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STOCHASTIC CUCKER–SMALE MODELS: OLD AND NEW

BY PATRICK CATTIAUX, FANNY DELEBECQUE AND LAURE PÉDÈCHES

Université de Toulouse

In this paper we revisit and generalize various stochastic models extend-
ing the deterministic Cucker–Smale model for self-organization. We study
flocking and swarming properties. We show how these properties strongly
depend on the structure and on the variance of the noise.

1. Introduction, motivations and existing models. In recent years, the ob-
servation, the description and the modeling of collective motions deserved a lot
of attention, and consequently produced a huge literature. These kinds of collec-
tive behaviors have been observed for several types of populations: humans, fishes,
birds, insects, bacteria, macromolecules, cells, etc. We refer to the beautiful sur-
vey [15] for a nice description of various models introduced during the last fif-
teen years. Despite its fundamental importance, the validation of such models will
be ignored in the present work, where we will focus on mathematical properties.
However, we shall make some small comments on the structure of the models un-
der study throughout the whole paper, and summarize them (with some additional
comments) in the final section.

If we read a lot of interesting papers on the subject, it turns out that we do
not always completely understand all the mathematical arguments contained in
some of them, in particular those dealing with stochastic models. That is why,
instead of pointing out these misunderstandings, we decided to make this paper
self-contained, at least for the potential readers a little bit familiar with stochastic
calculus.

Finally, we shall only look at stochastic models where the noise comes from
some Brownian motion (or some continuous Itô process). Of course, one should
also look at jump processes (P.D.M.P., for instance) or fractional processes whose
local behavior could introduce other interesting properties.

Let us come to the subject of this work.
The so-called Cucker–Smale model introduced in [4, 5] is a mean-field kinetic

deterministic model that intends to describe self-organization of individuals in a
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population. Originally it is written as

d

dt
xi(t) = vi(t),

d

dt
vi(t) = − λ

N

N∑
j=1

ψij (t)
(
vi(t) − vj (t)

)
.

(1.1)

Here the pair (xi(t), vi(t)) ∈ R
d ⊗ R

d denotes the pair position/velocity of the
“particle” i ∈ {1, . . . ,N} at time t , λ is some positive parameter and ψij (·) is for
all (i, j) a nonnegative function called the communication rate.

In the original model,

(1.2) ψij (t) = ψ
(∣∣xi(t) − xj (t)

∣∣2)
with ψ(u) = 1

(1 + u)r
for r > 0.

The goal was to propose a model for flocking. In the deterministic context, flocking
means the following. Introduce the center of mass of the system

(1.3) x̄(t) = 1

N

N∑
j=1

xj (t), v̄(t) = 1

N

N∑
j=1

vj (t),

the system (1.1) is said to flock if

(1.4) for all i, lim
t→∞

∣∣vi(t) − v̄(t)
∣∣ = 0 and sup

t≥0

∣∣xi(t) − x̄(t)
∣∣ < +∞.

It is known that in the situation of (1.2), flocking occurs for all initial conditions
(unconditional flocking) provided r ≤ 1

2 , and for some initial conditions otherwise
(see [4, 5, 8, 9]). Of course, this is nothing else than convergence to some “equi-
librium.” Indeed if all initial velocities are the same (hence all equals to v̄), they
do not evolve in time and the motion of the positions block is simply a transla-
tion. This is some equilibrium for the model and flocking is thus some kind of
convergence to this equilibrium.

A lot of modified models have then been studied in the deterministic context,
including delays, no collisions and many other features. Some of them have in-
troduced some randomness in the model, in various ways. The goal of the present
paper is to revisit, extend and study these stochastic Cucker–Smale models.

The first question to ask is: where (and why) does randomness enter the game?
The first idea is to consider that each individual has a degree of freedom (or

craziness) represented by some random noise independent of the behavior of all
other individuals in the population. This leads to the following system for the ve-
locities:

(1.5) dvi(t) = − λ

N

N∑
j=1

ψij (t)
(
vi(t) − vj (t)

)
dt + σi(t) dwi(t),



STOCHASTIC CUCKER–SMALE 3241

where σi only depends on (xi, vi) and the wi ’s are independent Rd valued noises.
This kind of model has been studied in [3] for “smooth” noises (actually smooth
regularizations of Brownian motions) and in [7] for independent d-dimensional
standard Brownian motions wi and a constant diffusion matrix σi (actually σi =√

DIdd ). The latter case has been revisited and completed by one of us in the
recent [12]. Here and in what follows, the meaning of dw is the Itô differential
(we shall come back later to this).

The second idea is to consider that the dynamics of the velocities is perturbed
by a noisy environment. This yields the following model:

(1.6) dvi(t) = − λ

N

N∑
j=1

ψij (t)
(
vi(t) − vj (t)

)
dt + σi(t) dw(t),

where this time the noise w is the same for all particles.
A very peculiar form of this model is studied in [1]. The authors consider therein

a noise w = (W,W, . . . ,W), that is, the same Brownian motion in all the directions
of Rd and a diagonal diffusion matrix σi(t) whose diagonal entries are given by
the vector σ(vi(t)) where

σ(v) = D(v − ve)

for some constant state ve, telling us that the “noise intensity” depends (in a simple
way) on the localization of the velocity.

Another idea is to consider that the “infinitesimal” communication rate is per-
turbed by some noise. This leads to the following model:

(1.7) dvi(t) = − λ

N

N∑
j=1

(
vi(t) − vj (t)

)(
ψij (t) dt + σij (t) dwi,j (t)

)
,

where the wij are again one-dimensional noises.
This is done in [14] with wi,j = w for all i, j and with a constant σi,j = σ , that

is, for some new constant σ̄ ,

(1.8) dvi(t) = − λ

N

N∑
j=1

ψij (t)
(
vi(t) − vj (t)

)
dt + σ̄

(
vi(t) − v̄(t)

)
dw(t).

Actually the authors replaced the Itô differential by a Stratonovitch differential.
This choice is not really natural since it introduces some repulsive modification on
the drift due to the Itô–Stratonovitch correction.

In the recent article [6], the authors consider instead N independent one-
dimensional Brownian noises wi and the following system:

dvi(t) = − λ

N

N∑
j=1

ψij (t)
(
vi(t) − vj (t)

)
dt

+ σi

N

N∑
j=1

ψij (t)
(
vi(t) − vj (t)

)
dwi(t),

(1.9)
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for constant σi . Actually these authors also introduce some delay in the coeffi-
cients. A similar model to (1.9) is also discussed in [13].

One immediately sees an important difference in nature between all these mod-
els. In (1.8) or (1.9), the dynamics vi(t) = vi(0) = v̄(0) for all i is still a solution,
hence as for the deterministic system we have some “dynamical” equilibrium. Sim-
ilarly, if we assume vi(0) = ve for all i, vi(t) = ve furnishes again some dynamical
equilibrium for (1.6). In the general case of (1.5), such a trivial solution does no
more exist. This shows that the asymptotic behavior of these stochastic systems
may be (and actually is) very different.

The second point is to understand what kind of asymptotic flocking is expected.
Indeed since the solutions are random processes, one can look at various behav-
iors: almost sure behavior, moments behavior, distribution behavior. We will thus
introduce three different notions of stochastic flocking

DEFINITION 1.1. Let (xi(t), vi(t))i=1,...,N be a R
d ⊗ R

d valued stochastic
process such that dxi(t) = vi(t) dt for all i = 1, . . . ,N . Denote by v̄ and x̄ the
centers of masses defined in (1.3). We shall say that:

(1) The system is almost surely flocking if (1.4) holds almost surely.
(2) The system is flocking in L

p,q (p,q ≥ 1) if for all i,

E
(∣∣vi(t) − v̄(t)

∣∣p) → 0 as t → +∞
and

sup
t≥0

E
(∣∣xi(t) − x̄(t)

∣∣q)
< +∞.

Actually we will only look at the cases (p, q) = (1,1), (2,1), (2,2). When q = 1,
we simply write L

p flocking.
(3) The system is weakly flocking with rate ε(R) if for all R > 0 and all i,

lim sup
t→+∞

P
(∣∣vi(t) − v̄(t)

∣∣ > R
) ≤ ε(R).

REMARK 1.2. Of course, quick enough convergence to 0 for the “centered”
velocities is enough to ensure boundedness for the “centered” positions.

For instance,

E

(
sup
t≥0

∣∣xi(t) − x̄(t)
∣∣)

≤ E
(∣∣xi(0) − x̄(0)

∣∣) +
∫ +∞

0
E

(∣∣vi(s) − v̄(s)
∣∣)ds < +∞.

Similarly, if for some function η,∫ +∞
0

E
(∣∣vi(t) − v̄(t)

∣∣2)
η(t) dt < +∞
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we have

E

(
sup
t≥0

∣∣xi(t) − x̄(t)
∣∣2)

≤ 2E
(∣∣xi(0) − x̄(0)

∣∣2) + 2
(∫ +∞

0
E

(∣∣vi(s) − v̄(s)
∣∣)ds

)2

≤ 2E
(∣∣xi(0) − x̄(0)

∣∣2)
+ 2

(∫ +∞
0

E
(∣∣vi(s) − v̄(s)

∣∣2)
η(s) ds

)(∫ +∞
0

η−1(s) ds

)

so that if in addition
∫ +∞

0 η−1(s) ds < +∞, E(supt≥0 |xi(t)− x̄(t)|2) < +∞, too.

Results in [1] concern almost sure flocking, results in [14] concern L
2 flocking

and those in [12] concern weak flocking.
Another very weak form of stochastic flocking is sometimes discussed: mean-

flocking, that is,

(1.10) lim
t→+∞

∣∣E(
vi(t) − v̄(t)

)∣∣ = 0 and sup
t≥0

∣∣E(
xi(t) − x̄(t)

)∣∣ < +∞.

Actually it is this type of flocking which is studied in [6, 7]. We confess that
we are not really convinced that this kind of property really describes some “col-
lective” behavior, though (1.10) can be seen at a first glance as the immediate
generalization of deterministic flocking.

In all cases, the same strategy of study is used: first look at the motion of the
center of mass v̄(t) (the macroscopic level), then look at the fluctuations v̂i(t) =
vi(t) − v̄(t) (the microscopic level). As in all the previous works, we shall assume
in the whole paper that

(1.11) for all i, j, ψij = ψji.

Under this assumption,

N∑
i=1

N∑
j=1

ψij (t)
(
vi(t) − vj (t)

) = 0

so that the motion of v̄(t) is only driven by the noise.
In order to understand the difference in nature of all these models, we shall first

look at the simplest case, that is, with a constant communication rate and a constant
diffusion coefficient. This is done in the next Section 2. In the following section, we
introduce the notion of swarming and look at its connection with flocking, as it is
the case in the deterministic situation. In the two following sections, we still look at
constant communication rates but with more general diffusion coefficients for (1.6)
and (1.7). This will be the opportunity to introduce the methods that will be mainly
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used in the general case. In addition, as we shall see in Section 6, many results for
a nonconstant communication rate can be deduced from the ones obtained in the
constant case. Up to Section 6, what is obtained is “unconditional” flocking, that
is, without restriction on the initial condition.

Section 6 studies the case of nonconstant communication rate for the latter two
models (1.6) and (1.7). Actually if the communication rate is bounded from below,
one can reduce the study to the one with constant communication rate. If it is
not bounded from below, we prove some “conditional” flocking results, that is we
extend for the first time the corresponding deterministic results to the stochastic
situation. The final section deals with comments and simulations.

In order to keep the paper into a reasonable size, we will not discuss here other
models of Cucker–Smale type, introducing a mean field term depending on the
positions too, or a local mean field dependence as in [11]. This will be the aim of
future work(s). However, some aspects are already contained in [12] for the model
(1.5).

For the sake of simplicity, we will assume throughout the paper that the initial
conditions (v(0), x(0)) are deterministic. All the results can be extended to random
initial conditions such that v(0)− v̄(0) and x(0)− x̄(0) are almost surely bounded.
We shall also denote by |y| the Euclidean norm of a vector y ∈ R

m whatever m is.

