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EQUILIBRIUM LARGE DEVIATIONS FOR MEAN-FIELD SYSTEMS
WITH TRANSLATION INVARIANCE1

BY JULIEN REYGNER

Université Paris-Est

We consider particle systems with mean-field interactions whose distri-
bution is invariant by translations. Under the assumption that the system seen
from its centre of mass be reversible with respect to a Gibbs measure, we
establish large deviation principles for its empirical measure at equilibrium.
Our study covers the cases of McKean–Vlasov particle systems without ex-
ternal potential, and systems of rank-based interacting diffusions. Depending
on the strength of the interaction, the large deviation principles are stated
in the space of centered probability measures endowed with the Wasserstein
topology of appropriate order, or in the orbit space of the action of transla-
tions on probability measures. An application to the study of atypical capital
distribution is detailed.

1. Introduction. This work is dedicated to the study of the large deviations of
the empirical measure of particle systems at equilibrium exhibiting the following
formal features:

(a) they are reversible with respect to an explicit Gibbs measure;
(b) the particles are coupled through mean-field interactions;
(c) their distribution is invariant under spatial translations.

The typical models that we aim to study include McKean–Vlasov particle sys-
tems without external potential, whose mean-field limit allows to approximate the
granular media equation [3, 4, 14, 36], and systems of one-dimensional diffusions
interacting through their rank, which arise in the probabilistic interpretation of
scalar nonlinear conservation laws [9, 10, 29, 31, 43]. Both models also appear in
mathematical finance, in the modelling of inter-bank borrowing and lending [44]
and of stable equity markets [26, 32], respectively.

For McKean–Vlasov particle systems with an external potential, which in gen-
eral satisfy the conditions (a) and (b) but not (c), the large deviations of the empir-
ical measure of the particle system under its equilibrium measure are governed by
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the free energy functional, which combines entropic and energetic contributions.
Prefiguring the interpretation by Otto [28, 38] and Carrillo, McCann and Villani
[12, 13] of (nonlinear) Fokker–Planck equations as functional gradient flows, Daw-
son and Gärtner [18–20] showed that, for such systems, the free energy plays the
role of a quasi-potential, in the sense of the Freidlin–Wentzell theory. Thus it not
only describes the static large scale properties of the particle system, such as typ-
ical configurations or possible phase transitions, but it also sheds light on its large
scale dynamics, providing both typical paths and fluctuation rates.

For models satisfying the condition (c), translation invariance generally pre-
vents ergodicity, so that there is no equilibrium measure for the original particle
system. Still it was noted in [36] for McKean–Vlasov systems, and in [30, 39] for
rank-based interacting diffusions, that under suitable assumptions on the interac-
tions between the particles, a stationary behaviour can be observed for the particle
system seen from its centre of mass. Centering the particle system induces a con-
served quantity in its evolution, and the purpose of this article is to understand
the effect of this constraint on its equilibrium large deviations. To the best of the
author’s knowledge, this is the first study in this direction.

For such systems, a free energy functional can still be defined, with an energetic
contribution depending only on the interaction between the particles. Thus it may
be expected that, under the assumption that the centered particle system be ergodic,
the large deviations of its empirical measure at equilibrium be described by this
free energy functional, restricted to the space of centered probability measures.
The first result of this article, Theorem 2.14, provides a rigorous formulation of this
assertion; however, it only holds under the assumption that the interaction between
particles be strong enough, in a sense to be made precise below—typically, for
McKean–Vlasov systems with an interaction potential growing faster than linearly.
In contrast, when this assumption is not satisfied, which turns out to be the case for
systems of rank-based interacting diffusions, we show that the rate function may
fail to have compact level sets, so that the expected large deviation principle does
not hold. This is formally explained by the following two facts: the topology on
which a large deviation principle can be expected to hold depends on the strength
of the interaction and on too weak topologies; the space of centered probability
measures is not closed.

In order to connect the free energy functional to the equilibrium large deviations
of the particle system without restriction on the strength of the interaction, and
thereby cover the case of rank-based interacting diffusions, we avoid resorting
to the notion of centered probability measures, and rather work at the level of
the orbit of the empirical measure of the particle system at equilibrium, under
the action of translations. This provides an equivalent description of the particle
system; however, the quotient topology on the orbit space becomes weak enough
for a large deviation principle to hold without any assumption on the strength of
the interaction. This is the second main result of the article, Theorem 2.16, which
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is weaker than the first in the sense that it is implied by the latter, but holds under
less restrictive assumptions.

The adaptation of these results to the specific examples of McKean–Vlasov par-
ticle systems and systems of rank-based interacting diffusions are stated as corol-
laries. For the latter example, the large deviation principle allows to associate a
notion of free energy to scalar nonlinear conservation laws, which complements,
at the level of the stationary measure, the results by Dembo et al. on finite time
intervals [21]. As an application, we discuss at the end of the article the estimation
of the probability of an atypical capital distribution in the framework of Fernholz’
Stochastic Portfolio Theory [26].

Outline of the article. The notation and main results of the article are presented
in Section 2. The proof of our two main theorems is based on the approximation
of the particle system without external potential by a particle system with a small
external potential. The large deviation results for this approximating system are
presented in Section 3, and the control of these results when the external potential
vanishes is studied in Section 4. The application of the main results to the particular
cases of McKean–Vlasov particle systems, and systems of rank-based interacting
diffusions, is detailed in Section 5. A technical result on the metrisability of the
quotient topology is proved in the Appendix.

2. Notation and main results.

2.1. Spaces of probability measures. For d ≥ 1, we denote by P(Rd) the
space of Borel probability measures on Rd . It is endowed with the topology of
weak convergence [7], Chapter 1, page 7, which makes it a Polish space [7], The-
orem 6.8, page 73.

For all y ∈ Rd , we define the translation by y as the operator τy : P(Rd) →
P(Rd) such that, for all μ ∈ P(Rd),∫

x∈Rd
f (x)dτyμ(x) =

∫
x∈Rd

f (x + y)dμ(x),

for all measurable and bounded functions f : Rd → R. It is known that the opera-
tor τy is continuous on P(Rd).

For all p ≥ 1, we denote by Pp(Rd) the space of Borel probability measures
on Rd with a finite pth order moment. It is endowed with the Wasserstein topol-
ogy of order p [45], Definition 6.8, page 96, which makes it a Polish space [45],
Theorem 6.18, page 104.

The Wasserstein topology is stronger than the topology induced on Pp(Rd) by
the topology of weak convergence on P(Rd), so that for any y ∈ Rd , the translation
τy is continuous on Pp(Rd).
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We denote by P̃p(Rd) the subset of centered probability measures with a finite
pth order moment, and define the centering operator T : Pp(Rd) → P̃p(Rd) by

Tμ = τ−ξμ, ξ :=
∫
x∈Rd

x dμ(x),

for all μ ∈ Pp(Rd). It is easily checked that T is continuous on Pp(Rd), and that
P̃p(Rd) is a closed subset of Pp(Rd), hence it is a Polish space itself.

In the sequel of this article, we shall consider probability measures defined
on the respective Borel σ -fields of the topological spaces P(Rd), Pp(Rd) and
P̃p(Rd).

2.2. Energy functional and Gibbs’ measure. Throughout the article, the tem-
perature parameter σ 2 > 0 is fixed.

The physical systems which we aim to study are described by an energy func-
tional

W : P(Rd)→ [0,+∞]
satisfying the following set of conditions:

(TI) translation invariance: for all y ∈ Rd and μ ∈P(Rd), W[τyμ] =W[μ];
(σF) σ -finiteness: if μ has compact support, then W[μ] < +∞;

(LSC) the function W is lower semicontinuous on P(Rd);
(GC) growth control: there exists � ≥ 1 and κ� > 0 such that W[μ] = +∞ if

μ /∈ P�(R
d), and

∀μ̃ ∈ P̃�

(
Rd), W[μ̃] ≥ κ�

∫
x∈Rd

|x|� dμ̃(x).

For all n ≥ 2, the energy of a configuration x = (x1, . . . , xn) ∈ (Rd)n of a system
with n particles is defined by

(1) Wn(x) := W
[
πn(x)

]
,

where

(2) πn(x) := 1

n

n∑
i=1

δxi
∈ P
(
Rd)

is the empirical measure of the configuration x. Notice that Assumption (σF) en-
sures that Wn(x) < +∞ for any configuration x ∈ (Rd)n.

The Gibbs’ density exp(− 2n
σ 2 Wn(x)) naturally associated with the energy func-

tion Wn is never integrable on (Rd)n, because Assumption (TI) implies that Wn(x)

is invariant under the translations (x1, . . . , xn) �→ (x1 + ζ, . . . , xn + ζ ), ζ ∈ Rd .
However, introducing the linear subspace

(3) Md,n := {̃x = (x̃1, . . . , x̃n) ∈ (Rd)n : x̃1 + · · · + x̃n = 0
}
,

and denoting by d̃x the Lebesgue measure on Md,n, we get the following first
result.
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LEMMA 2.1 (Finiteness of the partition function). Let W : P(Rd) → [0,+∞]
be an energy functional satisfying Assumptions (TI), (σF), (LSC) and (GC). For
all n ≥ 2, we have

(4) Z̃n :=
∫

x̃∈Md,n

exp
(
−2n

σ 2 Wn(̃x)

)
d̃x ∈ (0,+∞),

where the function Wn is defined by (1).

PROOF. The combination of Assumptions (σF) and (LSC) ensures that the
function x̃ �→ exp(− 2n

σ 2 Wn(̃x)) is positive and measurable, so that Z̃n is well de-
fined as an element of (0,+∞]. Using (3), Assumption (GC) and the trivial bound

n∑
i=1

|x̃i |� ≥
n−1∑
i=1

|x̃i |�,

we get the inequality

Z̃n ≤
∫

x̃∈Md,n

exp

(
−2κ�

σ 2

n−1∑
i=1

|x̃i |�
)

d̃x,

whose right-hand side is proven to be finite by using the parametrisation of x̃ =
(x̃1, . . . , x̃n) ∈ Md,n by (x̃1, . . . , x̃n−1) ∈ (Rd)n−1. �

DEFINITION 2.2 (Gibbs’ measure). Under the assumptions of Lemma 2.1, we
denote by P̃n the probability measure on (Rd)n with density

(5) p̃n(̃x) := 1

Z̃n

exp
(
−2n

σ 2 Wn(̃x)

)
with respect to the Lebesgue measure d̃x on Md,n.

By definition, for all n ≥ 2, the probability measure P̃n gives full weight to the
subspace Md,n.

2.3. Two specific examples. When Wn is smooth enough to ensure the well
posedness of the system of stochastic differential equations

(6) dXi(t) = −n∇xi
Wn

(
X1(t), . . . ,Xn(t)

)
dt + σ dβi(t),

with β1, . . . , βn independent standard Rd -valued Brownian motions, the Gibbs’
measure P̃n of Definition 2.2 is related to the long time behaviour of the diffu-
sion process (X1(t), . . . ,Xn(t))t≥0. We first give two explicit examples of such
processes, for which the energy functional satisfies Assumption (TI).
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EXAMPLE 2.3 (MV-model). Given a smooth, nonnegative and even interac-
tion potential W :Rd →R, the energy functional

(7) W[μ] = 1

2

∫∫
x,y∈Rd

W(x − y)dμ(x)dμ(y)

leads to the McKean–Vlasov particle system without external potential

dXi(t) = −1

n

n∑
j=1

∇W
(
Xi(t) − Xj(t)

)
dt + σ dβi(t).

This particle system arises, for instance, in the probabilistic approximation of the
granular media equation [3, 4, 14, 36], for which the choice W(x) = |x|3 is of
particular physical interest [5, 6].

