪{ru1:d+1} ∈ A
)
Ig(
(ru1:d+1))>vρ(τ)σ (du1:d+1)dr.

This proves the first equality in Proposition 8 since C D= 
(RU1:d+1). The second
equality is a direct consequence of the first one. �

We think that Theorem 4 can be adapted in the context of a Poisson–Delaunay
tessellation. To do it, we have to replace the point process �η(τ) by the point pro-
cess �η(τ) and we have to use the characterization of the probability pk,Qρ (τ )

as described in the above proposition. We can easily extend Lemma 1 and adapt
Condition (C) in the particular setting of a Poisson–Delaunay tessellation. How-
ever, the main difficulty to adapt Theorem 4 focuses on an analogous version of
Proposition 3 since its proof seems very technical. We give below a numerical il-
lustration which confirms that Theorem 4 should be true for a Poisson–Delaunay
tessellation.

A numerical illustration. Let mPDT be a Poisson–Delaunay tessellation gener-
ated by a Poisson point process η in R

d with intensity γη = βd . For each cell
C ∈ mPDT, we consider the so-called circumradius of C defined as

R(C) := inf
{
R ≥ 0 : C ⊂ B(z,R), z ∈ R

d}
.

According to (5.1), the random variable κdR(C)d is Gamma distributed with pa-
rameters (d,βd). A Taylor expansion of P(R(C) > v) as v goes to infinity (e.g.,
equation (3.14) in [10]), shows that ρ · P(R(C) > vρ(τ )) −→

ρ→∞ τ , when

vρ(τ ) := (κdβd)−1/d · (
log

([
(d − 1)!]−1

ρ log(βdρ)d−1τ−1))1/d
.

Moreover, with standard arguments, we can easily show that the maximum of
circumradii of Delaunay cells maxC∈mPDT:z(C)∈Wρ R(C) has the same asymp-

totic behavior as the maximum of circumradii of the associated Voronoi cells
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FIG. 5. Large circumradius for a Poisson–Delaunay tessellation.

maxx∈η∩Wρ R(Cη(x)). Besides, according to (2c) in [10], we know that

P

(
max

x∈η∩Wρ

R
(
Cη(x)

) ≤ (κdβd)−1/d(
log

(
αdβdρ log(βdρ)d−1τ−1))1/d

)

−→
ρ→∞ e−τ ,

where αd := 1
d!(

π1/2�( d
2 +1)

�( d+1
2 )

)d−1. It follows that

P

(
max

C∈mPDT:
z(C)∈Wρ

R(C) ≤ vρ(τ )
)

−→
ρ→∞ e−θdτ ,

where

θd := αdβd(d − 1)! = (d3 + d2)�(d2

2 )�(d+1
2 )

d�(d2+1
2 )�(d+2

2 )2d+1
.

In particular, when d = 1,2,3, the extremal index equals θ1 = 1, θ2 = 1/2 and
θ3 = 35/128, respectively.

Now, we explain how we evaluate by simulation the value of the extremal
index and the distribution p when d = 2. First, we simulate a random vari-
able R such that πR2 is Gamma distributed with parameters (2,1/2), given that
R > vexp(100)(1) � 8.16. Then we simulate a typical cell C, with circumradius R,
by using the method described in [17]. The Poisson–Delaunay tessellation which
is generated is induced by the point process ηB(0,2R)c ∪ {0}, where ηB(0,2R)c is a
Poisson point process with intensity measure Ix∈B(0,2R)c dx (see Proposition 8).

On the left part of Figure 5, we provide a simulation of the Palm version of
the Poisson–Delaunay tessellation given that the typical cell has a circumradius
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larger than 8.16. The number of neighbors of the typical cells which are ex-
ceedances is random. The right part of Figure 5 provides the box plots of the empir-
ical probabilities. Notice that these empirical distributions are not degenerated for
k = 1, . . . ,8. Their interquartile ranges are not so important as for the circumradii
of the Poisson–Voronoi tessellation, but the spread of the empirical distribution of
the extremal index is larger. Besides, the empirical value of the extremal index is
very concentrated around a value close to 1/2, which is the theoretical value of θ .

Acknowledgments. We thank the Associate Editor and a referee for useful
feedback that helped to simplify some proofs and significantly improve the pre-
sentation.
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