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Partial differential equations with random inputs have become popular
models to characterize physical systems with uncertainty coming from im-
precise measurement and intrinsic randomness. In this paper, we perform
asymptotic rare-event analysis for such elliptic PDEs with random inputs. In
particular, we consider the asymptotic regime that the noise level converges to
zero suggesting that the system uncertainty is low, but does exist. We develop
sharp approximations of the probability of a large class of rare events.

1. Introduction. The study of rare events due to system uncertainty, for ex-
ample, the failure of materials due to intrinsic randomness, is crucial and yet chal-
lenging. While those events do not often occur, they lead to catastrophic conse-
quences. Therefore, it is important to estimate the probabilities of such events and
to characterize those events which help finding interventions to prevent them from
happening. In this paper, we consider the following classical continuum mechani-
cal model in the form of a linear elliptic partial differential equation (PDE) defined
on a domain U ⊂ Rd ,

(1) −∇ · (
a(x)∇u(x)

) = f (x),

subject to certain boundary conditions that will be specified in the sequel. The
solution u to the above equation describes the deformation of a piece of elastic
material under the external force f . The function a(x) is known as the elasticity
determined by the property of the specific material and it is strictly positive. Instead
of assuming that a is deterministic, we are interested in the situations when the
tensor a contains randomness. The randomness is introduced to incorporate the
uncertainties of simple elastic materials at the macroscopic level or heterogeneity
in the microstructures of complex materials. Under this setting, the solution u(x)
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[as a function of a(x)] is also a stochastic process whose law is determined by that
of a(x).

Besides material mechanics, the elliptic PDE (1) arises also in many other fields
of applications, such as hydrogeology and porous medium. The tensor a(x) carries
different names such as conductivity and permeability. It is recognized that the
modeling of the random field a(x) is of primal importance for the analysis. In this
paper, we consider the following stylized model:

(2) a(x) = a0(x)e−σξ(x), x ∈ U,

where ξ(x) is a Gaussian random field defined on U and a0(x) is a deterministic
function. The scalar σ > 0 is a parameter indexing the noise level. Many stud-
ies by practitioners, for example, Freeze [(1975), pages 728–729] and Charbeneau
[(2000), page 40], have shown that the log-normal distribution provides a good
fit to the empirical data. Hence, the log-normal assumption is well justified in ap-
plications and is used in mathematical analysis and numerical computation of the
random PDE (1). In our paper, we follow this convention of log-normal assumption
for the rare-event analysis.

In this work, we consider the small noise asymptotic regime that σ tends to zero.
Yet, even small noise can lead to a drastic difference of the PDE solution from that
of the deterministic case when the noise level is zero. Our results characterize such
rare events, more precisely, the deviation of the solution of the random elliptic
PDE in presence of small noise. In particular, we focus on the deviation from the
deterministic solution as the uncertainty level goes to 0. Let H be a mapping from
C(Ū) to R. Of primary interest is

ω(σ) = P
{
H(u) > H(u0) + bσ

}
as σ → 0,

where u is the solution to equation (1) and u0 is the solution when the noise level
is zero, that is, a(x) = a0(x). The level bσ will be sent to zero as the noise level
σ goes to zero, which will be specified in the sequel. The main contribution of
this paper is to derive sharp closed-form asymptotic approximations of ω(σ) as
σ → 0. To the authors best knowledge, this is the first rigorous asymptotic analysis
of random elliptic PDE for d > 1.

Given that H(u) is a (complicated) functional of the input Gaussian process
ξ(x), the analysis of the tail probability ω(σ) links naturally to the rare-event
analysis of Gaussian random field. The study of the extremes of Gaussian random
fields focuses mostly on the tail probabilities of the supremum of the field. The
results contain general bounds on P(max ξ(x) > b) as well as sharp asymptotic
approximations as b → ∞. A partial literature contains Landau and Shepp (1970),
Marcus and Shepp (1970), Sudakov and Tsirelson (1974), Borell (1975, 2003),
Berman (1985), Ledoux and Talagrand (1991), Talagrand (1996). Several methods
have been introduced to obtain bounds and asymptotic approximations. A gen-
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eral upper bound for the tail of max ξ(x) is developed in Borell (1975), Cirel’son,
Ibragimov and Sudakov (1976), which is known as the Borel–TIS inequality. For
asymptotic results, there are several methods, such as the double sum method
[Piterbarg (1996)], the Euler–Poincaré characteristics of the excursion set approx-
imation [Adler (1981), Adler and Taylor (2007), Taylor and Adler (2003), Taylor,
Takemura and Adler (2005)], the tube method [Sun (1993)] and the Rice method
[Azaïs and Wschebor (2008, 2009)]. Recently, the exact tail approximation of in-
tegrals of exponential functions of Gaussian random fields is developed by Liu
(2012), Liu and Xu (2012). Efficient computations via importance sampling have
been developed by Adler, Blanchet and Liu (2008, 2012). For the analysis of the
tail probabilities of log-normal random fields with small noise, refer to the recent
work in Li, Liu and Xu (2016).

There are also existing work in the context of PDE with random coefficients.
Liu and Zhou (2013, 2014) study the asymptotic behavior of one-dimensional
(d = 1) elliptic PDE. Liu, Lu and Zhou (2015) presents the corresponding rare-
event simulation algorithms. The main difference between the cases d = 1 and
d > 1 is that u(x) can be written analytically as a function of a(x) for d = 1
and there is no closed-form solution of u(x) for d > 1. Furthermore, Xu, Lin
and Liu (2014) presents asymptotic analysis for the stochastic KdV equation. Re-
cently, Berglund et al. (2017) presents analysis on an Eyring–Kramers law for an
Allen–Cahn equation driven by weak space-time white noise when d = 2. The
recent book Armstrong, Kuusi and Mourrat (2017) discusses stochastic homoge-
nization of elliptic operators with random coefficients. In particular, Theorem 2.15
of Armstrong, Kuusi and Mourrat (2017) could be interpreted as a large deviation
estimate, and Theorem 5.24 of Armstrong, Kuusi and Mourrat (2017) presents a
central limit theory type of result.

The rest of the paper is organized as follows. Section 2 presents the problem
setup and the main asymptotic results. The technical proofs are given in Section 3.

2. Main results.

2.1. The problem setup. We consider the following elliptic PDE. Let U ⊂ Rd

be an open, bounded domain with a smooth boundary. The differential equation
concerning u : U →R with Dirichlet boundary condition is given by

(3)

{−∇ · (
a(x)∇u(x)

) = f (x) for x ∈ U ;
u(x) = 0 for x ∈ ∂U.

In the context of elastic mechanics, u characterizes the material deformation due to
external force f and a : U →R gives the stiffness of the material. We assume that
the material is clamped to a frame on the boundary ∂U , and hence the Dirichlet
boundary condition u(∂U) = 0 in (3) is assumed. The external force f is suffi-
ciently smooth and bounded, that is, there exists a constant c ∈ R such that

(4)
∣∣f (x)

∣∣ ≤ c ∀x ∈ U.
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We study the behavior of the material under the influence of internal randomness,
which may be the result of manufacturing processing or the uncertainty of the
material properties at the microscopic level. We adopt a probabilistic viewpoint of
the complexity and heterogeneity inherent in the material and view the coefficient
a(x) as a random field. The process a(x) is physically restricted to be positive and
is modeled as a log-normal random field given as in (2). Furthermore, the Gaussian
random function ξ has mean zero and its covariance function is denoted by

(5) C(x, y) = E
{
ξ(x)ξ(y)

}
,

which does not depend on σ .
The solution u(x) depends implicitly on a(x) through equation (3) and further

ξ(x) via a logarithmic change of variable. It is useful to define a mapping from the
coefficient ξ to the solution u

J[ξ ] � uξ ,

where uξ is the solution to equation (3) with a(x) = a0(x)e−ξ(x). This mapping
depends only on the deterministic function a0, the external force f , the domain
U and the boundary condition. In this paper, we are interested in the asymptotic
regime that the amplitude of the uncertainty level σ tends to zero. Then the failure
problem concerns the random solution uσξ = J(σξ) by noting the definition of J
above. As σ → 0, the process a(x) tends to its limiting field a0(x). Let u0(x) be
the corresponding limiting solution satisfying equation

(6)

{−∇ · (
a0(x)∇u0(x)

) = f (x) for x ∈ U ;
u0(x) = 0 for x ∈ ∂U.

Then, under mild conditions, we have u(x) → u0(x) as σ → 0.
We provide asymptotic analysis of the event that u deviates from its limiting

solution u0. Let H be a functional from C(Ū) to R characterizing the deviation.
For instance, H(u) = ∫

U(u(x) − u0(x)) dx. Let G be the composition of J and H,
that is,

(7) G(ξ) = H
(
J[ξ ]).

To simplify notation, we always choose H such that G(0) = H(u0) = 0. We are in-
terested the tail probability of G(σξ) as σ → 0. In particular, we derive asymptotic
approximations for

(8) ω(σ) = P
{
G(σξ) > b

}
as σ → 0,

where the deviation level is chosen to be b = κσα for some fixed α ∈ (0,1) and
κ > 0. In particular, the deviation level b also goes to 0 as the uncertainty vanishes.
Without loss of generality, we fix κ = 1 and b = σα in the following discussion,
as κ can be absorbed in the functional G.
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2.2. Notation. We first introduce some notation that will be used in the sequel.
Throughout this analysis, we consider G to be a differentiable functional and let G′
be its Fréchet derivative, that is,

G(ξ + εη) = G(ξ) + ε

∫
U
G′[ξ ](x)η(x) dx + o(ε) as ε → 0,∀ξ, η ∈ C(Ū).

For 0 < β < 1, we say that a function w is Hölder continuous with order β if the
Hölder coefficient

(9) [w]β = sup
x,y∈Ū ,x �=y

|w(x) − w(y)|
|x − y|β < ∞.