EXAMPLE 2.4 (RB-model). In dimension d = 1, given a C1 and nonnegative
function B : [0,1] → R such that

(8) B(0) = B(1) = 0,

the energy functional

(9) W[μ] =
∫
x∈R

B
(
Fμ(x)

)
dx,

where Fμ denotes the cumulative distribution function of μ, is associated with the
system of rank-based interacting diffusions

(10) dXi(t) =
n∑

k=1

bn(k)1{Xi(t)=X(k)(t)} dt + σ dβi(t),

where for all t ≥ 0, X(1)(t) ≤ · · · ≤ X(n)(t) denotes the order statistics of
X1(t), . . . ,Xn(t), and

bn(k) := n

(
B

(
k

n

)
− B

(
k − 1

n

))
.

This particle system serves as a model for large equity markets, and is also related
to the probabilistic interpretation of nonlinear scalar conservation laws [26, 42].
For the latter reason, we shall call B a flux function.

REMARK 2.5 (Intersection between both classes of models). Taking d = 1
and W(x) = |x| in the MV-model yields the energy functional

W[μ] = 1

2

∫∫
x,y∈R

|x − y|dμ(x)dμ(y) =
∫
x∈R

Fμ(x)
(
1 − Fμ(x)

)
dx,

so that this model coincides with the RB-model for B(u) = u(1 − u).
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For both the MV-model and the RB-model, it is quickly observed that the centre
of mass of the system

�(t) := 1

n

n∑
i=1

Xi(t)

is a Brownian motion in Rd , which prevents (X1(t), . . . ,Xn(t)) from converg-
ing to an equilibrium probability measure. Following the remark made in [36] for
the MV-model and in [30, 39] for the RB-model, we define the diffusion process
(X̃1(t), . . . , X̃n(t))t≥0 on the linear subspace Md,n by

(11) X̃i(t) := Xi(t) − �(t),

which describes the particle system seen from its centre of mass. Under the as-
sumptions of Lemma 2.1, this process turns out to be reversible with respect to the
Gibbs’ measure P̃n.

2.4. Free energy and large deviations. Under the assumptions of Lemma 2.1,
the central object of our study is the sequence of probability measures P̃n defined
by

(12) P̃n := P̃n ◦ π−1
n ,

which describe the distribution of the empirical measure of the particle system,
seen from its centre of mass, at equilibrium. Notice that, for all n ≥ 2, the restric-
tion of πn to Md,n defines a continuous mapping from Md,n to either P(Rd) or
P̃p(Rd), for any p ≥ 1; in particular, it is measurable for both the topology of
weak convergence and the Wasserstein topology. As a consequence, for all n ≥ 2,
the probability measure P̃n is well defined on both the Borel σ -field of P(Rd) and
the Borel σ -field of P̃p(Rd).

In order to study the large deviations of the sequence P̃n, we first introduce the
following two functionals on P(Rd).

DEFINITION 2.6 (Boltzmann’s entropy). For all μ ∈ P(Rd), we let

(13) S[μ] :=
∫
x∈Rd

p(x) logp(x)dx

if μ ∈ P1(R
d) and has a density p(x) with respect to the Lebesgue measure on

Rd , and

S[μ] := +∞
otherwise.

REMARK 2.7 (On the moment condition). The requirement that μ ∈ P1(R
d)

ensures that the negative part of p logp is integrable [1], Remark 9.3.7, page 212,
and, therefore, ensures that S[μ] is well defined as an element of (−∞,+∞].
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DEFINITION 2.8 (Free energy). The free energy F associated with an energy
functional W : P(Rd) → [0,+∞] is defined by

(14) F[μ] := S[μ] + 2

σ 2W[μ],
for all μ ∈ P(Rd).

REMARK 2.9 (Physical free energy). In statistical physics, σ 2 is usually as-
signed the value 2kT , where k is the Boltzmann constant and T > 0 is the temper-
ature, and Boltzmann’s entropy is rather defined by Sphys = −kS. Therefore, to be
consistent with the classical definition of the free energy

Fphys = −T Sphys +W,

one should rather define the free energy to be worth σ 2

2 S + W. The difference
with (14) merely lies in the multiplicative constant, and we shall keep the latter
definition as it alleviates some computations throughout the article.

If the energy functional satisfies the assumptions of Lemma 2.1, the free energy
possesses the following properties.

LEMMA 2.10 (Bounds on the free energy). Let W : P(Rd) → [0,+∞] be an
energy functional satisfying the assumptions of Lemma 2.1:

(i) There exists μ ∈ P(Rd) such that F[μ] < +∞.
(ii) F is bounded from below on P(Rd).

REMARK 2.11. It is easily checked that the uniform distribution on any com-
pact set has a finite Boltzmann entropy, which by Assumption (σF) yields the
statement (i) of Lemma 2.10.

The statement (ii) of Lemma 2.10 is proved in Section 4.1.
Under the assumptions of Lemma 2.10, we may define

F� := inf
μ∈P(Rd )

F[μ] ∈ R.

This quantity is sometimes referred to as Gibbs’ free energy [20].
Before stating our first result, we introduce two further assumptions on the en-

ergy functional W:

(SH) subhomogeneity: for all ε ∈ (0,1), for all x ∈ (Rd)n, (1 − ε)Wn(x) ≥
Wn((1 − ε)x);

(CC) chaos compatibility: for all μ ∈ P(Rd), if (Yn)n≥1 is a sequence of inde-
pendent random variables with identical distribution μ on some probability space
(�,A,P), then

lim
n→+∞ E

[
Wn(Y1, . . . , Yn)

]=W[μ].
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REMARK 2.12 [On Assumption (SH)]. Unlike the remainder of the assump-
tions, Assumption (SH) is quite technical and is only employed once in the article,
namely in the proof of the exponential estimates of Lemma 4.4. It may certainly
be replaced by a variety of other similar assumptions, as long as they allow to ob-
tain the same exponential estimates, but we believe that the present formulation
achieves a reasonable balance between the generality of the models that it covers,
and the relative simplicity of the computations that it requires to prove Lemma 4.4.

REMARK 2.13 [On Assumptions (CC) and (LSC)]. If (Yn)n≥1 is a sequence
of independent random variables with identical distribution μ ∈ P(Rd), then by
the Glivenko–Cantelli Lemma, the empirical measure πn(Y1, . . . , Yn) converges to
μ in P(Rd), P-almost surely. As a consequence, Assumption (LSC) and Fatou’s
Lemma yield

lim inf
n→+∞ E

[
Wn(Y1, . . . , Yn)

]≥W[μ],
so that Assumption (CC) merely involves the limit superior of E[Wn(Y1, . . . , Yn)].

We are now ready to state the first main result of the article. We recall that, on
a metric space, a good rate function is a proper function with compact level sets,
and refer to [22] for introductory material on large deviation principles.

THEOREM 2.14 (LDP for P̃n in Wasserstein spaces). Let W : P(Rd) →
[0,+∞] be an energy functional satisfying Assumptions (TI), (σF), (LSC), (GC),
(SH) and (CC). If the index � ≥ 1 given by Assumption (GC) is such that � > 1,
then for all p ∈ [1, �), the sequence P̃n satisfies a large deviation principle on
P̃p(Rd) with good rate function

Ĩ[μ̃] := F[μ̃] −F�.

Notice that the large deviation principle holds only in Wasserstein topologies
with order strictly smaller than the index � of Assumption (GC), which for the
MV-model coincides with the order of polynomial growth of the interaction poten-
tial W . Furthermore, since the Wasserstein topology is stronger than the topology
of weak convergence, the contraction principle [22], Theorem 4.2.1, page 126, im-
plies that under the assumptions of Theorem 2.14, the large deviation principle for
P̃n also holds on the space P(Rd), with good rate function I defined by

(15) I[μ] :=
{
Ĩ[μ] if μ ∈ P̃1

(
Rd),

+∞ otherwise.

As far as the role of the topology in the large deviation principle is concerned, a
parallel can be drawn with Sanov’s theorem. Indeed, let Qn denote the law of the
empirical measure of independent random variables in Rd , with identical distri-
bution ν, where ν has a density proportional to exp(−2|x|�/σ 2), with � ≥ 1. The
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standard Sanov theorem [22], Theorem 6.2.10, page 263, asserts that the sequence
Qn satisfies a large deviation principle on P(Rd), and it was proved by Wang et
al. [46] that, if � > 1, then the large deviation principle actually holds on Pp(Rd),
for p ∈ [1, �)—but not for p = �.

Keeping the analogy between Sanov’s theorem and Theorem 2.14 in mind, one
may therefore wonder, if Assumption (GC) in the latter theorem is only satisfied
with � = 1, whether the large deviation principle continues to hold on P(Rd), with
the rate function I defined by (15), for want of holding in a Wasserstein topology.
We show that the answer is negative, by exhibiting an example for which the level
sets of the function I fail to be compact on P(Rd), which prevents the large devi-
ation principle from holding. As should be clear from the example, this is related
to the lack of continuity of the centering operator T on P(Rd).

EXAMPLE 2.15 (Counter-example to Theorem 2.14 when � = 1). We assume
that d = 1 and take the energy functional

W[μ] = 1

2

∫∫
x,y∈R

|x − y|dμ(x)dμ(y)

of Remark 2.5. It will be checked in Section 5.2 that this energy functional satisfies
the assumptions of Theorem 2.14, except that Assumption (GC) is only satisfied
with � = 1. This in fact occurs for any instance of the RB-model, and not only for
the case B(u) = u(1 − u) corresponding to the energy functional chosen here.

Let ϕ be the density of the standard Gaussian distribution on R, and for all
θ ∈ (0,1), let us define the density

pθ(x) := (1 − θ)ϕ(x + 1) + θϕ
(
x − (1 − θ)/θ

)
.

For all θ ∈ (0,1), the probability measure μθ with density pθ is centered, and we
have

S[μθ ] ≤ S[ϕ] < +∞
due to the convexity of r �→ r log r , while

W[μθ ] = 1

2

∫∫
x,y∈Rd

|x − y|dμθ(x)dμθ(y)

≤
∫
x∈R

|x|dμθ(x)

≤
∫
x∈R

|x|ϕ(x)dx + 2(1 − θ) ≤
√

2

π
+ 2,

where we have used the triangle inequality twice. As a consequence, the collection
{μθ, θ ∈ (0,1)} is contained in a level set of the rate function I defined by (15).
But on the other hand, μθ converges weakly, when θ vanishes, to the Gaussian
distribution centered in −1, at which I takes the value +∞. Therefore, the level
sets of I are not closed, whence not compact, in P(Rd).
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2.5. Large deviations in the quotient space. Let us denote by P(Rd) the orbit
space of the group action{

Rd ×P
(
Rd)→ P

(
Rd),

(y,μ) �→ τyμ

and define

ρ :
{
P
(
Rd)→ P

(
Rd),

μ �→ {τyμ : y ∈ R}
the associated orbit map. The space P(Rd) is endowed with the quotient topology,
which is defined as the strongest topology making the map ρ continuous. It is
proved in the Appendix that this topology is metrisable.

If a functional G on P(Rd) is translation invariant, then it is constant on orbits
and we may define the functional G on P(Rd) by

G
[
ρ(μ)
] := G[μ],

for any μ ∈ P(Rd). Under the assumptions of Lemma 2.10, the functionals W, S
and F are translation invariant, and it is immediate that

inf
μ∈P(Rd )

F[μ] = F�.

For all n ≥ 2, we define the probability measure

(16) Pn := P̃n ◦ ρ−1

on the Borel σ -field of P(Rd). The next theorem is the second main result of this
article.

THEOREM 2.16 (LDP for Pn in the quotient space). Let W : P(Rd) →
[0,+∞] be an energy functional satisfying Assumptions (TI), (σF), (LSC), (GC),
(SH) and (CC). The sequence Pn satisfies a large deviation principle on P(Rd)

with good rate function

I[μ] := F[μ] −F�.

Of course, in the case � > 1, Theorem 2.16 can be obtained by contraction from
Theorem 2.14, but we will not take advantage of this remark and we will rather
prove both theorems simultaneously.