2. Constant communication rate. A new visit of the existing models. In
this section, we assume that, for all t ,

(2.1) ψij (t) = ψji(t) = ψ > 0.

Notice that in this situation, under mild assumptions on the diffusion coeffi-
cients (ensuring that the stochastic integral is a true martingale) the expectations
(E(vi(t)),E(xi(t))) satisfy (1.1) with a constant communication rate, so that one
always has mean-flocking.

First, we will revisit (and extend) the known results we recalled in the Introduc-
tion, hence we assume that:

(H1) in (1.5) we consider σi(t) = √
DIdd ,

(H2) in (1.6) as in [1] we consider σi(t) = D(vi(t) − ve), but here we assume
that w is a d-dimensional process w = (w1, . . . ,wd) such that each wk is a stan-
dard linear Brownian motion (we do not make any assumption on the correlations),

(H3) in (1.8) the same assumption for w is made as in (H2),
(H4) in (1.9) the same assumption is made for each wi = (w1

i , . . . ,w
d
i ) (the

wi ’s being independent) and in addition σi = σ for all i.

We will prove the following.

THEOREM 2.1. Consider the previous models assuming (2.1). Then:

1. If (H1) is satisfied, the system (1.5) is weakly flocking with a rate ε(R) given
by some χ2 tail.
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2. If (H2) is satisfied, the system (1.6) is always almost surely flocking and L
1

flocking, but is L2 flocking if and only if 2λψ > D2 [or vi(0) = v̄(0) for all i].
In this case, it is also L

2,2 flocking.
In addition, v̄(t) goes almost surely to ve as t goes to infinity and x̄(t) − tve

is almost surely bounded.
3. If (H3) is satisfied, the system (1.8) is always almost surely flocking and L

1

flocking, but is L2 flocking if and only if 2λψ > σ̄ 2 [or vi(0) = v̄(0) for all i].
In this case, it is also L

2,2 flocking.
In addition, v̄ is constant; hence x̄(t) is linear in t .

4. Assume that the system (1.9) is not at equilibrium, that is, does not satisfy
vi(0) = v̄(0) for all i. If (H4) is satisfied for (1.9), we have the following situa-
tion: define

α = (1 − 1/N)(σψ)2 − 2λψ,

then:

(a) if α < 0, the system is almost surely and L
2,2 flocking. In addition the

center of mass v̄(t) converges almost surely and in L
1 to some given random

variable, while x̄(t) has some asymptotic linear behavior,
(b) if 0 ≤ α, the system is not L2 flocking; moreover, when α > 0, the L

2

norm of all the v̂i (t) are going to infinity,
(c) if (1 − 1

N
)(σψ)2 > 2λψ > (1 − 3

N
(σψ)2), the system is almost surely

flocking (but not L2).

REMARK 2.2. The previous theorem clearly shows the importance of defining
the type of stochastic flocking one wants to get, since on the same elementary
model one can have one flocking property and not another one. It also seems that
L

2 flocking is more demanding.

PROOF. In the first three cases, one can find an explicit solution for the in-
volved stochastic differential equations using that

1

N

N∑
j=1

(vi − vj ) = vi − v̄.

Let start with (1.8) assuming (H3). It can be rewritten for all i = 1, . . . ,N and
all k = 1, . . . , d ,

(2.2) dvk
i (t) = −λψ

(
vk
i (t) − v̄k(t)

)
dt + σ̄

(
vk
i (t) − v̄k(t)

)
dwk(t).

In particular, dv̄k(t) = 0 so that v̄k(t) = v̄k(0) = vk
e and (2.2) becomes a particular

case of (1.6) with ve = v̄(0). This yields the following explicit solution:

(2.3) vk
i (t) = v̄k(0) + (

vk
i (0) − v̄k(0)

)
eσ̄wk

t −( 1
2 σ̄ 2+λψ)t .
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Since

wk
t

t
→ 0 almost surely as t → +∞,

there is almost sure convergence to the constant center of mass for the velocities.
But if B. is a linear standard Brownian motion,

(2.4)
∫ +∞

0
eaBt−bt dt is almost surely bounded for any a ∈ R and b > 0

since Bt/t goes almost surely to 0 when t goes to infinity. Thus we have shown
almost sure flocking for the model (2.2). Notice that the center of mass of the
positions is here simply given by x̄(t) = x̄(0) + t v̄(0).

In addition, on one hand

E
(∣∣vk

i (t) − v̄k
i (t)

∣∣) = ∣∣vk
i (0) − v̄k(0)

∣∣E(
eσ̄wk

t − 1
2 σ̄ 2t )e−2λψt

= ∣∣vk
i (0) − v̄k(0)

∣∣e−2λψt

while

E
((

vk
i (t) − v̄k

i (t)
)2) = (

vk
i (0) − v̄k(0)

)2
E

(
e2σ̄wk

t −(σ̄ 2+2λψ)t )
= (

vk
i (0) − v̄k(0)

)2
e(−2λψ+σ̄ 2)t

E
(
e2σ̄wk

t −2σ̄ 2t )
= (

vk
i (0) − v̄k(0)

)2
e(−2λψ+σ̄ 2)t .

Hence if −2λψ + σ̄ 2 ≥ 0 there is no L
2 flocking. For the positions, we may use

the Remark 1.2 to get L1 flocking. For L2,2 flocking, assuming −2λψ + σ̄ 2 < 0,
since

eθt
E

(∣∣v̂k
i (t)

∣∣2) → 0 as t → +∞
for some θ > 0, we also have∫ +∞

0
eθt/2

E
(∣∣v̂k

i (t)
∣∣2)

dt < +∞,

so that we are again in the situation of Remark 1.2.

REMARK 2.3. This result differs from [14] since almost sure flocking occurs
in all cases while small noise is required in [14] (that actually does not really study
almost sure flocking). This is only due to the fact that, as we said before, the Itô–
Stratonovitch correction introduces some repulsive part in the drift in [14].

(1.6) assuming (H2) is thus a little bit more general if v̄(0) 	= ve. In this case,

(2.5) v̄k(t) = vk
e + (

v̄k(0) − vk
e

)
eDwk

t −D2t
2
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converges almost surely to vk
e , and at the microscopic level v̂k

i (t) = vk
i (t) − v̄k(t)

satisfies

dv̂k
i (t) = −λψv̂k

i (t) dt + Dv̂k
i (t) dwk(t)

so that

v̂k
i (t) = v̂k

i (0)eDwk
t −( 1

2 D2+λψ)t

and we get almost sure flocking as before. This time the center of mass v̄(t) goes
almost surely to ve as t goes to infinity and x̄(t) − tve is almost surely bounded.

The key point here is that, summing up the equations over i, we obtain an au-
tonomous S.D.E. for the motion of v̄.

Actually the same occurs under (H1) in (1.5). Thanks to the independence of
the wi ’s, v̄ is simply a Brownian motion with covariance matrix D

N
Idd . We can

then get an explicit solution for the motion of v̂ which becomes some degenerate
dN -dimensional Ornstein–Uhlenbeck process (see [12], Section 1),

(2.6) dv̂i(t) = −λv̂i(t) dt + √
D

(
1 − 1

N

)
dwi(t) −

√
D

N

∑
j 	=i

dwj (t),

degenerate means that since
∑

i v̂i = 0 the process is an O–U process on this sub-
space. It is then easy to show that v̂ is ergodic with a (degenerate but explicit)
Gaussian invariant distribution so that it is weakly flocking with a rate ε(R) corre-
sponding to some χ2 tail. However, using a central limit theorem one can see that
x̂(t) behaves like

√
t times a Gaussian vector (in distribution) so that the Probabil-

ity for x̂(t) to belong to some bounded set goes to 0 as t → +∞ for all bounded
sets, that is, weak flocking really only concerns the velocities. We refer to [12] for
the details and the explicit computations.

Finally, let us look at (1.9) assuming (H4). We first get

(2.7) dv̄(t) = σψ

N

(
N∑

i=1

vi(t) dwi(t) − v̄(t)

N∑
i=1

dwi(t)

)

and then

dv̂k
i (t) = −λψv̂k

i (t) dt + σψ

(
1 − 1

N

)
v̂k
i (t) dwi(t)

− σψ

N

∑
j 	=i

v̂k
j (t) dwj (t).

(2.8)
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Of course, since the coefficients are globally Lipschitz, (2.8) admits a unique
strong solution. Thus using Itô’s formula we get, if we note zk(t) := ∑N

i=1(v̂
k
i )

2(t),

zk(t) = zk(0) − 2λψ

∫ t

0
zk(s) ds + 2σψ

N∑
i=1

(∫ t

0

(
v̂k
i

)2
(s) dwi(s)

)

− 2σψ

N

N∑
i,j=1

(∫ t

0

(
v̂k
i v̂

k
j

)
(s) dwj (s)

)

+ (σψ)2
(

1 − 1

N

)2 ∫ t

0
zk(s) ds

+ (σψ)2

N2

N∑
i 	=j=1

∫ t

0

(
v̂k
j

)2
(s) ds

= zk(0) +
(
−2λψ + (σψ)2

(
1 − 1

N

))∫ t

0
zk(s) ds

+ 2σψ

N∑
i=1

(∫ t

0

(
v̂k
i

)2
(s) dwi(s)

)
,

(2.9)

since
∑

j v̂k
j (s) = 0.

It follows, if we note uk(t) := E(zk(t)), then

(2.10) uk(t) = uk(0) +
(
−2λψ + (σψ)2

(
1 − 1

N

))∫ t

0
uk(s) ds.

A rigorous proof of (2.10) is straightforward: it is enough to stop the process at the
exit time of open balls of radius R (to be sure that the stochastic integrals are true
martingales), to take the expectation and then to use the monotone convergence
theorem for letting R go to infinity. Equation (2.10) is exactly solved by

(2.11) uk(t) = uk(0)eαt where α = (1 − 1/N)(σψ)2 − 2λψ.

We thus have to distinguish three cases: when α > 0 uk(t) grows to infinity and
there is no L

2 flocking, when α < 0 we may have L
2 flocking, when α = 0 there

is no L
2 flocking.

We can be more precise. First, we have (with an obvious new notation)

uk
i (t) = uk

i (0) +
(
−2λψ + (σψ)2

(
1 − 1

N

)2)∫ t

0
uk

i (s) ds

+ (σψ)2

N2

∑
j 	=i

∫ t

0
uk

j (s) ds

= uk
i (0) +

(
−2λψ + (σψ)2

(
1 − 2

N

))∫ t

0
uk

i (s) ds
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+ (σψ)2

N2

∫ t

0
uk(s) ds

= uk
i (0) +

(
α − (σψ)2

N

)∫ t

0
uk

i (s) ds + (σψ)2uk(0)

αN2

(
eαt − 1

)
,

so that it is easily seen (by contradiction, for instance) that when α > 0, uk
i (·)

cannot be bounded by some Ceβt for β < α. Hence all the uk
i (t) are growing to

infinity at an exponential rate.
Of course, for α < 0, E((v̂k

i )
2(s))) decays exponentially fast; hence we get L2,2

flocking as before.
Notice in this case that

E
(∣∣v̄k(t) − v̄k(0)

∣∣2) = (σψ)2

N2

∫ t

0
uk(s) ds

= (σψ)2

N2

uk(0)

|α|
(
1 − eαt )

is bounded. According to (2.7), (v̄k(t) − v̄k(0))t≥0 is thus a martingale which is
bounded in L

2. According to Doob’s convergence of martingale theorem, we know
that there exists a random variable ak such that(

v̄k(t) − v̄k(0)
) → ak a.s. as t → +∞.

Since the convergence also holds in L
1, we get in addition that x̄(t) − x̄(0) −

t (v̄(0) + a) is bounded in L
1.