We use Ck(Ū) to denote the space containing all k-time continuously differen-
tiable functions. For nonnegative integer k and 0 ≤ β < 1, we use Ck,β(Ū) to de-
note the set of functions in Ck(Ū) whose kth order partial derivatives are Hölder
continuous with coefficient β . For simplicity, we write C0,β(Ū ) = Cβ(Ū). We
proceed to the definition of norms over Ck,β(Ū). We first define the seminorms

[w]k,0 = max|γ |=k
sup
Ū

∣∣Dγ w
∣∣ and [w]k,β = max|γ |=k

[
Dγ w

]
β,

where γ is a multi-index γ = (γ1, . . . , γd), |γ | = ∑d
i=1 γi , and Dγ w =

∂ |γ |w
∂γ1x1 ···∂γd xd

. We further define the norms

‖w‖Ck(Ū) =
k∑

j=0

[w]j,0 and ‖w‖Ck,β (Ū) = ‖w‖Ck(Ū) + [w]k,β .

Equipped with ‖ · ‖Ck,β(Ū), the space Ck,β(Ū) is a Banach space for all non-
negative integer k and 0 ≤ β < 1. To simplify notation, we write

|w|k = ‖w‖Ck(Ū), |w|k,β = ‖w‖Ck,β(Ū), |w|β = |w|0,β .

2.3. Asymptotic results. We make the following assumptions on the smooth-
ness of functional H and the elliptic PDE, as well as the covariance function
C(x, y).

H1. There exist constants β, δH , κH such that δH > 0, 0 < β < 1 and H′(u) ∈
Cβ(Ū) for all |u − u0|2,β ≤ δG. In addition, H′ is Lipschitz in the sense that∣∣H′[u1] −H′[u2]

∣∣
β ≤ κH |u1 − u2|2,β

for all |u1 − u0|2,β, |u2 − u0|2,β ≤ δH . Here, u0 ∈ C2,β(Ū ) is the solution to (6)
when ξ is set to be 0.

H2. There exists x ∈ Ū such that ∇g0(x) · ∇u0(x) �= 0, where g0 ∈ C2,β(Ū ) is
the solution to the PDE

(10)

{−∇ · (
a0(x)∇g0(x)

) = H′[u0](x) for x ∈ U ;
g0(x) = 0 for x ∈ ∂U.
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H3. The set U is a bounded domain with a C2,β boundary ∂U , a0 ∈ C1,β(Ū ),
minx∈Ū a0(x) > 0 and f ∈ Cβ(Ū).

H4. The Gaussian random field {ξ(x), x ∈ U} belongs to the space C1,β(Ū )

almost surely. Its covariance function C(·, ·) is positive definite and satisfies
supy∈Ū |C(·, y)|1,2β < ∞. Moreover, we assume that for all γ such that |γ | ≤ 1,
supy∈Ū |CDγ ξ (·, y)|2β < ∞, where CDγ ξ is defined in (14).

Define a mapping C : C(Ū) → C(Ū)

Cw �
∫

C(·, y)w(y)dy.

We consider the optimization problem

(11) K∗
σ = min

ξ∈B,G(σCξ)=σα
K(ξ),

where the functional K : C(Ū) →R is

(12) K(w) �
∫
U

w(x)C(x, y)w(y)dx dy,

and the set B is defined as

(13) B �
{
w ∈ Ck,β(Ū) : |w|k,β ≤ σα−1−ε}

for some k ≥ 0, ε ∈ (0,min(α/2, (1 −α)/2)) and α is given as below (8). Because
B is a compact subset of Ck,β(Ū) and the functionals K and G are continuous over
B, the above optimization problem has at least one solution. Later in the current
section, we will show that this solution is also unique. The sharp asymptotic ap-
proximation for the elliptic PDE with small noise is presented in the next theorem.

THEOREM 1. Under the Assumptions H1–H4, for 0 < α < 1, we have

P
{
G(σξ) > σα} = (

c1 + o(1)
)
σ 1−α exp

(
−1

2
K∗

σ

)
as σ → 0,

where c1 = {(2π)−1K(a∇g0 · ∇u0)} 1
2 and K∗

σ is the minimum obtained in (11)
with k = 1 in (13) and β being defined as in Assumptions H1–H4.

Under Assumption H3, the PDE (3) has a unique solution u0 ∈ C2,β(Ū ) when ξ

is set to be 0. Furthermore, under Assumptions H1 and H3, (10) also has a unique
solution in C2,β(Ū ). Therefore, g0 and u0 in the above theorem are well-defined;
see Lemma 6 on page 2798 for the existence and the uniqueness of the Hölder
continuous solution to elliptic PDEs.

The solution of the optimization in (11) is generally not in a closed form, and so
is K∗

σ . In what follows, we present results on asymptotic approximation of K∗
σ as

well as its numerical approximation. Our strategy for developing these results and
proving Theorem 1 is to consider a general functional G, which is not necessary to
be H(J) as defined in (7), and develop general theories accordingly.
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2.4. Asymptotic results for general functionals. We present sharp asymptotic
approximations of the tail probabilities w(σ) under the following assumptions on
a functional G, which is not necessary in the form as is defined in (7), and the
covariance function C(x, y).

ASSUMPTION.

A1. There exist constants k,β, δG, κG such that k is a nonnegative integer, 0 ≤
β < 1, δG > 0 and for all |w|k,β ≤ δG, G′[w] ∈ Ck,β(Ū). In addition, G′ is a (local)
Lipschitz operator in the sense that for all |w1|k,β, |w2|k,β ≤ δG, we have∣∣G′[w1] − G′[w2]

∣∣
k,β ≤ κG|w1 − w2|k,β .

A2. There exists x ∈ Ū such that G′[0](x) �= 0.
A3. The Gaussian random field {ξ(x) : x ∈ U} belongs to the space Ck,β(Ū)

almost surely, that is, P(|ξ |k,β < ∞) = 1. The covariance function C(·, ·) is pos-
itive definite and satisfies supy∈Ū |C(·, y)|k,2β < ∞. Moreover, we assume that
supy∈Ū |CDγ ξ (·, y)|2β < ∞ for all γ such that |γ | ≤ k, where we define

(14) CDγ ξ (x, y)� E
{
Dγ ξ(x)Dγ ξ(y)

}
.

With the above assumptions, we have the following sharp asymptotic approxi-
mation for the tail probability of ω(σ).

THEOREM 2. Under Assumptions A1–A3, for 0 < α < 1, we have

P
{
G(σξ) > σα} = (

c2 + o(1)
)
σ 1−α exp

(
−1

2
K∗

σ

)
as σ → 0,

where c2 = {(2π)−1K(G′[0])} 1
2 and

K∗
σ = min

w∈B,G(σCw)=σα
K(w),

where K is defined as in (12) and B is defined as in (13) with the same β and k as
in Assumptions A1–A3.

The constants k and β in Assumptions A1–A3 are problem-dependent. For ex-
ample, Li, Liu and Xu (2016) consider the functional G(ξ) = ∫

U eσξ(t)+μ(t) dt −∫
U eμ(t) dt , where μ(·) ∈ C(Ū) is a deterministic function. This particular G satis-

fies Assumptions A1 and A2 with k = 0 and β = 0.
Now we proceed to characterizing the solution to the optimization (11).

THEOREM 3. Under Assumptions A1–A3,

(i) the optimization problem (11) has a unique solution for σ sufficiently small,
denoted by ξ∗;
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(ii) we have the following approximation as σ → 0

ξ∗ = (
1 + ok,β(1)

)
σα−1 G′[0]

K(G′[0]) ,

where we write hσ (·) = ok,β(1) if |hσ |k,β = o(1) as σ → 0.

Combining Theorem 2 and Theorem 3, we arrive at the following approxima-
tion.

COROLLARY 1. Under the Assumptions A1–A3, for 0 < α < 1, we have

logP
{
G(σξ) > σα} = −(

1 + o(1)
) σ 2α−2

2K(G′[0]) .

Intuitively, G(σξ) − G(0) ≈ σ
∫
U G′[0](x)ξ(x) dx according to the first-order

approximation of G. Thus, the above corollary serves as a rigorous justification for
the approximation

logP
{
G(σξ) > σα} ≈ logP

[
σ

∫
U
G′[0](x)ξ(x) dx > σα

]
≈ − σ 2α−2

2K(G′[0]) .

If we are only interested in obtaining Corollary 1, it may be possible to rely on the
above heuristic and simplify the proof. However, if we would like to obtain a sharp
asymptotic approximation as shown in Theorem 2, the first-order approximation
is insufficient for obtaining the subexponential terms. To see this, we consider a
simple example where U = [0,1], ξ is a centered Gaussian random field living on

U with V ar(
∫ 1

0 ξ(x) dx) = 1, G(σξ) = eσ
∫ 1

0 ξ(x) dx − 1. Then

P
{
G(σξ) > σα} = P

(
eσZ − 1 > σα)

and σ

∫
U
G′[0](x)ξ(x) dx = σZ,

where Z a standard Gaussian variable. With some careful calculations, it is not
hard to show that

P
(
eσZ − 1 > σα) = (

1 + o(1)
)
P

(
σZ > σα)

if and only if 2
3 < α < 1. Thus, for 0 < α < 2

3 , we cannot prove Theorem 2 by
simply employing the first-order approximation.

2.5. Numerical approximation. In this section, we present a numerical
method, more precisely, an iterative algorithm, for computing the solution ξ∗ to
(11). To solve the optimization, we introduce the Lagrangian multiplier λ ∈R and
define the Lagrangian function L:

L(ξ) =
∫∫

ξ(x)C(x, y)ξ(y) dx dy − 2
λ

σ

(
G(σCξ) − σα)

.
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The first-order condition ∂L
∂ξ

≡ 0 implies the KKT condition for λ and ξ :

Cξ = λCG′[σCξ ].
Since the covariance function C(x, y) is positive definite, and thus the linear map
C is a bijection. The above condition becomes

(15) ξ = λG′[σCξ ].
The solution (ξ∗, λ∗) to the constrained optimization problem is determined by

ξ∗ = λ∗G′[σCξ∗]
,(16a)

G
(
σCξ∗) = σα.(16b)

Our strategy is to first find λ given ξ to satisfy the constraint (16b); and then we
look for ξ and the corresponding λ = �(ξ) determined by the previous step to
satisfy the fix point equation (16a). Motivated by this, we define a functional

� : B → [−σα−1−ε, σα−1−ε]
such that for each w ∈ B, λ = �(w) solves the following equation:

(17) G
(
σCλG′[σCw]) = σα.