REMARK 2.17 (Large deviations in P(Rd)). Let β be a standard Rd -valued
Brownian motion, and consider the occupation measure

Lt = 1

t

∫ t

s=0
δβ(s) ds.
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Because of the lack of ergodicity of the Brownian motion, the large deviations of
Lt , when t → +∞, are not covered by the standard Donsker–Varadhan theory.
Recently, Mukherjee and Varadhan [37] introduced a suitable compactification of
the space P(Rd), in which a large deviation principle can be stated for the orbit of
Lt . This result also allows to get estimates on translation invariant functionals, such
as probability measures on the space of sample paths with density proportional to

exp
(
t

∫∫
x,y∈Rd

W(x − y)dLt(x)dLt(y)

)
with respect to the Wiener measure, for some interaction potential W .

Although we rely on the same idea of working in the orbit space in order to com-
pensate the lack of ergodicity of our original process, our topological construction
is quite distinct. In particular, no compactification of the orbit space is required for
Theorem 2.16 to hold.

2.6. Sketch of the proof of Theorems 2.14 and 2.16. Our two main theorems
are proved simultaneously. In Section 3, we first state a large deviation principle
for the law P

η
n of the empirical measure of a system with energy functional W and

a confining functional Vη, the magnitude of which depends on a small parame-
ter η > 0. This result can be considered standard, and our proof closely follows
the lines of [24], Theorem 1.5. For consistency when η vanishes, we choose the
external potential associated with Vη to grow as |x|�, where � ≥ 1 is given by As-
sumption (GC). As a result, the large deviation principle for Pη

n holds on P(Rd),
and if � > 1, on Pp(Rd) for any p ∈ [1, �).

By contraction, we then obtain large deviation principles for the respective
pushforward measures P

η

n and P̃
η
n of Pη

n by ρ and T, respectively, on P(Rd), and
if � > 1, on P̃p(Rd) for any p ∈ [1, �). The end of the proof, detailed in Section 4,
then consists in checking that, when η vanishes, P

η

n and P̃
η
n provide sufficiently

good approximations of Pn and P̃n, at the level of large deviations. This part can
be considered as the main original contribution of the article.

2.7. Large deviations for the MV-model and the RB-model. We come back to
the specific examples of the MV-model and RB-model introduced in Section 2.3,
and state large deviation principles for these models which come as corollaries of
Theorems 2.14 and 2.16.

2.7.1. MV-model. Let W : Rd → [0,+∞) be an interaction potential which
possesses the decomposition

(17) W = W� + W�,

where the functions W� : Rd → [0,+∞) and W� : Rd → R satisfy the following
respective assumptions.
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(MV-�) The function W� is even, lower semicontinuous on Rd , there exists
� ≥ 1 and κ� > 0 such that, for all x ∈ Rd , W�(x) ≥ 2κ�|x|�, and for all ε ∈ (0,1),
for all x ∈ Rd , (1 − ε)W�(x) ≥ W�((1 − ε)x).

(MV-�) The function W� is even, continuous on Rd and, with � ≥ 1 given by
Assumption (MV-�) on W�:

• if � = 1, then W� is bounded;
• if � > 1, then there exists �′ ∈ [0, �) such that W�(x)/(1 + |x|�′

) is bounded on
Rd .

Any polynomial function of |x|, with nonnegative but possibly fractional powers,
degree larger or equal to 1, and positive leading coefficient, satisfies this set of
assumptions—up to renormalisation of the constant term in order to ensure non-
negativity. This is in particular the case of the cubic potential W(x) = |x|3 corre-
sponding to the granular media equation [5, 6]. However, singular potentials such
as those involved in the particle approximation of the Keller–Segel equation [15,
27], or in the study of Coulomb gases [34], do not satisfy our set of assumptions.

COROLLARY 2.18 (LDP for the MV-model). Let W : Rd → [0,+∞) be an
interaction potential possessing the decomposition (17), with functions W� and W�

satisfying the respective Assumptions (MV-�) and (MV-�). Let us define the energy
functional W by the identity (7). The sequence of associated probability measures
P̃n is well defined, and letting P̃n, Pn be defined by (12) and (16), respectively, we
have the following results:

(i) The sequence Pn satisfies a large deviation principle on P(Rd) with good
rate function I defined by Theorem 2.16.

(ii) If the index � ≥ 1 of Assumptions (MV-�) and (MV-�) is such that � > 1,
then for all p ∈ [1, �), the sequence P̃n satisfies a large deviation principle on
P̃p(Rd) with good rate function Ĩ defined by Theorem 2.14.

The proof of Corollary 2.18 is presented in Section 5.1. If W� ≡ 0, then the
energy functional W actually satisfies the assumptions of Theorems 2.14 and 2.16,
so that the result of Corollary 2.18 is straightforward. The case W� 
≡ 0 is treated
as a perturbation of the previous case, thanks to the Laplace–Varadhan lemma.

2.7.2. RB-model. Let B : [0,1] → [0,+∞) be a C1 flux function satisfying
the condition (8), which ensures that the energy functional W defined by (9) is not
identically equal to +∞. It is known [42] that the condition

(18) ∀u ∈ (0,1), B(u) > 0,

which is called Oleinik’s entropy condition in the vocabulary of conservation laws,
ensures the ergodicity of the centered particle system introduced in Section 2.3.
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The combination of (8) and (18) implies that B ′(0) ≥ 0 ≥ B ′(1), and the stronger
condition

(19) B ′(0) > 0 > B ′(1),

which is called Lax’ entropy condition, generally ensures better ergodic properties
of both the particle system and its mean-field limit [30–32, 41]. Notice that if B

is assumed to be concave, then Oleinik’s and Lax’ conditions are equivalent, and
hold as soon as B is not identically zero.

We shall check in Section 5.2 that this set of conditions implies that the energy
functional W satisfies the assumptions of Theorem 2.16, and in particular Assump-
tion (GC) with � = 1, which allows to define the sequence Pn associated with W

and leads to the following result.

COROLLARY 2.19 (LDP for the RB-model). Let B : [0,1] → [0,+∞) be a
C1 flux function satisfying the conditions (8), (18) and (19). Let W be the energy
functional associated with B by (9). The sequence Pn associated with W is well
defined, and it satisfies a large deviation principle on P(R), with good rate func-
tion I given by Theorem 2.16.

In mathematical finance, systems of rank-based interacting diffusions are em-
ployed to model the evolution of the logarithmic capitalisations of stocks on an eq-
uity market [2, 26, 32]. In Section 5.3, we present an application of Corollary 2.19
to the study of atypical capital distribution in this framework.

3. Large deviations with a small external potential. Throughout this sec-
tion, W : P(Rd) → [0,+∞] is an energy functional satisfying Assumptions (TI),
(σF), (LSC), (GC) and (CC), and � ≥ 1 is the index given by Assumption (GC).
We do not repeat these assumptions in the statements of our results.

We first introduce a few notation. For all η > 0, we define

(20) V η(x) := η|x|�,
for all x ∈ Rd , and let

(21) Vη[μ] :=
∫
x∈Rd

V η(x)dμ(x) ∈ [0,+∞]
for all μ ∈ P(Rd), as well as

V η
n (x) := Vη[πn(x)

]
for all x ∈ (Rd)n. Let

(22) zη :=
∫
x∈Rd

exp
(
− 2

σ 2 V η(x)

)
dx ∈ (0,+∞),

and let νη be the probability measure on Rd with density (zη)−1 exp(−2V η/σ 2)

with respect to the Lebesgue measure on Rd .
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3.1. Relative entropy and Sanov’s theorem. We recall that the relative entropy
of μ ∈ P(Rd) with respect to ν ∈ P(Rd) is defined by

(23) R[μ|ν] :=
⎧⎪⎨⎪⎩
∫
Rd

dμ

dν
log
(

dμ

dν

)
dν if μ � ν,

+∞ otherwise.

The following lemma is straightforward.

LEMMA 3.1 (From Boltzmann’s entropy to relative entropy). For all μ ∈
P(Rd),

(24) R
[
μ|νη]= S[μ] + 2

σ 2V
η[μ] + log zη.

The identity (24) holds in [0,+∞], in the sense that if μ /∈ P�(R
d), then

R[μ|ν] = +∞; while if μ ∈ P�(R
d), then S[μ] and R[μ|ν] are simultaneously

finite or equal to +∞.
With the notation introduced above, let us define

Qη
n := (νη)⊗n

, Qη
n := Qη

n ◦ π−1
n .

PROPOSITION 3.2 (Sanov’s theorem). For all η > 0, the sequence Qη
n satisfies

a large deviation principle on P(Rd), with good rate function R[·|νη]. If � > 1, the
large deviation principle holds on Pp(Rd) for all p ∈ [1, �), with the same rate
function.

The statement of the large deviation principle on P(Rd) is the usual formulation
of Sanov’s theorem [22], Theorem 6.2.10, page 263. Its extension to Pp(Rd) is due
to Wang et al. [46].

3.2. Large deviations in the interacting case. Owing to Assumption (σF), we
have

Zη
n :=
∫

x∈(Rd )n
exp
(
−2n

σ 2

(
V η

n (x) + Wn(x)
))

dx ∈ (0,+∞),

and we denote by P
η
n the probability measure on (Rd)n with density

(25) pη
n(x) := 1

Z
η
n

exp
(
−2n

σ 2

(
V η

n (x) + Wn(x)
))

with respect to the Lebesgue measure on (Rd)n. We finally let

(26) Pη
n := P η

n ◦ π−1
n ,

and define the free energy functional Fη by

(27) Fη[μ] := S[μ] + 2

σ 2

(
Vη[μ] +W[μ]).
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Large deviation principles for equilibrium mean-field systems with an external
potential may be considered to be standard results in the literature [16, 20, 24,
35]. We however give a complete proof of the next statement, which is adapted to
our assumptions on the energy functional W, and follows closely the arguments of
Dupuis et al. [24], Theorem 1.5.

PROPOSITION 3.3 (LDP for the sequence P
η
n). For all η > 0, the sequence Pη

n

satisfies a large deviation principle on P(Rd) with good rate function

Iη[μ] := Fη[μ] − Fη
� ,

where

Fη
� := inf

μ∈P(Rd )
Fη[μ] ∈ R.

If � > 1, the large deviation principle holds on Pp(Rd) for all p ∈ [1, �), with the
same rate function.

Notice that the same arguments as in Remark 2.11 show that Fη
� < +∞. On the

other hand, combining Lemma 3.1 with (27) yields

Fη[μ] = R
[
μ|νη]+ 2

σ 2W[μ] − log zη,

so that the nonnegativity of both the relative entropy and the energy functional
ensure that Fη

� > −∞.
We may now proceed to the proof of Proposition 3.3.

PROOF. The proof relies on the so-called weak convergence approach to large
deviations developed by Dupuis and Ellis [23]. Throughout the proof, we use the
notation P∗(Rd) to refer to either of the topological spaces P(Rd) or Pp(Rd), if
� > 1 and p ∈ [1, �). We recall that both spaces are Polish.

As a first step, we invoke [23], Theorem 1.2.3, page 7, to reduce the proof of
Proposition 3.3 to the verification of the following two facts:

(i) the function Iη has compact level sets on P∗(Rd);
(ii) for any continuous and bounded functional G : P∗(Rd) → R, the Laplace

principle

(28) lim
n→+∞−1

n
log
∫
μ∈P∗(Rd )

exp
(−nG[μ])dPη

n[μ] = inf
μ∈P∗(Rd )

{
G[μ] + Iη[μ]}

holds.

Proof of (i). Using Lemma 3.1, we rewrite

(29) Iη[μ] = R
[
μ|νη]+ 2

σ 2W[μ] − (Fη
� + log zη),
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so that it suffices to show that R[·|νη] + 2
σ 2W has compact level sets. As a conse-

quence of Proposition 3.2, R[·|νη] is a good rate function on P∗(Rd) and, there-
fore, has compact level sets. Since the functional W is nonnegative and satisfies
Assumption (LSC), then any level set of R[·|νη] + 2

σ 2W is a closed subset of a
level set of R[·|νη] and, therefore, is compact.