What can be said about the almost sure behavior? Using Itô’s formula, we get
that for all t < T0, where T0 is the hitting time of 0 for zk(·) (notice that for t ≥ T0
one has zk

t = 0 almost surely),

ln
(
zk
t

) = ln
(
zk(0)

) + αt + 2σψ

N∑
i=1

∫ t

0

(v̂k
i )

2(s)

zk
s

dwi(s)

− 2(σψ)2
N∑

i=1

∫ t

0

(v̂k
i )

4(s)

(zk
s )

2 ds.

(2.12)

Since
∑

i β
4
i ≤ (

∑
i β

2
i )2, the martingale term

Mk(t) =
N∑

i=1

∫ t

0

(v̂k
i )

2(s)

zk
s

dwi(s)

whose bracket is given by

〈
Mk 〉(t) =

∫ t

0

(
∑N

i=1 v̂k
i )

4(s)

(
∑N

i=1(v̂
k
i )

2(s))2
ds ≤ t

satisfies the two following properties:
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1. t−1/2Mk
t is bounded in L

2 for t ∈ [1,+∞[.
2. t−1Mk

t → 0 almost surely as t → +∞.

The second point is the standard law of large numbers for martingales.
Using in addition that

∑N
i=1 β4

i ≥ 1
N

(
∑N

i=1 β2
i )2, we immediately deduce that

zk(t) converges almost surely to 0, hence that we have almost sure flocking, as

soon as α <
2(σψ)2

N
and that zk(t) goes to infinity (hence no almost sure flocking)

if α > 2(σψ)2. But the latter cannot occur due to the value of α. �

3. Some general properties. In this section, we introduce some general prop-
erties (holding true for any of the model we are considering) that we will use in
the sequel.

We start with some simple algebraic remarks:∑
1≤i,j≤N

|vi − vj |2 = 2
∑

1≤i,j≤N

〈vi, vi − vj 〉

= 2N

N∑
i=1

|vi |2 − 2N2|v̄|2

= 2N

N∑
i=1

|vi − v̄|2,

(3.1)

(3.2)
∑

1≤i,j≤N

|vi − vj |2 = ∑
1≤i,j≤N

|v̂i − v̂j |2 = 2N

N∑
i=1

|v̂i |2,

and similarly, if ψij = ψji ,

(3.3)
∑

1≤i,j≤N

ψij 〈vi, vi − vj 〉 = 1

2

∑
1≤i,j≤N

ψij |vi − vj |2,

and more generally

(3.4)
∑

1≤i,j≤N

ψij 〈ui, vi − vj 〉 = 1

2

∑
1≤i,j≤N

ψij 〈ui − uj , vi − vj 〉.

The final (3.4) will allow us to control, in some cases, flocking by a weaker
notion called swarming we will define now.

DEFINITION 3.1. Let (xi(t), vi(t))i=1,...,N be a R
d ⊗ R

d valued stochastic
process such that dxi(t) = vi(t) dt for all i = 1, . . . ,N . Denote by v̄ and x̄ the
centers of masses defined in (1.3). We shall say that:
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(1) The system is almost surely (resp., Lp) weakly swarming if

(3.5) for all i, sup
t≥0

∣∣vi(t) − v̄(t)
∣∣ < +∞ almost surely

respectively

(3.6) for all i, sup
t≥0

E
(∣∣vi(t) − v̄(t)

∣∣p)
< +∞.

(2) The system is almost surely (resp., Lp , resp., Lp,q ) strongly swarming if in
addition, for all i,

sup
t≥0

∣∣xi(t) − x̄(t)
∣∣ < +∞

almost surely, respectively,

sup
t≥0

E
(∣∣xi(t) − x̄(t)

∣∣) < +∞,

respectively,

sup
t≥0

E
(∣∣xi(t) − x̄(t)

∣∣q)
< +∞.

When E(supt≥0 |xi(t) − x̄(t)|q) < +∞, we shall say that the swarming property
is uniform (in time).

In some situations, proving swarming is enough to get flocking. Indeed, assume
that

(3.7) ψij (v, x) = ψ
(|xi − xj |2)

and define �(b) =
∫ b

0
ψ(a)da.

We thus have

�
(∣∣xi(t) − xj (t)

∣∣2) − �
(∣∣xi(0) − xj (0)

∣∣2)
= 2

∫ t

0
ψij (s)

〈
xi(s) − xj (s), vi(s) − vj (s)

〉
ds.

Hence, denoting xij = xi − xj and vij = vi − vj ;

〈
xij (t), vij (t)

〉 = 〈
xij (0), vij (0)

〉 − λ

N

∫ t

0

N∑
l=1

ψil(s)
〈
xij (s), vil(s)

〉
ds

+ λ

N

∫ t

0

N∑
l=1

ψjl(s)
〈
xij (s), vjl(s)

〉
ds

+
∫ t

0

∣∣vi(s) − vj (s)
∣∣2 ds + Mij (t),
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where Mij (·) is a local martingale term. Let us sum up in i, j . The following term
appears:

A = − ∑
i,j,l

ψil〈xi − xj , vi − vl〉 + ∑
i,j,l

ψjl〈xi − xj , vj − vl〉.

Let us calculate A, first exchanging the role of i and j in the second term,

A = −2
∑
i,j,l

ψil〈xi − xj , vi − vl〉

= −2N
∑
i,l

ψil〈xi, vi − vl〉 + 2
∑
j

〈
xj ,

∑
i,l

ψil(vi − vl)

〉

= −2N
∑
i,l

ψil〈xi, vi − vl〉 = −N
∑
i,l

ψil〈xi − xl, vi − vl〉

thanks to (3.4) and since
∑

i,l ψil(vi − vl) = 0.
As usual using some exhausting sequence of stopping times (if it exists) we

may integrate up to these random times, for which we get true martingales, take
the expectation and then pass to the limit. So we may assume that we have true
martingales if we can check that the brackets of the Mij have finite expectation.
We shall come back to this point later.

Hence we sum up over all indices and take the expectation, in order to get

N∑
i,j=1

E
(〈
xij (t), vij (t)

〉)

=
N∑

i,j=1

E
(〈
xij (0), vij (0)

〉) +
∫ t

0
E

(
N∑

i,j=1

∣∣vi(s) − vj (s)
∣∣2)

ds

+ λ

∫ t

0

N∑
i,j=1

E
(
ψij (s)

〈
xi(s) − xj (s), vi(s) − vj (s)

〉)
ds

and finally

∫ t

0
E

(
N∑

i,j=1

∣∣vi(s) − vj (s)
∣∣2)

ds

=
N∑

i,j=1

(
E

(〈
xij (t), vij (t)

〉 − 〈
xij (0), vij (0)

〉))

− λ

2

N∑
i,j=1

E
(
�

(∣∣xi(t) − xj (t)
∣∣2) − �

(∣∣xi(0) − xj (0)
∣∣2))

(3.8)
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≤ 2N2 max
i,j

((
sup
s≥0

E
(∣∣xi(s) − xj (s)

∣∣2)) 1
2

×
(
sup
s≥0

E
(∣∣vi(s) − vj (s)

∣∣2)) 1
2
)

− λ

2

N∑
i,j=1

E
(
�

(∣∣xi(t) − xj (t)
∣∣2) − �

(∣∣xi(0) − xj (0)
∣∣2))

.

We shall thus use the following elementary lemma.

LEMMA 3.2. Let h : R→R
+ be a C1 function with a bounded derivative.

If
∫ +∞

0 h(s) ds < +∞, then h(t) → 0 as t → +∞.

Combining the preceding computations and Lemma 3.2, we can easily deduce
that L2,2 swarming implies L2,2 flocking, as soon as � is at most linear, in order
to control the second term in the previous sum. Let us state a more general result
that will be completed in the situations we are looking at later.

LEMMA 3.3. Consider any of our models. Assume that (3.7) is fulfilled for
some bounded function ψ . Assume in addition that:

(1) a unique solution (v(·), x(·)) exists and is such that for all i, j , 〈vi(·) −
vj (·), xi(·) − xj (·)〉 is a L

2 semimartingale,
(2) for all i, j , s �→ E(|vi(s) − vj (s)|2) is well defined and differentiable with

a bounded derivative,
(3) the system is L2,2 strongly swarming.

Then the system is L2,2 flocking.

We shall check the required assumptions for each model.

4. Relaxing (H2) in (1.6) for constant communication rates. In this section,
we shall study the model (1.6), still assuming that (2.1) is satisfied, but relaxing
the assumption (H2). Namely, we will consider the following general model:

(4.1) dvi(t) = −λψ

N

N∑
j=1

(
vi(t) − vj (t)

)
dt + σ

(
vi(t), xi(t)

)
dw(t),

where w is a d-dimensional Brownian motion (the same for all the particles). That
is, we consider that the dynamics of a particle is perturbed by a noisy environment
depending on the position and the velocity of this particle.
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Once again the dynamics of the center of mass is given by a (at least local)
martingale

(4.2)
dv̄(t) = 1

N

(
N∑

i=1

σ
(
vi(t), xi(t)

))
dw(t)

:= s
(
v(t), x(t)

)
dw(t).

It follows

dv̂k
i (t) = −λψv̂k

i (t) dt +
d∑

l=1

θ
k,l
i

(
v(t), x(t)

)
dwl(t),

where

θ
k,l
i (v, x) = σk,l(vi, xi) − sk,l(v, x)

= 1

N

N∑
j=1

(
σk,l(vi, xi) − σk,l(vj , xj )

)
.

Of course, we will assume enough regularity on σ for (4.1) to admit a unique
solution. Notice that if

vi(0) = v0 and xi(0) = x0 for all i,

then the unique solution of (4.1) is given by a dynamic equilibrium vi(t) = v̄(t)

and xi(t) = x̄(t) for all i, where (v̄, x̄) solves

dv̄(t) = σ
(
v̄(t), x̄(t)

)
dw(t)

dx̄(t) = v̄(t) dt.

There is however a difference with the deterministic model [or the model assuming
(H2)]: this time one has in general to fix the initial positions to get some equilib-
rium.

As we did in the first section, we define

zk(t) :=
N∑

i=1

(
v̂k
i

)2
(t) = zk(0) − 2λψ

∫ t

0
zk(s) ds

+ 2
N∑

i=1

d∑
l=1

∫ t

0
v̂k
i (s)θ

k,l
i

(
v(s), x(s)

)
dwl(s)

+
∫ t

0

(
N∑

i=1

d∑
l=1

(
θ

k,l
i

)2(
v(s), x(s)

))
ds,

(4.3)
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so that

z(t) :=
d∑

k=1

zk(t) = z(0) − 2λψ

∫ t

0
z(s) ds

+ 2
N∑

i=1

d∑
l=1

∫ t

0

(
d∑

k=1

v̂k
i (s)θ

k,l
i

(
v(s), x(s)

))
dwl(s)

+
∫ t

0

(
d∑

k=1

N∑
i=1

d∑
l=1

(
θ

k,l
i

)2(
v(s), x(s)

))
ds.

(4.4)

Hence

u(t) := E
(
z(t)

) = u(0) − 2λψ

∫ t

0
u(s) ds +

∫ t

0
U

(
v(s), x(s)

)
ds,

where

(4.5) U
(
v(s), x(s)

) =
d∑

k=1

N∑
i=1

d∑
l=1

E
[(

θ
k,l
i

)2(
v(s), x(s)

)]
.

Finally, at least formally [and rigorously up to the first time z(·) hits 0]

ln z(t) = ln z(0)

+ 2
N∑

i=1

d∑
l=1

∫ t

0

(
d∑

k=1

v̂k
i (s)θ

k,l
i (v(s), x(s))

z(s)

)
dwl(s) − 2λψt

+
∫ t

0

(
N∑

i=1

d∑
l=1

d∑
k=1

(θ
k,l
i )2(v(s), x(s))

z(s)

)
ds

− 2
∫ t

0

d∑
l=1

( [∑N
i=1

∑d
k=1 v̂k

i (s)θ
k,l
i (s)]2

(z(s))2

)
ds.