To see that �(·) is well-defined, for each w ∈ B we define the function Tw :
[−σα−1−ε, σα−1−ε] →R,

Tw(λ) = λ −K
(
G′[0])−1

σ−1(
G

(
σCλG′[σCw]) − σα)

.

Clearly, solutions to (17) are fixed points of the function Tw(·). The well-posedness
of the function �(·) is then established by the next proposition.

PROPOSITION 1. For σ sufficiently small, w ∈ B, and |λ1|, |λ2| ≤ σα−1−ε , we
have that |Tw(λ1)|, |Tw(λ2)| ≤ σα−1−ε and there exists a constant κT independent
of σ and w, such that∣∣Tw(λ1) − Tw(λ2)

∣∣ ≤ κT σα−ε|λ1 − λ2|.

The above proposition and the contraction mapping theorem guarantee that for
each w ∈ B, Tw(·) has a unique fixed point in [−σα−1−ε, σα−1−ε]. Therefore,
there is a unique solution �(w) ∈ [−σα−1−ε, σα−1−ε] satisfying (17). Further-
more, it ensures the convergence of the iterative algorithm based on the contraction
mapping Tw(λ). We further define an operator �.

(18) �[w] = �(w)G′[σCw].
The solution ξ∗ to (11) and equivalently (16) is a fixed point of �.
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PROPOSITION 2. For σ sufficiently small, � is a contraction mapping over B.
More specifically, there exists a constant κ� such that for all w1,w2 ∈ B, we have∣∣�[w1] − �[w2]

∣∣
k,β ≤ κ�σα|w1 − w2|k,β .

The above proposition and the contraction mapping theorem guarantee that (16)
has a unique solution that is (λ∗, ξ∗) in [−σα−1−ε, σα−1−ε]×B. Furthermore, this
solution can be computed numerically via the following iterative algorithm:

1. Initialize ξ̂∗
0 = σα−1 G′[0]

K(G′[0]) .

2. At lth iteration, update ξ̂∗
l by

ξ̂∗
l = �

[
ξ̂∗
l−1

]
.

According to the contraction mapping theorem, the rate of convergence is∣∣ξ̂∗
l − ξ∗∣∣

k,β ≤ (
κ�σα)l∣∣ξ̂∗

0 − ξ∗∣∣
k,β = O

(
σαl+α−1)

.

Therefore, if we run l > 2(1−α)
α

iterations, then |ξ̂∗
l − ξ∗|k,β = o(σ 1−α), and we

could use K(ξ̂∗
l ) to approximate K∗

σ in Theorem 2.

3. Technical proofs. Throughout the proof, we will use κ0 as generic notation
for large and not-so-important constants whose value may vary from place to place.
Similarly, we use ε0 as generic notation for small positive constants. Furthermore,
for two sequences aσ and bσ , we write aσ = o(bσ ) if bσ /aσ → 0 as σ tend to zero
and aσ = O(bσ ) if bσ /aσ is bounded when σ varies. Moreover, for two sequences
of functions aσ (·) and bσ (·), we write aσ = ok,β(bσ ) if |aσ |k,β = o(|bσ |k,β) and
aσ = Ok,β(bσ ) if |aσ |k,β = O(|bσ |k,β).

The proofs in this sections are organized as follows. The proof of Theorem 2
is presented in Section 3.1. Section 3.2 presents proofs of Propositions 1, 2 and
Theorem 3. Section 3.3 shows the proof of Theorem 1. The proofs of supporting
lemmas are postponed to the Appendix.

3.1. Proof of Theorem 2. We start with a useful lemma that restrict our analy-
sis on the event L = {ξ − Cξ∗ ∈ B}, whose proof will be presented in Section 3.3.

LEMMA 1. There exists a positive constant ε0 such that

P
(
ξ − Cξ∗ ∈ Bc) ≤ e−ε0σ

2α−2−2ε

.

PROOF FOR THEOREM 2. Let ξ∗ be the solution to (11). We define an expo-
nential change of measure:

(19)
dQ

dP
= exp

(∫
U

ξ∗(x)ξ(x) dx − 1

2

∫
U

∫
U

ξ∗(x)C(x, y)ξ∗(y) dx dy

)
.
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Under measure Q, ξ(x) is a Gaussian random field with mean function Cξ∗(x)

and covariance function C(x, y). Let

L = {
ξ − Cξ∗ ∈ B

}
.

According to Lemma 1, we only need to consider the event restricted to L. By
means of the change of measure Q, we have

(20)

P
(
G(σξ) > σα,L

)
= EQ

[
dP

dQ
;G(σξ) > σα,L

]

= exp
(

1

2

∫
U×U

ξ∗(x)C(x, y)ξ∗(y) dx dy

)

× EQ
[
e− ∫

U ξ∗(x)ξ(x) dx;G(σξ) > σα,L
]
,

where EQ denotes the expectation with respect to the measure Q. It is easy to check
that the random field Cξ∗(x) + ξ(x) under P has the same distribution as ξ(x)

under Q. Thus, we replace the probability measure Q and ξ with P and Cξ∗ + ξ

in (20) and obtain

P
(
G(σξ) > σα,L

)
= exp

(
1

2

∫
U×U

ξ∗(x)C(x, y)ξ∗(y) dx dy

)

× E
[
e− ∫

U ξ∗(x)(Cξ∗(x)+ξ(x)) dx;G(
σ

(
ξ + Cξ∗))

> σα, ξ ∈ B
]

= exp
(
−1

2

∫
U×U

ξ∗(x)C(x, y)ξ∗(y) dx dy

)

× E
[
e− ∫

U ξ∗(x)ξ(x) dx;G(
σ

(
ξ + Cξ∗)) − G

(
σCξ∗)

> 0, ξ ∈ B
]

= e− 1
2 K∗

σ × E
[
e− ∫

U ξ∗(x)ξ(x) dx;G(
σ

(
ξ + Cξ∗)) − G

(
σCξ∗)

> 0, ξ ∈ B
]
.

We define two events

F = {
G

(
σ

(
ξ + Cξ∗)) − G

(
σCξ∗)

> 0
}

and

F1 =
{∫

U
G′[σCξ∗]

(x)σξ(x) dx > 0
}
.

Let the event L1 = {ξ ∈ B}. We will present an approximation for

I1 = E
[
e− ∫

U ξ∗(x)ξ(x) dx;F1
]

and show that

I2 = E
[
e− ∫

U ξ∗(x)ξ(x) dx; (F1 � F) ∩L1
]
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is ignorable, where “�” denotes the symmetric difference between two sets. First,
we compute

(21) I1 = E
[
e− ∫

U ξ∗(x)ξ(x) dx;
∫
U
G′[σCξ∗]

(x)ξ(x) dx > 0
]
.

According to Proposition 2 whose proof is independent of the current one, ξ∗ is
the fixed point of the contraction map �, and thus

ξ∗ = �
[
ξ∗] = �

(
ξ∗)

G′[σCξ∗]
.

Therefore, ξ∗ and G′[σCξ∗] are different only by a factor of �(ξ∗). Thus,∫
U ξ∗(x)ξ(x) dx and

∫
U G′[σCξ∗](x)ξ(x) dx > 0 are different by a factor �(ξ∗).

The following lemma establishes an approximation for �(ξ∗).

LEMMA 2. For all w ∈ B, �(w) = K(G′[0])−1σα−1(1 + o(1)). This approxi-
mation is uniform in w.

Thanks to Lemma 2, we have

�
(
ξ∗) = (

1 + o(1)
) κσα−1

K(G′[0]) .
Let Z1 = ∫

U ξ∗(x)ξ(x) dx, then Z1 is a normally distributed random variable with
a zero mean. The expectation (21) can be computed as follows:

(22)

E
[
e−Z1;Z1 > 0

]

=
∫ ∞

0

1√
2π Var(Z1)

e
− z2

1
2 Var(Z1)

−z1 dz1

= 1√
2π Var(Z1)

E
[
e
− V 2

2 Var(Z1)
]
,

where V is a random variable following the exponential distribution with rate 1.
Notice that

(23) Var(Z1) =
∫
U×U

ξ∗(x)C(x, y)ξ∗(y) dx dy = (
1 + o(1)

)
σ 2α−2K−1[

G′[0]].
The second equality is obtained with the aid of Theorem 3(ii). The above display,
(22) and dominated convergence theorem give

I1 = {
(2π)−1K

(
G′[0])}1/2

σ 1−α(
1 + o(1)

)
.

Now, we proceed to the term I2.

LEMMA 3. Under Assumption A1, we have that for |w1|k,β, |w2|k,β ≤ δG,

|w1 −w2|−2
k,β

∣∣∣∣G(w1)−G(w2)−
∫
U
G′[w2](x)

(
w1(x)−w2(x)

)
dx

∣∣∣∣ ≤ meas(U)κG,

where meas(U) is the Lebesgue measure of U and k,β, δG, κG are constants ap-
peared in Assumption A1.
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According to Lemma 3, we have that for σ sufficiently small and ξ ∈ B,

(24)

∣∣∣∣G(
σ

(
ξ + Cξ∗)) − G

(
σCξ∗) − σ

∫
U
G′[σCξ∗]

(x)ξ(x) dx

∣∣∣∣
≤ meas(U)κGσ 2|ξ |2k,β .