Reformulation of (28). Let us first remark that, on account of the definitions of
P

η
n and Q

η
n,

(30)
dPη

n

dQη
n

[μ] ∝ exp
(
−2n

σ 2W[μ]
)
.

As a consequence, the prelimit in (28) rewrites

(31)

−1

n
log
∫
μ∈P∗(Rd )

exp
(−nG[μ])dPη

n[μ]

= −1

n
log
∫
μ∈P∗(Rd )

exp
(
−n

(
G[μ] + 2

σ 2W[μ]
))

dQη
n[μ]

+ 1

n
log
∫
μ∈P∗(Rd )

exp
(
−2n

σ 2W[μ]
)

dQη
n[μ],

so that it suffices to compute the limit of the first term in the right-hand side, and
deduce the limit of the second by taking G ≡ 0. The computation of such quantities
is typically the object of Varadhan’s lemma, which cannot be directly applied here
since the functional W is not assumed to be continuous and bounded.

Lower bound in the Laplace principle. Using the fact that W is bounded from
below and satisfies Assumption (LSC), the combination of Proposition 3.2 with
the variant of Varadhan’s lemma [22], Lemma 4.3.6, page 138, provides the lower
bound

(32)

lim inf
n→+∞−1

n
log
∫
μ∈P∗(Rd )

exp
(
−n

(
G[μ] + 2

σ 2W[μ]
))

dQη
n[μ]

≥ inf
μ∈P∗(Rd )

{
G[μ] + 2

σ 2W[μ] +R
[
μ|νη]}.

Upper bound in the Laplace principle. In order to obtain an upper bound of the
same order as (32), we first introduce a few notation. For all x ∈ (Rd)n, we define

�n(x) := −n

(
G
[
πn(x)

]+ 2

σ 2W
[
πn(x)

])
,

and for all M ≥ 0,

�M
n (x) := max

(
�n(x),−M

)
.

The function �M
n is measurable and bounded on (Rd)n, so that the representation

formula [23], Proposition 1.4.2, page 27—or dually the Donsker–Varadhan varia-
tional characterisation of the relative entropy [23], Lemma 1.4.3, page 29—show
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that, for all probability measures Rn on (Rd)n,

R
[
Rn|Qη

n

]≥ ∫
x∈(Rd )n

�M
n (x)dRn(x) − log

∫
x∈(Rd )n

exp
(
�M

n (x)
)

dQη
n(x),

where the definition of the relative entropy of probability measures on (Rd)n is
the same as (23) for probability measures on Rd . Using the trivial bound �M

n (x) ≥
�n(x) on the one hand, and the fact that since �n is bounded from above on (Rd)n,
the dominated convergence theorem yields

lim
M→+∞

∫
x∈(Rd )n

exp
(
�M

n (x)
)

dQη
n(x) =

∫
x∈(Rd )n

exp
(
�n(x)

)
dQη

n(x)

on the other hand, we deduce that

R
[
Rn|Qη

n

]≥ ∫
x∈(Rd )n

�n(x)dRn(x) − log
∫

x∈(Rd )n
exp
(
�n(x)

)
dQη

n(x),

which rewrites

(33)

−1

n
log
∫
μ∈P∗(Rd )

exp
(
−n

(
G[μ] + 2

σ 2W[μ]
))

dQη
n[μ]

≤
∫

x∈(Rd )n

(
G
[
πn(x)

]+ 2

σ 2W
[
πn(x)

])
dRn(x) + 1

n
R
[
Rn|Qη

n

]
.

Let ε > 0, and let με ∈ P∗(Rd) be such that

G[με] + 2

σ 2W[με] +R
[
με|νη]≤ inf

μ∈P∗(Rd )

{
G[μ] + 2

σ 2W[μ] +R
[
μ|νη]}+ ε.

We evaluate the right-hand side of (33) with Rn = μ⊗n
ε . On the one hand, it is

easily seen that

1

n
R
[
Rn|Qη

n

]= R
[
με|νη],

while on the other hand,∫
x∈(Rd )n

(
G
[
πn(x)

]+ 2

σ 2W
[
πn(x)

])
dRn(x)

= E
[
G
[
πn(Y1, . . . , Yn)

]+ 2

σ 2 Wn(Y1, . . . , Yn)

]
,

where Y1, . . . , Yn are independent random variables in Rd with identical distribu-
tion με on some probability space (�,A,P). By Assumption (CC),

lim
n→+∞ E

[
2

σ 2 Wn(Y1, . . . , Yn)

]
= W[με],
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whereas to justify the convergence of E[G[πn(Y1, . . . , Yn)]] to G[με], we now show
that

(34) lim
n→+∞πn(Y1, . . . , Yn) = με, P-almost surely in P∗

(
Rd),

and conclude by the dominated convergence theorem using the fact that G is con-
tinuous and bounded on P∗(Rd):

• If P∗(Rd) refers to the topological space P(Rd), then (34) is the Glivenko–
Cantelli lemma.

• If � > 1 and P∗(Rd) refers to the topological space Pp(Rd), with p ∈ [1, �),
then by the strong law of large numbers,

lim
n→+∞

1

n

n∑
i=1

|Yi |p =
∫
x∈Rd

|x|pμε(dx), P-almost surely,

which, combined with the Glivenko–Cantelli lemma, implies the P-almost sure
convergence in Pp(Rd) of πn(Y1, . . . , Yn) to με [45], Definition 6.8, page 96.

As a consequence, we finally get

(35)

lim sup
n→+∞

−1

n
log
∫
μ∈P∗(Rd )

exp
(
−n

(
G[μ] + 2

σ 2W[μ]
))

dQη
n[μ]

≤
{
G[με] + 2

σ 2W[με] +R
[
με|νη]}

≤ inf
μ∈P∗(Rd )

{
G[μ] + 2

σ 2W[μ] +R
[
μ|νη]}+ ε.

Conclusion of the proof. Letting ε ↓ 0 in (35) and combining the latter inequality
with (32), we conclude that

lim
n→+∞−1

n
log
∫
μ∈P∗(Rd )

exp
(
−n

(
G[μ] + 2

σ 2W[μ]
))

dQη
n[μ]

= inf
μ∈P∗(Rd )

{
G[μ] + 2

σ 2W[μ] +R
[
μ|νη]},

so that, taking (31) into account,

lim
n→+∞−1

n
log
∫
μ∈P∗(Rd )

exp
(−nG[μ])dPη

n[μ]

= inf
μ∈P∗(Rd )

{
G[μ] + 2

σ 2W[μ] +R
[
μ|νη]}

− inf
μ∈P∗(Rd )

{
2

σ 2W[μ] +R
[
μ|νη]}.

By (29), the right-hand side above rewrites infμ∈P∗(Rd ){G[μ] + Iη[μ]}, which
yields (28) and completes the proof. �
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3.3. The measures P
η

n and P̃
η
n. Let us define the functional ϑ : P(Rd) →

[0,+∞] by

ϑ[μ] := inf
y∈Rd

∫
x∈Rd

|x + y|� dμ(x).

Notice that ϑ[μ] < +∞ if and only if μ ∈ P�(R
d), and that ϑ is translation invari-

ant.
For all η > 0, we define the probability measures P

η

n and P̃
η
n, respectively, on

the Borel σ -fields of the topological spaces P(Rd) and P̃p(Rd), for any p ≥ 1, by
the identities

(36) P
η

n := Pη
n ◦ ρ−1, P̃η

n := Pη
n ◦ T−1.

Since the operators ρ : P(Rd) → P(Rd) and T : Pp(Rd) → P̃p(Rd) are con-
tinuous, the following result is obtained from Proposition 3.3 by means of the
contraction principle [22], Theorem 4.2.1, page 126.

COROLLARY 3.4 (LDP for P
η

n and P̃
η
n). For all η > 0, the sequence P

η

n satis-
fies a large deviation principle on P(Rd) with good rate function

I
η[μ] := S[μ] + 2

σ 2

(
ηϑ[μ] +W[μ])−Fη

� .

In addition, if � > 1, then for all p ∈ [1, �), for all η > 0, the sequence P̃
η
n satisfies

a large deviation principle on P̃p(Rd) with good rate function

Ĩη[μ̃] := S[μ̃] + 2

σ 2

(
ηϑ[μ̃] +W[μ̃])−Fη

� .

3.4. Alternative expression for P̃η
n. We denote by tn the orthogonal projection

of (Rd)n onto the subspace Md,n, and for all η > 0, we define the probability
measure P̃

η
n on (Rd)n by

(37) P̃ η
n := P η

n ◦ t−1
n .

Notice that P̃
η
n (Md,n) = 1. We also define the function V̂

η
n : Md,n → R by the

identity

(38) exp
(
−2n

σ 2 V̂ η
n (̃x)

)
=
∫
ζ∈Rd

exp
(
−2n

σ 2 V η
n (̃x + �ζ )

)
dζ,

where for all ζ ∈ Rd , we denote by �ζ = (ζ, . . . , ζ ) the corresponding element of
(Rd)n.

LEMMA 3.5 (Relation between P̃
η
n and P̃

η
n ). For all η > 0,

(39) Z̃η
n :=
∫

x̃∈Md,n

exp
(
−2n

σ 2

(
V̂ η

n (̃x) + Wn(̃x)
))

d̃x ∈ (0,+∞),
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and the probability measure P̃
η
n defined by (37) possesses the density

p̃η
n(̃x) := 1

Z̃
η
n

exp
(
−2n

σ 2

(
V̂ η

n (̃x) + Wn(̃x)
))

with respect to the Lebesgue measure d̃x on Md,n. Besides, the probability measure
P̃

η
n defined by (36) satisfies

(40) P̃η
n = P̃ η

n ◦ π−1
n .

PROOF. Let B be a Borel subset of (Rd)n. By (37) and (25),

P̃ η
n (B) = 1

Z
η
n

∫
x∈(Rd )n

1{tn(x)∈B} exp
(
−2n

σ 2

(
V η

n (x) + Wn(x)
))

dx.

Any x ∈ (Rd)n admits the orthogonal decomposition x = x̃ + �ζ , with x̃ = tn(x) ∈
Md,n and �ζ = (ζ, . . . , ζ ) for some ζ ∈ Rd . As a consequence, P̃

η
n (B) rewrites

√
n

d

Z
η
n

∫∫
x̃∈Md,n,ζ∈Rd

1{̃x∈B} exp
(
−2n

σ 2

(
V η

n (x̃i + �ζ ) + Wn(̃x + �ζ )
))

d̃x dζ

=
√

n
d

Z
η
n

∫
x̃∈Md,n

1{̃x∈B} exp
(
−2n

σ 2

(
V̂ η(̃x) + Wn(̃x)

))
d̃x,

where we have used the fact that Wn(̃x + �ζ ) = Wn(̃x), thanks to Assumption (TI),
and the definition (38) of V̂

η
n . This shows (39) and the fact that P̃

η
n possesses the

density p̃
η
n(̃x). Last, (40) follows from the elementary relation T ◦ πn = πn ◦ tn on

(Rd)n. �

In Section 4, we shall rely on the following bounds on the function V̂
η
n .

LEMMA 3.6 (Bounds on V̂
η
n ). Let n ≥ 2 and η > 0. For all x̃ ∈ Md,n,

σ 2

2n
log

nd/�

zη
≤ V̂ η

n (̃x) ≤ 2�−1η

n

n∑
i=1

|x̃i |� + σ 2

2n
log

(2�−1n)d/�

zη
,

where we recall the definition (22) of zη.