(4.6)

4.1. A first natural generalization of (H2). Introduce the following assump-
tion.

(H2-1) σ only depends on v and is Lipschitz continuous, that is, there exists K

such that for all k, l, all (v, v′),∣∣σk,l(v) − σk,l(v′)∣∣ ≤ K
∣∣v − v′∣∣.

In this situation, we have

∣∣θk,l
i (v, x)

∣∣ ≤ 1

N

∑
j 	=i

∣∣σk,l(vi) − σk,l(v̄) + σk,l(v̄) − σk,l(vj )
∣∣
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≤ N − 1

N

∣∣σk,l(vi) − σk,l(v̄)
∣∣ + 1

N

∑
j 	=i

∣∣σk,l(vj ) − σk,l(v̄)
∣∣

≤ K|v̂i | + K

N

N∑
j=1

|v̂j |.

Hence
N∑

i=1

∣∣θk,l
i (v, x)

∣∣2 ≤ K2

(
N∑

i=1

|v̂i |2 + 3

N

(
N∑

j=1

|v̂j |
)2)

≤ 4K2
N∑

i=1

|v̂i |2

and finally

(4.7)
d∑

k=1

N∑
i=1

d∑
l=1

(
θ

k,l
i

)2(
v(t), x(t)

) ≤ 4d2K2z(t).

Of course, if σ is diagonal, we may replace d2 by d , and if in addition σk,k only
depends on vk we may replace d by 1 [as for (H2)].

Similarly, using Cauchy–Schwarz inequality it is easily seen that( [∑N
i=1

∑d
k=1 v̂k

i (t)θ
k,l
i (t)]2

(z(t))2

)

is uniformly bounded above.
We may thus use the same arguments as for the end of the previous proof of

Theorem 2.1, except that we do no more have any better lower bound for( [∑N
i=1

∑d
k=1 v̂k

i (t)θ
k,l
i (t)]2

(z(t))2

)

than 0. We have thus obtained the following.

THEOREM 4.1. Assume that (H2-1) is satisfied in (4.1). Then if 2λψ >

4K2d2, the system (4.1) is almost surely and L
2,2 flocking.

However, contrary to what happens when (H2) is satisfied, the center of mass
v̄(t) does not necessarily converge as t → +∞.

Let us look at a very particular case: the case when σ is diagonal and σk,k(v) =
σk,k(vk). We can thus rewrite (4.1),

(4.8) dvk
i (t) = −λψ

N

N∑
j=1

(
vk
i (t) − vk

j (t)
)
dt + σk,k(vk

i (t)
)
dwk(t),

that is, we can look at the system independently for each coordinate k, or if one
prefers, reduce the problem to the case of one dimensional particles, that is, d = 1.
In the sequel, we thus suppress the superscript k.
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The first elementary remark is that, if vi(0) = vj (0) for some pair i 	= j , the
uniqueness of the solution shows that vi(t) = vj (t) for all t . Using the Markov
property, the same holds for t ≥ T for any stopping time T such that vi(T ) =
vj (T ). Reordering the indices if necessary, we may assume that v1(0) ≤ v2(0) ≤
· · · ≤ vN(0) so that the dynamics preserves the order of the velocities of the parti-
cles. The best quantity to look at is thus D1N(t) = vN(t) − v1(t) instead of z(t),
since D1N ≥ v̂i for all i. The dynamics of D1N is given by

dD1N(t) = −λψD1N(t) dt + (
σ

(
vN(t)

) − σ
(
v1(t)

))
dw(t).

Since D1N is nonnegative, we have

lnD1N(t) = lnD1N(0) − λψt −
∫ t

0

(σ (vN(s)) − σ(v1(s)))
2

2D2
1,N (s)

ds

+
∫ t

0

(σ (vN(s)) − σ(v1(s)))

D1N(s)
dw(s)

and

D2
1N(t) = D2

1N(0) −
∫ t

0

(
2λψD2

1N(s) − (
σ

(
vN(s)

) − σ
(
v1(s)

))2)
ds

+
∫ t

0
2D1N(s)

(
σ

(
vN(s)

) − σ
(
v1(s)

))
dw(s).

Using the same arguments as before, we thus have the following.

THEOREM 4.2. Assume that (H2-1) is satisfied in (4.8). Then the system (4.8)
is always almost surely flocking. If in addition 2λψ > K2, then it is also L

2,2

flocking.

4.2. More general environments. One may ask about the physical meaning of
a random environment acting on the velocities only. It can be the case for some
aerodynamical perturbations, for instance. But of course, it is more natural (or at
least as natural) to add some random perturbation that depends on the position
(and possibly the velocity too) of each particle. We shall now discuss briefly this
situation.

Assume, for instance, that all σk,l are bounded, say by M . We thus have

(4.9) E(zt ) := u(t) ≤ u(0) − 2λψ

∫ t

0
u(s) ds + 4M2Nd2t,

so that

(4.10) lim sup
t→+∞

u(t) ≤ 2M2Nd2

λψ
.

In particular, u(·) is bounded on R
+. Hence if all the σ ’s are bounded in (4.1), the

system is L
2 weakly swarming, while in general it is hard to say anything about
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strong swarming. Concerning this last point, let us look at some particular case,
namely

(H2-2) σ(v, x) = σ(x) is C1 with partial derivatives bounded by K (but the σk,l

are not necessarily bounded themselves).

As for (4.8), we may look at each coordinate k individually, that is, consider a
system of N 1-dimensional particles governed by

(4.11) dvk
i (t) = −λψ

N

N∑
j=1

(
vk
i (t) − vk

j (t)
)
dt +

d∑
l=1

σk,l(xi(t)
)
dwl(t).

Contrary to the situation of Theorem 4.2, in general the order of the velocities
vk
i is not preserved by the dynamics, and the only trivial equilibrium is given by

vi(t) = v̄(0) and xi(t) = x̄(0) + t v̄(0) for all t .
We shall nevertheless look at

vk
i,j (t) = vk

i (t) − vk
j (t) and xi,j (t) = xi(t) − xj (t)

which solves

dvk
i,j (t) = −λψvk

i,j (t) dt +
d∑

l=1

σ
k,l
i,j (t) dwl

t ,

where σ
k,l
i,j (t) = σk,l(xi(t)) − σk,l(xj (t)). We already know that, if σ is bounded,

the system is L2 weakly swarming. Here, we assume that

(4.12) sup
t>0

E
(∣∣xi(t) − xj (t)

∣∣2) ≤ M2
i,j < +∞.

Of course, when σ is bounded (4.12) implies that the system is L2 strongly swarm-
ing. We shall first show that it is still the case when (H2-2) is satisfied.

Let us make some computations: first if TR denotes the first time |vi,j |(·) ex-
ceeds R, we have

E
((

vk
i,j

)2
(t ∧ TR)

) = E
((

vk
i,j

)2
(0)

) − 2λψE

(∫ t∧TR

0

(
vk
i,j

)2
(s) ds

)

+E

(∫ t∧TR

0

d∑
l=1

(
σ

k,l
i,j

)2
(s) ds

)

≤ E
((

vk
i,j

)2
(0)

) + dK2M2
i,j t

so that uk
i,j (t) = E((vk

i,j )
2(t)) is well-defined and satisfies

E
((

vk
i,j

)2
(t)

) := uk
i,j (t) ≤ uk

i,j (0) − 2λψ

∫ t

0
uk

i,j (s) ds + dK2M2
i,j t
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and finally

(4.13) lim sup
t→+∞

uk
i,j (t) ≤ dK2M2

i,j

2λψ
.

It follows that

sup
t≥0

E
((

vk
i,j

)2
(t)

) ≤ N2
i,j < +∞.

Using what precedes, we also see that s �→ E((vk
i,j )

2(s)) is differentiable with

d

ds
E

((
vk
i,j

)2
(s)

) = −2λψE
((

vk
i,j

)2
(s)

) +E

(
d∑

l=1

(
σ

k,l
i,j

)2
(s)

)

which is bounded below by −2λψN2
i,j and bounded above by dM2

i,jK
2. Hence

we may use Lemma 3.3 in order to get the following.

LEMMA 4.3. Consider the system (4.1) under the assumption (H2-2). If for
all pair (i, j),

sup
t≥0

E
(∣∣xi(t) − xj (t)

∣∣2) ≤ M < +∞

then the system (4.1) is L2,2 flocking.

But we can go further. Indeed, in the situation of the previous lemma, we first
of all have

(4.14)

E
((

vk
i,j

)2
(0)

) +
∫ +∞

0
E

(
d∑

l=1

(
σ

k,l
i,j

)2
(s)

)
ds

= 2λψ

∫ +∞
0

E
((

vk
i,j

)2
(s)

)
ds < +∞.

On one hand, using lemma 3.2 again (it is easily seen that the assumptions are
satisfied) we thus obtain

(4.15) lim
t→+∞E

((
σ

k,l
i,j

)2
(t)

) = lim
t→+∞E

((
σk,l(xi(t)

) − σk,l(xj (t)
))2) = 0.

On the other hand, as before the martingale mk
i,j (t) = ∑d

l=1
∫ t

0 σ
k,l
i,j (s) dwl(s) con-

verges (as t → +∞) almost surely and in L
2 to a random variable mk

i,j such that

E
[
mk

i,j | Fk(t)
] = mk

i,j (t),

Fk(·) being the filtration of the Brownian motion w(·). Notice that

(4.16) mk
i,j (t) = (

λψxk
i,j (t) + vk

i,j (t)
) − (

λψxk
i,j (0) + vk

i,j (0)
)
.
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We deduce that xk
i (t) − xk

j (t) converges in Probability as t → +∞ to

1

λψ
mk

i,j +
((

xk
i (0) − xk

j (0)
) + 1

λψ

(
vk
i (0) − vk

j (0)
))

[since vk
i,j (t) goes to 0 in L

2 hence in Probability]. In addition,

(4.17) lim
t→+∞E

((
xk
i,j

)2
(t)

) = E

((
xk
i,j (0) + 1

λψ
vk
i,j (0)

)2)
+ 1

(λψ)2E
((

mk
i,j

)2)
.

It follows that the above convergence in Probability also holds in L
p for all p < 2.

Hence we have the following.

PROPOSITION 4.4. Consider the system (4.1) under the assumption (H2-2).
If for all pair (i, j),

sup
t≥0

E
(∣∣xi(t) − xj (t)

∣∣2) ≤ M < +∞

then the system (4.1) satisfies the following:

(1) it is L2,2 flocking,
(2) there exists some random vector x̂(∞) such that x̂(t) converges in L

p (p <

2) toward x̂(∞) as t → +∞.

REMARK 4.5. Notice that, according to (4.17), if limt→+∞E((xk
i,j )

2(t)) =
0, then 0 = λψxk

i,j (0) + vk
i,j (0) and mk

i,j = 0.

If mk
i,j = 0, then mk

i,j (t) = 0 for all t ≥ 0, so that

vk
i,j (t) = vk

i,j (0)e−λψt ; xk
i,j (t) = xk

i,j (0) + vk
i,j (0)

λψ

(
1 − e−λψt ).

So

0 = λψxk
i,j (0) + vk

i,j (0) = λψxk
i,j (t) + vk

i,j (t).

But, since mk
i,j (t) = 0 for all t , we also have for all l,

σk,l(xi(t)
) − σk,l(xj (t)

) = 0 for all t ≥ 0.

In particular, if σk,. : Rd �→ R
d is one to one, we get xi,j (t) = 0 for all t , hence

vi,j (t) = 0 for all t .

Let us illustrate the previous remark with a simple example.

EXAMPLE 4.6 (Almost affine diffusion coefficient). Assume that for some k,

σk(x) = Ax + B
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for some constant invertible matrix A and constant vector B . Then, if (4.12) is
satisfied for all pair (i, j), (4.15) yields

lim
t→+∞E

(∣∣xi(t) − xj (t)
∣∣2) = lim

t→+∞E(
∣∣A−1(

σk(xi(t)
) − σk(xj (t)

)∣∣2) = 0,

for all pair (i, j). According to the previous remark, the system is thus at equilib-
rium. Hence we have the following.