Note that on the event F1 � F , G(σ (ξ + Cξ∗)) − G(σCξ∗) and
σ

∫
U G′[σCξ∗](x)ξ(x) dx have opposite signs, and thus

(25)

∣∣∣∣G(
σ

(
ξ + Cξ∗)) − G

(
σCξ∗) − σ

∫
U
G′[σCξ∗]

(x)ξ(x) dx

∣∣∣∣
≥

∣∣∣∣σ
∫
U
G′[σCξ∗]

(x)ξ(x) dx

∣∣∣∣.
We combine (24) and (25) and arrive at

(F � F1) ∩L1 ⊂
{

meas(U)κG‖ξ‖2
k,β ≥ σ−1

∣∣∣∣
∫
U
G′[σCξ∗]

(x)ξ(x) dx

∣∣∣∣
}

∩L1.

We write Z2 = ‖ξ‖2
k,β , then the above display implies that

(F � F1) ∩L1 ⊂ {
meas(U)κGZ2 ≥ σ−1�

(
ξ∗)−1|Z1|} ∩L1.

This gives an upper bound of the expectation

E
[
e− ∫

U ξ∗(x)ξ(x) dx; (F � F1) ∩L1
] ≤ E

[
e−Z1;κGZ2 ≥ σ−1�

(
ξ∗)−1|Z1|,L1

]
.

On the event {0 < |Z1| ≤ σε}, this expectation is negligible compared to I1, that
is,

(26) E
[
eZ1;0 < |Z1| < σε] = O

(
P

(
0 < |Z1| < σε)) = O

(
σ 1−α+ε).

The second equality in the above display is due to (23). Furthermore, on the set L1,
we have |Z1| ≤ |ξ∗|0|ξ |0κ0 ≤ κ0σ

2α−2−ε , where κ0 is a sufficiently large constant.
Therefore, we only need to focus on the expectation

(27)

E
[
eZ1;σε < |Z1| < κ0σ

2α−2−ε,Z2 > �
(
ξ∗)−1|Z1/σ |]

=
∫ κ0σ

2α−2−ε

σ ε
ezP

(
Z2 > �

(
ξ∗)−1

z/σ |Z1 = z
)
pZ1(z) dz

+
∫ κ0σ

2α−2−ε

σ ε
ezP

(
Z2 > �

(
ξ∗)−1

z/σ |Z1 = −z
)
pZ1(z) dz,

where pZ1(z) is the density function of Z1.

LEMMA 4. For z ∈ [σε, κ0σ
2α−2−ε], there exists a constant ε0 > 0 such that

(28)
P

(
Z2 > �

(
ξ∗)−1

z/σ
∣∣Z1 = z

) + P
(
Z2 > �

(
ξ∗)−1

z/σ
∣∣Z1 = −z

)
≤ e−ε0σ

−αz.
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With the above lemma, the expectation (27) is bounded by

(27) ≤
∫ κ0σ

2α−2−ε

σ ε
e−(ε0σ

−α−1)zpZ1(z) dz

= 1√
2π Var(Z1)

∫ κ0σ
2α−2−ε

σ ε
e
−(ε0σ

−α−1)z− z2
2 Var(Z1) dz

≤ 1√
2π Var(Z1)

∫ κ0σ
2α−2−ε

σ ε
e− ε0

2 σ−αz dz,

for σ sufficiently small so that ε0σ
−α −1 >

ε0
2 σ−α . The above inequality is further

bounded by

(27) ≤ 1√
2π Var(Z1)

∫ κ0σ
2α−2−ε

σ ε
e− ε0

2 σ−αz dz

≤ 1√
2π Var(Z1)

κ0σ
2α−2−εe− ε0

2 σ−α+ε

= O
(
e− ε0

2 σ−α+ε)
.

Therefore,

(27) = o
(
σ 1−α)

.

We combine our analysis for I1 and I2 and conclude our proof for Theorem 2. �

3.2. Proofs of Proposition 1, 2, and Theorem 3.

PROOF OF PROPOSITION 1. Note that as σ tends to zero, we have σCw =
ok,β(1), G′[σCw] = G′[0] + ok,β(1) and σCλG′[σCw] = ok,β(1) for all |λ| ≤
σα−1−ε and w ∈ B. This allows us to expand G(σCλG′[σCw]) near the origin.
We elaborate this expansion as follows. First, according to Assumption A1, we
have that there exists a constant ε0 such that for all w ∈ B and σ ≤ ε0,

(29) G′[σCw] = G′[0] + Ok,β(σCw).

Second, with the aid of (29) we have that for all |λ1|, |λ2| ≤ σα−1−ε and w ∈ B,

(30) σCλ1G′[σCw] − σCλ2G′[σCw] = σ(λ1 − λ2)C
{
G′[0] + Ok,β(σCw)

}
.

Thanks to Lemma 3 on page 2792 and (30), we have that for all |λ1|, |λ2| ≤ σα−1−ε

and w ∈ B,

(31)
G

(
σCλ1G′[σCw]) − G

(
σCλ2G′[σCw])

=
∫
U
G′[σCλ2G′[σCw]](x)v(x) dx + O

(|v|2k,β

)
,
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where we define

v(x) = σCλ1G′[σCw](x) − σCλ2G′[σCw](x).

Setting w as λ2G′[σCw] in (29), we have

(32)
G′[σCλ2G′[σCw]] = G′[0] + Ok,β

(
σCλ2G′[σCw])

= G′[0] + Ok,β

(
σλ2G′[0]).

The last equality in the above display is due to (29) and the fact Ok,β(σCw) =
ok,β(1). According to (30) and (32), we have

(33)

∫
U
G′[σCλ2G′[σCw]](x)v(x) dx

= σ(λ1 − λ2)

{∫
U

CG′[0](x)G′[0](x) dx

+ O

(∫
U

σ 2λ2G′[0](x)G′(x) dx

)

+ O

(∫
U

σG′[0](x)Cw(x)dx

)

+ O

(
σλ2σ

∫
U
G′[0](x)Cw(x)dx

)}
.

Note that for λ2 ∈ [−σα−1−ε, σα−1−ε] the above expression is simplified as

(34)

∫
U
G′[σCλ2G′[σCw]](x)v(x) dx

= σ(λ1 − λ2)

{∫
U

CG′[0](x)G′[0](x) dx + O
(
σα−ε)}

= σ(λ1 − λ2)
{
K

(
G′[0]) + O

(
σα−ε)}.

Combining the above expression with (31), we have that for |λ1|, |λ2| ≤ σα−1−ε

and w ∈ B,

G
(
σCλ1G′[σCw]) − G

(
σCλ2G′[σCw])

= σ(λ1 − λ2)
{
K

(
G′[0]) + O

(
σα−ε)} + O

(
σ 2(λ1 − λ2)

2)
,

which can be simplified as

(35)
G

(
σCλ1G′[σCw]) − G

(
σCλ2G′[σCw])

= σ(λ1 − λ2)
{
K

(
G′[0]) + O

(
σα−ε)}.

Recall the definition of Tw(λ), we plug the above expression into the difference
Tw(λ1) − Tw(λ2), and arrive at

Tw(λ1)−Tw(λ2) = λ1 −λ2 −K
(
G′[0])−1

σ−1 ×σ(λ1 −λ2)
{
K

(
G′[0])+O

(
σα−ε)},
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which is simplified as

Tw(λ1) − Tw(λ2) = −K
(
G′[0])−1

(λ1 − λ2) × O
(
σα−ε).

The above expression implies that for |λ1|, |λ2| ≤ σα−1−ε ,

(36) Tw(λ1) − Tw(λ2) = (λ1 − λ2) × O
(
σα−ε).

This shows that Tw(λ) is a contraction mapping for λ ∈ [−σα−1−ε, σα−1−ε]. To
see Tw(λ) ∈ [−σα−1−ε, σα−1−ε] for λ ∈ [−σα−1−ε, σα−1−ε] and w ∈ B, we let
λ2 = 0 and λ1 = λ in (36) and obtain that

Tw(λ) − Tw(0) = λO
(
σα−ε) = O

(
σ 2α−1−2ε).

Recall that Tw(0) = −K(G′[0])−1σ−1σα = −κK(G′[0])−1σα−1. This implies

(37) Tw(λ) = κK
(
G′[0])−1

σα−1(
1 + o(1)

) ∈ [−σα−1−ε, σα−1−ε]
and concludes our proof. �

PROOF OF PROPOSITION 2. According to the definition of �,

�[w1]−�[w2] = �(w1)
(
G′[σCw1]−G′[σCw2])+ (

�(w1)−�(w2)
)
G′[σCw2].

Therefore, we have

(38)

∣∣�[w1] − �[w2]
∣∣
k,β

≤ ∣∣�(w1)
∣∣ × ∣∣(G′[σCw1] − G′[σCw2])∣∣k,β

+ ∣∣�(w1) − �(w2)
∣∣ × ∣∣G′[σCw2]

∣∣
k,β .

We establish upper bound for the first and second terms on the right-hand side of
the above inequality separately. To start with, according to Assumptions A1 and
A3 that supy∈Ū |C(·, y)|k,2β < ∞, for w1,w2 ∈ B, we have

(39)

∣∣�(w1)
∣∣ × ∣∣(G′[σCw1] − G′[σCw2])∣∣k,β

= O
(
σ

∣∣�(w1)
∣∣|w1 − w2|k,β

) = O
(
σα)|w1 − w2|k,β .

The second equality in the above expression is due to Lemma 2 on page 2792. We
proceed to the second term on the right-hand side of (38). Because �(w) is the
fixed point of Tw(·), we have

Tw1

(
�(w1)

) = �(w1) and Tw2

(
�(w2)

) = �(w2).

Taking differencing between the above two equalities, we have

Tw1

(
�(w1)

) − Tw2

(
�(w2)

) = �(w1) − �(w2).