PROOF. The upper bound follows from the convexity inequality

|x̃i + ζ |� ≤ 2�−1|x̃i |� + 2�−1|ζ |�, 1 ≤ i ≤ n,

while the lower bound follows from Jensen’s inequality

|ζ |� =
∣∣∣∣∣1n

n∑
i=1

x̃i + ζ

∣∣∣∣∣
�

≤ 1

n

n∑
i=1

|x̃i + ζ |�,

since x̃ ∈ Md,n. �
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4. Proof of Theorems 2.14 and 2.16. This section is dedicated to the proof
of the large deviation principles contained in Theorems 2.14 and 2.16. We first
check in Section 4.1 that, under the respective assumptions of these theorems, the
functionals Ĩ and I are good rate functions. In Section 4.2, we obtain auxiliary
results on the respective approximation of P̃n and Pn by the measures P̃η

n and P
η

n

introduced in Section 3. These results allow us to prove large deviation upper and
lower bounds in Section 4.3, thereby completing the proof of Theorems 2.14 and
2.16.

4.1. Rate functions. The purpose of this subsection is to prove the following
result.

LEMMA 4.1 (Goodness of rate functions). Under the assumptions of Lem-
ma 2.10, the functional F has compact level sets on P(Rd), and if the index � ≥ 1
given by Assumption (GC) is such that � > 1, then for all p ∈ [1, �), the functional
F has compact level sets on P̃p(Rd).

Combining the results of Lemmas 2.10 and 4.1, we conclude that, under the
respective assumptions of Theorems 2.14 and 2.16, the functionals Ĩ and I are
good rate functions, respectively, on P̃p(Rd) and P(Rd). We first state an auxiliary
result.

LEMMA 4.2 (Level sets on P(Rd)). Under the assumptions of Lemma 2.10,
for all a ∈ R, the set

A := {μ ∈ P
(
Rd) : F[μ] ≤ a

}
is closed in P(Rd). Besides, letting � ≥ 1 be given by Assumption (GC), we have
A ⊂ P�(R

d) and there exists a′ ∈ R such that

(41) ∀μ ∈ A,

∫
x∈Rd

|x|� dTμ(x) ≤ a′.

PROOF. Since, by Remark 2.7, neither S[μ] nor W[μ] can take the value −∞,
any μ ∈ A satisfies S[μ] < +∞ and W[μ] < +∞, which by Assumption (GC)
ensures that A ⊂P�(R

d).
Let us now fix μ ∈ A and define μ̃ = Tμ ∈ P̃�(R

d). For all η > 0, we recall
the definitions of zη and νη from Section 3. By the translation invariance of F,
Lemma 3.1 and the definition (21) of Vη,

F[μ] = F[μ̃] = R
[
μ̃|νη]+ 2

σ 2

(
W[μ̃] − η

∫
x∈Rd

|x|� dμ̃(x)

)
− log zη.

Using the fact that the relative entropy is nonnegative and then Assumption (GC),
we deduce that

(42) F[μ] ≥ 2

σ 2 (κ� − η)

∫
x∈Rd

|x|� dμ̃(x) − log zη,
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so that taking η = κ�/2 and recalling that μ ∈ A yields∫
x∈Rd

|x|� dμ̃(x) ≤ σ 2

κ�

(
a + log zη)=: a′,

which provides (41).
In order to show that A is closed in P(Rd), let us take a sequence (μn)n≥1 in

A, which converges to some μ in P(Rd), and prove that

lim inf
n→+∞F[μn] ≥ F[μ]

which implies μ ∈ A. As a first step, we note that, according to the first part of
the proof, μn ∈ P�(R

d) for all n ≥ 1, which allows us to define μ̃n = Tμn and
notice that F[μ̃n] = F[μn]; besides, by (41), the sequence of �th order moments
of μ̃n is bounded. Since the functional W is nonnegative, the sequence F[μ̃n] is
also bounded. Denoting by p̃n the density of μ̃n, we then obtain from standard
arguments [28], pages 7–8, the existence of a probability density q̃ towards which
p̃n converges weakly in L1(Rd), at least along a subsequence, and such that

lim inf
n→+∞F[μ̃n] ≥ F[̃ν],

where we denote by ν̃ the probability measure with density q̃ . Finally, since the
orbit map ρ : P(Rd) → P(Rd) is continuous, the series of identities

ρ(μ) = lim
n→+∞ρ(μn) = lim

n→+∞ρ(μ̃n) = ρ(̃ν)

in P(Rd) implies that F[μ] = F[̃ν], whence the conclusion. �

The inequality (42) shows that F is bounded from below on P(Rd), which
proves the statement (ii) of Lemma 2.10. We may now complete the proof of
Lemma 4.1.

PROOF OF LEMMA 4.1. We fix a ∈ R and first prove that the set

A := {μ ∈ P
(
Rd) : F[μ] ≤ a

}
is compact in P(Rd). By Lemma A.1, this set is closed if and only if ρ−1(A) is
closed in P(Rd), which is the case since ρ−1(A) is easily seen to coincide with the
set A of Lemma 4.2. We now proceed to show that this set is sequentially compact.
Let (μn)n≥1 be a sequence of elements of A. By Lemma 4.2, for all n ≥ 1 there
exists μ̃n ∈ A ∩ P̃�(R

d) such that ρ(μ̃n) = μn, and we have the moment control

(43) ∀n ≥ 1,

∫
x∈Rd

|x|� dμ̃n(x) ≤ a′

given by (41). Markov’s inequality implies that the sequence (μ̃n)n≥1 is tight, so
that by Prohorov’s theorem [7], Theorem 5.1, page 59, it possesses a converging
subsequence. The continuity of the map ρ then ensures that the sequence (μn)n≥1
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possesses a converging subsequence as well, which shows the sequential compact-
ness of A. Since we prove in Lemma A.3 that the quotient topology on P(Rd) is
metrisable, [22], Theorem B.2, page 345, allows us to conclude that A is compact
and obtain the first part of Lemma 4.1.

We now assume that � > 1, fix p ∈ [1, �), and prove that the set

Ã := {μ̃ ∈ P̃p

(
Rd) : F[μ̃] ≤ a

}= A ∩ P̃p

(
Rd)

is compact in P̃p(Rd). Since the Wasserstein topology is stronger than the topol-
ogy of weak convergence, Lemma 4.2 implies that A is closed in Pp(Rd) and,
therefore, Ã is closed in P̃p(Rd). Now for all sequences (μ̃n)n≥1 of elements of
Ã, the moment control (43) ensures that (μ̃n)n≥1 possesses a subsequence, that
we still index by n for convenience, which converges to some μ in P(Rd). To
prove that the convergence actually holds in P̃p(Rd), we remark that since p < �,
the moment control (43) also ensures the uniform integrability of the pth order
moment of μ̃n, so that by [45], Definition 6.8, page 96, μ̃n converges to μ in
P̃p(Rd), therefore, Ã is sequentially compact in P̃p(Rd). By [22], Theorem B.2,
page 345, again, we conclude that Ã is compact in P̃p(Rd), whence the second
part of Lemma 4.1. �

4.2. Exponential comparisons. This subsection contains two auxiliary results
which will be used in the proof of the large deviation upper and lower bounds.

LEMMA 4.3 (Exponential tilting of P̃
η
n ). Let W : P(Rd) → [0,+∞] be an en-

ergy functional satisfying Assumptions (TI), (σF), (LSC) and (GC), and let η > 0:

(i) For all p ≥ 1, for all Borel sets B̃ of P̃p(Rd),

(44) P̃η
n(B̃) =

∫
x̃∈Md,n

1{πn(̃x)∈B̃} dP̃ η
n (̃x),

and

(45) P̃n(B̃) = Z̃
η
n

Z̃n

∫
x̃∈Md,n

1{πn(̃x)∈B̃} exp
(

2n

σ 2 V̂ η
n (̃x)

)
dP̃ η

n (̃x).

(ii) For all Borel sets B of P(Rd),

(46) P
η

n(B) =
∫

x̃∈Md,n

1{ρ
(
πn(̃x)
)
∈B} dP̃ η

n (̃x),

and

(47) Pn(B) = Z̃
η
n

Z̃n

∫
x̃∈Md,n

1{ρ
(
πn(̃x)
)
∈B} exp

(
2n

σ 2 V̂ η
n (̃x)

)
dP̃ η

n (̃x).
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PROOF. We first address the proof of the identities (44) and (46). The equality
(44) is a straightforward consequence of the definition (36) of P̃η

n. To check the
validity of (46), we recall that the respective definitions (36) and (26) of P

η

n and P
η
n

yield

(48) P
η

n = Pη
n ◦ ρ−1 = P η

n ◦ π−1
n ◦ ρ−1.

Besides, since for all x ∈ (Rd)n,

πn

(
tn(x)
)= τξπn(x), ξ := 1

n

n∑
i=1

xi,

we have ρ ◦ πn = ρ ◦ πn ◦ tn on (Rd)n. Hence we may substitute π−1
n ◦ ρ−1 with

t−1
n ◦ π−1

n ◦ ρ−1 in (48) to obtain

P
η

n = P η
n ◦ t−1

n ◦ π−1
n ◦ ρ−1 = P̃ η

n ◦ π−1
n ◦ ρ−1,

thanks to (37). This equality immediately leads to (46).
We now address the proof of (45) and (47). For all p ≥ 1, for all Borel sets B̃ of

P̃p(Rd), (12) yields

P̃n(B̃) = 1

Z̃n

∫
x̃∈Md,n

1{πn(̃x)∈B̃} exp
(
−2n

σ 2 Wn(̃x)

)
d̃x,

so that (45) follows from Lemma 3.5. Likewise, for all Borel sets B of P(Rd),
(47) is obtained by the same chain of arguments, but starting with (16) in place of
(12). �

LEMMA 4.4 (Exponential moment control). Let W : P(Rd) → [0,+∞] be an
energy functional satisfying Assumptions (TI), (σF), (LSC), (GC) and (SH). For
all q ∈ [1,+∞),

(49) lim sup
η↓0

lim sup
n→+∞

1

n
log
∫

x̃∈Md,n

exp
(

2nq

σ 2 V̂ η
n (̃x)

)
dP̃ η

n (̃x) ≤ 0.

PROOF. Let us fix q ∈ [1,+∞) and ε ∈ (0,1). The proof is divided in 3 steps.
Step 1. In this step, we construct η0 > 0, depending on ε, such that for all η ≤ η0,

there exists n0 ≥ 2 which depends on η such that, for all n ≥ n0, for all x̃ ∈ Md,n,
if

(50)
1

n

n∑
i=1

|x̃i |� ≥ 1,

then

(51) (1 − q)V̂ η
n (̃x) + Wn(̃x) ≥ V̂ η(1−ε)

n (̃x) + (1 − ε)Wn(̃x).
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We first rewrite (51) under the equivalent formulation

εWn(̃x) ≥ (q − 1)V̂ η
n (̃x) + V̂ η(1−ε)

n (̃x).

On the one hand, the upper bound of Lemma 3.6 yields, for all x̃ ∈ Md,n,

(q − 1)V̂ η
n (̃x) + V̂ η(1−ε)

n (̃x) ≤ 2�−1η(q − ε)
1

n

n∑
i=1

|x̃i |� + α(n,η, ε),

with

α(n,η, ε) := (q − 1)
σ 2

2n
log

(2�−1n)d/�

zη
+ σ 2

2n
log

(2�−1n)d/�

zη(1−ε)
;

on the other hand, Assumption (GC) yields, for all x̃ ∈ Md,n,

Wn(̃x) ≥ κ�

n

n∑
i=1

|x̃i |�.

We deduce that (51) holds as soon as

(52)
(
εκ� − 2�−1η(q − ε)

)1
n

n∑
i=1

|x̃i |� ≥ α(n,η, ε).

With the latter condition at hand, let us define

η0 = εκ�

2�(q − ε)

and notice that, for all η ≤ η0,

lim
n→+∞α(n,η, ε) = 0

so that there exists n0 ≥ 2, depending on η, such that, for all n ≥ n0,

α(n,η, ε) ≤ εκ�

2
,

and, therefore, (
εκ� − 2�−1η(q − ε)

)≥ εκ�

2
≥ α(n,η, ε).

As a conclusion, for all n ≥ n0, if x̃ ∈ Md,n satisfies (50) then (52) holds, which
leads to (51).