PROPOSITION 4.7. In addition to (H2-2), if for some k, σk(x) = Ax + B for
some constant invertible matrix A and constant vector B , the system (4.1) cannot
be strongly L2,2 swarming, except if it is at equilibrium (all coordinates are equal).

More generally, (almost) the same occurs if one of the σk (kth row of the matrix
σ ), in addition to be one to one, satisfies the following property: for a sequence
(x(n), y(n)), σk(x(n)) − σk(y(n)) → 0 implies x(n) − y(n) → 0.

To see it, recall that (4.15) implies that σk(xi(t)) − σk(xj (t)) → 0 in Probabil-
ity. Hence up to a subsequence tn we may assume that it converges almost surely,
so that xi(tn) − xj (tn) → 0 almost surely. But since xi(t) − xj (t) goes to some
xi,j (∞) as t → +∞ in Probability, we deduce that xi,j (∞) = 0. Using Lebesgue’s
bounded convergence theorem, we can thus deduce the following.

PROPOSITION 4.8. In addition to (H2-2), assume that for some k, σk is one to
one and satisfies (H2-21): for a sequence (x(n), y(n)), σk(x(n)) − σk(y(n)) → 0
implies x(n) − y(n) → 0.

Then if the system (4.1) is uniformly L
2,2 swarming [i.e., maxi,j supt≥0 |xi(t) −

xj (t)| = M ∈ L
2], the system (4.1) is at equilibrium (all coordinates are equal).

The latter statement can be extended: if, for instance, σk(x(n))−σk(y(n)) → 0
only implies xk(n)−yk(n) → 0, then the conclusion of the proposition is still true
provided the previous property is satisfied for all k.

The previous assumptions on σ imply in a sense that it cannot be bounded.
Indeed for d = 1, a smooth one to one function from R to R which is bounded,
admits a limit at infinity, and thus cannot satisfy (H2-21). The typical example
of smooth bounded (and presumably interesting from a physical point of view)
function is the case of periodic functions we shall look at now.

EXAMPLE 4.9 (Periodic diffusion coefficient). Assume now that σ is T -
periodic. For x ∈ R

d , we denote x̃ the unique vector in [0, T [d such that xk − x̃k

belongs to TZ for all k = 1, . . . , d . By T -periodic we mean that σ(x) = σ(x̃).
We shall introduce a new “one to one” assumption:
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(H2-22) The set

N = {
z̃ = x̃ − ỹ such that for all (k, l), σ k,l(x) − σk,l(y)

}
is reduced to {0}.

For instance, if d = 2, the matrix

σ
(
x1, x2) =

(
sin

(
x1)

cos
(
x2)

cos
(
x1)

sin
(
x2)

)

satisfies (H2-22) with T = 2π . The matrix

σ
(
x1, x2) =

(
sin

(
x1)

cos
(
x1)

cos
(
x2)

sin
(
x2)

)

also does, but this case reduces after an immediate change of Brownian motion, to
the case of a constant diffusion coefficient.

If the system is strongly L
2,2 swarming, we can as in the previous example, find

some sequence tn such that for all (k, l), σk,l(x̃i(tn)) − σk,l(x̃j (tn)) → 0 almost
surely. According to Proposition 4.4, xi(t) − xj (t) goes to xi,j (∞) in probability,
so that taking a subsequence of tn if necessary (we still denote by tn), we may
assume that the convergence is almost sure. It follows that x̃i(tn) − x̃j (tn) goes
almost surely to x̃i,j (∞).

Thanks to compactness, we have that for each ω for which both previous con-
vergences hold, extracting another subsequence if necessary both x̃i (t

′
n,ω) and

x̃j (t
′
n,ω) converge to limits x̃i(∞,ω) and x̃j (∞,ω), for which, using the continu-

ity of σ , it holds that σk,l(x̃i(∞,ω))−σk,l(x̃j (∞,ω)) = 0. If (H2-22) is satisfied,
we deduce that x̃i(∞,ω) − x̃j (∞,ω) = 0, i.e. x̃i,j (∞,ω) = 0 for almost all ω. It
means that xi,j (∞) is a random variable taking its values in (TZ)d .

The key point now is the following: if we add to x(0) any L
2 random vec-

tor whose coordinates belong to (TZ)d , we do not change the dynamics of the
v(·). Hence, replacing all xi(0) by x′

i (0) = xi(0) + x1,i (∞) (for i > 1), we do
not change the dynamics of the vi , we do not change the strong swarming prop-
erty, nor the uniform swarming property, and we get in the limit x′

1,i (∞) = 0,
hence for all (i, j), x′

i,j (∞) = 0. But now we may use remark (4.5), periodic-
ity and (H2-22) to conclude that all x′

i,j (·) and all vi,j (·) are equal to 0 as soon

as limt→+∞E(((x′)ki,j (t))2) = 0, which is satisfied, thanks to Lebesgue bounded

convergence theorem as soon as the system is uniformly L
2,2 swarming. Notice

that now any random vector (v, x) = (0, x) which x taking values in (TZ)dN is an
equilibrium. We thus have the following.

PROPOSITION 4.10. In addition to (H2-2), assume that σ is T -periodic and
satisfies (H2-22).
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Then if the system (4.1) is uniformly L
2,2 swarming [i.e., maxi,j supt≥0 |xi(t) −

xj (t)| = M ∈ L
2], the system (4.1) is at equilibrium [all velocities are equal and

the differences between the positions belong to (TZ)d ].

Hence in all situations we are able to handle, uniform swarming does not oc-
cur, unless the system is at equilibrium, telling us that for a random environment
depending on the positions only, it seems difficult to swarm out of equilibrium.

5. A general form of (1.7) for constant communication rates. We have al-
ready seen that the particular form (1.8) of (1.7) with constant communication
rate is a particular case of (1.6). Also notice that, still for constant communication
rate, when wi,j = wi for all j , the wi being independent, and σi,j = σiψi,j , we
recognize (1.9). We shall now look at another case, namely
(5.1)

dvi(t) = −λψ

N

N∑
j=1

(
vi(t) − vj (t)

)
dt + 1

N

N∑
j=1

σij (t)
(
vi(t) − vj (t)

)
dwi,j (t),

where the wij are d-dimensional noises [here, vw is the vector such that each
coordinate (vw)k is given by vkwk]. We shall assume that

(5.2) σij = σji, wi,j = wj,i and (wi,j )i<j are independent.

The meaning of these assumptions seems a little bit more natural that for the (1.9)
model: each pair of individuals (i, j) are interacting symmetrically with a con-
stant communication rate which is perturbed by some noise (we may include ψ

in the σij ), all the interaction noises being independent. Since we are speaking of
constant communication rate, we shall also assume that the σij are constant (more
general situations will be discussed in the next section).

As we did before, we shall look at vi,j = vi − vj which solves

dvi,j (t) = −λψvi,j (t) dt + 1

N

N∑
l=1

σilvi,l(t) dwi,l(t)

− 1

N

N∑
m=1

σjmvj,m(t) dwj,m(t).

As before, we can look separately at each coordinate (vk, xk). For the sake of
simplicity, we skip the superscript k in the sequel, or if one prefers we take d = 1.

Hence if we define z(t) = ∑
1≤i,j≤N(vi,j )

2(t) [we skip the 2N in (3.1)], we
have (being careful with the indices for which the Brownian motions are indepen-
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dent on one hand or the same on the other hand)

dz(t) = −2λψz(t) dt + 4

N

N∑
i,j,l=1

σilvi,l(t)vi,j (t) dwi,l(t)

+ 2

N2

(
N∑

i,j,l=1

σ 2
ilv

2
i,l(t) +

N∑
i,j=1

σ 2
ij v

2
i,j (t)

)
dt

= −2λψz(t) dt + 4
N∑

i,l=1

σilvi,l(t)v̂i(t) dwi,l(t)

+ 2(N + 1)

N2

(
N∑

i,j=1

σ 2
ij v

2
i,j (t)

)
dt.

It follows

u(t) := E
(
z(t)

)

= u(0) − 2λψ

∫ t

0
u(s) ds + 2(N + 1)

N2

∫ t

0

(
N∑

i,j=1

σ 2
ijE

(
v2
i,j (s)

))
ds,

from which we deduce(
(N + 1)

N2 min
i,j

σ 2
ij − λψ

)∫ t

0
u(s) ds ≤ u(t) − u(0)

2

≤ −
(
λψ − (N + 1)

N2 max
i,j

σ 2
ij

)∫ t

0
u(s) ds.

The latter furnishes conditions for L2,2 flocking or nonflocking.
For almost sure flocking, we may consider as we did before ln(z(t)) which

solves

d(ln
(
z(t)

) = −2λψdt + 4
N∑

i,l=1

(σilvi,l v̂i)(t)

z(t)
dwi,l(t)

+ 2(N + 1)

N2

N∑
i,l=1

(σ 2
ilv

2
i,l)(t)

z(t)
dt − 4

N∑
i,l=1

(σ 2
ilv

4
i,l)(t)

z2(t)
dt.

The nonconstant part of the drift term can be rewritten

A(t) = 2

z2(t)

(
N + 1

N

[
N∑

i,l=1

(
σ 2

ilv
2
i,l

)
(t)

][
1

N

N∑
i,l=1

(
v2
i,l

)
(t)

]
− 2

N∑
i,l=1

(
σ 2

ilv
4
i,l

)
(t)

)
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so that using again
∑N

i=1 β4
i ≥ 1

N
(
∑N

i=1 β2
i )2 we get

A(t) ≤ 2

N

(
N + 1

N
max
i,j

σ 2
ij − 2 min

i,j
σ 2

ij

)
.

Now we may argue as in the previous section. We have thus obtained the following.

THEOREM 5.1. Consider the system (5.1), under the Assumption (5.2) and
with constant σij . Then:

(1) If λψ > N+1
N2 maxi,j σ 2

ij the system is L2,2 flocking.

(2) If λψ < N+1
N2 mini,j σ 2

ij the system is not L2 flocking.

(3) If λψ − 1
N

(N+1
N

maxi,j σ 2
ij − 2 mini,j σ 2

ij ) > 0, the system is almost surely
flocking. In particular if σij = σ for all pair (i, j), the system is always almost
surely flocking.

Notice that the flocking properties are still the same if we consider bounded
processes σij (·) instead of constants. Also note that we could improve the bounds
for almost sure flocking by using a more accurate comparison between

∑
σ 2

ilv
2
i,l

and
∑

v2
i,l , but the present statement is easier.

REMARK 5.2. If we compare with (1.7) in his (1.8) version, the correspon-
dence is σ̄ = σ

N
. The comparison for flocking is thus between λψ and σ 2/N2 and

not with σ/N . Of course, this is simply the observation that the variance of the
noise is of order 1/N2 in (1.8) while it is of order 1/N here.

6. General communication rate. Since we are mainly interested in flocking
or swarming properties, we shall only consider models for which such properties
may hold for constant communication rate. [12] contains information on (1.5) for
which it is possible to show the existence of stationary solutions (using Itô–Nisio
theory for stochastic delayed equations) as well as propagation of chaos when
N grows to infinity (also see [2] for this latter point). If we consider models for
random environment, we will only look at the case where the environment depends
on the velocity only. Hence we will focus on two type of systems.

First, noisy communication rates, that is,

(6.1)

dvi(t) = − λ

N

N∑
j=1

ψij (t)
(
vi(t) − vj (t)

)
dt

+ 1

N

N∑
j=1

σij (t)
(
vi(t) − vj (t)

)
dwi,j (t),

where the wij are d-dimensional noises [again vw is the vector such that each
coordinate (vw)k is given by vkwk], wi,j = wj,i and the (wi,j )i<j are independent
Brownian motions.
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Next, noisy environment

(6.2) dvi(t) = − λ

N

N∑
j=1

ψij (t)
(
vi(t) − vj (t)

)
dt + σ

(
vi(t)

)
dw(t),

where w is a d-dimensional Brownian motion.