Adding and subtracting the term Tw1(�(w2)) in the above equality, we have

�(w1) − �(w2) = Tw1

(
�(w1)

) − Tw1

(
�(w2)

) + Tw1

(
�(w2)

) − Tw2

(
�(w2)

)
.
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Consequently,

(40)

∣∣�(w1) − �(w2)
∣∣ ≤ ∣∣Tw1

(
�(w1)

) − Tw1

(
�(w2)

)∣∣
+ ∣∣Tw1

(
�(w2)

) − Tw2

(
�(w2)

)∣∣.
According to Proposition 1, the first term on the right-hand side of the above ex-
pression is bounded above by O(σα−ε)|�(w1) − �(w2)|.

LEMMA 5. For all |λ| = O(σα−1) and w1,w2 ∈ B, we have

∣∣Tw1(λ) − Tw2(λ)
∣∣ = O

(
σα)|w1 − w2|k,β .

According to Lemma 5, the second term on the right-hand side of (40) is
bounded above by O(σα)|w1 − w2|k,β . Therefore, we have

∣∣�(w1) − �(w2)
∣∣ ≤ O

(
σα−ε)∣∣�(w1) − �(w2)

∣∣ + O
(
σα)|w1 − w2|k,β .

Consequently, we have that for w1,w2 ∈ B,

(41)
∣∣�(w1) − �(w2)

∣∣ = O
(
σα)|w1 − w2|k,β .

According to (29),
∣∣G′[σCw2]

∣∣
k,β = O(1).

The above approximation and (41) give
∣∣�(w1) − �(w2)

∣∣ × ∣∣G′[σCw2]
∣∣
k,β = O

(
σα)|w1 − w2|k,β .

Combining the above display with (38) and (39), we complete our proof. �

PROOF OF THEOREM 3. (i) is a direct application of Proposition 2, contrac-
tion mapping theorem and the KKT condition (16). We proceed to the proof of (ii).
Because ξ∗ is the fixed point of � in B, we have

�
[
ξ∗] = �

(
ξ∗)

G′[σCξ∗]
= κK

(
G′[0])−1

σα−1(
1 + o(1)

)(
G′[0] + Ok,β

(
σξ∗))

= (
1 + ok,β(1)

) κG′[0]
K(G′[0])σ

α−1.

To obtain the second equality in the above display, we use approximation in
Lemma 2 on page 2792 and (29). �
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3.3. Proof of Theorem 1.

PROOF OF THEOREM 1. Recall in (7) we define G(ξ) = H(J(ξ)) = H(uξ )

in the context of elliptic PDE. In what follows, we apply Theorem 2 to the func-
tional G. It is sufficient to verify Assumptions A1–A3 given Assumptions H1–H4
with k = 1 and 0 < β < 1 and the Hölder coefficient being β .

We first present two useful lemmas. The following lemma guarantees the exis-
tence and uniqueness of the Hölder continuous solution to the elliptic PDE.

LEMMA 6. Suppose that U is a bounded domain with a C2,β boundary ∂U

for 0 < β < 1. Assume that there exist positive constants δ and M such that
minx∈Ū a(x) > δ > 0, and |a|1,β ≤ M , and f ∈ Cβ(Ū). Then the elliptic PDE

(42)

{−∇ · (
a(x)∇u(x)

) = f (x) for x ∈ U ;
u(x) = 0 for x ∈ ∂U,

has a unique solution in C2,β(Ū ). Denote this solution by ua,f , then

(43) |ua,f |2,β ≤ κ(δ,M,d,U)|f |β,

where κ(δ,M,d,U) is a positive constant, depending only on δ,M,d and the
domain U .

We will also need the following lemma on the stability of the solution.

LEMMA 7. Suppose that U is a bounded domain with a C2,β boundary ∂U

for 0 < β < 1. Let a1, a2, f1 and f2 be functions over the domain U such that

min
x∈Ū

a1(x) ≥ δ, min
x∈Ū

a2(x) ≥ δ,

|a1|1,β, |a2|1,β ≤ M, and f1, f2 ∈ Cβ(Ū).

Then

|ua1,f1 − ua2,f2 |2,β ≤ κ̃(δ,M,d,U)
{|f1 − f2|β + |a1 − a2|1,β |f1|β}

,

where the constant κ̃(δ,M,d,U) depends only on δ,M,d and the domain U .

The Fréchet derivative G′[w] has the following expression:

G′[w](x) = aw(x)∇gw(x) · ∇uw(x),

where aw(x) = a0e
−w(x), uw ∈ C2,β(Ū ) is the unique solution to{−∇ · (

aw(x)∇uw(x)
) = f (x) for x ∈ U ;

uw(x) = 0 for x ∈ ∂U,
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and gw(x) ∈ C2,β(Ū ) is the unique solution to{−∇ · (
aw(x)∇gw(x)

) = H′[uw](x) for x ∈ U ;
gw(x) = 0 for x ∈ ∂U.

For w1,w2 ∈ C1,β(Ū ), we are going to establish an upper bound for |G′[w1] −
G′[w2]|1,β . Note that

G′[w1](x) − G′[w2](x)

= (
aw1(x) − aw2(x)

)∇gw1(x) · ∇uw1(x)

+ aw2∇gw2(x)∇(
uw1 − uw2(x)

)
+ aw2(x)∇(

gw1(x) − gw2(x)
) · ∇uw1(x).

Thus,

(44)

∣∣G′[w1] − G′[w2]
∣∣
1,β

≤ ∣∣(aw1 − aw2)∇gw1 · ∇uw1

∣∣
1,β

+ ∣∣aw2∇gw2∇(uw1 − uw2)
∣∣
1,β + ∣∣aw2∇(gw1 − gw2) · ∇uw1

∣∣
1,β .

We will establish upper bounds for the three terms on the right-hand side in the
above expression separately. First, note that awk

= a0e
−wk , k = 1,2. Thus, there

exists a constant ε0 > 0 such that for all |w1|1,β, |w2|1,β ≤ ε0,

(45) |aw1 − aw2 |1,β ≤ κ0|w1 − w2|1,β .

Therefore,

(46)

∣∣(aw1 − aw2)∇gw1 · ∇uw1

∣∣
1,β ≤ |aw1 − aw2 |1,β |∇gw1 |1,β |∇uw1 |1,β

≤ κ0|w1 − w2|1,β |gw1 |2,β |uw1 |2,β .

Now we present upper bounds for |gw1 |2,β and |uw1 |2,β . Let ε0 be sufficiently
small such that for all |w|1,β ≤ ε0, minx∈Ū aw(x) ≥ 1

2 minx∈Ū a0(x) and |aw|1,β ≤
2|a0|1,β . According to Lemma 6, we have that for all |w|1,β ≤ δ0,

(47) |uw|2,β ≤ κ(δ,M,d,U)|f |β,

where δ = minx∈Ū a0(x)

2 and M = 2|a0|1,β . Furthermore, according to Assump-
tion H1, we have that for |uw − u0|2,β ≤ δH :

(48)
∣∣H′[uw]∣∣β ≤ ∣∣H′[u0]

∣∣
β + κH |uw − u0|2,β ≤ ∣∣H′[u0]

∣∣
β + κHδH .

Set f = H′[uw] in Lemma 6, and we have

(49) |gw|2,β ≤ κ(δ,M,d,U)
∣∣H′[uw]∣∣β ≤ κ(δ,M,d,U)

(∣∣H′[u0]
∣∣
β + κHδH

)
.
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Combine this with (46) and (47), we have that for |w1|1,β, |w2|1,β ≤ ε0

(50)
∣∣(aw1 − aw2)∇gw1 · ∇uw1

∣∣
1,β ≤ κ0|w1 − w2|1,β,

with a possibly different κ0. We proceed to the second term on the right-hand side
of (44):

(51)

∣∣aw2∇gw2 · ∇(uw1 − uw2)
∣∣
1,β ≤ |aw2 |1,β |∇gw2 |1,β

∣∣∇(uw1 − uw2)
∣∣
1,β

≤ |aw2 |1,β |gw2 |2,β |uw1 − uw2 |2,β .

For |w2|1,β ≤ ε0, we have |aw2 |1,β ≤ 2|a0|1,β . Moreover, |gw2 |2,β is bounded
above by a constant according to (49). Therefore,

(52)
∣∣aw2∇gw2 · ∇(uw1 − uw2)

∣∣
1,β ≤ κ0|uw1 − uw2 |2,β,

for a possibly different κ0. Taking a1 = aw1 , a2 = aw2 , and f1 = f2 = f in
Lemma 7, we have

(53) |uw1 − uw2 |2,β ≤ κ̃(δ,M,d,U)|a1 − a2|1,β |f |β ≤ κ0|w1 − w2|1,β .

(52) and (53) give

(54)
∣∣aw2∇gw2 · ∇(uw1 − uw2)

∣∣
1,β ≤ κ2

0 |w1 − w2|1,β .

We proceed to the third term on the right-hand side of (44):

(55)

∣∣aw2∇(gw1 − gw2) · ∇uw1

∣∣
1,β ≤ |aw2 |1,β

∣∣∇(gw1 − gw2)
∣∣
1,β |∇uw1 |1,β

≤ |aw2 |1,β |gw1 − gw2 |2,β |uw1 |2,β .

According to the definition of aw2 and (53), we have that for |w1|1,β, |w2|1,β ≤ ε0,

(56)
∣∣aw2∇(gw1 − gw2) · ∇uw1

∣∣
1,β ≤ κ0|gw1 − gw2 |2,β .

Motivated by the definition of gw1 and gw2 , we take f1 = H′[w1], f2 = H′[w2],
a1 = aw1 and a2 = aw2 in Lemma 7, then

(57)
|gw1 − gw2 |2,β

≤ κ̃(δ,M,d,U)
{∣∣H′[w1] −H′[w2]

∣∣
β + |aw1 − aw2 |1,β

∣∣H′[w1]
∣∣
β

}
.