Step 2. Let us fix η ≤ η0 and n ≥ n0, where η0 and n0 are given by Step 1. In
this step, we give an upper bound on

Iη
n :=
∫

x̃∈Md,n

exp
(

2nq

σ 2 V̂ η
n (̃x)

)
dP̃ η

n (̃x)
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by studying this integral separately on the domains

D�
n,d :=

{
x̃ ∈ Md,n : 1

n

n∑
i=1

|x̃i |� < 1

}

and on its complement. By the upper bound of Lemma 3.6,∫
x̃∈D�

n,d

exp
(

2nq

σ 2 V̂ η
n (̃x)

)
dP̃ η

n (̃x) ≤
(

(2�−1n)d/�

zη

)q

exp
(

2�nqη

σ 2

)
.

On the other hand, using Lemma 3.5 and Step 1 we obtain the chain of inequalities

(53)

∫
x̃∈Md,n\D�

n,d

exp
(

2nq

σ 2 V̂ η
n (̃x)

)
dP̃ η

n (̃x)

= 1

Z̃
η
n

∫
x̃∈Md,n\D�

n,d

exp
(
−2n

σ 2

(
(1 − q)V̂ η

n (̃x) + Wn(̃x)
))

d̃x

≤ 1

Z̃
η
n

∫
x̃∈Md,n\D�

n,d

exp
(
−2n

σ 2

(
V̂ η(1−ε)

n (̃x) + (1 − ε)Wn(̃x)
))

d̃x

≤ 1

Z̃
η
n

∫
x̃∈Md,n

exp
(
−2n

σ 2

(
V̂ η(1−ε)

n (̃x) + (1 − ε)Wn(̃x)
))

d̃x.

By Assumption (SH), (1 − ε)Wn(̃x) ≥ Wn((1 − ε)̃x). We now derive a similar
bound for V̂

η(1−ε)
n (̃x). The definition (38) yields

V̂ η
n

(
(1 − ε)̃x

)
= −σ 2

2n
log
∫
ζ∈Rd

exp

(
−2η

σ 2

n∑
i=1

∣∣(1 − ε)x̃i + ζ
∣∣�)dζ

≤ −σ 2d

2n
log(1 − ε) − σ 2

2n
log
∫
ξ∈Rd

exp

(
−2η(1 − ε)

σ 2

n∑
i=1

|x̃i + ξ |�
)

dξ

= −σ 2d

2n
log(1 − ε) + V̂ η(1−ε)

n (̃x),

where we have performed the change of variable ζ = (1 − ε)ξ and used the fact
that (1 − ε)� ≤ 1 − ε. Thus,∫

x̃∈Md,n

exp
(
−2n

σ 2

(
V̂ η(1−ε)

n (̃x) + (1 − ε)Wn(̃x)
))

d̃x

≤
∫

x̃∈Md,n

exp
(
−2n

σ 2

(
V̂ η

n

(
(1 − ε)̃x

)+ Wn

(
(1 − ε)̃x

))− d log(1 − ε)

)
d̃x

≤ 1

(1 − ε)dn

∫
ỹ∈Md,n

exp
(
−2n

σ 2

(
V̂ η

n (̃y) + Wn(̃y)
))

d̃y = Z̃
η
n

(1 − ε)dn
,
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thanks to the change of variable ỹ = (1 − ε)̃x. Injecting this inequality at the end
of (53), we obtain∫

x̃∈Md,n\D�
n,d

exp
(

2nq

σ 2 V̂ η
n (̃x)

)
dP̃ η

n (̃x) ≤ 1

(1 − ε)dn
,

so that we may conclude this step by stating that

Iη
n ≤
(

(2�−1n)d/�

zη

)q

exp
(

2�nqη

σ 2

)
+ 1

(1 − ε)dn
.

Step 3. We complete the proof by studying the asymptotic behaviour of I
η
n . By

Step 2 and the standard asymptotic subadditivity argument,

lim sup
n→+∞

1

n
log Iη

n

≤ lim sup
n→+∞

1

n
log
((

(2�−1n)d/�

zη

)q

exp
(

2�nqη

σ 2

)
+ 1

(1 − ε)dn

)

≤ lim sup
n→+∞

1

n
log
((

(2�−1n)d/�

zη

)q

exp
(

2�nqη

σ 2

))
+ lim sup

n→+∞
1

n
log

1

(1 − ε)dn

= 2�qη

σ 2 − d log(1 − ε),

from which we then deduce that

lim sup
η↓0

lim sup
n→+∞

1

n
log Iη

n ≤ −d log(1 − ε).

We may now complete the proof of (49) by letting ε vanish. �

4.3. Large deviation upper and lower bounds. In this subsection, we complete
the proof of Theorems 2.14 and 2.16 by addressing the large deviation upper and
lower bounds.

LEMMA 4.5 (Large deviation upper bound). Let W : P(Rd) → [0,+∞] be
an energy functional satisfying Assumptions (TI), (σF), (LSC), (GC), (SH) and
(CC):

(i) For all closed sets B of P(Rd),

lim sup
n→+∞

1

n
logPn(B) ≤ − inf

μ∈B
I[μ].

(ii) If the index � ≥ 1 given by Assumption (GC) is such that � > 1, then for all
p ∈ [1, �), for all closed sets B̃ of P̃p(Rd),

lim sup
n→+∞

1

n
log P̃n(B̃) ≤ − inf

μ̃∈B̃
Ĩ[μ̃].
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PROOF. We shall prove both statements at once. Let B ′ refer to either B ⊂
P(Rd) or B̃ ⊂ P̃p(Rd), P′

n (resp., P′η
n ) refer to either Pn (resp., P

η

n) or P̃n (resp.,
P̃

η
n), and so on. By Lemma 4.3, for all η > 0, for all n ≥ 2,

(54)

1

n
logP′

n

(
B ′)

= 1

n
log

Z̃
η
n

Z̃n

+ 1

n
log
∫

x̃∈Md,n

1{πn(̃x)∈B ′′} exp
(

2n

σ 2 V̂ η
n (̃x)

)
dP̃ η

n (̃x),

where B ′′ refers to either ρ−1(B) or B̃ .
By (39) and the lower bound of Lemma 3.6,

Z̃
η
n

Z̃n

=
∫

x̃∈Md,n

exp
(
−2n

σ 2 V̂ η
n (̃x)

)
dP̃n(̃x) ≤ zηn−d/�,

whence

lim sup
n→+∞

1

n
log

Z̃
η
n

Z̃n

≤ 0,

for any η > 0.
Let us now fix q, q ′ ∈ (1,+∞) such that 1/q + 1/q ′ = 1. By Hölder’s inequal-

ity, for all η > 0,

log
∫

x̃∈Md,n

1{πn(̃x)∈B ′′} exp
(

2n

σ 2 V̂ η
n (̃x)

)
dP̃ η

n (̃x)

≤ 1

q ′ log
∫

x̃∈Md,n

1{πn(̃x)∈B ′′} dP̃ η
n (̃x)

+ 1

q
log
∫

x̃∈Md,n

exp
(

2nq

σ 2 V̂ η
n (̃x)

)
dP̃ η

n (̃x).

By Lemma 4.3, for all η > 0,∫
x̃∈Md,n

1{πn(̃x)∈B ′′} dP̃ η
n (̃x) = P′η

n

(
B ′),

and by Corollary 3.4,

lim sup
n→+∞

1

n
logP′η

n

(
B ′)≤ − inf

μ′∈B ′ I
′η[μ′],

with I′η referring to either I
η

or Ĩη. Using Lemma 4.4, we thus deduce that

lim sup
n→+∞

1

n
logP′

n

(
B ′)

≤ lim sup
η↓0

lim sup
n→+∞

1

n
log
∫

x̃∈Md,n

1{πn(̃x)∈B ′′} exp
(

2n

σ 2 V̂ η
n (̃x)

)
dP̃ η

n (̃x)

≤ 1

q ′ lim sup
η↓0

{
− inf

μ′∈B ′ I
′η[μ′]},
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from which we deduce that

lim sup
n→+∞

1

n
logP′

n

(
B ′)≤ 1

q ′
{
− inf

μ′∈B ′ I
′[μ′]},

thanks to Lemma 4.7 stated below. Since q ′ is arbitrarily close to 1, the proof is
completed. �

LEMMA 4.6 (Large deviation lower bound). Let W : P(Rd) → [0,+∞] be
an energy functional satisfying Assumptions (TI), (σF), (LSC), (GC), (SH) and
(CC):

(i) For all open sets B of P(Rd),

lim inf
n→+∞

1

n
logPn(B) ≥ − inf

μ∈B
I[μ].

(ii) If the index � ≥ 1 given by Assumption (GC) is such that � > 1, then for all
p ∈ [1, �), for all open sets B̃ of P̃p(Rd),

lim inf
n→+∞

1

n
log P̃n(B̃) ≥ − inf

μ̃∈B̃
Ĩ[μ̃].

PROOF. We shall prove both statements at once, and use the same shortcut
notation as in the proof of Lemma 4.5. Once again, we start from the fact that
P′

n(B
′) satisfies the identity (54). Noting that

Z̃
η
n

Z̃n

= 1∫̃
x∈Md,n

exp( 2n
σ 2 V̂

η
n (̃x))dP̃

η
n (̃x)

and then using Lemma 4.4 with q = 1, we first obtain

lim inf
η↓0

lim inf
n→+∞

1

n
log

Z̃
η
n

Z̃n

≥ 0.

We now combine the lower bound of Lemma 3.6 with Lemma 4.3 to write∫
x̃∈Md,n

1{πn(̃x)∈B ′′} exp
(

2n

σ 2 V̂ η
n (̃x)

)
dP̃ η

n (̃x) ≥ nd/�

zη
P′η

n

(
B ′),

from which we deduce that

lim inf
n→+∞

1

n
logP′

n

(
B ′)≥ lim inf

η↓0

{
− inf

μ′∈B ′ I
′η[μ′]}

thanks to Corollary 3.4. The conclusion follows from the application of Lem-
ma 4.7, which is stated below. �
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LEMMA 4.7 (Convergence of rate functions). Under the assumptions of either
Theorem 2.16 or Theorem 2.14, let I′ (resp., I′η, for η > 0) refer to either I (resp.,
I
η
) or Ĩ (resp., Ĩη). Then for any subset B ′ of either P(Rd) or P̃p(Rd),

lim
η↓0

inf
μ′∈B ′ I

′η[μ′]= inf
μ′∈B ′ I

′[μ′].
PROOF. The functions I′η and I′ write

I′η
[
μ′]= F′[μ′]+ 2η

σ 2 ϑ ′[μ′]− Fη
� , I′

[
μ′]= F′[μ′]−F�,

with obvious notation for F′ and ϑ ′, and

Fη
� = inf

μ′

{
F′[μ′]+ 2η

σ 2 ϑ ′[μ′]}, F� = inf
μ′ F

′[μ′].
Thus, it is sufficient to prove that

lim
η↓0

inf
μ′∈B ′

{
F′[μ′]+ 2η

σ 2 ϑ ′[μ′]}= inf
μ′∈B ′ F

′[μ′].
The fact that ϑ ′[μ′] ≥ 0 immediately yields

lim inf
η↓0

inf
μ′∈B ′

{
F′[μ′]+ 2η

σ 2 ϑ ′[μ′]}≥ inf
μ′∈B ′ F

′[μ′].
Furthermore, for any ν′ ∈ B ′,

inf
μ′∈B ′

{
F′[μ′]+ 2η

σ 2 ϑ ′[μ′]}≤ F′[ν′]+ 2η

σ 2 ϑ ′[ν′],
and letting η vanish in both sides of the inequality yields

lim sup
η↓0

inf
μ′∈B ′

{
F′[μ′]+ 2η

σ 2 ϑ ′[μ′]}≤ F′[ν′],
so that taking the infimum of the right-hand side over ν′ yields

lim sup
η↓0

inf
μ′∈B ′

{
F′[μ′]+ 2η

σ 2 ϑ ′[μ′]}≤ inf
ν′∈B ′ F

′[ν′],
which completes the proof. �

5. Application to McKean–Vlasov and rank-based models.

5.1. MV-model. This subsection presents the proof of Corollary 2.18. We first
assume that, in the decomposition (17), W� ≡ 0.
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LEMMA 5.1 (Case W� ≡ 0). Let W� : Rd → [0,+∞) be an interaction po-
tential satisfying Assumption (MV-�). Then the associated energy functional W�

defined by (7) with W = W� satisfies Assumptions (TI), (σF), (LSC), (GC), (SH)
and (CC); besides, Assumption (GC) holds with the index � ≥ 1 given by Assump-
tion (MV-�).