6.1. Study of (6.2). Consider the model given by (6.2). We shall introduce
assumptions ensuring first existence and uniqueness.

PROPOSITION 6.1. Assume that:

(1) The processes ψij (t) can be written ψij (t) = ψij (v(t), x(t)), where all the
functions ψij are locally Lipschitz, nonnegative and satisfy ψij = ψji ,

(2) σ satisfies (H2-1), that is, is globally K-Lipschitz or σ is locally Lipschitz
and bounded.

Then, for all initial state (v(0), x(0)) ∈ L
2 the system (6.2) admits a unique non-

explosive (global) strong solution.

PROOF. Existence of a unique local strong solution is immediate thanks to our
assumptions. The only thing to prove is that it is global. Actually it is enough to
show that v(·) does not explode and to this end, as usual, it is enough to show that
for all t ≥ 0,

sup
R>0

E
(∣∣v(t ∧ TR)

∣∣2)
< +∞,

where TR denotes the first (stopping) time |v(·)| hits the value R. Defining V (·) =
|v(·)|2 we have, using Itô’s formula and (3.3), that for t ≤ TR ,

dV (t) = − λ

N

∑
1≤i,j≤N

ψij (t)
∣∣vi(t) − vj (t)

∣∣2 dt

+
N∑

i=1

Trace
(
σ

(
vi(t)

)
σ ∗(

vi(t)
))

dt

+ 2

(
N∑

i=1

v∗
i (t)σ

(
vi(t)

))
dw(t),

where a∗ denotes the transposed of the vector (or the matrix) a. When σ is K-
Lipschitz, |σk,l(vi)| ≤ K|vi | + c for all (k, l), so that

E
(∣∣v(t ∧ TR)

∣∣2) ≤ E
(∣∣v(0)

∣∣2) + C(N)

(∫ t

0
KE

(∣∣v(s ∧ TR)
∣∣2)

ds + ct

)
,

and the result follows using Gronwall’s lemma. When σ is bounded the result is
immediate. �
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REMARK 6.2. It is worth noticing that if vi(0) = v̄(0) for all i, the unique
solution of (6.2) is given by vi(t) = v̄(t), xi(t) = xi(0) + ∫ t

0 v̄(s) ds, where v̄(·)
solves

dv̄(t) = σ
(
v̄(t)

)
dw(t).

This is in full generality the only dynamic equilibrium of the system.

We consider again

z(t) =
N∑

i=1

∣∣vi(t) − v̄(t)
∣∣2 = 1

2N

∑
1≤i,j≤N

∣∣vi(t) − vj (t)
∣∣2.

Using this time (3.1), Itô’s formula and (3.3), we obtain

dz(t) = − λ

N

∑
1≤i,j≤N

ψij (t)
∣∣vi(t) − vj (t)

∣∣2 dt

+
N∑

i=1

Trace
(
σ

(
vi(t)

)
σ ∗(

vi(t)
))

dt

− N Trace

((
1

N

N∑
i=1

σ
(
vi(t)

))(
1

N

N∑
i=1

σ ∗(
vi(t)

)))
dt

+ 2

(
N∑

i=1

v̂∗
i (t)σ

(
vi(t)

))
dw(t),

[recall that a∗ denotes the transposed of the vector (or the matrix) a]. But since∑
i v̂i = 0, we may replace σ(vi) by σ(vi) − σ(v̄) in the martingale term. After

simple manipulations, it follows

dz(t) = − λ

N

∑
1≤i,j≤N

ψij (t)
∣∣vi(t) − vj (t)

∣∣2 dt

+ 2

(
N∑

i=1

v̂∗
i (t)

(
σ

(
vi(t)

) − σ
(
v̄(t)

)))
dw(t)

+ 1

2N
Trace

( ∑
1≤i,j≤N

(
σ

(
vi(t)

)

− σ
(
vj (t)

))(
σ ∗(

vi(t)
) − σ ∗(

vj (t)
)))

dt,

(6.3)
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and

d(ln z)(t)

= − λ

N

∑
1≤i,j≤N

ψij (t)
|vi(t) − vj (t)|2

z(t)
dt

+ 2

(
N∑

i=1

v̂∗
i (t)(σ (vi(t)) − σ(v̄(t)))

z(t)

)
dw(t)

+ 1

2N

× Trace
( ∑

1≤i,j≤N

(σ(vi(t)) − σ(vj (t)))(σ
∗(vi(t)) − σ ∗(vj (t)))

z(t)

)
dt

− 2
|∑N

i=1 v̂∗
i (t)(σ (vi(t)) − σ(v̄(t)))|2

z2(t)
dt.

(6.4)

Of course, except for the part of the drift involving the ψij ’s, these expressions are
exactly the same as in Section 4.1 (in a more compact form). Hence we know how
to manage each term except this part of the drift. But of course if we define

(6.5) ψmin = inf
i,j,v,x

ψi,j (v, x) and ψmax = sup
i,j,v,x

ψi,j (v, x),

we may write, on one hand

E
(
z(t)

) ≤ E
(
z(0)

) − 2λψmin

∫ t

0
E

(
z(s)

)
ds

+ 1

2N

∫ t

0
Trace

( ∑
1≤i,j≤N

(
σ

(
vi(s)

)

− σ
(
vj (s)

))(
σ ∗(

vi(s)
) − σ ∗(

vj (s)
)))

ds

and on the other hand

E
(
z(t)

) ≥ E
(
z(0)

) − 2λψmax

∫ t

0
E

(
z(s)

)
ds

+ 1

2N

∫ t

0
Trace

( ∑
1≤i,j≤N

(
σ

(
vi(s)

)

− σ
(
vj (s)

))(
σ ∗(

vi(s)
) − σ ∗(

vj (s)
)))

ds,

so that we may argue exactly as in Section 4.1 to study L
2 flocking or nonflocking.

Similarly, we can get an upper bound for ln(z(t)) replacing all ψij (t) by ψmin,
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and a lower bound if σ is diagonal with linear diagonal terms as in (1.6), and argue
exactly as in Section 4.1 and Theorem 2.1(2) in order to study almost sure flocking.
This yields the following two results.

THEOREM 6.3. Assume that ψij (t) = ψij (v(t), x(t)) where all the functions
ψij are locally Lipschitz, nonnegative and satisfy ψij = ψji , and that σ satisfies
(H2-1), that is, is globally K-Lipschitz. Define ψmin and ψmax as in (6.5). Then:

(1) If 2λψmin > 4K2d2, the system (6.2) is almost surely and L
2,2 flocking.

When σ is diagonal we may replace d2 by d , if in addition the diagonal term
σk,k(v) = σk,k(vk) we may replace d by 1.

(2) If σ is diagonal with linear entries, that is, σk,k(v) = D(vk −vk
e ), the system

is always almost surely flocking provided D 	= 0.
If 2λψmax ≤ D2, the system is not L2 flocking.

For (2), just remark that, when σ is diagonal with linear entries, it holds

Trace
( ∑

1≤i,j≤N

(σ(vi(t)) − σ(vj (t)))(σ
∗(vi(t)) − σ ∗(vj (t)))

z(t)

)

− 2
|∑N

i=1 v̂∗
i (t)(σ (vi(t)) − σ(v̄(t)))|2

z2(t)
≤ −D2,

so that we get almost sure flocking [looking at ln(z(t))] as soon as D 	= 0.
For the L

2 nonflocking property it is enough to look at the lower bound for
E(z(t)) since the second integral is explicit for this σ .

REMARK 6.4. Since for positive constant communication rate the determin-
istic Cucker–Smale is always flocking, the introduction of noises in the previous
section only introduced in some cases new (L2) nonflocking properties.

But here, for linear σ we obtain, whatever ψ and the initial condition are, almost
sure flocking, so that this time the noise can help to (almost surely) flock, since for
the classical communication rate (1.2), we only know that flocking holds true for
some initial conditions in the deterministic case (D = 0) when r > 1

2 .

Comparing swarming and flocking is also easy. Indeed, when (3.7) is satisfied,
if the process is L2,2 swarming, the local martingale term of 〈xij , vij 〉, given by∫ t

0

(
x∗
i (s) − x∗

j (s)
)(

σ
(
vi(s)

) − σ
(
vj (s)

))
dw(s)

is a true L
2 martingale once σ is globally Lipschitz (recall that swarming means

boundedness for both the expectations of |vi − vj |2 and |xi − xj |2). In addition, it
is easily seen that, if ψ is bounded, condition (2) in Lemma 3.3 is satisfied under
the L2,2 swarming assumption [recall that this assumption includes supt E(|vi(t)−
vj (t)|2) < +∞]. Hence we have the following.
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PROPOSITION 6.5. In the situation of Theorem 6.3, assume that (3.7) is sat-
isfied and that ψ is bounded. Then L

2,2 swarming implies L2,2 flocking.

Of course, (1) in Theorem 6.3 is not fully satisfactory, since it is reasonable to
consider models where the communication rate decays with the distance between
particles as in (1.2). Let us consider such cases assuming that (3.7) is in force.
Define

(6.6) ψl(r) = min
0≤u≤r

ψ(u),

and

(6.7) Tr = inf
{
s ≥ 0;max

i,j

∣∣xi(s) − xj (s)
∣∣ ≥ r

}
.

REMARK 6.6 (Back to the deterministic model). Assume that σ = 0, hence
consider the deterministic model. First of all dz(t) ≤ 0, so that z(t) ≤ z(0), that
is, for all (i, j), supt |vi(t) − vj (t)| < +∞. Hence, according to Proposition 6.5
(where one can forget all the expectations and squares), the process is flocking as
soon as supt |xi(t) − xj (t)| < +∞ for all (i, j). But for t ≤ Tr ,

dz(t) ≤ −2λψl

(
r2)

z(t)

so that z(t) ≤ z(0)e−2λψl(r
2)t and

∣∣xi(t) − xj (t)
∣∣ ≤ ∣∣xi(0) − xj (0)

∣∣ + ∫ t

0

∣∣vi(s) − vj (s)
∣∣ds

≤ ∣∣xi(0) − xj (0)
∣∣ + ∫ t

0
z

1
2 (s) ds

≤ ∣∣xi(0) − xj (0)
∣∣ + z

1
2 (0)

λψl(r2)

(
1 − e−λψl(r

2)t ),
that is, for all (i, j),

(6.8) sup
t≤Tr

∣∣xi(t) − xj (t)
∣∣ ≤ ∣∣xi(0) − xj (0)

∣∣ + z
1
2 (0)

λψl(r2)
.

In particular, if for all (i, j), |xi(0) − xj (0)| + z
1
2 (0)

λψl(r
2)

< r then Tr = +∞ and the
system is flocking.

Choosing r0 = maxi,j |xi(0) − xj (0)| and some C > 1, it is thus enough that

(6.9) z
1
2 (0) ≤ λr0(C − 1)ψl

(
C2r2

0
)
.

We recover that if the decay to 0 of ψl(r) is (strictly) slower than r− 1
2 , the system

is flocking for all initial conditions (we may let C go to infinity), while if it is
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faster, one has to choose the initial conditions in such a way that (6.9) (where one
can optimize in C) is satisfied. Note that we are far from the optimal conditions,
but the previous approach is completely elementary.

In the stochastic case, for t < Tr (which is now a random stopping time), we
have (a.s.)

(6.10) ln
(
z(t)

) − ln
(
z(0)

) ≤ −(
2λψl

(
r2) − 4K2d2)

t + ln
(
N(t)

)
,

where

Nt = eM(t)− 1
2 〈M〉(t)

and M. is a martingale whose bracket satisfies 〈M〉(t) = ∫ t
0 α(s) ds with |α(t)| ≤

4K2. Remark that the remaining stochastic term is the logarithm of an exponential
(true) martingale.