According to Assumption H1, for |w1|1,β, |w2|1,β ≤ δH , we have

(58)
∣∣H′[w1] −H′[w2]

∣∣
β ≤ κH |w1 − w2|1,β

(58), (45), (48) and (57) give

|gw1 − gw2 |2,β ≤ κ0|w1 − w2|1,β .

The above inequality and (56) give

(59)
∣∣aw2∇(gw1 − gw2) · ∇uw1

∣∣
1,β ≤ κ2

0 |w1 − w2|1,β .
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We combine (44), (50), (54) and (59), and arrive at

(60)
∣∣G′[w1] − G′[w2]

∣∣
1,β ≤ κ0|w1 − w2|1,β,

for ε0 sufficiently small, |w1|1,β, |w2|1,β ≤ ε0 and a possibly different κ0. Thus,
Assumption A1 is satisfied with k = 1. According to the definition of G′, Assump-
tion A2 is a direct application of Assumption H2. Assumption A3 is the same
Assumption H4 for k = 1. Now we have already checked all the Assumptions
A1–A3. �

APPENDIX: PROOF OF SUPPORTING LEMMAS

PROOF OF LEMMA 1. Note that the event {ξ − Cξ∗ /∈ B} = {|ξ − Cξ∗|k,β >

σα−1−ε} implies the event {|ξ | > σα−1−ε − |ξ∗|k,β}. According to Theorem 3,
|ξ∗|k,β = O(σα−1). Thus,

(61)
{
ξ − Cξ∗ /∈ B

} ⊂ {|ξ |k,β > ε0σ
α−1−ε},

for a positive constant ε0 and σ sufficiently small. Recall the definition

|ξ |k,β =
k∑

l=1

sup
|γ |=l

sup
x∈Ū

∣∣Dγ ξ(x)
∣∣ + sup

|γ |=k

[
Dγ ξ

]
β.

Consequently,

{
ξ − Cξ∗ /∈ B

} ⊂
k⋃

l=1

{
sup
|γ |=l

sup
x∈Ū

∣∣Dγ ξ(x)
∣∣ >

σα−1−ε

k + 1

}
∪

{
sup
|γ |=l

[
Dγ ξ

]
β >

σα−1−ε

k + 1

}

=
k⋃

l=1

⋃
|γ |=l

{
sup
x∈Ū

∣∣Dγ ξ(x)
∣∣ >

σα−1−ε

k + 1

} ⋃
|γ |=l

{[
Dγ ξ

]
β >

σα−1−ε

k + 1

}
.

The equality in the above display is due to the fact that {supm
l=1 Xl ≥ η} =⋃m

l=1{Xl ≥ η} for any random variable Xl , l = 1, . . . ,m and constant η. According
to the above display, we arrive at a upper bound of probability:

(62)

P
(
ξ − Cξ∗ /∈ B

) ≤
k∑

l=1

∑
|γ |=l

P

(
sup
x∈Ū

∣∣Dγ ξ(x)
∣∣ >

σα−1−ε

k + 1

)

+ ∑
|γ |=l

P

([
Dγ ξ

]
β >

σα−1−ε

k + 1

)
.

We establish upper bounds for P(supx∈Ū |Dγ ξ(x)| > σα−1−ε

k+1 ) and P([Dγ ξ ]β >

σα−1−ε

k+1 ) separately. We first analyze the term P(supx∈Ū |Dγ ξ(x)| > σα−1−ε

k+1 ). We
will need the following lemma, known as the Borell-TIS inequality, which was
proved independently by Borell (1975) and Cirel’son, Ibragimov and Sudakov
(1976).
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LEMMA 8 (Borell-TIS inequality). Let g(x) be a centered and almost surely
bounded Gaussian random field. Then E supx∈U |g(x)| < ∞. Furthermore, for any
t > E supx∈U |g(x)|, we have

P
(

sup
x∈U

∣∣g(x)
∣∣ − E sup

x∈U

∣∣g(x)
∣∣ > t

)
≤ 2 exp

{
− t2

2 supx∈U Var(g(x))

}
.

According to Lemma 8, we have that for all |γ | ≤ k, E supx∈Ū |Dγ ξ(x)| < ∞
and

(63) P

(
sup
x∈Ū

∣∣Dγ ξ(x)
∣∣ >

σα−1−ε

k + 1

)
≤ 2 exp

{
− σ 2α−2−2ε

8(k + 1)2 supx∈Ū CDγ ξ (x, x)

}
,

for σ sufficiently small such that σ 2α−2−2ε > 2E supx∈Ū |Dγ ξ(x)|, and CDγ ξ is
defined (14). According to Assumption A3, there exists a constant κ0 such that for
all |γ | ≤ k,

sup
x∈Ū

CDγ ξ (x, x) ≤ sup
y∈Ū

∣∣CDγ ξ (·, y)
∣∣
β < κ0.

The above display together with (63) give

P

(
sup
x∈Ū

∣∣Dγ ξ(x)
∣∣ >

σα−1−ε

k + 1

)
≤ 2 exp

{
− σ 2α−2−2ε

8(k + 1)2κ0

}

Combine this with (62), we have

(64) P
(
ξ − Cξ∗ /∈ B

) ≤ κ0 exp
{
− σ 2α−2−2ε

8(k + 1)2κ0

}
+ ∑

|γ |=l

P

([
Dγ ξ

]
β >

σα−1−ε

k + 1

)
,

for a possibly different κ0 such that κ0 ≥ 2Card{γ : |γ | ≤ k}. We proceed to estab-

lishing upper bounds for P([Dγ ξ ]β > σα−1−ε

k+1 ), |γ | = k. Recall that

[
Dγ ξ

]
β = sup

x,y∈Ū ,x �=y

|Dγ ξ(x) − Dγ ξ(y)|
|x − y|β .

Motivated by this definition, we define another centered Gaussian random field
double indexed by x, y ∈ Ū

(65) g(x, y) =
⎧⎪⎨
⎪⎩

Dγ ξ(x) − Dγ ξ(y)

|x − y|β for x �= y,

0 for x = y.

According to Assumption A3 ξ ∈ Ck,β(Ū) almost surely. Thus, g(·, ·) is bounded
almost surely. According to Lemma 8, we have that Esupx,y∈Ū ,x �=y |g(x, y)| < ∞,
and

P

(
sup

x,y∈Ū

∣∣g(x, y)
∣∣ >

σα−1−ε

k + 1

)
≤ 2 exp

{
− σ 2α−2−2ε

8(k + 1)2 supx,y∈Ū Varg(x, y)

}
,
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for σ sufficiently small such that σ 2α−2−2ε > 2E supx,y∈Ū |g(x, y)|. The variance
of g(x, y) in the above expression is bounded above as follows:

Varg(x, y) = |x − y|−2β{
CDγ ξ (x, x) − CDγ ξ (x, y) + CDγ ξ (y, y) − CDγ ξ (x, y)

}
≤ [

CDγ ξ (x, ·)]2β + [
CDγ ξ (y, ·)]2β,

which is bounded above by a constant κ0 according to Assumption A3. Thus, we
have

P

(
sup

x,y∈Ū

∣∣g(x, y)
∣∣ >

σα−1−ε

k + 1

)
≤ 2 exp

{
− σ 2α−2−2ε

8(k + 1)2κ0

}
.

Note that [Dγ ξ ]β = supx,y∈Ū |g(x, y)|. Therefore, the above display is equivalent
to

(66) P

([
Dγ ξ

]
β >

σα−1−ε

k + 1

)
≤ 2 exp

{
− σ 2α−2−2ε

8(k + 1)2κ0

}
.

We conclude our proof by combining the above inequality with (64). �

PROOF OF LEMMA 2. Because �(w) is a fixed point of Tw(·), this lemma is
a direct application of (37). �

PROOF OF LEMMA 3. We define a function h : [0,1] → R,

h(s) = G
(
w2 + s(w1 − w2)

) − G(w2) − s

∫
U
G′[w2](x)

{
w1(x) − w2(x)

}
dx.

Notice that h(0) = 0 and h(1) = G(w1) − G(w2) − ∫
U G′[w2](x)(w1(x) −

w2(x)) dx. Apply mean value theorem to h, and we have

(67) G(w1)−G(w2)−
∫
U
G′[w2](x)

(
w1(x)−w2(x)

)
dx = h(1)−h(0) = h′(s̃),

for some s̃ ∈ [0,1]. According to the definition of Fréchet derivative, it is easy to
check that

h′(s) = s

∫
U

{
G′[w1 + s(w1 − w2)

]
(x) − G′[w2](x)

}(
w1(x) − w2(x)

)
dx.

Furthermore, we have∣∣∣∣s
∫
U

{
G′[w1 + s(w1 − w2)

]
(x) − G′[w2](x)

}(
w1(x) − w2(x)

)
dx

∣∣∣∣
≤ meas(U)|w1 − w2|0 × ∣∣G′[w1 + s(w1 − w2)

]
(x) − G′[w2](x)

∣∣
0

≤ meas(U)|w1 − w2|0 × κG|w1 − w2|k,β

≤ meas(U)|w1 − w2|2k,β .
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Here, meas(U) is the Lebesgue measure of the set U , the second inequality is due
to Assumption A1 and the third inequality is due to the fact that w, |w|0 ≤ |w|k,β .
Combine the above inequality and (67) we obtain the desired result. �

PROOF OF LEMMA 4. We prove the lemma by induction. We first prove this
lemma for the case where k = 0 and β > 0. We consider the conditional random
field {ξ(x), x ∈ Ū | Z1 = z}. It can be shown that there exists a continuous Gaus-
sian random field, denoted by {χ(x), x ∈ Ū}, who has the same distribution as
{ξ(x), x ∈ Ū | Z1 = z} and belongs to Cβ(Ū) almost surely. The mean and covari-
ance function of χ(x) satisfy

μχ(x) = Var(Z1)
−1 Cov

(
Z1, ξ(x)

)
z = Var(Z1)

−1
∫
U

ξ∗(y)C(x, y) dy,

Cχ(x, y) = C(x, y) − Var(Z1)
−1 Cov

(
ξ(x),Z1

)
Cov

(
ξ(y),Z1

)
= C(x, y) − Var(Z1)

−1
∫
U

ξ∗(z)C(x, z) dz

∫
U

ξ∗(z)C(y, z) dz.