PROOF. Assumptions (TI) and (σF) are straightforward. The continuity of the
mapping μ �→ μ ⊗ μ on P(Rd), combined with the fact that, by Assumption
(MV-�), W� is nonnegative and lower semicontinuous and Fatou’s lemma, yield
Assumption (LSC).

Let � ≥ 1 be given by Assumption (MV-�). By (7), for all μ ∈ P(Rd),

W�[μ] ≥ κ�

∫∫
x,y∈Rd

|x − y|� dμ(x)dμ(y),

which, by the Fubini–Tonelli theorem, implies that W�[μ] = +∞ if μ /∈ P�(R
d).

On the other hand, if μ̃ ∈ P̃�(R
d), then by Jensen’s inequality,∫

x∈Rd
|x|� dμ̃(x) =

∫
x∈Rd

∣∣∣∣x −
∫
y∈Rd

y dμ̃(y)

∣∣∣∣� dμ̃(x)

=
∫
x∈Rd

∣∣∣∣∫
y∈Rd

(x − y)dμ̃(y)

∣∣∣∣� dμ̃(x)

≤
∫∫

x,y∈Rd
|x − y|� dμ̃(x)dμ̃(y),

so that

W�[μ̃] ≥ κ�

∫
x∈Rd

|x|� dμ̃(x),

and W� satisfies Assumption (GC).
Assumption (SH) is a straightforward consequence of Assumption (MV-�).
We finally let μ ∈ P(R) and take a sequence of independent random variables

(Yn)n≥1 on some probability space (�,A,P) with identical distribution μ. For all
n ≥ 2,

E
[
W�

n(Y1, . . . , Yn)
]= 1

2n2

n∑
i,j=1
i 
=j

E
[
W�(Y1 − Y2)

]= n − 1

n
W�[μ],

which leads to Assumption (CC) and completes the proof. �

We now address the general case W = W� + W�, with W� 
≡ 0. We decompose
the energy functional W, defined by (7), as

W= W� +W�,
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with obvious definitions for W� and W�. By Lemma 5.1 and Theorems 2.16 and
2.14, the sequences P

�

n and P̃
�
n associated with W� satisfy the large deviation prin-

ciples of Corollary 2.18, with respective rate functions denoted by I
�

and Ĩ�. On
the other hand,

dPn

dP
�

n

[μ] = Z̃
�
n

Z̃n

exp
(
−2n

σ 2W
�[μ]
)
,

dP̃n

dP̃�
n

[μ̃] = Z̃
�
n

Z̃n

exp
(
−2n

σ 2W
�[μ̃]
)
,

with an obvious definition for Z̃
�
n.

If � = 1, then by Assumption (MV-�), W
�

is a bounded and continuous func-
tional on P(Rd), so that the application of the Laplace–Varadhan lemma [25], The-
orem II.7.2, page 52, is straightforward and yields the first part of Corollary 2.18.

REMARK 5.2 (On the Laplace–Varadhan lemma). The statement of the
Laplace–Varadhan Llemma in [25], Theorem II.7.2, page 52, requires the state
space to be Polish, which is not proved for P(Rd) in the present article. However,
a careful examination of the proof of this theorem shows that this assumption is
in fact not necessary. More generally, we refer to [22], Section 4.3, for an exposi-
tion of Varadhan’s lemma and various developments on regular (and in particular
metric) topological spaces, which are not necessarily Polish.

Let us now assume that � > 1, and fix p ∈ [max(1, �′), �), where �′ ∈ [0, �)

is given by Assumption (MV-�). The functional W� is continuous on P̃p(Rd), but
not necessarily bounded, so that following [25], Theorem II.7.2, page 52, and [22],
Lemma 4.3.8, page 138, we shall check the exponential moment condition

(55) lim sup
n→+∞

1

n
log
∫
μ̃∈P̃p(Rd )

exp
(
−2nγ

σ 2 W�[μ̃]
)

dP̃�
n[μ̃] < +∞,

for some γ > 1—in fact, since any multiple of W� also satisfies Assumption
(MV-�), this condition should hold for any γ ∈ R.

Taking (55) for granted, the Laplace–Varadhan lemma [25], Theorem II.7.2,
page 52, allows to transfer the large deviation principle from P̃

�
n to P̃n on P̃p(Rd),

for any p ∈ [max(1, �′), �). This result is then extended on P̃p(Rd), for any p ∈
[1, �), and to P(Rd), by the use of the contraction principle [22], Theorem 4.2.1,
page 126, which completes the proof of Corollary 2.18.

PROOF OF (55). The argument is similar to the proof of Lemma 4.4. Let us
fix γ > 1, and rewrite

(56)

∫
μ̃∈P̃p(Rd )

exp
(
−2nγ

σ 2 W�[μ̃]
)

dP̃�
n[μ̃]

=
∫̃

x∈Md,n
exp(− 2n

σ 2 (γW
�
n(̃x) + W

�
n(̃x))) d̃x∫̃

x∈Md,n
exp(− 2n

σ 2 W
�
n(̃x)) d̃x

.
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Assumption (MV-�) and Jensen’s inequality imply that there exists C ≥ 0 such that,
for all x̃ ∈ Md,n,

∣∣γW�
n(̃x)
∣∣≤ Cγ

2

(
1 + 2�′

n

n∑
i=1

|x̃i |�′
)
.

By Hölder’s inequality and Assumption (MV-�),

1

n

n∑
i=1

|x̃i |�′ ≤
(

1

n

n∑
i=1

|x̃i |�
)�′/�

≤
(

1

κ�

W�
n(̃x)

)�′/�
,

so that

γW�
n(̃x) ≥ −Cγ

2

(
1 + 2�′

κ
�′/�
�

(
W�

n(̃x)
)�′/�
)
,

and for any ε ∈ (0,1), there exists L ≥ 0 such that, for all n ≥ 2, for all x̃ ∈ Md,n,
the condition

W�
n(̃x) ≥ L

implies that

γW�
n(̃x) + W�

n(̃x) ≥ (1 − ε)W�
n (̃x).

Studying the integral in the numerator of the right-hand side of (56) separately on
the domains {W�

n(̃x) < L} and on its complement, we get the bound∫
μ̃∈P̃p(Rd )

exp
(
−2nγ

σ 2 W�[μ̃]
)

dP̃�
n[μ̃]

≤ exp
(

nCγ

σ 2

(
1 + 2�′

L�′/�

κ
�′/�
�

))
+
∫̃

x∈Md,n
exp(− 2n

σ 2 (1 − ε)W
�
n (̃x)) d̃x∫̃

x∈Md,n
exp(− 2n

σ 2 W
�
n(̃x)) d̃x

,

and the same change of variable as in the proof of Lemma 4.4 allows to complete
the proof of (55). �

5.2. RB-model. The next lemma allows to deduce Corollary 2.19 from a
straightforward application of Theorem 2.16.

LEMMA 5.3 (Assumptions of Theorem 2.16 for the RB-model). If the flux
function B satisfies the assumptions of Corollary 2.19, then the associated energy
functional W defined by (9) satisfies Assumptions (TI), (σF), (LSC), (GC) with
� = 1, (SH) and (CC).
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PROOF. Assumptions (TI) and (σF) are straightforward.
To check Assumption (LSC), we recall that the weak convergence of probabil-

ity measures implies the convergence dx-almost everywhere of their cumulative
distribution functions, so that the lower semicontinuity of W follows from Fatou’s
lemma and the fact that B is continuous and nonnegative.

Let us now define

κ := inf
u∈(0,1)

B(u)

2u(1 − u)
.

The combination of the conditions (8), (18) and (19) implies that κ ∈ (0,+∞). As
a consequence, for all μ ∈ P(R),

W[μ] ≥ 2κ

∫
x∈R

Fμ(x)
(
1 − Fμ(x)

)
dx = κ

∫∫
x,y∈R

|x − y|dμ(x)dμ(y),

which by Lemma 5.1 implies Assumption (GC) with � = 1.
Assumption (SH) follows from the remark that

Wn(x) = −1

n

n∑
k=1

bn(k)x(k), x(1) ≤ · · · ≤ x(n),

so that (1 − ε)Wn(x) = Wn((1 − ε)x).
We finally let μ ∈ P(R) and take a sequence of independent random variables

(Yn)n≥1 on some probability space (�,A,P) with identical distribution μ. If μ /∈
P1(R), then by Remark 2.13,

lim
n→+∞ E

[
Wn(Y1, . . . , Yn)

]= W[μ] = +∞.

On the contrary, if μ ∈ P1(R), let us write∣∣E[Wn(Y1, . . . , Yn)
]−W[μ]∣∣= ∣∣E[W[πn] −W[μ]]∣∣≤ E

[∣∣W[πn] −W[μ]∣∣],
where πn is a short notation for πn(Y1, . . . , Yn). Denoting C = supu∈[0,1] |B ′(u)|,
we get

∣∣W[πn] −W[μ]∣∣≤ C

∫
x∈R
∣∣Fπn(x) − Fμ(x)

∣∣dx = CW1(πn,μ),

where W1 is the Wasserstein distance of order 1. That this distance coincides with
the L1 distance of cumulative distribution functions is a specific feature of prob-
ability measures on the real line; see [8], Theorem 2.9, page 16. By [8], Theo-
rem 2.14, page 20, E[W1(πn,μ)] converges to 0 when n grows to infinity, which
shows that W satisfies Assumption (CC). �
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5.3. Application to the study of atypical capital distribution. It was proved in
[41] that under the assumptions of Corollary 2.19, P̃n converges weakly, on P̃p(R)

for any p ≥ 1, to the Dirac mass δμ̃∞ , where μ̃∞ is the unique centered stationary
measure of the nonlinear diffusion process describing the mean-field limit of (10);
we refer to [21, 31, 43] for associated propagation of chaos results in the space
of sample-paths. This measure satisfies the stationary nonlinear Fokker–Planck
equation

(57) 0 = σ 2

2
∂xxμ̃∞ − ∂x

(
b(Fμ̃∞)μ̃∞

)
, b(u) := B ′(u),

which implies that it possesses a density p̃∞ with respect to the Lebesgue measure
on R, which solves the fixed-point relation

(58)

p̃∞(x) = 1

z̃∞
exp
(

2

σ 2

∫ x

y=0
b
(
Fμ̃∞(y)

)
dy

)
,

z̃∞ =
∫
x∈R

exp
(

2

σ 2

∫ x

y=0
b
(
Fμ̃∞(y)

)
dy

)
dx.

As a consequence, if we let (X̃1, . . . , X̃n) be a random vector with distribution P̃n,
and X̃∞,1, . . . , X̃∞,n be independent random variables with identical distribution
μ̃∞, then πn(X̃1, . . . , X̃n) and πn(X̃∞,1, . . . , X̃∞,n) satisfy the same weak law of
large numbers, and converge to μ̃∞. However, the large deviations of these ran-
dom empirical measures are respectively described by Corollary 2.19 [in the orbit
space P(R)], and by Sanov’s theorem. We first examine the difference between the
associated rate functions, and then detail an application of this result to the estima-
tion of the probability of atypical capital distribution in the context of stochastic
portfolio theory.

5.3.1. Difference between rate functions. With the notation introduced above,
let us define

P∞,n := μ̃⊗n∞ ◦ π−1
n , P∞,n := P∞,n ◦ ρ−1.