Of course, if

(6.11) θ(r,K) = 2λψl

(
r2) − 4K2d2 > 0,

(6.10) shows that z(t) → 0 as t → +∞ almost surely on the set {Tr = +∞}. To
understand the behavior of Tr , write∣∣xi(t ∧ Tr) − xj (t ∧ Tr)

∣∣
≤ ∣∣xi(0) − xj (0)

∣∣ + z
1
2 (0)

∫ t

0
e−(λψl(r

2)−2K2d2)sN
1
2 (s)1s<Tr ds.

What we have to do is to control the almost sure behavior of N(t). To this end,
we first prove a lemma.

LEMMA 6.7. Let M(t) be a martingale satisfying 〈M〉(t) ≤ Ct . Define

S(a, b) = inf
{
t ≥ 0,M(t) − b〈M〉(t) ≥ a

}
.

Then

P
(
S(a, b) < +∞) ≤ e−2ab.

PROOF. We know that under our assumptions, for all η > 0, eηM(t)− η2

2 〈M〉(t)
is a martingale. Hence

E
(
eηM(t∧S(a,b))− η2

2 〈M〉(t∧S(a,b))) = 1.

Choose η = 2b. This yields

E
(
1S(a,b)<+∞e2bM(t∧S(a,b))−2b2〈M〉(t∧S(a,b))) ≤ 1.

Using the Lebesgue bounded convergence theorem, we may let t go to infinity and
obtain the desired result. �
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REMARK 6.8. If M is a standard Brownian motion, it is known that the in-
equality is an equality.

We deduce from this lemma, that with probability larger than 1 − e−2ab,

N(t) ≤ ea+(b− 1
2 )〈M〉(t) ≤ ea+4(b− 1

2 )K2t ,

so that ∣∣xi(s ∧ Tr) − xj (s ∧ Tr)
∣∣

≤ ∣∣xi(0) − xj (0)
∣∣ + z

1
2 (0)e

a
2

λψl(r2) − 2K2d2 − 2K2(b − 1
2)

,

provided λψl(r
2) > 2K2d2 + 2K2(b − 1

2).
Thus, on {S(a, b) = +∞} we may let s go to infinity and get that on {Tr <

+∞},

(6.12) r ≤ ∣∣xi(0) − xj (0)
∣∣ + z

1
2 (0)e

a
2

λψl(r2) − 2K2d2 − 2K2(b − 1
2)

,

which is no more random. Hence, if (6.12) is not satisfied, we have

P
(
Tr = +∞, S(a, b) = +∞) ≥ 1 − e−2ab.

We have thus obtained:

THEOREM 6.9. In the situation of Theorem 6.3, assume in addition that (3.7)
is in force. Let r > 0. Let a, b > 0. Assume that:

• λψl(r
2) > 2K2(d2 + (b − 1

2)) where ψl is defined in (6.6),
• the initial condition satisfies, for all (i, j),

∣∣xi(0) − xj (0)
∣∣ + z

1
2 (0)e

a
2

λψl(r2) − 2K2(d2 + (b − 1
2))

< r,

where z(0) = ∑N
k=1 |vk(0) − v̄(0)|2.

Then the system (6.2) is flocking with a probability larger than 1 − e−2ab.

REMARK 6.10. Note that, as in Theorem 6.3, when σ is diagonal, we may
replace condition λψl(r

2) > 2K2(d2 +(b− 1
2)) by λψl(r

2) > 2K2(d +(b− 1
2)). If

in addition the diagonal term σk,k(v) = σk,k(vk), we may replace it by λψl(r
2) >

2K2(1 + (b − 1
2)).

The previous result is apparently the first one dealing with “conditional flock-
ing” (i.e., flocking for a subset of initial conditions) in a stochastic context (the
results in [3] have some similarities but are actually different since they deal with
approximate flocking before some stopping time).
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REMARK 6.11. Remark that when K = 0 corresponding to a constant σ , we
may take any b going to infinity and a going to 0 so that ba goes to infinity.
We thus obtain almost sure flocking under the same initial conditions than for
the deterministic result [in particular for any initial condition if rψl(r

2) → +∞
as r → +∞]. This is not surprising since the microscopic variables satisfy the
deterministic system of differential equations. Only the center of mass is driven by
some Brownian motion.

Also notice that when ψl is bounded from below, we recover the almost sure
statement in Theorem 6.3, taking b = 1

2 , r = +∞ and finally letting a go to infin-
ity.

Finally, remark that on Tr = +∞, ψl is bounded from below by ψl(r
2), so that

according to (6.10) and the law of large numbers for the martingale Nt , z(t) goes
to 0 at an exponential (random) rate [depending on supt (Nt/t)], or if one prefers,
for any κ < λψl(r

2) − 2K2d2, there exists a random time τκ such that for t > τκ

the decay of z(t) to 0 is at least Ce−κ(t−τκ ). τκ is simply the last time Nt/t is
bigger than λψl(r

2) − 2K2d2 − κ .

6.2. Study of (6.1). Let us turn to (6.1). Looking at the calculations (5.3) we
see that we can mimic what we have just done with the following main modifica-
tions: replace 4K2d2 by 2(N+1)

N2 maxi,j ‖σ 2
i,j‖∞ and for the variance of the martin-

gale part 4K2 by 4 maxi,j ‖σ 2
i,j‖∞. In the very particular case where for all (i, j),

σij = σ for some constant σ , we can argue as in Theorem 5.1 (3).
Hence we only state a general result whose proof is left to the reader.

THEOREM 6.12. Consider (6.1). Assume that the processes ψij (t) = ψij (v(t),

x(t)) where all the functions ψij are locally Lipschitz, nonnegative and satisfy
ψij = ψji , that the processes σi,j (t) = σi,j (x(t), v(t)) where all the functions σij

are locally Lipschitz, bounded and satisfy σij = σji . Define ψmin and ψmax as in
(6.5). Then:

(1) for all initial state (v(0), x(0)) ∈ L
2 the system admits a unique nonexplo-

sive (global) strong solution.
(2) If λψmin > N+1

N2 maxi,j ‖σ 2
i,j‖∞ the system is L2,2 flocking.

(3) If λψmax < N+1
N2 mini,j inft≥0 σ 2

i,j (t) then the system is not L2 flocking.

(4) If λψmin > N+1
N2 maxi,j ‖σ 2

i,j‖∞ − 2
N

mini,j ‖σ 2
i,j‖∞ the system is almost

surely flocking.
(5) If σij = σ for all pair (i, j) and some constant σ , the system is always

almost surely flocking, whatever ψ is.

Assume in addition that ψ satisfies (3.7). Then:

(6) if ψ is bounded, L2,2 swarming implies L2,2 flocking.
(7) Let r > 0, a, b > 0. Assume that
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(a)

λψl

(
r2)

>

(
2b + N + 1

N2

)
max
i,j

∥∥σ 2
i,j

∥∥∞ − 2

N
min
i,j

inf
t≥0

σ 2
i,j (t),

where ψl is defined in (6.6),
(b) the initial condition satisfies, for all (i, j),

∣∣xi(0) − xj (0)
∣∣ + z

1
2 (0)e

a
2

A + B
< r,

where

z(0) =
N∑

k=1

∣∣vk(0) − v̄(0)
∣∣2,

A = λψl

(
r2) −

(
2b + N + 1

N2

)
max
i,j

∥∥σ 2
i,j

∥∥∞,

B = 2

N
min
i,j

inf
t≥0

σ 2
i,j (t).

Then the system is flocking with a probability larger than 1 − e−2ab.

Once again when σ goes uniformly to 0 we recover the deterministic situation
just by choosing a and b in an appropriate way.

6.3. A simple example with N = 2 for (6.2). The reader certainly remarked
that, when σ is constant in (6.2), changing v(t) into v(t) − σw(t), the system
obeys the deterministic dynamics (this is the favorite random situation for the non-
probabilists). Hence in this situation, conditional flocking or nonflocking holds
with probability 1, depending on the deterministic behavior.

It should be interesting to exhibit an example (even with two particles) where
almost sure flocking holds with a strictly positive probability strictly less than 1.
This seems to be a hard task. However, we shall study in details simple examples
to better understand what happens. For reasons, we shall explain later, we shall
consider the case N = 2 and d = 1.

6.3.1. An explicit deterministic example. Take N = 2, d = 1 and look at the
deterministic system

dv1(t) = −2
v1(t) − v2(t)

1 + |x1(t) − x2(t)|2 dt,

dv2(t) = −2
v2(t) − v1(t)

1 + |x1(t) − x2(t)|2 dt,
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with an initial condition v1(0) = −v2(0), x1(0) = −x2(0). The unique solution
satisfies v1(t) = −v2(t), x1(t) = −x2(t) and the difference v(t) = v1(t) − v2(t) =
2v1(t) satisfies

dv(t) = − v(t)

1 + |x(t)|2 dt

so that

v(t) − v(0) = arctan
(
x(0)

) − arctan
(
x(t)

)
and

x(t) − x(0) =
∫ t

0

(
v(0) + arctan

(
x(0)

) − arctan
(
x(s)

))
ds.

We confess that we do not know how to solve the O.D.E.

x′(t) = c − arctan
(
x(t)

)
.

Nevertheless, we can study the qualitative behavior of the system. Indeed one can
notice the following points:

1. if v(0) = 0, the unique solution is v(t) = 0 and x(t) = x(0).
2. It follows that if v(0) ≥ 0, then the solution v(t) ≥ 0 for all t ≥ 0. Indeed if

v(·) reaches 0 then it is sticked at 0 according to the previous point.
If one prefers, one can also write

v(t) = v(0)e
− ∫ t

0
ds

1+|x(s)|2 ≥ v(0)e−t .

Hence x(·) is nondecreasing, so that assuming that x(0) ≥ 0, then limt→+∞ x(t) =
x(∞) ≤ +∞.

Now consider a solution such that x(0) = 0 (for simplicity) and v(0) ≥ 0. If
x(∞) < +∞, since x(t) ≤ x(∞), (v)′(t) ≤ − v(t)

1+|x(∞)|2 so that v(t) → 0 as
t → +∞ at an exponential rate. Thus, 0 = v(0) − arctan(x(∞)) by letting t go to
infinity. Similarly, if x(∞) = +∞, limt→+∞ v(t) = v(0) − π

2 ≥ 0 since v(t) ≥ 0.
Hence:

1. if x(0) = 0 and 0 ≤ v(0) < π
2 , x(∞) < +∞ so that v(t) → 0 and x(t) →

tan(v(0)), the system is flocking,
2. if x(0) = 0 and v(0) ≥ π

2 , x(t) → +∞ and v(t) → v(0) − π
2 , so that the

system is not flocking.

6.3.2. Back to the stochastic model. Consider the general case with ψ satis-
fying (3.7). If we add a stochastic term such that σ(−v) = −σ(v) (assuming as
before that σ is K-Lipschitz), we still have v1(t) = −v2(t), x1(t) = −x2(t) and
the difference v(t) satisfies

dv(t) = −ψ
(∣∣x(t)

∣∣2)
v(t) dt + 2σ

(
v(t)

2

)
dw(t).
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Again the unique solution starting from v(0) = 0 and x(0) is v(t) = 0, x(t) = x(0),
so that using the Markov property, if v(0) ≥ 0, v(t) ≥ 0 for all t ≥ 0. For simplicity
again, we assume that x(0) = 0 and v(0) > 0.

Hence, up to the first time v(·) reaches 0 (and then is sticked at 0) we may write

(6.13)

d
(
ln

(
v(t)

)) = −ψ
(∣∣x(t)

∣∣2)
dt

− 2
σ 2(v(t)/2)

v2(t)
dt + 2

σ(v(t)/2)

v(t)
dw(t).

Here again, we have

(6.14) v(t) = v(0)e− ∫ t
0 ψ(|x(s)|2) dseN(t)− 1

2 〈N〉(t),

where N(·) is a L
2 martingale, so that v(·) does not hit 0 in finite time a.s. But

this representation allows us to obtain more information. Indeed Lemma 6.7 tells
us that for any a > 0,

P

(
sup
t≥0

(
N(t) − 1

2
〈N〉(t)

)
≥ a

)
≤ e−a.