According to the expression (23) and supy∈Ū |C(·, y)|2β ∈< ∞, we have that

(68) |μχ |β = O
(
σ 1−αz

)
and sup

y∈Ū

∣∣Cχ(, y)
∣∣
2β < ∞.

Let ζ(x) = χ(x)−μχ(x) be a centered Gaussian random field. Then event {|χ |2β >

�(ξ∗)−1z
σ

} implies that {|ζ |β > (
�(ξ∗)−1z

σ
)

1
2 − |μχ |β}. Furthermore, according to

(68) and Lemma 2 on page 2792, we have{
|χ |2β >

�(ξ∗)−1z

σ

}
⊂ {|ζ |β > ε0σ

− α
2
√

z − O
(
σ 1−αz

)}
.

Because z ≤ κ0σ
2α−2−ε , we have σ− α

2
√

z−O(σ 1−αz) ≥ ε0σ
− α

2
√

z for a possibly
different ε0. Therefore,{

|χ |2β >
�(ξ∗)−1z

σ

}
⊂ {|ζ |β > ε0σ

− α
2
√

z
}
.

Consequently, we have

(69) P

(
|χ |2β >

�(ξ∗)−1z

σ

)
≤ P

(|ζ |β > ε0σ
− α

2
√

z
)
.

According to the definition of the norm |ζ |β = supx∈Ū |ζ(x)| + [ζ ]β . Therefore,
an upper bound for (69) is

(70)

P

(
|χ |2β >

�(ξ∗)−1z

σ

)
≤ P

(
sup
x∈Ū

∣∣ζ(x)
∣∣ ≥ ε0

2
σ− α

2
√

z

)

+ P

(
[ζ ]β ≥ ε2

2
σ− α

2
√

z

)
.
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We will present upper bounds for the first and second terms in the above display
separately. We start with the first term. Because ζ is a centered and continuous
Gaussian random field, with the aid of Lemma 8, we have that E supx∈Ū |ζ(x)| <

∞ and

P

(
sup
x∈Ū

∣∣ζ(x)
∣∣ >

ε0

2
σ− α

2
√

z

)
≤ 2 exp

{
− ε2

0σ
−αz

32 supx∈Ū Covχ(x, x)

}
,

for σ and z such that ε0σ
− α

2
√

z > 2E supx∈Ū |ζ(x)|. Because z ≥ σε , ε0σ
− α

2
√

z >

2E supx∈Ū |ζ(x)| is satisfied for σ sufficiently small. Consequently, for σ suffi-
ciently small, we have

(71) P

(
sup
x∈Ū

∣∣ζ(x)
∣∣ >

ε0

2
σ− α

2
√

z

)
< e−ε0σ

−αz

for a sufficiently small and possibly different ε0. We proceed to the second term
on the right-hand side of (70). Because ζ ∈ Cβ(Ū) almost surely, we obtain an
upper bound for P([ζ ]β >

ε0
2 σ− α

2
√

z) using similar arguments as those for (66) on
page 2803,

(72) P

(
[ζ ]β >

ε0

2
σ− α

2
√

z

)
< 2e−ε0σ

−αz,

for σ sufficiently small and a positive constant ε0. Combine (70), (71) and (72),
we have

(73) P

(
|χ |2β >

�(ξ∗)−1z

σ

)
< 2e−ε0σ

−αz.

Recall that χ has the same distribution as {ζ(x) : x ∈ Ū |Z1 = z}, thus (73) implies

(74) P

(
|ξ |2β >

�(ξ∗)−1z

σ

∣∣∣Z1 = z

)
< 2e−ε0σ

−αz.

Using similar arguments, we have that for σ sufficiently small

(75) P

(
|ξ |2β >

�(ξ∗)−1z

σ

∣∣∣Z1 = −z

)
< 2e−ε0σ

−αz.

Combing the above inequality with (74), we have

P

(
|ξ |2β >

�(ξ∗)−1z

σ

∣∣∣Z1 = z

)
+ P

(
|ξ |2β >

�(ξ∗)−1z

σ

∣∣∣Z1 = −z

)

< 4e−ε0σ
−αz < e−ε′

0σ
−αz

for ε′
0 < ε0 and σ sufficiently small. This completes our proof for the case where

k = 0 and β > 0. For the case k = 0 and β = 0, |ξ |β = |ξ |0. With similar proof as
those for (71), we have

(76) P

(
|ξ |20 >

�(ξ∗)−1z

σ

∣∣∣Z1 = z

)
≤ P

(
sup
x∈Ū

∣∣ζ(x)
∣∣ ≥ ε0

2
σ− α

2
√

z

)
< 2e−ε0σ

−αz.



2806 LI, LIU, LU AND ZHOU

We also have similar results conditional on Z1 = −z. Therefore, for β = 0 we also
have

P

(
|ξ |2β >

�(ξ∗)−1z

σ

∣∣∣Z1 = z

)
+ P

(
|ξ |2β >

�(ξ∗)−1z

σ

∣∣∣Z1 = −z

)
< 4e−ε0σ

−αz.

This completes our proof for the case that k = 0. We now proceed to prove the
lemma for k ≥ 1. Assuming that for k = m,

(77)
P

(
|ξ |2k,β >

�(ξ∗)−1z

σ

∣∣∣Z1 = z

)
+ P

(
|ξ |2k,β >

�(ξ∗)−1z

σ

∣∣∣Z1 = −z

)

< e−ε0σ
−αz

for some positive constant ε0 that is independent with σ and z but possibly depend
on k. We will prove that the following inequality holds for σ sufficiently small and
a positive constant ε0,

(78)
P

(
|ξ |2m+1,β >

�(ξ∗)−1z

σ

∣∣∣Z1 = z

)
+ P

(
|ξ |2m+1,β >

�(ξ∗)−1z

σ

∣∣∣Z1 = −z

)

< e−ε′
0σ

−αz.

According to the definition of the norm | · |m+1,β , we know that for β > 0

|ξ |m+1,β = |ξ |m + sup
|γ |=m+1

sup
x∈Ū

∣∣Dγ ξ(x)
∣∣ + sup

|γ |=m+1

[
Dγ ξ

]
β.

Therefore,{
|ξ |2m+1,β ≥ �(ξ∗)−1z

σ

}

⊂
{
|ξ |2m ≥ �(ξ∗)−1z

2σ

}

∪
( ⋃

|γ |=m+1

⋃
|γ ′|=m+1

{(
sup
x∈Ū

∣∣Dγ ξ(x)
∣∣ + [

Dγ ′
ξ
]
β

)2 ≥ �(ξ∗)−1z

2σ

})
.

Consequently, we arrive at an upper bound

(79)

P

(
|ξ |2m+1,β ≥ �(ξ∗)−1z

σ

∣∣∣Z1 = z

)

≤ P

(
|ξ |2m ≥ �(ξ∗)−1z

2σ

∣∣∣Z1 = z

)

+ ∑
|γ |=m+1

∑
|γ ′|=m+1

P

((
sup
x∈Ū

∣∣Dγ ξ(x)
∣∣ + [

Dγ ′
ξ
]
β

)2

≥ �(ξ∗)−1z

2σ

∣∣∣Z1 = z

)
,



RANDOM ELLIPTIC PDE WITH SMALL NOISE 2807

We present upper bounds for the first and second terms on the right-hand side of
the above display separately. For the first term, according to (77), we have

(80) P

(
|ξ |2m ≥ �(ξ∗)−1z

2σ

∣∣∣Z1 = z

)
≤ e−ε0σ

−αz.

For the second term, notice that{(
sup
x∈Ū

∣∣Dγ ξ(x)
∣∣ + [

Dγ ′
ξ
]
β

)2 ≥ �(ξ∗)−1z

2σ

}

=
{

sup
x∈Ū

∣∣Dγ ξ(x)
∣∣ + [

Dγ ′
ξ
]
β ≥

√
�(ξ∗)−1z

2σ

}

⊂
{

sup
x∈Ū

∣∣Dγ ξ(x)
∣∣ ≥ 1

2

√
�(ξ∗)−1z

2σ

}
∪

{[
Dγ ′

ξ
]
β ≥ 1

2

√
�(ξ∗)−1z

2σ

}
.

Therefore,

(81)

P

((
sup
x∈Ū

∣∣Dγ ξ(x)
∣∣ + [

Dγ ′
ξ
]
β

)2 ≥ �(ξ∗)−1z

2σ

∣∣∣Z1 = z

)

≤ P

(
sup
x∈Ū

∣∣Dγ ξ(x)
∣∣ ≥ 1

2

√
�(ξ∗)−1z

2σ

∣∣∣Z1 = z

)

+ P

([
Dγ ′

ξ
]
β ≥ 1

2

√
�(ξ∗)−1z

2σ

∣∣∣Z1 = z

)
.

Now we present upper bounds for the two terms on the right-hand side of the
above inequality for γ and γ ′ such that |γ | = m + 1 and |γ ′| = m + 1. To do so,
we consider a continuous Gaussian random field χ1 that belongs to Cβ(Ū) almost
surely, and it has the same distribution as {Dγ ξ(x), x ∈ Ū |Z1 = z}.

LEMMA 9. Let Cχ1(s, t) = Eχ1(s)χ1(t) and μχ1(t) = Eχ1(t), then we have

|μχ1 |β = O
(
σ 1−αz

)
and sup

y∈Ū

∣∣Cχ1(·, y)
∣∣ < ∞.

The above expressions are uniform in γ for |γ | = m + 1.

Notice that the above lemma has the same form as (68), so with similar argu-
ments as those for (71), we have

(82) P

(
sup
x∈Ū

∣∣Dγ χ1(x)
∣∣ ≥ 1

2

√
�(ξ∗)−1z

2σ

)
≤ e−ε0σ

−αz.