By Sanov’s theorem and the contraction principle, the sequence P∞,n satisfies a
large deviation principle on P(R), with good rate function

I∞[μ] := inf
μ∈P(R):ρ(μ)=μ

R[μ|μ̃∞].

LEMMA 5.4 (Comparison of rate functions). Under the assumptions of Corol-
lary 2.19, we have, for all μ ∈ P(R), for all μ ∈ P(R) such that ρ(μ) = μ,

(59) I[μ] =R[μ|μ̃∞] + 2

σ 2

∫
x∈R

�
(
Fμ(x),Fμ̃∞(x)

)
dx,

where

�(u, v) := B(u) − B(v) − b(v)(u − v).
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As a consequence, if B is concave, then for all μ ∈ P(R),

(60) I[μ] ≤ I∞[μ].
PROOF. As a preliminary remark, we observe that the convergence of P̃n to

δμ̃∞ implies that Pn converges weakly to δμ∞ , with μ∞ := ρ(μ̃∞), on P(R).
Combining this weak law of large numbers with Corollary 2.19, we get that μ∞ is
the unique zero of I and, therefore, that

F� = F[μ∞] = F[μ̃∞].
Notice that (57) is the optimality condition associated with the definition of F�.

We now let μ ∈ P(R) and μ ∈ P(R) be such that ρ(μ) = μ. If μ /∈ P1(R),
then by Assumption (GC), F[μ] = +∞ so that I[μ] = +∞; besides, it is known
that μ̃∞ has exponential tails [31, 32] so that I∞[μ] = +∞. Likewise, if μ is not
absolutely continuous with respect to the Lebesgue measure on R, then both I[μ]
and I∞[μ] are infinite.

We now assume that μ ∈ P1(R) and has a density p with respect to the
Lebesgue measure, and write

I[μ] = F[μ] −F�

= F[μ] −F[μ̃∞]

= S[μ] − S[μ̃∞] + 2

σ 2

∫
x∈R
(
B
(
Fμ(x)

)− B
(
Fμ̃∞(x)

))
dx.

Besides,

R[μ|μ̃∞] = S[μ] − S[μ̃∞] +
∫
x∈R
(
p̃∞(x) − p(x)

)
log p̃∞(x)dx.

By (58),

log p̃∞(x) = − log z̃∞ + 2

σ 2

∫ x

y=0
b
(
Fμ̃∞(y)

)
dy,

which after the use of Fubini’s theorem yields∫
x∈R
(
p̃∞(x) − p(x)

)
log p̃∞(x)dx

= 2

σ 2

∫
y∈R

b
(
Fμ̃∞(y)

)(
Fμ(y) − Fμ̃∞(y)

)
dy,

and leads to (59).
If B is concave, then �(u, v) ≤ 0 for all u, v ∈ [0,1], so that, for all μ ∈ P(R),

(59) yields

I[μ] ≤ R[μ|μ̃∞],
for all μ ∈P(R) such that ρ(μ) = μ. Taking the infimum over μ of the right-hand
side results in (60) and completes the proof. �
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5.3.2. Capital distribution curves. In the framework of stochastic portfolio
theory [2, 26], systems of rank-based interacting diffusions of the form (10) serve
as first-order approximations of stable equity markets, in the sense that on a mar-
ket with n companies, the process Xi(t) provides a good representation of the be-
haviour of the logarithmic capitalisation of the ith company. Thus, the proportion
of the total capital held by this company is given by its market weight

μi(t) := exp(Xi(t))∑n
j=1 exp(Xj (t))

.

Using the reverse order statistics notation,

μ[1](t) ≥ · · · ≥ μ[n](t),
the capital distribution curve is defined as the log-log plot of the mapping m �→
μ[m](t) and summarises in which manner the whole capital of a market is spread
among the companies.

Notice that the market weights are invariant by translation of X1(t), . . . ,Xn(t),
so that the vector (μ[1](t), . . . ,μ[n](t)) (and, therefore, the associated capital distri-
bution curve) only depends on ρ(πn(X1(t), . . . ,Xn(t))). Besides, empirical stud-
ies (see, for instance, [26], Figure 5.1) show that the capital distribution curves
are remarkably stable over long times. These remarks suggest to study the statis-
tical distribution of the vector (μ[1], . . . ,μ[n]) under the probability measure Pn

[2, 17, 32].
When n grows to infinity, the law of large numbers for Pn prescribes a deter-

ministic form for the (suitably rescaled) capital distribution curve, which was ob-
served to fit empirical data in [32]. This defines a distribution of capital which we
call typical. If one wants to study the capital distribution without having to sam-
ple the high-dimensional vector (X̃1, . . . , X̃n) from the distribution P̃n, then the
discussion above shows that using independent random variables X̃∞,1, . . . , X̃∞,n

identically distributed according to μ̃∞ as a surrogate model provides correct re-
sults concerning this typical behaviour. Such a surrogate model was for instance
employed in [32] to evaluate the performance of diversity-weighted portfolios, and
in [11], Section 3, to study hitting times and rank-rank correlations.

On the contrary, Lemma 5.4 shows that the fluctuations of the capital distri-
bution far from its typical behaviour, due to finite-size effects, and which are de-
scribed by the large deviations of Pn, are not correctly captured by the surrogate
model in general. In short: both sequences Pn and P∞,n concentrate around μ∞,
but their rate functions differ. On a more quantitative level, if the flux function
B is concave, then at the level of large deviations, the probability of an atypical
distribution of the capital is always underestimated by P∞,n (the surrogate model)
with respect to Pn. In other words, the interaction between the stocks increases the
probability of an atypical capital distribution.

For similar works on the study of the fluctuations of mean-field rank-based in-
teracting diffusions around, or far from, their typical behaviour, we refer to the
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respective works by Kolli and Shkolnikov [33], and Dembo et al. [21]. We also
mention that inequalities between rate functions for sequence of probability mea-
sures having the same law of large numbers, such as in Lemma 5.4, naturally pro-
vide comparisons between asymptotic variances in Monte-Carlo numerical meth-
ods. For more details in this direction, we refer to the work by Rey-Bellet and
Spiliopoulos [40] and the references therein.

APPENDIX: METRISABILITY OF THE QUOTIENT TOPOLOGY ON P(Rd)

By definition, the quotient topology on P(Rd) is the strongest topology making
the orbit map ρ continuous. The purpose of this Appendix is to prove that this
topology is metrisable, which is in general not the case for quotient topologies.

We first note that the definition of the quotient topology implies the following
characterisation of open and closed sets.

LEMMA A.1 [Open and closed sets in P(Rd)]. A subset A of P(Rd) is open
(resp., closed) if and only if the set ρ−1(A) is open (resp., closed) in P(Rd).

Our construction of a metric on P(Rd) is based on the Prohorov metric on
P(Rd), which following [7], Theorem 6.9, page 74, can be defined by

(61) dP(μ, ν) := inf
π

{
ε > 0 : π({(x, y) ∈ Rd ×Rd : |x − y| ≥ ε

})≤ ε
}
,

where the infimum is taken over all the couplings π of μ and ν. We recall that a
sequence of probability measures μn converges weakly to μ in P(Rd) if and only
if dP(μn,μ) converges to 0, so that the metric topology associated with the Pro-
horov metric coincides with the topology of weak convergence [7], Theorem 6.8,
page 73.

The following property of the Prohorov metric is immediate.

LEMMA A.2 (Translation invariance of the Prohorov metric). For all μ,ν ∈
P(Rd), for all y ∈ Rd ,

dP(τyμ, τyν) = dP(μ, ν).

For all μ,ν ∈P(Rd), let us define

(62) dP(μ, ν) := inf
{
dP(μ, ν) : ρ(μ) = μ,ρ(ν) = ν

} ∈ [0,+∞).

For any μ,ν ∈ P(Rd) such that ρ(μ) = μ and ρ(ν) = ν, it is a consequence of
Lemma A.2 that dP(μ, ν) rewrites

(63) dP(μ, ν) = inf
{
dP(μ, τyν) : y ∈ Rd}.

LEMMA A.3 (Metrisability of P(Rd)). The function dP is a metric on P(Rd),
and the associated metric topology is the same as the quotient topology.
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We call dP the quotient Prohorov metric.

PROOF. It is obvious that dP is symmetric. To show that it satisfies the triangle
inequality, we take μ,ν,λ ∈ P(Rd) and fix μ,ν,λ ∈ P(Rd) such that ρ(μ) = μ,
ρ(ν) = ν and ρ(λ) = λ. By (62) and the triangle inequality for dP, for all x, y ∈ Rd ,

dP(μ, ν) ≤ dP(τxμ, τyν) ≤ dP(τxμ,λ) + dP(τyν, λ),

so that taking the infimum of the right-hand side of the inequality over x, y ∈ Rd

and using (63), we obtain

dP(μ, ν) ≤ dP(μ,λ) + dP(ν, λ).

We now take μ,ν ∈ P(Rd) such that dP(μ, ν) = 0. Let μ,ν ∈ P(Rd) such that
ρ(μ) = μ and ρ(ν) = ν. By (63), for all n ≥ 1 there exists yn ∈ Rd such that

dP(μ, τynν) ≤ 1/n,

therefore, τynν converges to μ. By Ulam’s theorem [7], Theorem 1.3, page 8, ν is
tight, hence there exists a centered ball B(0, r), r ≥ 0, such that

(64) ν
(
B(0, r)

)≥ 2/3.

Likewise, by Prohorov’s theorem [7], Theorem 5.2, page 60, the family (τynν)n≥1
is tight, so that there exists s ≥ 0 such that

(65) ∀n ≥ 1, τynν
(
B(0, s)

)= ν
(
B(yn, s)

)≥ 2/3.

Assume that there exists an extracted sequence (nk)k≥1 such that |ynk
| diverges to

+∞: then for k large enough, the balls B(0, r) and B(ynk
, s) are disjoint, so that

the combination of (64) and (65) yields

ν
(
B(0, r) ∪ B(ynk

, s)
)≥ 4/3 > 1,

which is absurd. As a consequence, the sequence (yn)n≥1 is bounded and, there-
fore, possesses a converging subsequence, that we still index by n for convenience,
and the limit of which is denoted y∗. Using the continuity of the mapping y �→ τyν,
we get

μ = lim
n→+∞ τynν = τy∗ν,

which implies that μ = ρ(μ) = ρ(τy∗ν) = ν and completes the proof that dP is a
metric.

As an immediate consequence of the definition (62) of dP, we have the inequal-
ity

∀μ,ν ∈P
(
Rd), dP

(
ρ(μ),ρ(ν)

)≤ dP(μ, ν),

which implies that ρ is continuous for the metric topology induced on P(Rd) by
dP, so by definition of the quotient topology, the latter is stronger than the former.
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Now let A be an open set in the quotient topology. By the definition of the quotient
topology, the set A := ρ−1(A) is open in P(Rd), so that for all μ ∈ A, there exists
rμ > 0 such that B(μ, rμ) ⊂ A, whence

A = ⋃
μ∈A

B(μ, rμ).

Since ρ(τyμ) = ρ(μ) ∈ A for any y ∈Rd and μ ∈ A, we may rewrite

A = ⋃
y∈Rd

τy

(⋃
μ∈A

B(μ, rμ)

)
= ⋃

μ∈A

⋃
y∈Rd

B(τyμ, rμ).

Introducing the notation

B(μ, r) := {ν ∈ P
(
Rd) : dP(μ, ν) < r

}
,

we deduce from (63) that, for all μ ∈ A,⋃
y∈Rd

B(τyμ, rμ) = ρ−1(B(ρ(μ), rμ
))

,

so that

A = ⋃
μ∈A

ρ−1(B(ρ(μ), rμ
))= ρ−1

(⋃
μ∈A

B
(
ρ(μ), rμ

))
.

As a consequence,

A = ⋃
μ∈A

B
(
ρ(μ), rμ

)
,

therefore, A is an open set in the metric topology and the proof is completed. �
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