Hence

(6.15)

P

(
lim sup
t→+∞

v(t) = +∞
)

≤ P

(
lim sup
t→+∞

(
N(t) − 1

2
〈N〉(t)

)
= +∞

)
= 0.

We know that the martingale term in (6.13) satisfies almost surely,

lim
t→+∞

1

t

∫ t

0

σ(v(s)/2)

v(s)
dw(s) = 0.

Assume that

σ is of class C1 with a bounded derivative,

σ ′(0) > 0, and σ(v) > 0 for all v > 0.
(6.16)

As a consequence,

inf
0≤v≤a

σ (v)

v
= σmin(a) > 0.

Notice that (6.16) is satisfied in particular if σ(v) ≥ Cv for some C > 0 and all
v ≥ 0, which is nothing else than a simple extension of the linear case, since in this
case, for v ≥ 0, Cv ≤ σ(v) ≤ Kv.

Now for almost all given ω, lim supv(t)(ω) = vmax(ω) < +∞, so that

(6.17)
1

t

∫ t

0

σ 2(v(s)(ω)/2)

v2(s)(ω)
ds ≥ 1

4
σ 2

min
(
vmax(ω)/2

)
.
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It follows that ln(v(t)) → −∞, that is, v(t) → 0, and that the latter convergence

is exponential (at least e− 1
2 σ 2

min(v
2
max(ω)/2)t ), so that x(t) is almost surely bounded,

and the system is almost surely flocking. We have proved the following.

PROPOSITION 6.13. Consider (6.2) for N = 2, d = 1 with σ(v) = −σ(−v),
and assume that (3.7) and (6.16) are satisfied. Then the system is always almost
surely flocking.

REMARK 6.14. (1) In the previous proof, since we know that v(t) goes to 0,
using L’Hospital’s and Cesaro’s rules, we obtain

lim
t→+∞

1

t

∫ t

0
2
σ 2(v(s)/2)

v2(s)
ds = 1

2

(
σ ′(0)

)2
,

which is no more random. But one has to be careful because this limit is not uni-
form in ω.

(2) Of course, what we have just done is to show (exponential) stability for
some stochastic differential equation. Indeed, since we are in dimension 1 and the
interaction term is nonpositive, we know that v(t) ≤ u(t) where u(·) solves

du(t) = σ
(
u(t)

)
dw(t).

Our proof shows that u(t) → 0 at an exponential rate almost surely.
(3) Assume that σ is compactly supported, say by [−M,M]. Thus, (6.16) is not

fulfilled. Take ψ(u) = 1
1+u2 . If v(0) > M + π

2 , then v(·) behaves like the deter-
ministic model (hence stays larger than M) and does not flock. Hence in (6.16) the
behavior of σ(v)/v near the origin is not sufficient to control flocking.

(4) However, if we only skip the assumption σ ′(0) > 0 in (6.16) and replace it
by σ ′(0) = 0, the previous proof shows that lim inft→+∞ v(t) = 0. Indeed if not
we get again a lower bound as in (6.17), by taking the minimum of σ(v/2)/v on
the interval [vmin = lim infv(t), vmax = lim supv(t)].

Is it possible to get flocking while the process u(·) in (2) does not flock, that is,
to get an example where the interaction ψ really does matter? Here is almost one.

Choose

σ(v/2) = v
3
2

1 + v2 .

Then if 0 ≤ v ≤ vmax,

v

(1 + v2
max)

2 ≤ σ 2(v
2 )

v2 ≤ v.

Hence, since vmax = lim supv(t) < +∞ almost surely, if
∫ +∞

0
σ 2(v(s)/2)

v2(s)
ds < +∞

(resp., = +∞), supt x(t) ≤ ∫ +∞
0 v(s) ds < +∞ (resp. = +∞) almost surely, so
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that in all cases ∫ +∞
0

(
ψ

(∣∣x(t)
∣∣2) + 2

σ 2(v(t)/2)

v2(t)

)
dt = +∞.

Come back to the expression (6.14). We know that eN(t)− 1
2 〈N〉(t) is almost surely

finite, so that if
∫ +∞

0 ψ(|x(t)|2) dt = +∞, v(t) → 0. In addition, Lemma 6.7 tells
us that for any a > 0,

P

(
sup
t≥0

(
N(t) − b〈N〉(t)) ≥ a

)
≤ e−2ab,

so that for b < 1
2 , eN(t)−b〈N〉(t) is almost surely finite. Thus if

〈N〉(t) = 4
∫ t

0

σ 2(v(s)/2)

v2(s)
ds → +∞,

eN(t)− 1
2 〈N〉(t) goes to 0 and so does v(t) again.

But we do not know whether supt x(t) is always a.s. finite or not, so that we do
not know whether the process is flocking or not.

Finally, in the particular case ψ(u) = 1
1+u2 , if v(0) > π

2 , x(0) = 0, the system

is not L1 flocking. Indeed, taking the expectation [v(t) ≥ 0] we have

E
(
v(t)

) = v(0) −E
(
arctan

(
x(t)

)) ≥ v(0) − π

2
> 0.

So once again, Lp flocking is much more demanding.

7. Comments and simulations. What kind of (temporary) conclusions can
we draw after this study?

1. All the models we have discussed in the Introduction [except (1.9) for which
we do not have a convincing interpretation] have their “reasonable” physical (or
biological) interpretation and at the same time suffer potential criticism. They are
only models and certainly not a description of reality.

2. Too independent noises destroy the collective behavior (without any politi-
cally correct reference).

3. Random environment depending in a certain way of the positions can also
destroy the collective behavior.

4. Noises whose variances depend either linearly on the velocities or on the
differences between velocities may help, at least at the almost sure level, to flock.
But actually in many of these situations, the communication between individuals
is simply a perturbation of a stochastic system which is already stable (though,
except in a very few number of particular cases, one cannot reduce the study to the
use of the theory of stability of S.D.E. as detailed in the book [10]).
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5. Due to the previous item, L2 flocking is presumably more convincing.

We shall now illustrate our results (and the situations that are not covered by
our results) with some simulations. First, we shall consider the system (6.2)

dvi(t) = − λ

N

N∑
j=1

ψij (t)
(
vi(t) − vj (t)

)
dt + σ

(
vi(t)

)
dw(t).

In all the section, we will choose

ψij (t) = ψ
(∣∣xi(t) − xj (t)

∣∣) with ψ(u) = (
1 + u2)−1

in dimension d = 2 with N = 9 particles and communication intensity λ = 10.
We shall consider two basic sets of initial configurations (x1(0), v1(0)) and

(x2(0), v2(0)) given by x1(0) = 0,

v1(0) =
(−0.4 0.2 −0.3 −0.3 −0.1 −0.2 0.2 0.5 0.2

0.4 −0.1 0.2 0.5 0.3 0.1 −0.3 0.2 0.3

)
,

x2(0) =
(

1 0 0 0 0 0 0 0 0
−4 0 0 0 0 0 0 0 0

)
,

v2(0) =
(−0.3 2 −0.5 −1.5 −0.1 −0.2 1.2 0.5 1.5

0.7 −0.6 2.1 0.4 0.8 2.6 −3.4 −0.6 0.2

)
.

Define z(0) = ∑N
k=1 |vk(0)− v̄(0)|2 and Mx(0) = maxi,j |xi(0)−xj (0)|. Recall

the discussion preceding (6.9) to ensure flocking starting from (x(0), v(0)), that is,
we want to find some r > 0 such that the function g defined by

g(r) = Mx(0) +
√

z(0)

λ

(
1 + r2) − r

is negative at r . This is equivalent to the following:

√
z(0) <

λ

2

(√
Mx(0)2 + 1

4
− Mx(0)

)

and it is easy to show that the first set of initial data satisfies this condition, while
the second one does not (see Figure 1). In the sequel, we shall use modified initial
data of the form (xi(0), θvi(0)) for some given θ ’s and will plot the function g to
see whether the corresponding initial data do satisfy the condition or not.

We shall now plot several simulations of the stochastic model or numerical ap-
proximations in the deterministic case. In both cases, the numerical scheme is a
simple explicit Euler scheme.

On each figure, we draw the evolution in time of

t �→
(

N∑
i=1

∣∣vi(t) − v̄(t)
∣∣2) 1

2
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FIG. 1. r �→ g(r) in case (x2(0), v2(0)).

for both the stochastic and deterministic systems. Recall that we do not have theo-
retical results about the flocking property for the deterministic system once condi-
tion (6.9) is not satisfied.

In the next Figure 2, we choose σ(v) = v and initial conditions (x2(0), v2(0)).
According to Theorem 6.3(2), we know that the stochastic system is almost surely
flocking, but we do not know about L2 flocking.

We observe that in this case the deterministic system flocks too and a reasonably
quick convergence for the stochastic system.

FIG. 2. t �→ (
∑N

i=1 |vi(t) − v̄(t)|2)
1
2 for σ(v) = v in case (x2(0), v2(0)).
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FIG. 3. (x2(0),5v2(0)), σ = v first case.

Next, still with σ(v) = v, we change the initial configuration by choosing
(x2(0),5v2(0)). In this situation, we see that the deterministic system does not
flock anymore, while the stochastic system almost surely flocks. In Figure 3, we
plot the evolution of the velocities on the right-hand side, but also, on the left-hand
side, the evolution of t �→ maxi,j |xi(t) − xj (t)|.

The next two figures are obtained with the same data (be careful with the vertical
scale which is not the same for each figure). The convergence to 0 in the stochastic
case can be surprisingly quick (Figure 5), very slow (Figure 4 where the fluctuation
size presumably indicates that there is no L

2 flocking) or similar to the previous
case (Figure 3 where we also observe a chaotic stabilization of the positions).

FIG. 4. (x2(0),5v2(0)), σ = v second case.
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FIG. 5. (x2(0),5v2(0)), σ = v third case.

The next situation we want to illustrate is the one of Theorem 6.9. To this end,
we choose σ(vi) = 1 + sinvi for each of the two coordinates vi of v, hence a
diagonal σ . Since σ is 1-Lipschitz, we choose b = 1/2 and a = ln 2 so that if the
initial conditions satisfy the assumption in Theorem 6.9, the latter tells us that the
stochastic system flocks with a probability larger than or equal to 1

2 .
To fulfill this assumption, we choose this time (x1(0),0.1v1(0)) as initial con-

ditions. We thus know that the deterministic system is flocking. The next Figure 6
plots the condition showing that some r can be found, while Figure 7 presents
an example of simulation. Actually in this case we have not been able to obtain
a nonflocking stochastic simulation, showing that, for sure, our result is far from
optimal.

To observe something interesting we have to change the initial conditions and
thus take (x2(0),3v2(0)). If we still have the flocking property for the deterministic
model, we have observed [as the two examples (Figures 8–9) show] various cases

FIG. 6. (x1(0),0.1v1(0)) condition.



STOCHASTIC CUCKER–SMALE 3283

FIG. 7. (x1(0),0.1v1(0)) and σ = 1 + sin(v).

FIG. 8. (x2(0),3v2(0)), σ(v) = 1 + sin(v) with flock.

FIG. 9. (x2(0),3v2(0)), σ(v) = 1 + sin(v) with no flock.
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FIG. 10. (x2(0), v2(0)), σ = 1 + sin(x) first case.

in the stochastic setting, with or without flocking, indicating that flocking may
occur with some probability strictly larger than 0 and strictly smaller than 1.

Finally, we show some simulations when σ is a function of x and no more of v.
As we have seen, this situation is completely unclear, even for a constant commu-
nication rate. This chaotic behavior is illustrated by the three pictures (Figures 10,
11 and 12) where, as before, we have drawn the behavior of the positions on the
left-hand side and of the velocities on the right-hand side.

FIG. 11. (x2(0), v2(0)), σ = 1 + sin(x) with flock.
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FIG. 12. (x2(0), v2(0)), σ = 1 + sin(x) with no flock.
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