2808 LI, LIU, LU AND ZHOU

Also, similar as arguments before (72), we have

(83) P

([
Dγ ′

χ1
]
β ≥ 1

2

√
�(ξ∗)−1z

2σ

)
≤ e−ε0σ

−αz.

Combining (82) and (83) and (81), we have

P

((
sup
x∈Ū

∣∣Dγ ξ(x)
∣∣ + [

Dγ ′
ξ
])2 ≥ �(ξ∗)−1z

2σ

∣∣∣Z1 = z

)
≤ 2e−ε0σ

−αz.

Combining the above display with (79) and (80), we have

P

(
|ξ |2m+1,β ≥ �(ξ∗)−1z

σ

∣∣∣Z1 = z

)
≤ e−ε0σ

−αz,

for σ sufficiently small and a possibly different constant ε0. Similarly, conditional
on Z1 = −z, we have

P

(
|ξ |2m+1,β ≥ �(ξ∗)−1z

σ

∣∣∣Z1 = −z

)
≤ e−ε0σ

−αz.

Thus,

P

(
|ξ |2m+1,β ≥ �(ξ∗)−1z

σ

∣∣∣Z1 = z

)
+ P

(
|ξ |2m+1,β ≥ �(ξ∗)−1z

σ

∣∣∣Z1 = −z

)

≤ 2e−ε0σ
−αz,

and we complete the proof for (78) for the case where β > 0. For β = 0, |ξ |m+1 =
|ξ |m + sup|γ |=m+1 supx∈Ū |Dγ ξ(x)|. We obtain the proof for the case where β = 0

by ignoring all the [Dγ ′
ξ ]β terms in the proof for the case where β > 0. This

completes the induction. �

PROOF OF LEMMA 6. According to Theorem 6.14 in Gilbarg and Trudinger
(2015), we have that the PDE (42) has a unique solution in C2,β(Ū ). Denote this
solution by ua,f , then according to Theorem 6.6 in Gilbarg and Trudinger (2015),
we have the upper bound:

|ua,f |2,β ≤ κ(δ,M,d,U)
(|ua,f |0 + |f |0)

.

We conclude the proof with the following upper bound provided by Theorem 3.7
in Gilbarg and Trudinger (2015):

|ua,f |0 ≤ κ0|f |0
for a constant κ0 depending only on the domain U and |a|1. �

PROOF OF LEMMA 7. According to the definition of ua1,f1 and ua2,f2 , we
have that

−∇ · (
a1(x)∇ua1,f1(x)

) = f1 and − ∇ · (
a2(x)∇ua2,f2(x)

) = f2.
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Taking difference between the above two equalities, we have

−∇ · (a1∇ua1,f1) + ∇ · (
a2(x)∇ua2,f2

) = f1(x) − f2(x) for x ∈ U.

Rearranging terms in the above expression, we have

− ∇ · (
a2(x)∇(

ua2,f2(x) − ua1,f1(x)
))

= f2(x) − f1(x) − ∇ · {(
a1(x) − a2(x)

)∇ua1,f1(x)
}
.

Therefore, ū = ua2,f2 − ua1,f1 ∈ C2,β(Ū ) is a solution to the elliptic PDE{−∇ · (
a2(x)∇ū(x)

) = f̄ (x) for x ∈ U ;
ū(x) = 0 for x ∈ ∂U,

where f̄ (x) = f2(x) − f1(x) − ∇ · {(a1(x) − a2(x))∇ua1,f1(x)}. According to
Lemma 6, we have

(84) |ua2,f2 − ua1,f1 |2,β ≤ κ(δ,M,d,U)|f̄ |β.

We further establish an upper bound for |f̄ |β ,

(85) |f̄ |β ≤ |f2 − f1|β + |a2 − a1|1,β |ua1,f1 |2,β .

According to Lemma 6,

|ua1,f1 |2,β ≤ κ(δ,M,d,U)|f1|β.

Combining this with (84) and (85), we have

|ua2,f2 −ua1,f1 |2,β ≤ κ(δ,M,d,U)
{|f2 −f1|β +κ(δ,M,d,U)|a2 −a1|1,β |f1|β}

.

We complete the proof by setting κ̃(δ,M,d,U) = max(κ(δ,M,d,U),

κ(δ,M,d,U)2). �

PROOF OF LEMMA 5. We take difference between Tw1(λ) and Tw2(λ),

Tw1(λ) − Tw2(λ) = −K
(
G′[0])−1

σ−1{
G

(
σCλG′[σCw1]) − G

(
σCλG′[σCw2])}

Therefore,

(86)
∣∣Tw1(λ) − Tw2(λ)

∣∣ = O
(
σ−1{∣∣G(

σCλG′[σCw1]) − G
(
σCλG′[σCw2])∣∣}).

According to Lemma 3, we have

G
(
σλCG′[σCw1]) − G

(
σλCG′[σCw2])

= σλ

∫
U
G′[σλCG′[σCw2]](x)C

{
G′[σCw1](x) − G′[σCw2](x)

}
dx

+ O
(
σ 2λ2∣∣G′[σCw1] − G′[σCw2]

∣∣2
k,β

)
.



2810 LI, LIU, LU AND ZHOU

According to (29) and Assumption A1, the above display can be further simplified
as

G
(
σλCG′[σw1]) − G

(
σλCG′[σw2]) = O

(
σλ

∣∣G′[σw1] − G′[σw2]
∣∣
k,β

)
,

which is further simplified as

G
(
σλCG′[σw1]) − G

(
σλCG′[σw2]) = O

(
σλσ |w1 − w2|k,β

)
.

The above expression and (86) give∣∣Tw1(λ) − Tw2(λ)
∣∣ = O

(
σλ|w1 − w2|k,β

) = O
(
σα)|w1 − w2|k,β .

The last inequality in the above expression is due to λ = O(σα−1). �

PROOF OF LEMMA 9. We need the next lemma for the current proof.

LEMMA 10. We define the covariance function:

CDγ ξ,ξ (x, y) = Cov
(
Dγ ξ(x), ξ(y)

)
.

Then supy∈Ū |CDγ ξ,ξ (·, y)|2β < ∞ for all |γ | ≤ k under Assumption A3.

Now we compute the mean and covariance of χ1:

μχ1(x) = E
[
Dγ ξ(x)|Z1 = z

]
= Var(Z1)

−1 Cov
(
Dγ ξ(x),Z1

)
z

= Var(Z1)
−1

∫
U

CDγ ξ,ξ (x, y)ξ∗(y) dyz,

and

Cχ1(x, y) = CDγ ξ (x, y) − Var(Z1)
−1 Cov

(
Dγ ξ(x),Z1

)
Cov

(
Dγ ξ(y),Z1

)
= CDγ ξ (x, y) −

∫
U CDγ ξ,ξ (x, r)ξ∗(y) dr

∫
U CDγ ξ,ξ (y, r)ξ∗(y) dr

Var(Z1)
.

Recall that Var(Z1) ≥ ε0σ
2α−2 for some positive constant ε0, and |ξ∗|k,β =

O(σα−1). With the aid of Lemma 10, we simplify the mean and covariance of
χ1:

|μχ1 |β = O
(
σ 2−2α

∣∣ξ∗∣∣
0 sup

y

∣∣CDγ ξ,ξ (·, y)
∣∣
2βz

)
= O

(
σ 1−αz

)
,

and

sup
y∈Ū

∣∣Cχ1(·, y)
∣∣
2β = O

(
sup
y∈Ū

∣∣CDγ ξ (·, y)
∣∣
2β + σ 2−2α

∣∣ξ∗∣∣2
0 sup

y∈Ū

∣∣CDγ ξ,ξ (·, y)
∣∣2
2β

)

= O(1). �
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PROOF OF LEMMA 10. We will use induction to prove that for all l =
0,1, . . . , k, |γ | = l,

(87) sup
y∈Ū

∣∣CDγ ξ,ξ (·, y)
∣∣
2β < ∞.

To start with, for l = 0 and |γ | = l, (87) holds because of Assumption A3 and

CDγ ξ,ξ (s, t) = C(s, t).

Suppose that for all |γ ′| = l,

(88) sup
y∈Ū

∣∣C
Dγ ′

ξ,ξ
(·, y)

∣∣
k−l,2β < ∞.

For |γ | = l + 1, we want to show that

(89) sup
y∈Ū

∣∣CDγ ξ,ξ (·, y)
∣∣
k−l−1,2β < ∞.

Without loss of generality, we assume that γ = (γ1, . . . , γd) and γ1 ≥ 1. Let e1 =
(1, . . . ,0) be a d-dimensional basis vector, and γ ′ = γ − e1, then |γ ′| = l. We
compute CDγ ξ,ξ :

CDγ ξ,ξ (x, y) = lim
ε1→0

Cov
(

Dγ ′
ξ(x + ε1e1) − Dγ ′

ξ(x)

ε1
, ξ(y)

)

= lim
ε1→0

ε−1
1

{
C

Dγ ′
ξ,ξ

(x + ε1e1, y) − C
Dγ ′

ξ,ξ
(x, y)

}

= ∂

∂x1
C

Dγ ′
ξ
(x, y).

Consequently,

∣∣CDγ ξ,ξ (·, y)
∣∣
k−l−1,2β =

∣∣∣∣ ∂

∂x1
C

Dγ ′
ξ
(·, y)

∣∣∣∣
k−l−1,2β

≤ ∣∣C
Dγ ′

ξ
(·, y)

∣∣
k−l,2β.

Thus,

sup
y∈Ū

∣∣CDγ ξ,ξ (·, y)
∣∣
k−l−1,2β ≤ sup

y∈Ū

∣∣C
Dγ ′

ξ
(·, y)

∣∣
k−l,2β < ∞.

The second inequality of the above display is due to (88). The lemma is proved by
induction. �
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